
HAL Id: hal-03676897
https://hal.science/hal-03676897

Submitted on 24 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring accelerated evolutionary parameter search for
iterative large-scale transport simulations in a new

calibration testbed
Sebastian Hörl

To cite this version:
Sebastian Hörl. Exploring accelerated evolutionary parameter search for iterative large-scale transport
simulations in a new calibration testbed. 10th symposium of the European Association for Research
in Transportation( hEART 2022 ), Jun 2022, Leuven, Belgium. �hal-03676897�

https://hal.science/hal-03676897
https://hal.archives-ouvertes.fr


Exploring accelerated evolutionary parameter search for iterative large-scale
transport simulations in a new calibration testbed

Sebastian Hörl*1

1PhD, Institut de Recherche Technologique SystemX, France

SHORT SUMMARY

Large-scale agent-based transport models of whole territories have become an important tool in
research and planning of new services and policies. Yet, studies based on those tools are rarely
reproducible due to the complexity of data sources and modeling processes. One important el-
ement towards fully replicable simulations is automatic calibration of behavioral and infrastruc-
tural model parameters. The present paper contributes to standardizing the calibration process by
describing a consistent framework for benchmarking calibration objectives and optimization algo-
rithms. Furthermore, the paper advances the current state of the art by exploring the integration
of a search acceleration method for iterative simulators (opdyts) with sample-based evolutionary
search algorithms. In a use case for Paris and the MATSim simulator, we demonstrate the applica-
bility of the framework. We show that opdyts accelerates the parameter search process, although
its comparative runtime benefits decrease with higher availability of computational resources.

Keywords: transport simulation, calibration, parameter search, acceleration, mode share, MAT-
Sim

1. INTRODUCTION

Agent-based transport simulations have gained in interest over the past years as they allow study-
ing in detail the highly dynamic interactions between customers, mobility providers and system
control measures in increasingly digitalized transport systems. By adding behavioral components
to simulate the decision-making of people, agent-based simulations have been used to construct
scenarios for future transport technologies, mobility services, and policies.

The present paper is embedded in a larger effort of making such large-scale agent-based transport
simulations reproducible. (Hörl & Balac, 2021b) propose a method to create synthetic travel de-
mand data sets consisting of synthetic households, persons and their daily activity patterns from
open and publicly available data with a reference use case for Paris and Île-de-France. By adding
network data from OpenStreetMap and regional public transport schedules, the pipeline allows
producing open and runnable simulations for the agent-based transport simulation framework
MATSim (Horni, Nagel, & Axhausen, 2016). While the demand data can serve as input to any
agent-based transport simulator, it is currently optimized to be used in MATSim’s eqasim exten-
sion (Hörl & Balac, 2021a), which focuses on mode decisions which are governed by discrete
choice models. In the full model set up, agents interact in a traffic simulation, perceive traffic
conditions and perform mode decisions for the trips in their daily schedules after a one-day sim-
ulation. After, their updated daily schedules are simulated again, until the decision of the agents
and the traffic conditions reach a stochastic equilibrium state. The process is iterative and depen-
dent on input parameters that value travel time, monetary costs or line switches when comparing
different mode alternatives.
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While the choice model parameters can be estimated from (proprietary) survey data, key metrics
such as mode shares or network flows will still show differences when compared with reference
data sets. Hence, both demand-side (behavioral) and supply-side (network) parameters need to be
adjusted to achieve a high correspondence with reference data.

So far, the calibration process has been performed manually with a researcher proposing a set of
parameters, running the simulation and comparing the resulting metrics with reference data. How-
ever, within the scope of reproducibility, we are interested in establishing an automated pipeline
from raw data sets to the final calibrated simulation. In this context, the process of model pa-
rameter calibration needs to be automated. Having in mind that large-scale agent-based transport
simulations have high demand in computation time, using efficient and adapted algorithms is a
key requirement.

2. BACKGROUND

In the context of MATSim, some efforts of automatic calibration have been presented. (He et
al., 2021) regard MATSim as a black box with input parameters and an objective value as out-
put to calibrate network flows using the SPSA approach (Spall, 1998). (Agarwal, Flötteröd, &
Nagel, 2017) describe a proof-of-concept for calibrating mode choice parameters using a search
acceleration strategy proposed by (Flötteröd, 2017). Apart from those efforts, no readily use-
able calibration framework and benchmark for MATSim or similar simulators exist, which is an
endeavor that will be backed by the present research.

