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Abstract In Mathematical Morphology (MM), con-

nected filters based on dynamics are used to filter the

extrema of an image. Similarly, persistence is a con-

cept coming from Persistent Homology (PH) and Morse

Theory (MT) that represents the stability of the ex-

trema of a Morse function. Since these two concepts

seem to be closely related, in this paper we examine

their relationship, and we prove that they are equal on

n-D Morse functions, n ≥ 1. More exactly, pairing a

minimum with a 1-saddle by dynamics or pairing the

same 1-saddle with a minimum by persistence leads ex-

actly to the same pairing, assuming that the critical

values of the studied Morse function are unique. This

result is a step further to show how much topologi-

cal data analysis and mathematical morphology are re-

lated, paving the way for a more in-depth study of the
relations between these two research fields.

Keywords Mathematical Morphology · Morse

Theory · Computational Topology · Persistent

Homology · Dynamics · Persistence.

Fig. 1: Low sensibility of dynamics to noise (extracted

from [32]).

1 Introduction

In Mathematical Morphology [43,47,48], dynamics [31,

32,51], defined in terms of continuous paths and opti-

mization problems, represents a very powerful tool to

measure the significance of extrema in a gray-level im-

age (see Figure 1). Thanks to dynamics, we can effi-

ciently select markers of objects in an image. These

markers (that do not depend on the size or on the

shape of objects) help to select relevant components in

an image; hence, this process is a way to filter objects

depending on their contrast, whatever the scale of the

objects, and is often combined with the watershed [42,

52] for image segmentation. This contrasts with convo-

lution filters often used in digital signal processing or

morphological filters [43,47,48] where geometrical prop-

erties do matter.
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Fig. 2: The dynamics of a minimum of a given function

can be computed thanks to a flooding algorithm (ex-

tracted from [32]).

Note that there exists an interesting relation be-

tween flooding algorithms and the computation of dy-

namics (see Figure 2). Indeed, when we flood the topo-

graphical view of a function, at a given level, two basins

merge, and the dynamics of the highest minima of the

two basins is the difference between the current level of

water and the altitude of this highest minima.

Similarly, in Persistent Homology [21,25] well-known

in Computational Topology [22], we can find the same

paradigm: topological features whose persistence is high

are “true” when the ones whose persistence is low are

considered as sampling artifacts, whatever their scale.

An example of application of persistence is the filter-

ing of Morse-Smale complexes [24,23,34] used in Morse

Theory [40,28] where pairs of extrema of low persis-

tence are canceled for simplification purpose. This way,

we obtain simplified topological representations of Morse

functions. A discrete counterpart of Morse theory, known

as Discrete Morse Theory can be found in [26,35,28,

27].

As detailed in [20], pairing by persistence of criti-

cal values can be extended in a more general setting to

pairing by interval persistence of critical points. The re-

sult is that it is possible to perform function matching

based on their critical points, and then to pair all criti-

cal points of a given function (see Figure 2 in [20]) where

persistent homology does not succeed. However, due to

the modification of the definition introduced in [20],

this matching is not applicable when we consider usual

threshold sets.

In this paper, we prove that the relation between

Mathematical Morphology and Persistent Homology is

strong in the sense that pairing (of minima) by dynam-

ics and pairing 1-saddles by persistence is equivalent

(and then dynamics and persistence of the correspond-

ing pair are equal) in n-D (n ≥ 1), when we work with

Morse functions. For n = 1, the proof is much simpler

(with some extra condition on the limits of the domain),

but contains the essence of the proof for n ≥ 1, which

is more technical. In order to ease the reading, we pro-

vide the complete proofs for both cases, first for the 1D

case and then for the n-D case. This paper is the exten-

sion of [6] (which contains the 1D case) and [7] (which

generalizes [6] to the n-D case, n ≥ 1).

The plan of the paper is the following: Section 2 re-

calls the mathematical background needed in this pa-

per, Section 3 provides sketches of the equivalence of

pairing by dynamics and by persistence in 1D and in

n-D, Section 4 contains the complete proof of the 1D

equivalence, while Section 5 contains the complete proof

of the n-D equivalence. In Section 6, we discuss several

research directions opened by the results of this paper.

