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Abstract A model of a nonlinear beam with a piezoelectric patch linked to a
nonlinear circuit is considered. The physical and mechanical parameters of the
system are such that it presents a 1:3 internal resonance. The aim is to study,
for different time scales, the effect of the nonlinearity of the electrical circuit on
energy exchanges between the resonant modes. In fact, we would like to master
energy channelling between two internally resonant modes of a composite beam
via a nonlinear circuit. The investigations are carried out on the projected system
equations on its internally resonant modes. The system behaviours at different
scales of time are studied by coupled methods of complexification and multiple
scale. Analytical developments permit to reveal different system dynamics charac-
terized by periodic and/or non periodic regimes. Finally, the paper is accompanied
by comparisons between systems equipped with a resonant circuit (linear) and a
nonlinear one.

Keywords nonlinear dynamics · piezoelectric patch · inter-modal energy
exchanges · internal resonance · nonlinear circuit

1 Introduction

Nonlinear vibrations of structural systems have been widely studied over the years
with the aim of mitigating or harvesting their energies [1,2,3]. Depending on the
geometrical characteristic of nonlinear beams and also on the nature of external
excitations, they can present different types of internal or combination or auto
parametric resonances [4,5,6,7,8,9]. It can be shown that via developing nonlin-
ear equations of a cantilevered beam until third order, one can reach to cubic
nonlinear terms [10,11]. Several types of internal resonances can be observed [12,
6] including a 1 : 3 internal resonance, meaning that two natural frequencies of
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the system (ωm and ωn) are positioned in such a way that: ωm ' 3ωn. It is shown
that different strategies can be used to tune natural frequencies presenting a cer-
tain ratio, e.g. via imposing a particular cross-section [5]. In previous works, it is
proven that via patching piezoelectric materials at special positions on the beam,
a 1 : 2 and also a 1 : 3 internal resonances can be achieved [13,14].
Piezoelectric materials can be used in order to mitigate or to harvest vibratory
energies [15,3]. The effectiveness of a piezoelectric patches to achieve the desired
outcome (energy harvesting or vibration mitigation) can be increased through its
electrical components. Indeed, the electrical components of the circuits linked to
the piezoelectric materials can be optimized according to design purposes [16].
Different electrical circuits have been proposed and studied over the years, e.g.
classical circuits as resistive circuits (composed of a simple resistance) [17] or res-
onant ones (composed of a capacitance and a resistance) [18]. Moreover, nonlinear
circuits have been implemented to extend the frequency range of application of
systems, such as a nonsmooth nonlinearity created through switch devices [19,20,
21,22] or cubic nonlinearity due to nonlinear capacitance devices [23] and electri-
cal networks [24]. Usually, most of designs aim at periodic responses of the system
and piezoelectric materials are used to reduce the vibration of one special mode,
or several piezoelectric materials are patched to mitigate the vibrations of several
modes of the structure [25,26]. So, the overall electromechanical system can be
used as a nonlinear absorber as in mechanical systems [27,28,29,30,31,32,33,34,
35,36].
Our previous developments devoted to the creation of an energy exchange between
the second and third modes of an electromechanical system due to a 1 : 3 internal
resonance [13,14]. This nonlinear behaviour was produced by the inherent nonlin-
earities of the electromechanical system. Then, we studied the possibility of using
an adaptable nonlinear circuit when the system originally does not present any
internal resonance [37]: It was shown that the components of the nonlinear circuit
can be tuned to obtain desired dynamical behaviours of the system. This article
is dealing with the use of an adaptable nonlinear circuit to master an inter-modal
energy exchanges between two resonant modes of an electromechanical structure.
Organization of the paper is as it follows: The composite system and its governing
equations are presented in Sect. 1. The projection of the system on its internally
resonant modes is illustrated at the same section. Analytical treatments of the
system via classical multiple scale method is presented in Sect. 2. Then, in Sect.
3, the complexification / multiple scale methods are exploited for detection of the
fast and slow system dynamics. Finally, the paper is concluded in Sect.4.

2 Presentation of the composite system

The system is composed of a homogeneous beam patched with a single piezoelectric
material. The patch has the fixed length (Lp) and width b equal to the width of
the beam, and is positioned between x = x1 and x = x2, see Fig. 1. Originally
a three-dimensional Euler-Bernoulli beam model is developed: It is assumed that
the beam can present large deformations, preserving a nonlinear elastic behaviour,
while the cross sections remains straight. The neutral axis of the beam is supposed
to be inextensible. Then, after derivation of the Green’s strain tensor of the beam
and obtaining the Lagrangian, governing system equations are developed until
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Fig. 1 Scheme of the composite system: a homogeneous beam is patched with a piezoelectric
material at x ∈ [x1, x2]. The piezoelectric material is coupled to a nonlinear circuit. The overal
system is under lateral base excitation as F cos(Ωt).

the third order nonlinearities. For the piezoelectric patch, we suppose a linear
behaviour of piezoelectric material [38] and we ignore its nonlinear terms [13,39,
40]. Moreover, we suppose it has same displacement as the homogeneous beam
during the deformation. Governing systems equations after detailed developments
of [41] read as:

µv̈ + cv v̇ − µFΩ2 cos(Ωt) =

[
− EI(v′′′ + v′(v′v′′)′)

+v′
∫ Lb

s

−µ
2

∫ 0

s

(v′2)¨ ds ds

−(δ(s− x1)− δ(s− x2))
bpd31(y22 − y21)

2hp
V

]′ (1)

q =

∫ x2

x1

(
bpd31(y2 − y1)v′′ +

bpε33
hp

V
)
ds (2)

with µ, cv, EI the mass density, the damping, the Young modulus and inertia of the
system. V , q are the electrical tension and the electrical charge of the piezoelectric
material, respectively. The system is under base excitation as F cos(Ωt), where F
is the amplitude of the lateral base excitation with the driving frequency of Ω. bp
and hp are the width and the thickness of the piezoelectric material. d31, ε33, y2
and y1 are the piezoelectric coefficient, the permittivity and the positions of the
electrodes of the piezoelectric material with respect to the neutral axis (see Fig.
2). x1 and x2 give the position of the piezoelectric patch. Let us assume that the

system presents a 1 : 3 internal resonance between the nth and mth modes. Thus,
the spatio-temporal variable v(s, t) is supposed to take the following form:

v(s, t) = φn(s)rn(t) + φm(s)rm(t) (3)
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Fig. 2 Positions of electrodes of the piezoelectric material with respect to the neutral axis (y1
and y2).

