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Abstract
We contribute to the vehicle-level analysis of two macroscopic features of the road traffic: capacity variability and capacity
drop. In this paper, we focus only on the car-following behavior and leave the part related to lane-change maneuvers
for the future research. In particular, we study a simplistic car-following model (Newell’s with bounded acceleration) for
a single-lane scenario. In this work, by introducing a speed limitation across a zone, a bottleneck with variable nominal
capacity has been created. We use a continuous event-based numerical resolution method. Consequently, We are able to
vary the three Newell’s model parameters: maximal acceleration, minimal distance, reaction time. It has been shown that
the variability of those car-following parameters (e.g., reaction-time, minimal-distance, and maximal-acceleration) has a
strong impact on the pre-breakdown capacity variation and also on the queue discharge flow. It has been concluded that
this parameters variability does impact the drop (provided that the maximal acceleration has a relatively high mean value).
Various distribution shapes (uniform, truncated Gaussian, and Gamma) have been exploblack. It has been realized that
this does not have any significant impact on the capacity distribution. Concerning the amplitude of the capacity distribution,
we demonstrate that the reaction time is the parameter with the highest impact followed by the minimal distance. If all
parameters vary with an amplitude of 30 %, we show that the capacity standard deviation, in this scenario without lane
changes, is about half the experimental values reported in the literature.

Keywords
Parameters variability, Car-following models, Newell’s model, Capacity, Capacity distribution.

Introduction

Most of the existing studies on macroscopic characteristics of
freeway traffic flow are related to the traffic condition during
congestion i.e. (i) bottleneck activation and the value of the
capacity, especially the distributed nature of the capacity; (ii)5

capacity drop, namely the difference in capacity observed for
the same location between the free flow and the upstream
congested condition; and (iii) the traffic instabilities/ traffic
oscillation (or stop and go (SG) waves).

Several works have shown that freeway capacity varies10

depending on external conditions such as traffic and
geometric characteristics (1–3), specific traffic controls (4–7)
and weather conditions (8). However, empirical observations
reveal variations in capacity values from day to day in
the same location with the same traffic control and similar15

weather (1, 3, 9–11).The aforementioned works suggest that
these capacity variations can be due to physical differences in
congestion occurrence mechanisms. Some researchers found
that the observable congestion after the bottleneck activation
can be generated with a lower or higher flow rate than20

the value accepted as the capacity. In this regard, (10–
12) consider the traffic jam occurrence as a probabilistic

event. As a result, we conclude that capacity is a distributed
variable. Moreover, many studies have observed two different
capacities: 25

• the maximal flow observed before congestion onset:
Pre-Breakdown Capacity (PBC), and

• the maximal flow downstream of the queue, observed
after the breakdown: Queue Discharge Flow (QDF).

The latter is always lower than the former, sometimes up to 30

a difference of 30 % (3, 9, 13, 14). The difference in the
value of the aforementioned capacities is called capacity drop
(CD). This phenomenon was observed at fixed bottlenecks
(e.g., merges, diverges, lane-drop, sags) (1, 4, 5, 13) or in
random locations. Interestingly, in cases of random locations, 35

It has been reported that the bottleneck occurrence is due to
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spontaneous SG waves (see for example: (14–16)). The two
capacities (PBC and QDF) may independently vary even with
same external conditions, as reported by many researchers
(3, 11).40

(3) reported a variability of 5.5% to 10.5 % of PBC for
three different sites on US freeways. In a similar study,
(11) indicated that the PBC standard deviation and the
mean values for 15 different German freeways are 6.6 % to
13.5 % and 9.4 %, respectively. Similar results are reported45

in (17). The capacity distributions, the value of the drop
and stop and go wave occurrence are often explained by
the emergence of collective effects originated in microscopic
phenomena. Based on the findings in the relevant literature,
both lane changes and car-following contribute to these50

phenomena. However in this paper the focus is given solely
to car-following behavior in case of capacity distribution
and capacity drop. More specifically, we concentrate on car
following variability impact on the distribution of capacity
and the value of the capacity drop, considering that all55

vehicles obey the same model. We chose the simplest car
following model: Newell’s model (18), modified, according
to (19) in order to include a finite acceleration. This allows
us to limit the number of distributed parameters to three (i.e.
maximal-acceleration, reaction-time, and minimal-distance).60

The remainder of this paper is organized as follows. First,
a thorough literature review is presented. This is followed by
the description of the modeling framework. Then, an analysis
of the influence of the distribution of the CF parameters in the
exact event-based scheme is presented. The paper ends with65

a section devoted to discussion and conclusion.

Underlying microscopic reasons for
macroscopic phenomena

Many researchers consider that the origin of capacity
distribution, Capacity Drop (CD), and/or Stop and Go waves70

(SG) lies at the inter-vehicular interaction level, but, there
is no consensus on the microscopic behavior generating
these macroscopic observations. A comprehensive study of
the impact of the behaviors interaction combinations is
difficult due to the strong relationships of behaviors between75

longitudinal interactions and lane changes.
Before presenting the microscopic causes of the aforemen-

tioned macroscopic phenomena of traffic flow in congestion,
we first detail the content of the literature on those observa-
tions and the way car-following (CF) and lane-changing (LC)80

are used to explain the capacity distribution, capacity drop,
and oscillations triggering. This results in presentation of
Table 1 where we classify the most relevant references in this
regard. distinguishing the considered microscopic behavior
and the approaches (e.g., observation, modeling-simulation,85

or both). Noticeably, very few papers were identified where
an explanation of the capacity distribution is provided accord-
ing to any of the microscopic phenomena.