Section 7 concludes the paper.

2 Mathematical pre-requisites

We call path from x to x′ both in Rn a continuous

mapping from [0, 1] to Rn. Let Π1, Π2 be two paths

satisfyingΠ1(1) = Π2(0), then we denote byΠ1 <> Π2

the join between these two paths. For any two points

x1,x2 ∈ Rn, we denote by [x1,x2] the path:

λ ∈ [0, 1]→ (1− λ).x1 + λ.x2.

Also, we work with Rn supplied with the Euclidean

norm:

‖.‖2 : x→ ‖x‖2 =

√√√√ n∑
i=1

x2
i .

In the sequel, we use lower threshold sets coming

from cross-section topology [39,4,5] of a function f de-

fined for some real value λ ∈ R by:

[f < λ] =
{
x ∈ Rn

∣∣∣ f(x) < λ
}
,

and

[f ≤ λ] =
{
x ∈ Rn

∣∣∣ f(x) ≤ λ
}
.

2.1 Morse functions

We call Morse functions the real functions in C∞(Rn)

whose Hessian is not degenerated at critical values, that

is, where their gradient vanishes. A strong property of

Morse functions is that their critical values are isolated.

In particular, we call D-Morse functions the Morse func-

tions which tend to ±∞ when the 2-norm of their ar-

gument tends to +∞. Note that this last property will

only be used to treat the 1D case in this paper.

Lemma 1 (Morse Lemma [2]). Let f : C∞(Rn)→ R be

a Morse function. When x∗ ∈ Rn is a critical point of f ,

then there exists some neighborhood V of x∗ and some

diffeomorphism ϕ : V → Rn such that f is equal to a
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Fig. 3: Example of pairing by dynamics: the abscissa

xmin of the red point is paired by dynamics relatively

to f with the abscissa xmax of the green point on its

left because the “effort” needed to reach a point of lower

height than f(xmin) (like the two black points) following

the graph of f is minimal on the left.

second order polynomial function of x = (x1, . . . , xn)

on V : ∀ x ∈ V ,

f ◦ϕ−1(x) = f(x∗)−x21−x22−· · ·−x2k+x2k+1+ · · ·+x2n.

We call k-saddle of a Morse function a point x ∈ Rn
such that the Hessian matrix has exactly k strictly neg-

ative eigenvalues (and then (n − k) strictly positive

eigenvalues); in this case, k is sometimes called the in-

dex of f at x. We say that a Morse function has unique

critical values when for any two different critical values

x1, x2 ∈ Rn of f , we have f(x1) 6= f(x2). (See Appendix

A for a discussion about this hypothesis.)

2.2 Pairing by dynamics (1D)

Let f : R→ R be a D-Morse function with unique crit-

ical values. For xmin ∈ R a local minimum of f , if there

exists at least one abscissa xmin
′ ∈ R of f such that

f(xmin
′) < f(xmin), then we define the dynamics [32]

of xmin by:

dyn(xmin) := min
γ∈C

max
s∈[0,1]

f(γ(s))− f(xmin),

where C is the set of paths γ : [0, 1] → R verifying

γ(0) := xmin and verifying that there exists some s ∈
]0, 1] such that f(γ(s)) < f(xmin).

Let us now define γ∗ as a path of C verifying:

max
s∈[0,1]

f(γ∗(s))−f(xmin) = min
γ∈C

max
s∈[0,1]

f(γ(s))−f(xmin),

then we say that this path is optimal. The real value

xmax paired by dynamics to xmin (relatively to f) is the

local maximum of f characterized by:

xmax := γ∗(s∗),

ℝ

ℝ

xmin2xmaxxmin

Fig. 4: Example of pairing by persistence: the abscissa

xmax of the local maximum in red is paired by persis-

tence relatively to f with the abscissa xmin of the local

minimum in green, since its image by f is greater than

the image by f of the abscissa xmin
2 of the local mini-

mum drawn in pink.

with f(γ∗(s∗)) = maxs∈[0,1] f(γ∗(s)). We obtain then:

f(xmax)− f(xmin) = dyn(xmin).