Through the projection of the Eq. 1 on nth and mth modes, we obtain:

r̈n + µnṙn + ω2
nrn = Dennnr

3
n +Dennmr

2
nrm

+Denmmrnr
2
m +Demmmr

3
m

+2(Gnnnrn +Gmnnrm)(ṙ2n + rnr̈n)
+(Gnnmrn +Gmnmrm)(r̈nrm + 2ṙnṙm + rnr̈n)

+2(Gnmmrn +Gmmmrm)(ṙ2m + rmr̈m)

+DeV V − FnΩ2 cos(Ωt)

r̈m + µmṙm + ω2
mrm = Aennnr

3
n +Aennmr

2
nrm

+Aenmmrnr
2
m +Aemmmr

3
m

+2(Gannnrn +Gamnnrm)(ṙ2n + rnr̈n)
+(Gannmrn +Gamnmrm)(r̈nrm + 2ṙnṙm + rnr̈n)

+2(Ganmmrn +Gammmrm)(ṙ2m + rmr̈m)

+AeV V − FmΩ2 cos(Ωt)

(4)

Different system coefficients are defined in Appendix A. The electrical tension V
is expressed as:

V =
1

LV
(q − Lnrn − Lmrm) (5)

with:

LV =
bpd31(y22 − y21)(x2 − x1)

2hp

Ln =

∫ x2

x1

bpd31(y2 − y1)φ′′n(s) ds

Lm =

∫ x2

x1

bpd31(y2 − y1)φ′′m(s) ds

(6)

Supposing a nonlinear electrical circuit composed of an inductance L0, a resistance
R, a negative capacitance Cneg and a nonlinear capacitance CNL, the electrome-
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Table 1 Mechanical parameters of the beam

ρb (kg/m3) Eb (Pa) hb (mm) b (mm) Lb (m)
9 103 105 109 0.5 30 0.18

Table 2 Mechanical and material parameters of the piezoelectric patch. C/N stands for
Coulomb/Newton.

ρp (kg/m3) Ep (Pa) hp (mm) d31 (C/N) ε33 (C/N) b (mm)
7650 93.8 109 0.2 10.13 −9.08 10−9 30

chanical equation of the circuit (see Eq. 2) reads:

L0q̈ +Rq̇ +
1

CNL
q3 +

1

Cneg
q =

1

LV
(q − Lnrn − Lmrm) (7)

To nondimensionalize the equations, we set:

t∗ = ωnt (8)

Then, following system of equations are obtained in time domaine t∗:

r̈n + a1ṙn + rn =

Λnnnr
3
n + Λnnmr

2
nrm + Λnmmrnr

2
m + Λmmmr

3
m + γV q + γnrn + γmrm

+2(Lnnnrn + Lmnnrm)(ṙ2n + rnr̈n)
+(Lnnmrn + Lmnmrm)(r̈nrm + 2ṙnṙm + rnr̈n)

+2(Lnmmrn + Lmmmrm)(ṙ2m + rmr̈m)− Fnν2 cos(νt∗)

r̈m + a2ṙm + (
ωm
ωn

)2rm =

Γnnnr
3
n + Γnnmr

2
nrm + Γnmmrnr

2
m + Γmmmr

3
m + βV q + βnrn + βmrm

+2(Tnnnrn + Tmnnrm)(ṙ2n + rnr̈n)
+(Tnnmrn + Tmnmrm)(r̈nrm + 2ṙnṙm + rnr̈n)

+2(Tnmmrn + Tmmmrm)(ṙ2m + rmr̈m)− Fmν2 cos(νt∗)

q̈ + a3q̇ + γq3 = ΘV q +Θnrn +Θmrm

(9)

where ν =
Ω

ωn
and other system parameters are defined in Appendix A (note that

ΘV < 0).
In the next section, the mechanical and geometrical properties of the composite
are presented. The physical and mechanical properties of the coupled structure
are chosen in a manner that it presents a 1 : 3 internal resonance between two of
its modes [13,14].

2.1 Parameters of the composite

The mechanical and material parameters of the coupled system are reported in
Tabs 1 and 2. In order to obtain the 1 : 3 internal resonance, it is supposed that
the piezoelectric patch is placed in x1 = 0.031 m and x2 = 0.081 m. This position is
chosen according to the method explained in [13]. In this case, the second (ω2) and
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Table 3 Second and third natural pulsations of the composed system and their ratio

ω2 (rad/s) ω3 (rad/s) ω3/ω2

342.8 1030 3.005

the third (ω3) natural frequencies of the system present a 1 : 3 internal resonance,
see Tab. 3. It has been shown that this internal resonance leads to vibratory energy
exchanges between two mentioned modes due to the inherent nonlinearities of the
electromechanical system [14]. The mechanical parameters being known, only the
electrical parameters of the nonlinear circuit remain to be tuned.
In the next section a classical multiple scale method is endowed for detecting
periodic regimes of the system.

3 Analytical treatments of system of equations via the direct multiple
scale method

To implement the multiple scale method [42], a small book-keeping parameter ε is
considered, allowing the definition of different times scales as it follows:

ti = εi t∗, i = 1, ..., n (10)

t0 is the fast time scale and t1, ..., tn are different slow time scales. This lead to:

Di =
∂

∂ti
, i = 0, 1, .. (11)

Moreover, we assume that following system parameters are O(ε): a1, a2, Fn, Fm,
γV , γn, γm, βV , βn, βm, γ, and also all parameters linked to cubic terms. In further
analytical developments the scaled parameters with respect to the ε parameter are
represented by addition of the index 0 to the original version such as, a1 = ε a10,
Fn = ε Fn0, etc. With mentioned assumptions, modes and the nonlinear circuit
are weakly coupled while the circuit itself is weakly nonlinear (see Eq. 9).
As for the time variables rn, rm and q, they are written as:

rn = rn0 + εrn1 + ...
rm = rm0 + εrm1 + ...
q = q0 + εq1 + ...