Lane-changing approaches
As we can see in Table 1, some papers explain CD and SG by 90

the impact of LCs, either by the influence of insertion into the
target lane or exiting from the origin lane. For lane changer’s
inserting behavior, studies report that vehicles accept a short
gap immediately after the insertion, then gradually relax
to return to a normal spacing given by the speed-spacing 95

relationship. That is known as the relaxation process (20–24).
Similarly, the potential followers in the target lane can

”anticipate” the maneuver just before the insertion and create
a long gap (courtesy spacing). The anticipation process is
significantly different from the relaxation process (24). These 100

two processes create a disturbance in the traffic stream
that can be recovered gradually in time. It involves thus
the acceleration process after a deceleration process which
can lead to oscillations apparition (or SG waves). In this
way, several studies conjecture that the LCs increase the 105

probability of SG wave apparition (16, 25–28).
Consequently, vehicles can be confronted with the limited

acceleration capability in the acceleration process and it can
create a long-spacing in front of them. The studies (16, 22,
24, 28–30) explain that the CD phenomenon is due to the 110

bounded acceleration after an insertion event into the target
lane. Moreover, the exit maneuver from the origin lane leads
to a longer gap that can incite the immediate follower to
accelerate (16, 29).

Car-following approaches 115

We noticed previously that LC impacts the driving behavior
by insertion and exit maneuvers. Then, the systematic LCs
events on the road can be a good explanation for the observed
traffic phenomena. However, we consider that longitudinal
behavior plays also an important role in these observations. 120

We focus now on different characteristics of the CF behavior,
which can explain macroscopic phenomena (see Table 1):

• Random noise in acceleration caused by the drivers’
lack of concentration in keeping a constant speed.

• Maximal-acceleration spread due to drivers’ responses 125

variability, which can generate long gaps due to
acceleration difference (e.g. low acceleration vehicle
behind high acceleration vehicle).

• Longitudinal driving instabilities due to external
changes (e.g. sags, tunnels, roadside barriers, weather) 130

leading to abrupt acceleration changes (e.g. overreac-
tion).

• Intra-driver variability that reflects the changes in
driving characteristics of the same driver adopting
another behavior in different traffic conditions (e.g., 135

an aggressive driver can become less aggressive after
passing a traffic oscillation (27)).

• Inter-vehicle variability that denotes different charac-
teristics inside the vehicles population (e.g. passenger
cars and trucks, younger and older drivers). 140
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Macroscopic characteristic of traffic flow in congestion
Microscopic behavior explanation Capacity distribution Capacity drop Stop and Go
Lane-
changing

Inserting (Oh & Yeo, 2015) (16), (Zheng
et al., 2013) (24), (Coifman &
Kim, 2011) (29), (Leclercq et
al., 2011) (30), (Duret et al.,
2010) (22), (Leclercq et al.,
2016) (28)

(Oh & Yeo, 2015) (16), (Ahn &
Cassidy, 2007) (25) (Mauch &
Cassidy, 2004) (26), (Zheng et
al., 2011) (27)

Exiting (Oh & Yeo, 2015) (16), (Coif-
man & Kim, 2011) (29)

Car-
following

Inter-driver
variability

(Han & Ahn, 2018) (31),
(Yang et al., 2017) (32)

(Wong & Wong, 2002) (33) (Ossen & Hoogendoorn,
2007) (34), (Laval & Leclercq,
2010) (35)

Intra-driver
variability

(Yuan et al., 2017) (14),
(Calvert et al., 2018) (36),
(Zhang & Kim., 2005) (37)
(Chen et al., 2014) (15)

Random
noise in
accelera-
tion

(Yuan et al., 2019) (38), (Xu
& Laval, 2019) (39), (Xu &
Laval, 2020) (40)

(Treiber & Kesting,
2017) (41), (Xu & Laval,
2019) (39), (Ngoduy et al.,
2019) (42), (Xu & Laval,
2020) (40), (Laval et al.,
2014) (43)

Acceleration
spread

(Yuan et al., 2017) (14) (Treiber et al., 2007) (44)

Longitudinal
driving
instability

(Goni Ros et al., 2013) (45) (Treiber & Kesting,
2017) (41), (Zheng et al.,
2011) (27)

Table 1. Classification of the literature associating each of the main macroscopic traffic characteristics observed in congestion and
microscopic behavior. Depending on the approach of every paper, a color code is applied: italic text: observation-based paper; bold
text: modeling/simulation-based paper; blue text: both.