Note that the local maximum xmax of f does not

depend on the path γ∗ (see Figure 3), and its value is

unique (by hypothesis on f), which shows that in some

way xmax and xmin are “naturally” paired by dynamics.

2.3 Pairing by persistence (1D)

From now on, we denote by R := {+∞,−∞} ∪ R the

complete real line, and by clR(A) the closure in R of the

set A ⊆ R.

Algorithm 1: Pairing by persistence of xmax.

xmin := ∅;
[x−max,x

+
max] := clR(CC([f ≤ f(xmax)],xmax));

if x−max > −∞ ‖ x+
max < +∞ then

xmin
− := rep([x−max,xmax], f);

xmin
+ := rep([xmax,x

+
max], f);

if x−max > −∞ && x+
max < +∞ then

xmin := arg maxx∈{xmin
−,xmin

+}f(x);

if x−max > −∞ && x+
max = +∞ then

xmin := xmin
−;

if x−max = −∞ && x+
max < +∞ then

xmin := xmin
+;

return xmin;

Let f : R → R be a D-Morse function with unique

critical values, and let xmax be a local maximum of f .
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Fig. 5: Pairing by dynamics on a Morse function: the

red and blue paths are both in (Dxmin
) but only the

blue one reaches a point x< whose height is lower than

f(xmin) with a minimal effort.

Let us recall the 1D procedure [21] which pairs (rela-

tively to f) local maxima to local minima (see Algo-

rithm 1). Roughly speaking, the representatives xmin
−

and xmin
+ are the abscissas where connected compo-

nents of respectively

[f ≤ (f(xmin
−)] and [f ≤ (f(xmin

+)]

“emerge” (see Figure 4), when xmax is the abscissa

where two connected components of [f < f(xmax)] “mer-

ge” into a single component of [f ≤ f(xmax)]. Pairing

by persistence associates then xmax to the value xmin

belonging to {xmin
−,xmin

+} which maximizes f(xmin).

The persistence of xmax relatively to f is then equal to

Per(xmax) := f(xmax)− f(xmin).

2.4 Pairing by dynamics (n-D)

From now on, f : Rn → R is a Morse function with

unique critical values.

Let xmin be a local minimum of f . Then we call set

of descending paths starting from xmin (shortly (Dxmin
))

the set of paths going from xmin to some element x< ∈
Rn satisfying f(x<) < f(xmin).

The effort of a path Π : [0, 1] → Rn (relatively to

f) is equal to:

Effort(Π) := max
`∈[0,1],`′∈[0,1]

(f(Π(`))− f(Π(`′))).

A local minimum xmin of f is said to be matchable if

there exists some x< ∈ Rn such that f(x<) < f(xmin).

We call dynamics of a matchable local minimum xmin

of f the value:

dyn(xmin) = min
Π∈(Dxmin

)
max
`∈[0,1]

(f(Π(`))− f(xmin)) ,

Fig. 6: Pairing by persistence on a Morse function: we

compute the plane whose height is reaching f(xsad)

(see the left side), which allows us to compute Csad,

to deduce the components CIi whose closure contains

xsad, and to decide which representative is paired with

xsad by persistence by choosing the one whose height

is the greatest. We can also observe (see the right side)

the merge phase where the two components merge and

where the component whose representative is paired

with xsad dies.

and we say that xmin is paired by dynamics (see Fig-

ure 5) with some 1-saddle xsad ∈ Rn of f when:

dyn(xmin) = f(xsad)− f(xmin).

An optimal pathΠopt is an element of (Dxmin
) whose

effort is equal to minΠ∈(Dxmin
)(Effort(Π)). Note that

for any local minimum xmin of f , there always exists

some optimal path Πopt such that:

Effort(Πopt) = dyn(xmin).

Thanks to the uniqueness of critical values of f ,

there exists only one critical point of f which can be

paired with xmin by dynamics.