(12)

Since a 1 : 3 internal resonance is created between the second and third modes
(m = 3, n = 2), it is supposed that:

ωm
ωn

= 3 + σ2ε (13)

with σ2 a detuning parameter linked to the realization of the 1 : 3 internal reso-
nance.
The driving frequency of excitation ν is supposed to be:

– around the lower mode (ωn) as:

ν = 1 + σε (14)
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– or around the higher mode (ωm) as:

ν = 3 + σ̃ε (15)

The explained methodology in [13] is exploited step by step. Let us consider dif-
ferent orders of ε of governing system equations.
Equation 9 at O(1) reads:

D0
2rn0 + rn0 = 0

D0
2rm0 + 9rm0 = 0

D0
2q0 + a3D0q0 = Θm0rm0 +Θn0rm0 +ΘV 0q0

(16)

So,
rn0 = An exp(it0) +An exp(−it0)
rm0 = Am exp(3it0) +Am exp(−3it0)
q0 = L1n exp(it0) + L1m exp(3it0) + cc

(17)

with:

L1n =
−Θn0(1 + ia3 +ΘV 0)

a23 + (1 +ΘV 0)2

L1m =
−Θm0(9 + 3ia3 +ΘV 0)

9a23 + (9 +ΘV 0)2

(18)

At O(ε),

– for ν around 1 (see Eq. 14), the first two equations of the system 9 become:

D2
0rn1 + rn1 = Lnnn0rn0

3 + Lnnm0r
2
n0rm0 + Lnmm0rn0r

2
m0

+Lmmn0r
3
m0 + 2Gmmm0

(
(D0rm0)2 + rm0D

2
0rm0

)
rm0 − a10D0rn0

−2D1D0rn0 +Gmnm0rm0(rn0D
2
0rm0 +D0rn0D0rm0 + rm0D

2
0rn0)

+2Gnmm0

(
(D0rm0)2 + rm0D

2
0rm0

)
rn0

+Gnnm0rn0(rn0D
2
0rm0 +D0rn0D0rm0 + rn0D

2
0rm0)

+2Gnnn0
(

(D0rn0)2 + rn0D
2
0rn0

)
rn0

+2Gmnn0
(

(D0rn0)2 + rn0D
2
0rn0

)
rm0 + γn0rn0 + γm0rm0 + γV 0q0

−1

2
Fn0(eit0+iσt1 + e−it0−iσt1)

D2
0rm1 + 9rm1 = 2Gannn0

(
(D0rn0)2 + rn0D

2
0rn0

)
rn0

+2Gammm0rm0(D0r
2
m0 + rm0D

2
0rm0)

+Gamnm0rm0(rn0D
2
0rm0 +D0rn0D0rm0 + rm0D

2
0rn0)

+2Ganmm0

(
(D0rm0)2 + rm0D

2
0rm0

)
rn0

+2Gamnn0
(

(D0rn0)2 + rn0D
2
0rn0

)
rm0

+Gannm0rn0(rn0D
2
0rm0 +D0rn0D0rm0 + rm0D

2
0rn0)− 6rm0σ2

+Tmmm0r
3
m0 + Tnmm0rn0r

2
m0 + Tnnm0rm0r

2
n0 + Tnnn0r

3
n0

−2D1D0rm0 + βV 0q0 + βm0rm0 + βn0rn0 − a20D0rm0

−1

2
Fm0(eit0+iσt1 + e−it0−iσt1)

(19)
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Cancellation of secular terms of Eq. 19 provides:

2iD1An = −1

2
Fn0 exp(iσt1) + γn0An − ia10An + γV 0L1nAn

+2(Lnmm0 − 9(Gnmn0 +Gnnm0))AnAmAm

+(Lnnm0 − 4Gmnn0 − 6Gnnm0)AmA
2
n

+(3Lnnn0 − 4Gnnn0)A2
nAn

6iD1Am = γm0Am − 3ia20Am − 6σ2Am + βV 0L1mAm
+3(Tmmm0 − 12Gammm0 − 9Gamnm0)A2

mAm
+2(Tnnm0 − 9Gannm0)AmAnAn
+(Tnnn0 − 4Gannn0)A3

n

(20)

To eliminate the time scale t1 from equations and to find algebraic systems
from the real and imaginary parts, it is supposed (with i2 = −1):

An = (pn + iqn) exp(iσt1)
Am = (pm + iqm) exp(3iσt1)

(21)

with (pn, qn, pm, qm) ∈ R.
Then, to find the amplitude of the first harmonic of rm, the particular solution
of rm1 is found as:

rm1(t0) = M1 exp(it0) + cc (22)

– for ν around 3 (see Eq. 15), the first two equations of the system 9 read:

D2
0rn1 + rn1 = Lnnn0rn0

3 + Lnnm0r
2
n0rm0 + Lnmm0rn0r

2
m0

+Lmmm0r
3
m0 + 2Gmmm0

(
(D0rm0)2 + rm0D

2
0rm0

)
rm0 − a10D0rn0

−2D1D0rn0 +Gmnm0rm0(rn0D
2
0rm0 +D0rn0D0rm0 + rm0D

2
0rn0)

+2Gnmm0

(
(D0rm0)2 + rm0D

2
0rm0

)
rn0

+Gnnm0rn0(rn0D
2
0rm0 +D0rn0D0rm0 + rn0D

2
0rm0)

+2Gnnn0
(

(D0rn0)2 + rn0D
2
0rn0

)
rn0

+2Gmnn0
(

(D0rn0)2 + rn0D
2
0rn0

)
rm0 + γV 0q0 + γm0rm0 + γn0rn0

−9

2
Fn0e

3it0+3iσ̃t1 + e−3it0−3iσ̃t1)

D2
0rm1 + 9rm1 = 2Gannn0

(
(D0rn0)2 + rn0D

2
0rn0

)
rn0

+2Gammm0rm0(D0r
2
m0 + rm0D

2
0rm0)

+Gamnm0rm0(rn0D
2
0rm0 +D0rn0D0rm0 + rm0D

2
0rn0)

+2Ganmm0

(
(D0rm0)2 + rm0D

2
0rm0

)
rn0

+2Gamnn0
(

(D0rn0)2 + rn0D
2
0rn0

)
rm0

+Gannm0rn0(rn0D
2
0rm0 +D0rn0D0rm0 + rm0D

2
0rn0)− 6rm0σ2

+Tmmm0r
3
m0 + Tnmm0rn0r

2
m0 + Tnnm0rm0r

2
n0 + Tnnn0r

3
n0

−2D1D0rm0 + βV 0q0 + βm0rm0 + βn0rn0 − a20D0rm0

−9

2
Fm0(e3it0+3iσ̃t1 + e−3it0−3iσ̃t1)

(23)
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The secular terms of Eq. 23 verify:

2iD1An = 2γn0An − ia10An + γV 0L1nAn
+2(Lnmm0 − 9(Gnmn0 +Gnnm0))AnAmAm

+(Lnnm0 − 4Gmnn0 − 6Gnnm0)AmA
2
n

+(3Lnnn0 − 4Gnnn0)A2
nAn

6iD1Am = −9

2
Fm0 + 6γm0Am − 3ia20Am − 6σ2Am + βV 0L1mAm

+3(Tmmm0 − 12Gammm0 − 9Gamnm0)A2
mAm

+2(Tnnm0 − 9Gannm0)AmAnAn
+(Tnnn0 − 4Gannn0)A3

n

(24)

For eliminating the time t1 and obtaining algebraic equations, it is supposed
that:

An = (pn + iqn) exp(
1

3
iσt1)

Am = (pm + iqm) exp(iσt1)
(25)

with (pn, qn, pm, qm) ∈ R.
To obtain the main harmonic of rn, the particular solution rn1 reads:

rn1(t0) = N1 exp(3it0) + cc (26)

The algebraic equations of the steady state responses are detected via setting:
D1pn = 0
D1qn = 0
D1pm = 0
D1qm = 0

(27)

The remaining task will be the evaluation of roots of these equations for sweep-
ing forcing amplitudes and/or driving frequency

3.1 A numerical example: comparisons

Results obtained from analytical developments via the multiple scale method are
compared with those obtained from direct numerical integration of Eqs. 4 and 7
with the ode45 function of Matlab. Figures 3 and 4 collect frequency response
curves of different system variables for sweeping ν around 1 and 3, respectively. In
these figures, amplitudes of the first and/or the third harmonics of system variables
are considered. It is seen that for the case of ν varying around 1 (see Fig. 3), first
harmonics of rn and q provide good approximations of system responses, while
for rm, the third harmonic should be considered as well. For ν varying around 3
(see Fig. 4), first harmonics of all system variables provide good predictions of the
system behaviours. In the next section a complexification technique accompanied
by the multiple scale method is carried out in order to have a deeper vision about
possible system behaviours, i.e. periodic and/or non periodic ones.
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Fig. 3 The frequency response curves : the electrical parameters used are R = 3050 Ω L0 =
106 Henry (H), CNL = 10−15 C3/V and the forcing is F = 7× 10−6 m.

4 Analytical treatments of system of equations via complexification
and multiple scale methods

Let us introduce following complexified variables to the system of Eq. 9 [43]:

ṙn + iνrn = φ exp(iνt∗)
ṙm + 3iνrm = φ3 exp(3iνt∗)
q̇ + iνq = ψ exp(iνt∗)

(28)
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Fig. 4 The frequency response curves: the electrical parameters used are R = 3050 Ω, L0 =
106 H, CNL = 10−15 C3/V and the forcing is F = 7× 10−6 m.

It should be mentioned that in Eq. 28 only the third harmonics of variable rm is
considered. However, the problem can be extended to include its first harmonic
and also to consider higher harmonics of system variables rn, q as it is carried out
in [44].
Let us consider a Galerking method, to take into account the first harmonics and
to truncate higher ones. For an arbitrary function Ξ(φ, φ3, ψ), this is carried out
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by:

ν

2π

∫ 2π
ν

0

Ξ(φ, φ3, ψ) exp(−iνt∗) dt∗ (29)

In applying the integral of Eq. 29, it is supposed that φ, φ3 and ψ are independent
of the fast time scale. This will be checked during multiple scale method, where
we will seek system responses when fast time leads to infinity.

– O(1) of system equations lead to:

D0φ = 0

D0φ3 = 0

D0ψ =
1

8ν3
(−4a30ν

3ψ + i(−4ν2Θn0φ− 4ν3ψ − 4ν2ΘV 0ψ + 3γ0ψ
2ψ))

= F (φ, φ, ψ, ψ)
(30)

Fixed points of the system impose that D0ψ = 0 (where t0 → ∞), leading to
the definition of the Slow Invariant Manifold (SIM) [45,46,47,48]:

φ =
1

4ν2Θn
(4iν3a3ψ − 4ν4ψ − 4ν2ΘV ψ + 3γψ2ψ)

= f(ψ,ψ)

(31)

Here, the SIM is a geometrical bed for asymptotic states of the system which
houses all equilibria of the system. In our study, the SIM is in fact a critical
manifold of singularity perturbed fast-slow equations via 0 < ε� 1 parameter.
This is very close to the definition of SIM which is described in [47]. Ginoux et
al [46] and Ginoux [48] used the term SIM for wider aspects than critical man-
ifolds. Classification and detailed discussions about most important techniques
of detection of SIM namely, singular perturbation-based and curvature-based
methods are provided by Ginoux [48].

– O(ε) of system equations presents:

D1φ =
1

72ν3
(−2(18Fn0ν

4 + 18a10ν
3φ)

+i(−72σν3φ+ 2(10ν2Gmnm0 − 2Lnmm0)φφ3φ3

+(54ν2Gnnn0 − 27Lnnn0)φ2φ+

+3(Lnnm0 − 4ν2(Gmnn0 +Gnnm0))φ3φ
2 − 36ν2γV 0ψ))

= G(φ, φ, φ3, φ3, ψ, ψ)

D1φ3 =
1

72ν3
(−36a20ν

3φ3

+i(+(72ν3σ2 − 12ν2βm0 − 216ν3σ)φ3

+9(Tnnn0 − 4ν2Gannn0)φ3)

+(12ν2Gammm0 − Tmmm0φ
2
3φ3

+6(10ν2Gannm0 − Tnnm0)φφφ3))

= H(φ, φ, φ3, φ3)

(32)
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We present the complex variables in polar domain as:

φ = N1 exp(iδ1)
φ3 = N2 exp(iδ2)
ψ = N3 exp(iδ3)

(33)

with (N1, N2, N3) ∈ R+ and (δ1, δ2, δ3) ∈ R.
The real and imaginary parts of F (φ, ψ, ψ) exp(iδ3), G(φ, φ, φ3, φ3, ψ) exp(iδ1) and
H(φ, φ, φ3, φ3, ψ) exp(iδ2) allow to find the expressions of cos(3δ1 − δ2), sin(3δ1 −
δ2), cos(δ1 − δ3), sin(δ1 − δ3), cos(δ1) and sin(δ1).
From classical equation cos(δ1 − δ3)2 + sin(δ1 − δ3)2 − 1 = 0,following relation is
obtained:

N1 =
N3

4ν2Θn

√
9γ2N4

3 − 24γν2(ν2 + θV )N2
3 + 16ν4(a23ν

2 + (ν2 +ΘV )2) (34)

And from cos(3δ1 − δ2)2 + sin(3δ1 − δ2)2 − 1 = 0 a polynomial equation of degree
three in N2

2 and N2
1 is obtained, which lead to three-dimensioned definition of the

SIM as a function of N1, N2 and N3.
To obtain the extrema of the SIM, the Jacobian matrix J0 is defined as:

J0 =


∂f(ψ,ψ)

∂ψ

∂f(ψ,ψ)

∂ψ

∂f(ψ,ψ)

∂ψ

∂f(ψ,ψ)

∂ψ

 (35)

From det(J0) = 0, the extreme points N3,± are found as:

N3,± =
2

3
√
γ

√
2ν2(ν2 +ΘV )± ν2

√
(ν2 +ΘV )2 − 3a23ν

2 (36)

From Eq. 34 N1,± can be obtained and from cos(3δ1−δ2)2 +sin(3δ1−δ2)2−1 = 0
the amplitudes ofN2,± are established. Thus, the extreme points (N1,±, N2,±, N3,±)
can be totally identified.
Equilibrium points of the system are defined as (see Eqs. 30 and 32):

D0ψ = 0
D1φ = 0
D1φ3 = 0

⇔


F (φ, φ, ψ, ψ) = 0

G(φ, φ, φ3, φ3, ψ, ψ) = 0

H(φ, φ, φ3, φ3) = 0

(37)

For detecting stable zones of the SIM, system variables are linearly perturbed as:

φ → φ+∆φ
φ3 → φ3 +∆φ3

ψ → ψ +∆ψ
(38)

with |∆φ| << |φ|, |∆φ3| << |φ3| and |∆ψ| << |ψ|. Applying the perturbed form
of complex variables in Eq. 30, following system is obtained:

∂

∂τ0



∆φ

∆φ
∆φ3

∆φ3

∆ψ

∆ψ

 =

0 0 0
0 0 0
A 0 C




∆φ

∆φ
∆φ3

∆φ3

∆ψ

∆ψ

 (39)
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with the matrix A defined in Appendix B.
The sign of the real part of the eigenvalues of the C matrix defines stable/unstable
zones of the SIM:

C =


∂F(φ, φ, ψ, ψ)

∂ψ

∂F(φ, φ, ψ, ψ)

∂ψ

∂F(φ, φ, ψ, ψ)

∂ψ

∂F(φ, φ, ψ, ψ)

∂ψ

 (40)

To perform stability analysis of equilibrium points at O(ε), the system variables
are perturbed as it is defined in Eq. 38. It reads as:

∂

∂t1



∆φ

∆φ
∆φ3

∆φ3

∆ψ

∆ψ

 =

M1 M2 M3

M4 M5 0
0 0 0




∆φ

∆φ
∆φ3

∆φ3

∆ψ

∆ψ

 (41)

Matricess Mj are defined in Appendix C.
Considering equation of the SIM in the form of φ = f(ψ,ψ), Eq. 41 yields to:

∂

∂t1


∆ψ

∆ψ
∆φ3

∆φ3

 = J−1
1 M∗


∆ψ

∆ψ
∆φ3

∆φ3

 (42)

with:

J1 =



∂f(ψ,ψ)

∂ψ

∂f(ψ,ψ)

∂ψ
0 0

∂f(ψ,ψ)

∂ψ

∂f(ψ,ψ)

∂ψ
0 0

0 0 1 0

0 0 0 1


(43)

and:

M∗ =



∂G

∂φ3

∂G

∂φ3

∂G

∂ψ

∂G

∂ψ

∂G

∂φ3

∂G

∂φ3

∂G

∂ψ

∂G

∂ψ

∂H

∂φ3

∂H

∂φ3

∂H

∂ψ

∂H

∂ψ

∂H

∂φ3

∂H

∂φ3

∂H

∂ψ

∂H

∂ψ


(44)
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Studying above mentioned fast and slow dynamics of the system [49] leads to
tracing periodic or non periodic regimes (e.g. modulated responses). The latter is
governed by the existence of fold singularities which verify following conditions:


F (φ, φ, ψ, ψ) = 0

G(φ, φ, φ3, φ3, ψ, ψ) = 0

H(φ, φ, φ3, φ3) = 0
det(J0) = 0

(45)

Those are defined by N1,±, N2,±, N3,± associated to forcing amplitudes F±.
Different system regimes can be predicted via analysing following items:

– Effect of the components of the nonlinear electrical circuit on the system be-
haviours: This includes modification of the SIM and also existence of possible
chaotic regimes if the linear part of the electrical equation becomes negative.

– Singular points and also equilibrium points (stable or unstable) leading to
periodic or quasi-periodic solutions: This will depend on the position of the
equilibrium points on the SIM and on the applied forcing amplitude F , for a
fixed ν.

– The frequency response functions that are linked to periodic or quasi-periodic
solutions for a sweeping frequency ν and or forcing amplitude F .

In the next section, first of all the effects of the components of the nonlinear
electrical circuit are shown. Then results obtained from the direct integrations of
the system of Eq. 9 by ode45 function of Matlab are compared with the analytically
obtained results.

4.1 Numerical examples: effect of the electrical components

It can be seen from Eq. 34 that electrical components affect the geometry of the
SIM. This will lead to identify effects of these parameters on the behaviour of
the electromechanical system [37]. There is a critical value of the inductance L0

which divides the geometry of the SIM into monotone and non monotone [37].
This can be seen in Fig. 5, where the SIM of the system is plotted for varying L0

parameter. We set L0 = 140 Henry (H) so that the SIM is not monotonous. On Fig.
6, it is shown that other three electrical components have effects on local extrema,
stable and unstable zones of the SIM. This shows that electrical components can
be chosen to modify the system behaviour as it will be presented in the next
section. It is also noted that if the linear part of the electrical equation is negative
(ΘV > 0), a bistable situation can arise [50]. Figure 7 depicts phase portraits of
Q(t∗) which are obtained by direct numerical integration of Eq. 9, for ζ = −1. Time
responses of r2, r3 and Q are presented in the Fig. 8. It is seen that the system with
coupled circuits which posses a negative linear part can present chaotic behaviour,
while the same system without coupled circuits presents a quasi-periodic response.
Thus, the electrical components can lead to the creation of particular regimes for
the electromechanical system. In the next section some numerical results will be
presented showing periodic and non periodic responses of the system.
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Fig. 5 The SIM (see Eq. 34) of the system for different values of the inductance L0.