Some papers consider the random noise in acceleration
as the best approach to represent the human errors that
are responsible for traffic instabilities independently of the
unstable nature of CF models (38, 41–43) (this was also
included in trains motion modeling (46)). They incorporate145

acceleration noise into CF models leading to stochastic
nature. This analysis can explain the oscillations observed in
absence of LCs. Paper (41) includes, in three different models
(Intelligent Driver Model, Parsimonious CF model, and Full
Velocity Difference Model), a white acceleration noise that150

is constant over time and between vehicles. First, the study
highlights the fact that the three CF models lead to the same
general findings. Authors observe that the acceleration noise
systematically conducts to overestimate the speed standard
deviation of vehicles and they conjecture that this instability155

mechanism alone is sufficient to reproduce the observations.
The simulations demonstrate that the amplitude of the
sub-critical fluctuations can increase strongly and thus can
result in oscillations. Similarly, from the simulation findings,

the study (43) argues that driver’s error increases with 160

roadway heterogeneity (e.g. upgrades) which can not only
induce bottlenecks but also exacerbate oscillations growth.
Paper (41) reports the same results (bottleneck activation and
oscillation growth) for acceleration noise and action points
(e.g. deceleration areas). Besides, the differences in vehicles 165

characteristics (e.g. maximal-acceleration, reaction-time) can
be accentuated depending on the road segment specificity.
This can also, without LC, generate spontaneous oscillations.
An aggressive driver behavior leads to hysteresis loops
which induce the upstream propagation of oscillations (15). 170

The authors of (35) propose a model which considers
an upgrade (in a single lane without LC) to capture the
mechanism that triggers periodic oscillations. With the
parameters calibrated using NGSIM data (US-101 site), the
simulation results explain oscillations as a consequence of 175

driver heterogeneous reactions to deceleration waves.
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From observations, the study (27) quantifies later the
number of oscillations observed in two different sites,
I-80 and US-101 of NGSIM data. The results suggest180

that oscillations can be instigated by different factors, the
predominant trigger depending on the site characteristics.
In the first location (waving area), the majority of the
SG was originated from LCs. On the other one (uphill),
66 % of the SG were originated by longitudinal driving185

disturbances due to the limited perception of the road in-
homogeneity. Similarly, paper (45) shows that oscillations
upstream of a sag in Tokyo (Japan) are created in most cases
by spontaneous instabilities in longitudinal behavior, rather
than by LC impact. Based on these findings, the authors190

assume that capacity reduction is due to changes in CF
behavior caused by the sag. Indeed, the impact on the traffic
dynamics depends on the sag characteristics (e.g. the value
of the slope angle in a downhill-uphill can influence the
congestion apparition and also the number and amplitude of195

SG waves (47).

The acceleration error is not the only approach able
to explain the traffic phenomena based on longitudinal
interactions, also acceleration variability among drivers can
be an explanation: for example, a long-spacing can be200

created between two successive vehicles if the follower’s
acceleration capability is lower than the leader’s. In the same
study (14), the authors consider a dynamical reaction-time
extension in the acceleration process that depends on the
congestion level. That means a negative relation between205

reaction-time value and speed value in congestion. The
numerical findings explain that the intra-driver mechanism
and its variation (reaction-time evolution) yields to a relation
between the speed in congestion and the Queue Discharge
Flow, as found in empirical observations. We note also that210

this paper introduces the intra-driver variability notion to
explain CD amplitude, which means that vehicles change
their driving features according to traffic conditions. For
example, authors consider a driver’s tendency to take a larger
headway downstream of an oscillation (14, 15). Oscillations215

affect the driver’s behavior and this can result in a change
of individual characteristics (e.g., aggressive drivers are less
aggressive after passing the oscillation (27) and tend to adopt
larger response times). Thus, the reduction in bottleneck
discharge rate ensues even in absence of LCs (14). In this220

regard, paper (15) focuses on the mechanism of periodicity
of traffic oscillations and finds that drivers’ reactions to
oscillations around a bottleneck have a profound impact
on CD. Moreover, the amplitude of the oscillation could
influence the acceleration/deceleration values (e.g. hysteresis225

level (48)) and thus the discharge rate (16).

With a modeling approach, (37) proposes a CF
model dedicated to explaining CD under different driving
conditions. Driver’s time headway is assumed to be a
function not only of distance headway but also of traffic230

conditions. Although their results were not validated with

observations, this work sheds light on different spacing-
speed relationships that vehicles could adopt according to the
individual characteristics and the impact of this on the FD.

These characteristics of the vehicle-driver pairs explain the 235

difference between vehicles population including the desired
speed, acceleration/deceleration capability, reaction-time and
accepted minimal-distance. In the present paper, the first step
in a larger work, we consider this inter-vehicle variability as
independent of traffic conditions. 240

Some papers mention reaction-time and minimal-distance
distributions as inter-vehicle variability (31, 32, 34, 35, 49).
From empirical trajectories, other studies (34, 50) obtained
different vehicles-drivers parameters for every specific
model. They propose that inter-vehicle variability can be 245

classified into two types: i) different driving styles (captured
by different CF models) and; ii) different inter-vehicle
characteristics (captured by distributed CF parameters of the
same model). The study (34) focuses on the analysis of the
inter-vehicle variability in CF by comparing heterogeneous 250

and homogeneous platoons to study traffic stability via
simulation. The simulation findings show that inter-vehicular
heterogeneity influences asymptotic stability. It means that
disturbance propagates quickly and can grow in magnitude
from vehicle to vehicle. Indeed, the plots in Fig. 3 in (34) 255

show that the traffic jam appears earlier and leads to higher
congestion level due to the CF parameters variability.