Dynamics are always positive, and the dynamics of

an absolute minimum of f is set at +∞ (by convention).

2.5 Pairing by persistence (n-D)

Let us denote by clo the closure operator, which adds

to a subset of Rn all its accumulation points, and by

CC(X) the connected components of a subset X of Rn.

We also define the representative of a subset X of Rn
relatively to a Morse function f the point which mini-

mizes f on X:

rep(X) = arg minx∈Xf(x).

Definition 1. Let f be some Morse function with unique

critical values, and let xsad be the abscissa of some 1-

saddle point of f . Now we define the following expres-

sions. First,

Csad = CC([f ≤ f(xsad)],xsad)
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denotes the component of the set [f ≤ f(xsad)] which

contains xsad. Second, we denote by:

{CIi }i∈I = CC([f < f(xsad)])

the connected components of the open set [f < f(xsad)].

Third, we define

{Csad
i }i∈Isad =

{
CIi | xsad ∈ clo(CIi )

}
the subset of components CIi whose closure contains

xsad. Fourth, for each i ∈ Isad, we denote

repi = arg minx∈Csad
i
f(x)

the representative of Csad
i . Fifth, we define the abscissa

xmin = repipaired

with

ipaired = arg maxi∈Isadf(repi),

thus xmin is the representative of the component Csad
i

of minimal depth. In this context, we say that xsad is

paired by persistence to xmin. Then, the persistence of

xsad is equal to:

Per(xsad) = f(xsad)− f(xmin).

3 Sketches of the proofs (1D vs. n-D)

3.1 Pairing by dynamics implies pairing by persistence

Let us start from the 1D case (see Figure 7). We as-

sume (see Table 1) that we have some Morse function

f defined on the real line and that the critical values are

unique, that is, for two different extrema x1, x2 of f , we

have f(x1) 6= f(x2). Furthermore, we assume that the

abscissas {xmin,xmax} with xmax > xmin are paired by

dynamics, that is, starting from xmin and following the

graph of f , the lower effort to reach a lower value is on

the right side. Using these properties, we want to show

that xmax and xmin are paired by persistence.

1D proof: Let us proceed in three steps. First, we

want to show that xmin is the representative of the basin

[x−max,xmax] of level f(xmax) containing it. This is eas-

ily proven by contradiction: if xmin is not the represen-

tative of this basin, there exists some x∗ in it where

f(x∗) < f(xmin), and then the dynamics of xmin is

lower than f(xmax) − f(xmin), which is impossible by

hypothesis.

Now that we know that xmin represents the basin

[x−max,xmax], we can show that f(xmin) is greater than

the image by f of the representative of [xmax,x
+
max] cor-

responding also to the lower threshold set [f ≤ f(xmax)].

xmax

xmax
+-

xmin

xmax

Fig. 7: Pairing by dynamics implies pairing by per-

sistence in 1D: when xmin (in black) is paired with

xmax (in purple) by dynamics, we observe easily that

xmin is the representative of the basin where it lies.

Furthermore, the optimal path descending lower than

f(xmin) goes on the right side and goes through xmax

(since we look for a minimal effort and f(x2
max) is

greater than f(xmax)). This implies that the right basin

contains a representative lower than f(xmin). Since

CC([f ≤ f(xmax)],xmax) is made of the two described

basins, we obtain easily that xmax is paired with xmin

by persistence.

By assuming the contrary, we would imply that any de-

scending path starting from xmin would go outside the

component [x−max,x
+
max] = CC([f ≤ f(xmax),xmax]),

which means that we would obtain a dynamics of xmin

greater than f(xmax)− f(xmin), which is impossible.

Since we have obtained that xmin is the representa-

tive of the highest basin starting for the extrema xmax,

we can conclude easily that xmax is paired with xmin

by persistence.

n-D proof: The proof in n-D, n ≥ 2, is very similar,

except that we have more complex notations. Indeed,

we study 1-saddles instead of maxima; the path between

the two points is not “unique” anymore; and we do not

have anymore a natural order between two abscissas.