4.2 Numerical examples: equilibrium points according to the forcing amplitude

Depending on the amplitude of external excitation, the system can be attracted by
periodic regimes (stable or unstable) presenting different amplitude/ energy levels
of system variables. It can also reach to quasi-periodic regimes due to the existence
of singularities [51]. In order to study different possible scenarios, equilibrium
points of the system are traced versus the amplitude of the external force F , see
Figs. 9 and 11. These figures are obtained for the same set of electrical parameters
but for different values of ν: ν = 1 (see Fig. 9) and ν = 1.01 (see Fig. 11). Stabilities
of equilibrium points are revealed by examining the eigenvalues of the matrices C
and J−1

1 M∗ of Eqs. 40, 43 and 44. A zoomed area of Fig. 9 is illustrated in Fig.
10, showing that the unstable zone at t0 time scale is very narrow (see the gap
between F− and F+ in Fig. 10). For certain ranges of forcing amplitude, different
dynamics are spotted:

– For ν = 1 and F < Fe,− periodic solutions on the lower branch can be observed
while for F > Fe,+ periodic solutions are located on the upper branch.

– For ν = 1 and F− < F < F+ stable periodic solutions are positioned on the
upper branch, and two unstable solutions are placed on the lower and middle
branches.

– For ν = 1.01, unstable periodic solution leading to modulated responses should
be achieved for 5× 10−6 m< F < 8× 10−6m.

In order to validate these predictions, in the next section the three-dimension SIM
is confronted with results obtained from direct numerical integration of system
equation for chosen forcing amplitudes.

4.3 Confronting the SIM with numerical results

Several dynamical behaviours are awaited from the analysis of Figs. 9 and 11.
First, let us trace a periodic stable solution for the system with ν = 1 and F =
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(a) The SIM of the system for varying CNL

(b) The SIM of the system for varying ζ

(c) The SIM of the system for varying R

Fig. 6 The SIM of the system for different values of the electrical components: the resistance
R, the nonlinear capacitance CNL and the coefficient ζ.
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Fig. 7 Phase portrait traced from the numerical integration of Eq. 9, for ζ = −1, L0 = 140
H, CNL = 10−17 C3.V, R = 3050 Ω and F = 7.5× 10−6 m.

5 × 10−6 m, with zero initial conditions (for all system variables and their first
derivatives). It can be seen that even though the lower equilibrium point for
ν = 1 is unstable at t0, it leads to a quasi-periodic behaviour for, see Fig. 12.
With higher initial conditions, such as rn(0) = 6 × 10−4 and all others to be set
to 0, the dynamics is attracted by the highest equilibrium point which is stable,
leading to a periodic behaviour as illustrated in Fig. 13. The system presents a
modulated response for ν = 1.01 and an amplitude of forcing F for which there
is only one unstable equilibrium point, see Fig. 14. To verify those regimes, time
responses of rn(t∗) corresponding to different cases which are shown in Figs. 12,
13 and 14 are illustrated in Fig. 4.3. From Figs. 15(a) and 15(c), quasi-periodic
regimes are identified. This behaviour can be seen for other variables rm(t∗) and
q(t∗). These reponses are due to the fact that the equilibrium points are situated
in the vicinity of singular points (Eq. 45), see Figs. 12 and 14.
From Fig. 14, it can be seen that results obtained by direct numerical integration of
system equations are qualitatively following the SIM and they are attracted by the
analytically predicted equilibrium points. A quantitative difference can be observed
for the variable N2. This can be due to the effect of the first harmonic which is not
taken into account for this variable (see Eq. 28). Nevertheless, analytical results
provide a qualitatively good estimation of the system behaviour.
In the next subsection, the frequency response curves of the system for sweeping
ν are presented and commented on.

4.4 Numerical results: tracing analytical frequency response curves

From the analytical expression, it is possible to obtain the periodic solutions (see
Eqs. 30 and 32) and to judge on their stabilities (see Eq. 40) for a sweeping fre-
quency ν around 1. For the set of parameters used previously and the forcing
amplitudes F = 5 × 10−6 m and F = 7.5 × 10−6 m , the frequency responses
are depicted in Figs. 16 and 17. The whole behaviours around the lower frequency
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(c) Time response of Q(t∗)

Fig. 8 Time history of system variables while the charge Q presents a chaotic behaviour.
The electrical components are ζ = −1, L0 = 140 H, CNL = 10−17 C3.V, R = 3050 Ω. The
amplitude of forcing is F = 7.5× 10−6 m.
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(c) Equilibrium points: N3 according to F

Fig. 9 Equilibrium points found from Eq. 37, accompanied by their stability analyses at
different time scales obtained from Eqs. 40 and 42, R = 3050 Ω, L0 = 140 H, CNL =
10−17 C3/V , ν = 1. F± are traced from Eq. 45.
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Fig. 10 Equilibrium points detected by Eq. 37, accompanied by their stability analyses at
different time scales obtained from Eqs. 40 and 42 with R = 3050 Ω, L0 = 140 H, CNL =
10−17 C3/V , ν = 1.F± are traced from Eq. 45. This figure is a zoom of Fig. 9 where there are
unstable periodic solutions.