Similarly, the inter-drivers difference of responses to
the flow disturbance can reveal the mechanism of the
probabilistic breakdown occurrence at bottlenecks (32, 50). 260

(32) conjectures that some following drivers are not affected
by the unnoticed driving changes of their leaders as
much as others at sags. To model this phenomenon, they
estimate different CF parameters distributions and propose
a microscopic simulation. The results explain that the 265

congestion occurrence probability increases with the traffic
demand. However, the estimated cumulative distribution
function is not the same as the empirical curve. The authors
link it to a potential relationship between a sub-part of the CF
parameters. 270

The investigation in (31) proposes a stochastic traffic
breakdown model for freeway merge bottlenecks to reveal
the breakdown mechanisms considering various traffic
parameters (e.g. desired speed, merging speed, wave speed,
merge flow rate, individual vehicle-driver’s characteristics). 275

A Bayesian approach is developed to estimate the breakdown
probability associated with the individual parameters.
The analytical results show that the probability of traffic
breakdown increases with higher values of drivers’ reaction
times and the standard deviation of headway distribution. 280

In this paper, the standard deviation of reaction-time has no
impact on the probability curve.
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Research gaps
Based on the previous literature summary, we conclude285

that many authors consider that bounded acceleration after
LC is responsible for the CD phenomenon. We note also
that intra-driver variability (reaction-time evolution) is an
important explanation of that phenomenon. However, several
of those papers only focus on the Queue Discharge Flow290

(QDF) variability and the Pre-Breakdown Capacity (PBC)
variability has been less analyzed. Moreover, the literature
findings shed light on the impacts of acceleration variability
on the CD phenomenon. Note that the inter-vehicle variability
of reaction-time and minimal-distance in CF behavior were295

also mentioned as an important contribution to explain
macroscopic observations. Consequently, for a complete
analysis of macroscopic phenomena, we consider that a focus
on the inter-vehicle variability between vehicles’ behavior
must be scrutinized, in particular in its impact on the300

macroscopic features of traffic like the PBC variability and
CD amplitude.

The hypothesis of the present paper is that longitudinal
interactions may well explain the macroscopic observations
even in the absence of LCs. The aim of this analysis is305

to determine the link between the inter-vehicle variability
of car-driver pairs and the macroscopic phenomena (PBC
distribution and CD), explained only by the CF. A systematic
exploration of the CF parameters variability (e.g. reaction-
time, minimal-distance and maximal-acceleration) is the only310

way to explore the potential cumulative effects. We choose to
explore a unique CF models: Newell’s model (18) because
of its low number of parameters (modified to include a
finite acceleration, according to (19)). We show that the
reaction-time is the most important parameter influencing the315

two macroscopic variables capacity variability amplitude and
capacity drop.

Microscopic Modeling Framework

Model definition
As mentioned earlier, we use Newell’s model (18) because of320

its simplicity and the fact that the parameters are translatable
from the microscopic level to the macroscopic one. The
equation below corresponds to the extended version of
Newell’s model presented in (19). In this equation the first
line corresponds to the congested regime, and the second line325

to the free flow regime, τn, dn, and an being respectively
the reaction-time, the minimal-distance, and the maximal-
acceleration.

ẋn(t) =

min

[
min

{
∆xn−1,n(t)− dn

τn
; vn(t− τn) + an · τn

}
; vnf

]
(1)

They are two differences between this version and the
original one (18). First, we associate each vehicle-driver pair330

with its parameters, keeping them constant. This corresponds
to our objectives as we focus on inter-vehicle variability, and
we do not want to include intra-driver variability. Second, on
the contrary to the original version where acceleration and
deceleration are infinite, a maximal-acceleration parameter 335

(an) permits to limit the acceleration in the free flow regime.
Our motivation to include an and its variability is the
literature findings of the capacity drop phenomenon (see
Table 1). Note that the modified Newell’s model does not
include deceleration in its equation 1 (positive acceleration 340

only being limited). More generally speaking, taking into
account deceleration in CF model certainly modifies locally
the car behaviors in the upstream limit of the congestion, but
we believe that this may not have a strong impact on the
global scale. 345

We keep identical, over all vehicles, the maximal desired
speed (vn = vf ) given that our study considers longitudinal
circulation of vehicles in a single traffic lane. A slower
vehicle in this single lane scheme could change the
independence properties of the follower vehicles. 350

Simulation settings
We define the simulation settings in order to observe
congestion onset without lane changes. Thus, we chose a one-
lane stretch of road with a zone where speed is limited to a
value Ul, lower than the free flow speed: Uf . Ul variation 355

permits the exploration of different congestion levels. The
entering time instants are defined according to:

• An input flow profile, which defines the demand in two
periods: (i) the traffic flow increases linearly, from an
initial flow value (q0) to a maximal flow value (qmax); 360

(ii) the traffic flow remains constant at qmax.We set
the maximal input flow to correspond to the value of
the theoretical congested capacity associated to the
maximal value of the limited speed, for an illustration
see Fig. 1 (top); 365

• The classical exponential distribution of inter-vehicular
headways at the simulated zone entrance.