We cannot define x−max and x+
max, but instead we

can define the closed connected component CC([f ≤
f(xmax)],xmax) containing xmax. Also, we cannot de-

fine ]x−max,xmax[ or ]xmax,x
+
max[ but instead we can

define the connected components CIi which are com-

ponents of [f < f(xsad)], and the components Csad
i of

[f < f(xsad)] with the additional property that their

closure contains xsad. Last point, we do not need any-

more the condition that the studied function tends to

infinity when the norm of the abscissa tends to infinity,

but the consequence is that the proof is a little more

complex.

After having introduced these notations, we can fol-

low the same three steps as before. We first prove that



6 N. Boutry et al.

Table 1: Sketches of the 1D/n-D proofs that pairing by dynamics implies pairing by persistence.

Hypotheses:

f is a D-Morse function f is a Morse function

f has unique critical values

xmin is a local minimum of f

xmin and xmax/sad are paired by dynamics

xmax > xmin xmin 6= xsad

Notations

[x−max,x
+
max] = clR(CC([f ≤ f(xmax)],xmax)) Csad = CC([f ≤ f(xsad)],xsad)

{CIi }i∈I = CC([f < f(xsad)])

{Csad
i }i∈Isad =

{
CIi | xsad ∈ clo(CIi )

}
Step 1:

∃ i ∈ I s.t. xmin ∈ CIi
xmin represents [x−max,xmax] with xmin representing CIi

(otherwise dyn(xmin) < f(xmax/sad)− f(xmin) which leads to a contradiction)

CIi belongs to {Csad
i }i∈Isad

then xmin represents some Csad
imin

Step 2:

f(rep([xmax,x
+
max], f)) < f(xmin) ∀ i 6= imin, f(rep(Csad

i , f) < f(xmin)

(otherwise dyn(xmin) > f(xmax/sad)− f(xmin) which leads to a contradiction)

Step 3:

xmin and xmax/sad are paired by persistence

xmin, paired to xsad by dynamics, is the representative

of some CIi (otherwise we would obtain that the dy-

namics of xmin is lower than f(xsad)−f(xmin) since we

can reach a point on the graph of f which is lower than

f(xmin)). Then, the proof that this CIi is in fact one

of the Csad
i follows from the fact that otherwise, any

descending path of xmin must go out of CIi to reach

a lower value than f(xmin), and then the dynamics of

xmin would be greater than f(xsad)− f(xmin).

Now that we know that xmin belongs to some Csad
i ,

we can use the property that there exists exactly two

basins in the component CC([f ≤ f(xsad)],xsad) (since

we work with a Morse function). By assuming that xmin

is not the highest representative among the open com-

ponents Csad
i , we obtain one more time that any path

starting from xmin must go outside

CC([f ≤ f(xsad)],xsad)

to descend lower than f(xmin), which would lead to a

greater dynamics than f(xsad)−f(xmin). Thus, xmin is

the highest representative among the ones of the com-

ponents {Csad
i }i.

We conclude one more time that xsad is paired to

xmin by persistence when xmin is paired to xsad by dy-

namics.

3.2 Pairing by persistence implies pairing by dynamics

We assume as usual that f is a Morse function (see

Table 2), that its critical values are unique. Let us prove

that when some maximum of f in the 1D case (or some

1-saddle of f in the n-D case) is paired by persistence

to some minimum of this same function f , then this

minimum is paired with this maximum (resp. this 1-

saddle) by dynamics.

1D proof: Let us start with the 1D case (see Fig-

ure 8). By considering that some maximum xmax is

paired with some minimum xmin by persistence (with
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Table 2: Sketches of the 1D/n-D proofs that pairing by persistence implies pairing by dynamics.