A common approach to perform parameter optimization for stochastic functions without calcula-
ble derivatives is black-box optimization. Various known optimization approaches such as SPSA.
A common class of approaches are covered by Evolutionary Search (ES) strategies. Those al-
gorithms are usually population-based in that in every iteration, a set of potential candidates is
generated. Usually, these candidates are generated by mutating or recombining well-performing
parameter choices from previous generations. A frequently used approach is Covariance Matrix
Adaptation ES (Hansen, 2006) with CMA-(λ ,1)-ES being one specific version. Briefly summa-
rized, the algorithm is based on a normal distribution with a mean and covariance matrix that is
adapted, based on the performance of new proposed parameters. Specifically, the simple (λ ,1)
variant prescribes to sample λ new candidates from the given distribution in each iteration and
replaces the current mean with the most successful candidate if it is better than the current best.
An implementation of CMA-(λ ,1)-ES in pseudocode can be found in (Igel, Suttorp, & Hansen,
2006).

Any black box algorithm can be used to calibrate model parameters, as long as the specific model
can be packaged as a function with input parameters and a resulting output value. It is, hence,
possible to calibrate a MATSim simulation using CMA-(λ ,1)-ES. However, speeding up the cal-
ibration process means exploiting specificities of the simulator. One of the major features of
MATSim is that it progresses iteratively, and that the calculations in one iteration are only de-
pendent on the previous state. The latter property especially means that the simulation state can
be saved and restarted later on. Based on these properties, (Flötteröd, 2017) proposes the search
acceleration method opdyts that not only operates on full simulation runs, but takes into account
transitional states. In brief, the algorithm requires the user to propose a set of N parameter candi-
dates, which are then implemented in respective simulation runs indexed by k ∈ {1, ...,N}. Each
run is then transitioned for T steps, which are represented, for instance, by the iterations of a MAT-
Sim simulation. After, sequentially, one run k is selected based on the transitional performance of
all existing runs and transitioned for another T steps. This process is repeated and aims at pushing
forward runs with promising transitional states and ignoring others early on in the process. Once
a full run completes, it is registered as the new best candidate. Subsequent opdyts iterations are
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Figure 1: Structure of the calibration loop

started from the last state of the best run. (Flötteröd, 2017) leaves mostly open how to generate
parameter candidates initially or before an opdyts iteration. In the paper, an example of a city tax
simulation is provided in which hourly fees are varied in discrete quantities of ±0.25. Hence, a
full enumeration of changing the fee levels is proposed.

In more general cases, parameters may be continuous, a scenario for which no advice is given
by (Flötteröd, 2017). Structurally, a mecahnism is required that (1) allows a user to sample N
different parameter vectors from a proposal distribution, and (2) allows letting the user feed back
exactly one winning parameter set and its objective value. These properties are fulfilled by many
sampling-based black-box optimization algorithms, notably elitist ES such as CMA-(λ ,1)-ES.

3. METHODOLOGY

The larger aim of the research presented here is to systematically benchmark different calibration
objectives, optimization algorithms and their hyperparameters to arrive at automatically calibrated
versions of standard simulations within the MATSim framework, such as the eqasim use case for
Île-de-France.

For that purpose, a calibration/optimization framework has been developed that provides imple-
mentations for a large range of existing black box algorithms and standardized components for
MATSim that allow to extract information to calculate various calibration objectives.

Optimization loop

We propose a classic optimization loop in which an algorithm proposes one or multiple parameter
vectors that are executed in a simulation environment. Once the simulation runs have finished, an
objective value is calculated for each run which quantifies the mismatch between simulation and
reference data. The objective values are fed back to the optimization algorithm, which enters into
the next iteration. The process is visualized in Figure 1.

The process is implemented in a modular Python framework, which is available online1 and which
can be easily applied to any (transport) simulator by exposing a number of actions to the frame-
work:

• submit(id, parameters, information): A unique identifier (id) generated by the
framework is passed to the simulation environment and asks it to start a new simulation with
a vector of parameters chosen by the selected optimization algorithm. Furthermore, the
algorithm may pass additional information. This field is especially useful for advanced

1https://github.com/sebhoerl/boptx
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Figure 2: Mode shares in MATSim and stopping criterion

use cases such as opdyts which uses the interface to start individual T -step transitions by
passing the unique identifier of the previous (prematurely aborted) simulation to advance it
further.

• get(id): The framework requests the simulation environment to return information on the
simulation run. This call should block the system until a run has finished and return the
objective value.

• clean(id): The framework requests the simulation environment to clean up any results of
a previous simulation run because it is not needed anymore.

Currently, the framework provides a range of commonly used algorithms such as various random
sampling approaches, elitist and non-elitist CMA-ES and NES, or SPSA. Especially, sampling-
based methods are defined through dedicated interfaces which can then be used directly in opdyts.