We can thus observe the transition conditions from the
free flow regime to the congested flow regime and therefore
identify the congestion onset. 370

The PBC is defined as the entering flow at the moment
this triggering vehicle enters the link. The QDF is the mean
downstream flow observed during the remaining period after
this vehicles exits the speed limitation zone. Applying the
formulas proposed by (51), we use the window size of ∆t = 375

60 s and ∆x = 100 m to measure density and flow rate
during the time with a frequency of 20 s. Density and flow
are used to construct the simulated fundamental diagrams. In
this study, We don’t consider the queue length as an output
variable. It is indirectly linked to the PBC and can be inferred 380

from its value. Note that for this test, we use an individual
time-step numerical scheme (resolution based on individual
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Figure 1. Description of the fundamental diagram and the
capacities measurement method: a) Theoretical fundamental
diagram with the physical meaning of the various macroscopic
parameters with the variation range of the limited speed Ul

between 5 and 20 m/s, b) measurement method of PBC and
QDF, c) speed evolution of some vehicles identified immediately
after the congestion onset. V0 is the last vehicle not affected by
congestion and V1 is the triggering vehicle (represented in red in
Fig. b). Congestion is considered when at least 10 vehicles are
in the queue.

reaction-time value). The code is available *. Table 2 presents
macroscopic and car-following parameters, as well as the
various scenarios.385

Distributions of car-following parameters
The simulation attributes to each driver-vehicle pair its own
parameters, selected according to a distribution. We study
here three different distributions:

• uniform,390

• truncated Gaussian (to avoid negative values),

• gamma.

Uniform
T. Gaussian
Gamma

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

ϭτ= 0.27s
μτ= 1.27s

ϭτ= 0.24s
μτ= 1.28s

ϭτ= 0.26s
μτ= 1.28s

Figure 2. Parameters distributions according to the different
function shape with theoretical variation amplitude of 20 %.

The uniform distribution is chosen for its simplicity, as
well as the truncated Gaussian. We selected also the Gamma
distribution because in the literature, some authors found this 395

shape is adequate for the reaction-time distribution (32).
The Fig. 2 illustrates how the three distributions are

adapted, for parameter p, to present the same (σp/µp) ratio
and the same µp value.

For each parameter p (the reaction-time τn, the minimal- 400

distance dn and the maximal-acceleration an), the amplitude
is defined by the ratio between the standard deviation (σp)
value and the mean value (µp). We study three amplitudes for
each distribution: 10 %, 20 %, 30 %.

The mean value of some parameters is directly determined 405

from the fundamental diagram taking into account that
µτ = 1/kmax ∗ w and µd = 1/kmax. Table 2 presents the
macroscopic and car-following parameters values used in the
rest of the paper.

It is well known that in Newell’s modeling framework, τ 410

and d are not independent: w, the backward wave propagation
speed links the two through the relation w = d/τ (49, 52).
Therefore, we can choose to vary dn and τn independently
or to vary one of them (the reaction-time τn, for example)
and to deduce the value of d with a constant w value. 415

This is illustrated in Fig. 3, which represents the impact on
various methods of parameters random generation on the
two versions of the fundamental diagrams: the macroscopic
(Q = f(K)) and the microscopic one (s = f ′(v), where s is
the spacing between the car and its leader, v is the speed). If 420

w is constant (see 3.a), the capacity and the maximal density
vary in the same proportion, this is not the case if d and τ
vary independently.

In addition to the congestion level (defined by the
limitation speed Ul), the parameter distribution function and 425

the level of variability, each traffic scenario is characterized
by the (set of) distributed parameters:

∗https://github.com/carlosmgop/
Variability-of-Newell-model-parameters.git
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Macroscopic parameters Description Values Units
Uf free flow speed 30 m/s
w backward wave propagation speed 6 m/s
kmax maximal density 0.133 veh/m
Qmax maximal capacity 40 veh/min

CF variables
xn(t) position of vehicle n at time t m
ẋn(t) = vn(t) speed of vehicle n at time t m/s
ẍn(t) acceleration of vehicle n at time t m/s2

∆xn−1,n(t) distance of vehicle n with its leader n− 1 at t m
∆vn−1,n(t) speed dif. between vehicles n and n− 1 at t m/s

CF parameters Mean
τn reaction-time of vehicle n 1.25 s
dn minimal-distance of vehicle n 7.50 m
an maximal-acceleration of vehicle n 3.00 m/s2

vf = Uf maximal desired speed (identical for all n) 30.0 m/s

Scenario definition
Ul speed in the speed limit zone 5 m/s, 10 m/s, 15 m/s

parameters distribution definition uniform / T. Gaussian / Gamma
variability distribution no / one param. / all parameters
variability amplitude SD = 10 %, 20 % or 30 % of the mean

Table 2. Macroscopic, car following variables and parameters and scenario definition of the simulation (T. Gaussian stands for
”truncated Gaussian”, chosen to avoid negative values)

• ∅: no variation;
• a: only the maximal-acceleration varies;
• d: only the minimal-distance varies (as a consequence,430

w varies), see Fig. 3.a and 3.b;
• τ : only the reaction-time varies (as a consequence, w

varies), see Fig. 3.c and 3.d;
• (d, τ): in this configuration, τ and d variations are

linked, w is constant; in addition, the acceleration435

varies, Fig. 3.e and 3.f;
• All V ar: all parameters vary, independently, see

Fig. 3.g and 3.h.