ωn can be studied for the non dimensionalized system. For F = 5 × 10−6 on the
Fig. 16, stable and unstable characteristic points lead the system to periodic and
quasi-periodic behaviours which stay under a threshold of N1 = 10−4. On the
other hand, for F = 7.5 × 10−6 m in Fig. 17, the apparition of an isola can lead
to high amplitudes of N1 while staying under a threshold of N1 = 1.2 × 10−3.
Thus, the frequency response curves are important for identifying different ranges
of system amplitudes for the sweeping frequency. In order to confirm analytical
predictions, a numerical integration is carried out for F = 7.5 × 10−6 m and ob-
tained results are compared with analytical solutions. From obtained results by
numerical integration, the maximum values of the last thirty period are collected
for N1, N2 and N3. This is why there are small discrepancies between numerical
and analytically predicted results. In fact, obtained results from numerical inte-
grations show that for the especial zone, system presents quasi-periodic responses.
From Fig. 18, it is observed that the amplitude of N1 stays under a threshold
even with unstable periodic solutions. This behaviour is due to using the non-
linear circuit which is interesting from passive control viewpoint as it allows (via
tuning its parameters properly) the response of the system stays below a given
threshold. Meanwhile, if initial conditions are high enough, the stable solution can
be found on the isola. This is why the response of the system should be predicted
and detected completely (e.g. the case of existence of an isola) for preventing that
the system presents unwanted/uncontrolled responses. It can be seen that for N1

and N3 the analytical and numerical results are qualitatively in good agreements,
which is not the case for N2. This phenomena can be explained by the fact that
the influence of the first harmonic is important for the variable rm.
In the next subsection a comparison of system responses between the one equipped
with the nonlinear and linear circuits are presented. The latter corresponds to a
resonant circuit.
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(c) Equilibrium points: N3 according to F

Fig. 11 Equilibrium points detected by Eq. 37, accompanied by their stability analyses at
different time scales obtained from Eqs. 40 and 42. R = 3050 Ω, L0 = 140 H, CNL =
10−17 C3/V , ν = 1.01.
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(a) Three dimensional SIM with its three equilibrium points

(b) Zoom on the lower equilibrium point

Fig. 12 The SIM is traced from Eq. 34 with its stability calculated from Eq. 35, for R =
3050 Ω, L0 = 140 H and CNL = 10−17 C3/V . The forcing amplitude and driving frequency
are F = 5 × 10−6 m and ν = 1, respectively. Equilibrium points are identified through Eq.
37 and their stable and unstable zones are clarified from Eqs. 40 and 42.The initial conditions
are set to zero for the numerical integration of Eq. 9.

4.4.1 Comparison between analytical and numerically obtained frequency response
curves

To verify the advantages of using a nonlinear circuit compared to a linear resonant
one, the frequency response curves are traced numerically for a set of electrical
parameters for the nonlinear circuit. The frequency of the resonant circuit is tuned
to match the frequency of the main structure, see Fig. 19. Due to the set of
electrical parameter, apart from the isola, the frequency response curve of the
nonlinear circuit stays under the one of the resonant circuit. This proves that
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Fig. 13 The SIM is traced from Eq. 34 with its stability calculated from Eq. 35, forR =
3050 Ω, L0 = 140 H and CNL = 10−17 C3/V . The forcing amplitude and driving frequency
are F = 7.5 × 10−6 m and ν = 1, respectively. Equilibrium points are identified through Eq.
37 and their stability-unstability zones are clarified from Eqs. 40 and 42. Initial conditions are
x(0) = 6× 10−4 and the rest equal to zero for the numerical integration of Eq. 9.

Fig. 14 The SIM is traced from Eqs. 30 and 32 with its stability calculated from Eq. 35, for
R = 3050 Ω, L0 = 140 H and CNL = 10−17 C3/V , and ν = 1.01. Equilibrium points are
identified through Eq. 37 and their stability-unstability zones are clarified from Eqs. 40 and
42. The initial conditions are the origin for the numerical integration of Eq. 9.

the nonlinear circuit can be optimized in order to control the vibrations of the
beam. On the other hand, being on the isola of the frequency response curves can
improve harvesting the energy of the electrical circuit (with N3). The behaviours
of the electromechanical systems (with two types of circuits: nonlinear and linear)
are compared with those of the homogeneous beam (i.e. the beam without any
piezoelectric patches). It can be seen that the electrical circuits contributes to
reduction of the vibration levels of the structure (apart from the isola). In order to
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Fig. 15 Time history of of rn(t∗) traced from the numerical integration of Eq. 9 for the
parameters of a) Fig. 12, b) Fig. 13 and c) Fig. 14.

verify the results in the time domain, for a given ν (e.g. ν = 1.02), time histories
of rn(t∗), rm(t∗) and q(t∗) are depicted in Fig. 20. It is seen that:

– the nonlinear and resonant circuits reduce the vibration levels of the system
compared to an open circuit condition or a beam without piezoelectric mate-
rials.

– the nonlinear and resonant circuit improves the energy exchange between the
nth and the mth mode (increasing the amplitude of rm(t∗).

If the value of the inductance is modified, it is possible to damp the vibration
of the two mechanical modes (see Fig. 21) with L0 = 66 H. Thus, the nonlinear
circuit can be used to damp the vibrations of the two mechanical modes. It shows
that via tuning values of the electrical components, it is also possible balance the
energies of the two internally resonant modes.

5 Conclusion

An internally resonant composite beam which consists of a homogeneous nonlinear
beam patched with a piezoelectric material on it which is linked to a nonlinear
circuit, is investigated. The structure is designed so that two modes are in inter-
nal resonance: as an example a 1 : 3 resonance in this work. Revealing fast and
slow system dynamics permits to detect slow invariant manifold and characteristic
points, i.e. equilibrium points and fold singularities, of the dynamical system. It
is shown that the parameters of the nonlinear circuit can change the behaviour
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Fig. 16 Frequency response curves (equilibrium points) found from Eq. 37 with their stability
analyses calculated from Eqs. 40 and 42, for the set of following electrical parameters: R =
3050 Ω, L0 = 140 H, CNL = 10−17 C3/V and the forcing amplitude F = 7.5× 10−6 m.
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Fig. 17 Frequency response curves (equilibrium points) found from Eq. 37 with their stability
analyses calculated from Eqs. 40 and 42, for the set of following electrical parameters: R =
3050 Ω, L0 = 140 H, CNL = 10−17 C3/V and the forcing amplitude F = 7.5× 10−6 m.