Hypotheses:

f is a D-Morse function f is a Morse function

f has unique critical values

xmax/sad is a local maximum/1-saddle of f

xmax/sad and xmin are paired by persistence

xmax > xmin xmin 6= xsad

Notations:

[x−max,x
+
max] = CC([f ≤ f(xmax)],xmax) Csad = CC([f ≤ f(xsad)],xsad)

x∀min = rep([x−max,x
+
max], f) {CIi }i∈I = CC([f < f(xsad)])

{Csad
i }i∈Isad =

{
CIi | xsad ∈ clo(CIi )

}
imin ∈ Isad s.t. xmin represents Csad

imin

Step 1:

γ := [xmin, x
∀
min] Card(Isad) > 1

with f(x∀min) < f(xmin) ⇒ ∃ i< ∈ Isad, ∃ x< ∈ Csad
i<

,

s.t. f(x<) < f(xmin)

xmin is matchable

Step 2:

γ is a descending path ∃ γ1 from xmin to xsad in Csad
imin

∀ i ∈ Isad \ {imin},∃ γ2 from xsad to x<
⇒ γ := γ1 <> γ2 is a descending path

the dynamics of γ is equal to f(xmax)− f(xmin)

⇒ dyn(xmin) ≤ f(xmax/sad)− f(xmin)

Step 3:

If xmin is paired by dynamics with x∗ dyn(xmin) < f(xsad)− f(xmin) (H)

Then x∗ > xmin ⇒ ∃ a descending γ from xmin in Csad
imin

x< := inf{x > xmin ; f(x) < f(xmin)} ⇒ xmin does not represent Csad
imin

x< > xmax ⇒ (H) is false

γ optimal path ⇒ {xmin,xmax,x<} ∈ γ

dyn(xmin) ≥ f(xmax/sad)− f(xmin)

Step 4:

dyn(xmin) = f(xmax/sad)− f(xmin)

xmax/sad and xmin are paired by dynamics

xmin < xmax), we obtain at the same time several prop-

erties (by definition of the pairing by persistence):

– we can draw the threshold set [f ≤ f(xmax)] at level

f(xmax),

– we know that it draws a connected component

CC([f ≤ f(xmax)],xmax)

containing xmax that we can define as [x−max,x
+
max]

with x−max < xmax < x+
max,

– we know then that xmin is the representative of

[x−max,xmax] and we can define some x∀min as being

the representative of [xmax,x
+
max], with f(xmin) >

f(x∀min).
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xmax

xmax
+-

xmin xmin
\/

xmax

Fig. 8: Pairing by persistence implies pairing by dy-

namics in 1D: starting from the local maximum xmax

(in black), we define the component [x−max,x
+
max] of

the lower threshold set of f which contains xmax. By

definition of pairing by persistence, we know that the

representative of the component [x−max,xmax] is xmin

drawn in purple (since xmin < xmax) and we call

x∀min (drawn in red) the representative of the compo-

nent [xmax,x
+
max]. From these facts, we deduce easily

that xmin is matchable since f(x∀min) < f(xmin). We

also deduce that there exists a descending path from

xmin to xmax to x∀min which lies inside [x−max,x
+
max] and

then its associated effort is equal to f(xmax)− f(xmin),

which means that the dynamics of xmin is lower than

or equal to this same value. Additionally, we can show

that every optimal path connects xmin to xmax and

thus the dynamics of xmin is greater than or equal to

f(xmax)− f(xmin). It is then easy to conclude that the

dynamics of xmin is equal to f(xmax) − f(xmin), and

then by uniqueness of the critical values, xmin is paired

with xmax by dynamics.

Now let us prove that xmin is paired by dynamics to

xmax in four steps. First, we know that there exists some

path γ : [0, 1]→ [xmin, x
∀
min] : λ→ (1−λ)xmin +λx∀min]

joining xmin to x∀min with f(x∀min) < f(xmin), then xmin

is matchable.

Then, the second step is straightforward: since γ

reaches some x∀min with an altitude lower than the one

of xmin, it is a descending path. Furthermore, the effort

associated to γ is equal to f(xmax) − f(xmin), since

we have to reach (xmax, f(xmax)) when we start from

(xmin, f(xmin)) to be able to go down to

(x∀min, f(x∀min)).

Then the optimal effort associated to xmin, that is the

dynamics of xmin, is lower than or equal to f(xmax) −
f(xmin).