The simulation considers 100 replications of each traffic
scenario to obtain the distributions of PBC and QDF.440

Car-following variability impact on
macroscopic variables

Inter-vehicle variability impact on the
fundamental diagram
To begin with, in Fig. 4, we present the impact of various445

levels of variability, with a standard deviation equals to 0 %
up to 30 % of the mean values for all parameters. In this
case, the Ul values are randomly selected between Umin

l

and Umax
l to explore the congested branch of the FD (see

state B in Fig. 1). As expected, one observes a triangular450

shape, consistent with Newell’s model. The spreading of the

Qmax w Kmax Flow SD
(veh/min) (m/s) (veh/m) (veh/min)

Fixed values 40.00 -6 0.133
Variability
0 % 40.59 -5.95 0.136 0.49
10 % 40.87 -5.64 0.144 0.53
20 % 41.06 -5.39 0.150 0.85
30 % 41.05 -5.14 0.156 1.57

Table 3. Impact of the variability of all car-following parameters
of the Newell’s model on the macroscopic parameters resulting
from the fitting of the fundamental diagrams of Fig. 4. The
quantity ”Flow SD” is the standard deviation of the flow values in
the density in the range [0.035;0.040].

congested branch increases while the variability amplitude
increases. Logically, for the free flow branch, there is no
evolution as we keep the same Uf without any variability
thereof. 455

For each fundamental diagram, we fit a straight line which
leads to the fitted values of the macroscopic parameters. For
the case without variability (see Fig. 4-a), a small difference
can be seen between the values of the fixed and fitted
parameters, not greater than 3 %. This is due to the precision 460

of the measurement method (Edie’s method).
The variability amplitude has not only an impact on the

spreading of the points of the congested branch, but also on
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Figure 3. Parameters variation impact on the shape of the
fundamental diagram (FD). Left column: macroscopic FD
(Q = f(K)); right column: microscopic FD (s = f ′(v)). a-b) d
varies and τ remains constant, c-d) τ varies and d remains
constant, e-f) the variation of τ determines the variation of d, w
remaining constant, g-h) τ and d vary independently, w may
vary.

the fitted macroscopic parameters values. Those observations
are summarized in table 3. We evidence that w decreases465

14 % and Kmax increases 15 % as variability amplitude
increases from 0 to 30 %, the Qmax value being almost
unchanged. Keep in mind that the mean of each individual
parameter remains the same. This table presents also the
standard deviation of the flow in the density range from470

0.03 to 0.035 veh/m, i.e. between the theoretical critical
density and twice this value. This quantifies the spreading of
the fundamental diagram due to the inter-vehicle variability.
We can conclude that the variability amplitude has a direct
impact.475

Dependence of capacity on varying parameters
Fig. 5 presents the impact of each combination of parameters
variability on the cumulative distribution function (cdf) of
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Figure 4. Fundamental diagrams obtained with different
variability amplitude. The lines correspond to the best fits and
the corresponding macroscopic values are presented. a) no
variability, b) σp = 0.1× µp, c) σp = 0.2× µp, d)
σp = 0.3× µp, SD equals 30 % of the mean, parameters p
being, reaction-time, minimal-distance and
maximal-acceleration. The distribution is the truncated
Gaussian. Parameters are independently varying.

the Pre-Breakdown Capacity (PBC) and Queue Discharge
Flow (QDF) for three values of speed limits. The theoretical 480

capacity is mentioned as well as the speed limit value at the
top of each column.

The table 4 synthesizes those results with the mean values
of the two capacities and their standard deviations.

A global observation can be done when comparing the 485

QDF (grey line) to the PBC (black line). The QDF mean
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Figure 5. Impact of the CF parameters inter-vehicle variability and of the speed limit on cumulative distribution function of the PBC
and QDF. The different variability configurations are organized in the rows and the three speed limits values are organized in the
columns. The variability amplitude is of 20 %, the parameters are distributed according to a truncated Gaussian distribution.
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Speed limit
Varying 15 m/s 10 m/s 5 m/s
parameters Mean SD % Mean SD % Mean SD %
∅ PBC 34,47 0,0 0,0 30,29 0,0 0,1 22,28 0,0 0,0

QDF 34,27 0,0 0,0 30,03 0,0 0,1 21,83 0,0 0,0
a PBC 34,47 0,0 0,1 30,30 0,0 0,1 22,27 0,0 0,1

QDF 34,26 0,1 0,2 30,04 0,1 0,3 21,85 0,1 0,4
d PBC 34,31 0,3 0,9 30,15 0,3 1,0 22,12 0,3 1,6

QDF 34,21 0,1 0,3 29,94 0,1 0,5 21,70 0,2 0,8
τ PBC 33,88 0,8 2,3 29,86 0,5 1,8 21,93 0,3 1,4

QDF 34,01 0,3 1,0 29,84 0,2 0,8 21,76 0,3 0,7
(d, τ) PBC 33,65 1,0 3,1 29,75 0,8 2,8 21,76 0,7 3,1

QDF 34,04 0,4 1,3 29,74 0,4 1,3 21,65 0,3 1,3
All V ar PBC 33,93 0,8 2,2 29,96 0,6 2,0 21,84 0,5 2,2

QDF 33,99 0,3 1,0 29,87 0,3 1,0 21,67 0,2 1,1
Table 4. Impact of the parameters variation and of the speed limit on the Pre-Breakdown Capacity (PBC) and the Queue Discharge
Flow (QDF) mean values (veh/min) and standard deviations (SD).% is the ratio between SD and mean. The variability amplitude is of
20 %, the parameters are distributed according to a truncated Gaussian distribution.

value is slightly lower than the mean PBC (the difference
is of the order of one percent). This is due to the fact that
we adopt a version of Newell’s model with a limitation in
maximal acceleration. But this difference is very low and the490

capacity drop value we observe, compared to what is reported
in the literature about CD observations, is negligible.