Stopping criterion

A crucial component that is implicitly part of the calibration loop is the stopping criterion that
is used to decide when a simulation has finished. Today, MATSim simulations are usually run
for an a priori fixed number of iterations. Often, researchers would simulate an initial baseline
case, then wait until key metrics such as the overall mode share stabilize (as shown in Figure 2a)
and note down the appropriate number of iterations. However, in an automated calibration loop,
simulations need to be stopped such that simulations runs with different parameters (1) are as long
as necessary to be comparable and not still in a transitional state when they are stopped, and (2)
are as short as possible to save computational time. (Hörl, Becker, & Axhausen, 2021) describe
a computational stopping criterion that is adapted here. We propose to examine the overall mode
share as the major output of an eqasim simulation using the following equations. We denote the
share of any mode in iteration i ∈N as yi ∈R and first smooth the value over a horizon S ∈N both
left and right of i:

si =
1

2S

i+S

∑
j=i−S

y j (1)

We then approximate the derivative of the mode share signal with a two-sided difference equation
with horizon H ∈ N:

di =
si+H − si−H

2H
(2)
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Figure 3: Mode shares by Euclidean distance between simulation output (solid) and
reference data (dotted)

We stop the simulation as soon as for any di three criteria hold. The horizon H is reused to check
that the value di at the center, as well as di−H and di+H must not exceed a predefined threshold
T ∈ R+:

| di+u | ≤ T ∀ u ∈ {−H,0,H} (3)

Hence, if a simulation has already advanced until iteration I ∈ N, valid values for di+H are only
available for i ≤ I − 2H − S, which also means that at least 2H + S iterations of a simulation run
need to be performed. In our experiments, we require that the condition be met for all transport
modes. The process is visualized for one mode in Figure 2 with S = 20, H = 10, and a threshold
of T = 0.5×10−2 ×10−2 requiring changes of less than 0.5% over a period of 100 iterations.

Calibration objectives

Three major objectives have been implemented in the MATSim-specific part of the framework that
allow to compare the simulation with open and publicly available reference data for French use
cases in terms of (1) mode shares, (2) network flows, (3) and travel times.

Information on network flows comes from the open data portal of the city of Paris, where flow
information from all loop detectors are published on a daily basis. The reference network can be
map-matched to the one used in the MATSim simulation, and the difference ∆ j between reference
and simulated counts can be calculated for all matchable road links j.

For travel time comparison, data from Uber Movements can be used, which gives hourly travel
time information between fine-grained zones. The data can be compared by aggregating car flows
in the simulation on the same origin-destination (OD) zones to calculate the offsets in travel times
as ∆ j for each OD pair j.

Finally, modal shares in the simulation can be compared with reference shares either from the
National Household Travel survey (which is available as open data) or from the regional survey,
which is available upon request. To avoid overfitting of the Multinomial Logit model that is

5



used in our eqasim implementation with mode-specific constants, we are interested in shares by
Euclidean distances. Figure 3 visualizes the reference data, which shows that there is naturally a
strong dependency of mode use on distance, which we aim to recover in our simulations. To define
the mismatch, we divide all trips in increasingly large distance bins and note down the mode shares
in each distance bin. The difference between simulation and reference is denoted as ∆ j for each
mode-distance bin j.

Finally, in all three cases, a single objective value J(∆) can be defined by using a norm of the
mismatch vector, e.g.

J(∆) = ∑
j
|∆ j| or

√
∑

j
∆2

j or max j
{

∆ j
}

(4)

Parameters

To guide the simulation, we currently expose the following parameters in our eqasim simulations:

• Mode choice parameters describe the parameters of the integrated Multinomial Logit
model. The model structure and (manually) calibrated parameter values have been doc-
umented in (Hörl, Balac, & Axhausen, 2019) for a case study of automated taxis in Paris.

• Link capacities are initially defined based on information from the underlying Open-
StreetMap (OSM) network and the pt2matsim2 converter. The calibration parameters are
given as scaling factors that are provided per OSM road category.

• Link freespeeds are also initially based on OpenStreetMap and can be controlled through
calibration factors per OSM road category.

While other parameters can be added, the ones listed above can easily be defined using the current
state of the Python framework that is wrapped around MATSim.

4. USE CASE

The present use case has the aim to demonstrate a relevant application of the proposed framework
and to perform a benchmark between the bare CMA-(λ ,1)-ES algorithm and its use within opdyts.
In both cases, the ES algorithm is configured with the same hyperparameters and such that it
proposes λ = 8 samples. Opdyts is configured to perform transitions of T = 20 iterations in
MATSim.