28 V. Guillot et al.

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

2

4

6

8

10

12

N
1

10
-4

Stable equilibrium points

Unstable equilibrium points at t
1

Unstable equilibrium points at t
0

Numerical integration

(a) Frequency response of N1

0.95 1 1.05
0

1

2

3

4

10
-4

Stable equilibrium points

Unstable equilibrium points at t
1

Unstable equilibrium points at t
0

Numerical integration

(b) Frequency response of N2

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

2

4

6

8

10

12

N
3

10
-6

Stable equilibrium points

Unstable equilibrium points at t
1

Unstable equilibrium points at t
0

Numerical integration

(c) Frequency response of N3

Fig. 18 Frequency response curves for R = 3050 Ω, L0 = 140 H, CNL = 10−17 C3/V and
the forcing amplitude F = 7.5 × 10−6 m, obtained from analytical method (’*’) (see Eq. 37)
with their stability (blue ’*’) and instability (red ’o’) (see Eq. 42) and numerical integration
of Eq. 9 (black ’+’).
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Fig. 19 Comparison of frequency response curves for F = 7 × 10−6 m of a resonant and
nonlinear circuit, with the electrical parameters of the nonlinear circuit as R = 3050 Ω,
L0 = 22 H, µ = 0.1,CNL = 10−17 C3/V .
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Fig. 20 Time histories of system variables, with the electrical parameters of the nonlinear
circuit as R = 3050 Ω, L0 = 22 H, µ = 0.1,CNL = 10−17 C3/V , for ν = 1.02. This comparison
is carried out with a beam without piezoelectric materials and with one piezoelectric material
link to: - no circuit (open circuit condition), a resonant circuit and a nonlinear circuit.
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Fig. 21 Time histories of system variables, with the electrical parameters of the nonlinear
circuit as R = 3050 Ω, L0 = 66 H, µ = 0.1,CNL = 10−17 C3/V , for ν = 1.02. This comparison
is carried out with a beam without piezoelectric materials and with one piezoelectric material
link to: - no circuit (open circuit condition) and a nonlinear circuit.

of internally resonant modes via altering their energies and acting as an auto-
equilibrator of modal energies of resonant modes during periodic or non-periodic
regimes. This phenomena is due to strong modification of the nonlinear interac-
tions between modes, bridged by the nonlinear circuit. It is also seen that the
frequency response curves of the system can presents isola which should not be ig-
nored in designing of such systems as they can correspond to high levels of modal
energies. It is spotted that different parameters can lead the system to present
periodic, quasi-periodic and even chaotic responses. The idea is to “design” (or to
master) inter-modal energy exchanges between two resonant modes of a beam via
using a nonlinear circuit. The global idea is to design (or tune) such nonlinearity
for the global aim which can be desired final periodic or non periodic regimes. The
developed techniques provide design tools for tuning parameters of the nonlinear
circuit and also selection of adapted piezoelectric material.
One of outlooks of this work will be finite element modelling of the system under
consideration and design of an experimental system with developed techniques in
this paper, to verify analytical predictions with results of finite element modelling
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and experimentations. Other perspective of this work is also the optimization of
the nonlinear circuit via taking into account the permitted modal energies thresh-
olds for given width of excitation characteristics, i.e. frequency and amplitude.
The optimization can be made either to obtain improved energy harvesting or
mitigation of vibratory energies of the electromechanical beam. Other internal
resonance cases could be studied for this system, or taking into account several
internal resonances involved in the system dynamics.
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A Definition of the parameters of Eqs. 4

The parameters of Eq. 4 are as:

µn =

∫ Lb

0
cvφ

2
n ds

ω2
n =

∫ Lb

0
EIφ

(iv)
n (s)φn ds

Fn =

∫ Lb

0
µFφn ds

Dennn =

∫ Lb

0
(−EI)(φ′n(φ′nφ

′′
n)′)′ φn ds

Dennm =

∫ Lb

0
(−EI)(φ′n(φ′mφ

′′
n)′ + φ′n(φ′mφ

′′
n)′ + φ′n(φ′nφ

′′
m)′)′ φn ds

Denmm =
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0
(−EI)(φ′m(φ′mφ

′′
n)′ + φ′n(φ′mφ

′′
m)′ + φ′m(φ′nφ

′′
m)′)′ φn ds

Demmm =

∫ Lb
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(−EI)(φ′m(φ′mφ

′′
m)′)′ φn ds

Gnnn =

∫ Lb
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(φ′n
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2

∫ 0

s
φ′2n ds ds)′ φn ds

Gnnm =

∫ Lb

0
(φ′n

∫ Lb

s
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2

∫ 0

s
φ′nφ

′
m ds ds)′ φn ds

Gnmm =
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0
(φ′n

∫ Lb

s

−µ
2
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s
φ′2m ds ds)′ φn ds
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(φ′m
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∫ Lb

0
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∫ Lb

s

−µ
2

∫ 0
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φ′2m ds ds)′ φn ds

DeV = −
bpd31(y22 − y21)

2hp

∫ x2

x1

φ′′n ds

(46)
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µm =
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The parameters of Eq. 9 are defined as:

a1 =
µn

ωn
, ν =

Ω

ωn
,

Λnnn =
Dennn

ω2
n

, Λnnm =
Dennm

ω2
n

,

Λnmm =
Denmm

ω2
n

, Λmmm =
Demmm

ω2
n

,

Lnnn = Gnnn, Lnnm = Gnnm,

Lnmm = Gnmm, Lmnn = Gmnn,

Lmnm = Gmnm, Lmmm = Gmmm,

γV =
DeV

LV ω2
n

,

γn = −
DeV Ln

LV ω2
n

, γm = −
DeV Lm

LV ω2
n

(48)

a2 =
µm

ωm
, Γnnn =
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ω2
n

,

Γnnm =
Aennm

ω2
n
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Aenmm

ω2
n
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LV ω2
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,
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LV ω2
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R

L0ωn
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CNLL0ω2
n

, ΘV =
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−
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CnegL0ω2
n

,

Θn = −
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n
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LV L0ω2
n
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It is noted ζ = 1−
LV

Cneg
as ΘV =

ζ

LV L0ω2
n

.

B Definition of the matrix A from Eq. 39

A =


∂F(φ, φ, ψ, ψ)

∂φ

∂F(φ, φ, ψ, ψ)

∂φ

∂F(φ, φ, ψ, ψ)

∂φ
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∂φ

 (50)
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C Definition of the matrices Mj with j = 1, ..., 5 from Eq. 41

M1 =


∂G
∂φ

∂G
∂φ

∂G
∂φ

∂G
∂φ

 (51)

M2 =


∂G
∂φ3

∂G
∂φ3

∂G
∂φ3

∂G
∂φ3

 (52)

M3 =


∂G
∂ψ

∂G
∂ψ

∂G
∂ψ

∂G
∂ψ

 (53)

M4 =


∂H
∂φ

∂H
∂φ

∂H
∂φ

∂H
∂φ

 (54)

M5 =


∂H
∂φ3

∂H
∂φ3

∂H
∂φ3

∂H
∂φ3

 (55)
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