For the no variability case (top row), the cdfs present
the typical shape of a deterministic function: no congestion
occurs below the theoretical capacity, whereas in 100 %495

of the cases, congestion occurs for a flow value above the
theoretical capacity. All the next figures are drawn with a
variability amplitude of 20 % (the impact of the variability
amplitude will be studied later on).

The second row of Fig. 5 presents the impact of the500

variability of an, the maximal-acceleration parameter. Its
impact is negligible on the variability both of PBC and QDF,
whatever the speed limit value (Ul).

Next, we vary the two other parameters: dn and τn. We
chose first two variability configurations where w is modified505

accordingly to the parameter variation, the other parameter
(τn if we study the impact of dn variability, dn when τn

varies) remaining constant.
The impact of the variability of the minimal-distance, dn

(third row), is larger than the one of the maximal-acceleration510

an. Table 4 confirms that the impact of the minimal-distance
variability increases when the speed limit value decreases.
Indeed, the variation of dn has logically a bigger impact for
congestion with high-density values than for light congestion.

The individual parameters variability that has the larger515

impact is the reaction-time τn. We can see on table 4 that
for speed limit value of 15 m/s, the PBC variability ratio
(standard deviation divided by the mean value) is of 2.3 %.
Note that the variability ratio for the QDF is less than twice
lower (1.0 %). Conversely to what was observed for dn520

variability, τn variability has the larger impact when the
speed limit is larger (see Fig. 5.j to 5.l).

The before the last row of this figure presents the (d, τ)
case where w is constant, the individual value of dn for a
vehicle being directly determined by the one of τn by the 525

relationship dn = w × τn (the variability amplitude of 20 %
being applied to τn). We can see in this row (Fig. 5.m to
.o) that the variability of the PBC and the QDF is higher in
this case than in the case where τn varies while dn remains
constant (compare with Fig. 5.j to .l). One observes that when 530

all parameters vary independently (Fig. 5.p to .r) the impact
on the variability of the PBC is not amplified.

From what precedes, we conclude that when only one
parameter is varying, the most impacting parameter, in terms
of its variability, on the capacities distributions (both for 535

the PBC and for QDF) is the reaction-time, the minimal-
distance variability having a lower impact, and the maximal-
acceleration distribution having a lesser impact. The relative
impact of τn variability is larger when the speed limit
is larger, the reverse effect is observed for the minimal- 540

distance variability. When τn and dn vary simultaneously,
w remaining constant, the impact is maximal. This could be
expected as we observe the highest spreading on the third
row of Fig. 3, corresponding to this case. Combining the
variability of all parameters does not significantly increases 545

the widths of the capacities distributions.
Therefore, we consider that in our specific study case,

where no lane change is possible, the maximal-acceleration
variability has a very limited impact. This result must
be compared with the one presented in (28) where the 550

acceleration variability of the lane changer at merges is,
by analytical calculation, proven to have a strong impact
on the capacity drop. More generally, we establish that the
experimental observations of the capacity drop amplitude are
not linked to the distribution of the car-following parameters. 555
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We prove, on the contrary, that CF parameters variability, per
se has a strong impact on capacities distributions, especially
when τn and dn vary simultaneously, w remaining constant
((d, τ) case.).

We will now examine the impact of the distribution560

shapes and amplitudes in two cases, when τn and dn vary
simultaneously, with w constant, and when all parameters
vary independently. Note that the shapes and amplitude of
the distributions are, in the (d, τ) case, applied to the τn

parameter.565

Dependence of capacity variability on the
distributions shapes and amplitudes
The Fig. 6 presents in two cases the cdf of PBC and of
QDF for the three distributions shapes: truncated Gaussian,
Gamma and Uniform, with a speed limit of Ul = 10m/s.570

The table 5 presents the corresponding numerical values for
the mean and the standard deviation. Although the shapes are
significantly different (as can be seen from Fig. 3), the impact
on the variability amplitude of the two capacities distributions
seems negligible.575
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Figure 6. Impact of the shape of the distribution of the
individual parameters on the capacities cumulative distribution
functions. Variability amplitude if of 20 % and all the parameters
vary. The speed is limited to 10 m/s.

The Fig. 7, as well as table 6, present the results for
the truncated Gaussian distribution for three amplitudes:
10 %, 20 %, 30 %, with a speed limit of Ul = 10m/s.
There is clearly a direct impact of the parameters’ variability
amplitude on the capacities values and on their variability580

amplitude. First, the mean value of the PBC decreases as
the variability amplifies (from 30.29 veh/min for the no
variability case, down to 29.49 veh/min for a variability
amplitude of 30 %, the decrease being of 2.6 %). The same
phenomenon, with a lesser impact, is observed for the QDF 585

(from 30.03 to 29.53 veh/min, with a decrease of 1.6 %).
Second, the larger the parameters amplitude the larger the
capacities standard deviation. This result is coherent with
what was expected.
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Figure 7. Impact of variability amplitude on the capacities
cumulative distribution functions. The left column presents the
case when τn and dn vary simultaneously with constant w, the
right column the case when all parameters vary independently.
The three variability levels are organized in the rows. The speed
is limited to 10 m/s.