As the calibration objective, we choose mode share by Euclidean distance with L1 norm, and
we choose to calibrate the alternative-specific constants βASC,car, βASC,bicycle, and βASC,walk, the
marginal utility of travel time by car (βtt,car), and a uniform capacity scaling factor s for all road
links. For testing, we use a 1% sample of our synthetic population for Île-de-France and reset the
initial parameter values to −0.1 For better tractability, βtt,car is rescaled by a factor of 10 and the
capacity factor is initialized to 1.0.

Figure 4 shows the calibration run for the elitist CMA-ES approach. On the left, the progression
of the objective value is shown, while on the right, the evolution of the current best parameter

2https://github.com/matsim-org/pt2matsim
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Figure 5: Comparison with accelerated calibration

combination is indicated. We can see how the algorithm efficiently performs a search for the best
parameter combination. After about 75 iterations, the objective can not be improved further. Fig-
ure 3 shows the final obtained mode shares in comparison to the reference values. Note that every
iteration in Figure 4 represents eight (λ ) times about 120 to 160 MATSim iterations, depending
on the individual choice by the stopping criterion.

Since opdyts operates on partial simulations, only a comparison in terms of MATSim iterations
makes sense. Figure 5 shows the direct comparison between the standard and accelerated case on
the left. Clearly, opdyts is able to reduce the number of MATSim iterations, and, hence, the com-
putational effort for the calibration by early dropping unpromising simulation runs. This behavior
can be seen on the right in Figure 5 where each color represents one parameter candidate. The
runs are plotted such that, from a common starting point after each opdyts iteration, the evaluated
runs are displayed in parallel. One can see that, initially, always a clear candidate can be identified
early on, while at low objective values often multiple runs are transitioned for a while before a
clear winner is identified.

Finally, it should be mentioned that the results shown in Figure 5 are valid if we think of a se-
quential execution of both algorithms, i.e. all simulations are run after another, even when they
are submitted in batch. However, the framework is able to perform MATSim runs in parallel if
memory and computational power are sufficient. In fact, the experiments were performed on a
machine that allows four MATSim runs in parallel. This means that the CMA-(λ ,1)-ES algorithm
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effectively executes the first four and the second four runs of one iteration in batch. In contrary,
in opdyts, only the first T MATSim iterations of each run are performed in parallel (as we need
to know their initial performance), while the remaining transitions are necessarily performed se-
quentially. While we do not provide a direct comparison in runtime, as the calibrations have been
performed on different machines, Figure 5 compares the process when accounting for iterations
that can be performed in parallel when either two, four, or eight runs fit into memory.

5. DISCUSSION

While the general applicability of the framework has been shown, particular aspects of the present
approach need further discussion and research.

We have shown that the combination of opdyts and a sampling-based black-box optimization al-
gorithm such as elitist CMA-ES is a viable way to speed up the calibration process. However, the
sequential nature of opdyts can limit performance when computational resources are abundant. It
would be interesting to reflect upon ways to further increase parallelism in opdyts, e.g. by running
multiple, potentially communicating, chains of the algorithm in parallel.

Regarding the stopping criterion, the results in Figure 5 indicate that further work is needed. While
simulations should be stopped when their objective value has stabilized, some runs still exhibit
slight transitional dynamics. This behavioral results from the fact that the stopping criterion in
MATSim (overall mode shares) is not congruent with the objective calculated in the optimization
loop (mode shares by distance). The stopping criterion in MATSim should, hence, be adapted to
represent the objectives calculated in the surrounding Python wrapper.

For future work, a systematic benchmark of calibration objectives and algorithms is planned to
give structured advice to researchers on how to configure the framework for specific use cases.
These cases should also include applications to other simulators, such as SUMO.

Finally, additional calibration techniques can be added. Promising pathways can be found in
Bayesian Optimization and surrogate modeling. Furthermore, multi-fidelity approaches, which
can adaptively request information either for full-scale or computationally efficient down-sampled
simulations, may speed up calibration processes.

6. CONCLUSION

In conclusion, we present a functional and ready-to-use framework for automatically calibrating
well-defined large-scale agent-based transport simulations in France based on the eqasim frame-
work. While the system already provides value for these specific cases, the framework can easily
be extended to other simulators. In the future, it can be used to benchmark different combinations
of calibration tasks and algorithms.

As a second insight, we propose a consistent way of using the opdyts method developed by
(Flötteröd, 2017) in the context of continuous parameter calibration, by connecting it with com-
mon black-box optimization algorithms from the facility of Evolutionary Search approaches. Our
initial experiments show that opdyts is improving the computational efficiency, but that its benefits
decrease if computational resources are sufficient to perform large parallel batches of simulations.
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