Discussion and conclusions 590

The extensive literature review provided in this paper
confirms that researchers are giving diverse and contradictory
explanations for capacity distribution, capacity drop, and
stop and go waves. Most of the studies in the literature
address the macroscopic observations of the capacity drop 595

and only few studies devoted to stop and go waves and
capacities distribution. When trying to link the phenomena
to the microscopic behaviors of vehicles, some authors argue
that lane changing is the main cause of capacity drop and
stop and go waves -either the inserting or the exiting events-, 600

others consider that the random noise in acceleration is the
key explanation for the capacity drop or for the stop and go
waves.
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Distribution shape
T. Gaussian Gamma Uniform

Mean SD % Mean SD % Mean SD %
All V ar PBC 29,96 0,6 2,0 29,86 0,7 2,3 29,82 0,6 2,1

QDF 29,87 0,3 1,0 29,80 0,3 1,0 29,83 0,3 1,1
Table 5. Impact of the shape of the distribution of the individual parameters on the capacities mean, standard deviations (SD) and on
the ratio of SD over mean (%). Variability amplitude if of 20 % and all the parameters vary. The speed is limited to 10 m/s.

(d, τ) All V ar
Mean SD % Mean SD %

0 % PBC 30,29 0,0 0,1 30,29 0,0 0,1
QDF 30,03 0,0 0,1 30,03 0,0 0,1

10 % PBC 30,11 0,4 1,4 30,06 0,3 1,0
QDF 29,97 0,2 0,7 29,99 0,2 0,5

20 % PBC 29,75 0,8 2,8 29,96 0,6 2,0
QDF 29,74 0,4 1,3 29,87 0,3 1,0

30 % PBC 29,49 1,0 3,3 29,40 0,9 3,2
QDF 29,53 0,5 1,6 29,45 0,4 1,5

Table 6. Impact of variability amplitude on the capacities mean,
standard deviations (SD) and on the ratio of SD over mean (%).
The central columns present the case when τn and dn vary
simultaneously with constant w, the right columns the case
when all parameters vary independently. The three variability
levels are organized in the rows. The speed is limited to 10 m/s.

In the current work, we quantify the impact of the
individual parameters variability of the car-following part605

of the microscopic behavior of the vehicles. We choose
this approach not because we neglect the impact of lane
change. We believe the two aspects need first to be addressed
separately. The combination of lane change behaviors and car
following distribution is left for future research.610

We define a simple simulation test-bed to create a
bottleneck by considering only car-following behavior. A
speed limit has been imposed in a part of the one-lane
stretch of road. We use the classical Newell’s model (18),
expressed after (19) in terms of speed, chosen for its ease615

of interpretation and for its simplicity. We focused here on
the following three parameters characterizing the individual
behavior of the driver-vehicle pairs: minimal-distance dn,
reaction-time τn and maximal-acceleration an.

We did not observe any impact of the car-following620

parameters on the capacity drop: the difference between the
Pre-Breakdown Capacity and the Queue Discharge Flow is
lower than 1 % in all the studied configurations. Note that
we did chose a rather large mean value of the maximal-
acceleration of 2.5 m/s2.625

Our results show that among those three parameters,
the reaction-time variability has the larger impact on the
capacities distribution. This can be explained by the figure
3, where we can see, on the second row, that the capacity
variability is higher than in the first row where d varies.630

Moreover, an uncertainty propagation calculus can confirm

this. The flow associated to a congested regime whose speed
is limited to u is expressed, with the Newell’s model as:

Cu =
1

(τ + d/u)
(2)

Applying the uncertainty propagation method in the case of
independence of parameters d and τ , one obtains the value of 635

the relative variation of Cu:

σ2
Cu

Cu
2 =

σ2
τ + σ2

d/u
2

(τ + d/u)2
(3)

Since the variance σ2
d for the parameter d is divided by the

square of the speed limit u, the weight of this variance in
the relative variance of the capacity is less than that of the
parameter τ . 640

The impact is higher when all the three parameters vary,
the maximal-acceleration a independently, and the minimal-
distance parameter d, in conjunction with reaction-time τ ,
permitting to keep w, the backward wave propagation speed,
constant. The maximal impact was obtained in the case where 645

the variability amplitude of each parameter is of 30 %, which
corresponds to the highest studied amplitude. We did not
observe a significant impact of the distribution function on
any macroscopic characteristic (capacity drop or capacities
variability). We compared the most classical distributions: 650

Gamma, truncated Gaussian, and uniform.
Compared to the capacity distribution observations

reported in the literature, our results explain between an 1/2
and a 1/3 of the standard deviations (mean std of 7.2 %
for (3) and of 9.4 % for (11)). This means that the car 655

following parameters contribution to the capacity distribution
is far from being negligible. We realize exactly the same
study with the Gipps’ car following model and obtained
similar results (53).

The key finding in this work is the significant impact of 660

the distribution of the reaction-time τn parameter. In many
microscopic simulation tools, τn is equal to the computation
time-step and therefore uniform for all vehicles. From our
results we can clearly conclude that any simulation study
willing to scrutinize the variability among days concerning 665

congestion creation, duration and amplitude, ignoring the
variability of the reaction time will fail to reach its goals.

Moreover, microscopic simulation tools are often used to
test traffic control methods. The simplification brought by the
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using of a unique value for the reaction time is a potential670

source of erroneous estimation of the impact of these controls
on the basis of microscopic simulation tools.

Future researches will be devoted to the study of lane
changes impacts on the capacity drop and the capacity
distribution, with a focus on the behavior variability among675

driver-vehicles pairs.
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