Now, for the third step, we assume that xmin is

paired with some x∗ < xmin, which is clearly impossi-

ble: otherwise dynamics of xmin would be greater than

f(xmax)−f(xmin) (we would need to go outside the con-

nected component [x−max,x
+
max] to reach some altitude

lower than f(xmin)). Then xmin is paired with some

maximum x∗ greater than xmin. Now, we define x< as

the “first” abscissa of altitude lower than f(xmin) on

the right side of xmin; obviously this abscissa is greater

than xmax since xmin is the representative of the basin

[x−max,xmax]. Since any optimal descending path start-

ing from xmin goes through the abscissas xmin, xmax

and then x<, its associated effort is greater than or

equal to f(xmax)− f(xmin).

The fourth step combines the previous properties

and leads to the conclusion that the dynamics of xmin

is equal to f(xmax) − f(xmin), which means that the

maxima associated to xmin by dynamics is xmax (by

uniqueness of the critical values).

n-D proof: The main steps of the n-D proof are

very similar to the 1D case. However, the notations are

very different, due to the fact that the number of path

from one point to another in Rn is infinite (and there is

no “left” nor “right”). Starting from the 1-saddle xsad

paired by persistence to xmin, we have to use the fol-

lowing notations:

– we define the closed component Csad = CC([f ≤
f(xsad)],xsad),

– we define also the open components {Cimin
}i of [f <

f(xsad)], whose subset {Csad
i }i corresponds to these

components whose closure contains xsad,

– we call imin the index of the component Csad
imin

that

xmin represents.

The first step consists of recalling that the num-

ber of components of Csad
i is equal to two, then greater

than one, and thus there exists some index i< and some

abscissa x< ∈ Csad
i<

such that f(x<) < f(xsad) (since

pairing by persistence associates xsad to the local mini-

mum of the highest altitude). Thus, xmin is matchable.

As a second step, we construct a path γ1 from xmin

to xsad in Csad
imin

and another path γ2 from xsad to x<
in the component Csad

i containing it, from which we

deduce a descending path γ := γ1 <> γ2 associated to

xmin. Thus, the effort associated to γ is lower than or

equal to f(xsad)− f(xmin) (since this path has not yet

been shown to be optimal).

The third step uses a proof by contradiction. We as-

sume that the dynamics of xmin is lower than f(xsad)−
f(xmin); we call this hypothesis HYP. Then, HYP im-

plies that there exists a descending path inside the com-

ponent Csad
imin

, which implies that xmin does not repre-

sent Csad
imin

, which is impossible (it contradicts the hy-

potheses). Then, the dynamics of xmin is greater than

or equal to f(xsad)− f(xmin).
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xmin xmax
xmax xmax
- + ℝxmin

2

ℝ

Fig. 9: A D-Morse function where the local extrema

xmin and xmax are paired by dynamics.

As for the 1D case, the fourth steps concludes: since

the dynamics of xmin is equal to f(xsad) − f(xmin)

thanks to the combination of the previous steps, the

only possible local maximum paired by dynamics to

xmin is xsad.

4 Pairings by dynamics and by persistence are

equivalent in 1D

In this section, we prove that under some constraints,

pairings by dynamics and by persistence are equivalent

in the 1D case.

Proposition 1. Let f : R→ R be a D-Morse function

with unique critical values. Now, let us assume that a

local minimum xmin ∈ R of f is paired with a local

maximum xmax of f by dynamics. We assume without

loss of generality that xmin < xmax (the reasoning is the

same for the opposite assumption). Also, we denote by

(x−max,x
+
max) ∈ R2

the two values verifying:

[x−max,x
+
max] = clR(CC([f ≤ f(xmax)],xmax)).

Then the following properties are true:

(P1) xmin = rep([x−max,xmax], f),

(P2) When x+
max is finite, xmin

2 := rep([xmax,x
+
max], f)

satisfies f(xmin
2) < f(xmin),

(P3) xmax and xmin are paired by persistence.

Proof: Figure 9 depicts an example of D-Morse

function where xmin and xmax are paired by dynam-

ics.

Let us prove (P1); we proceed by reductio ad ab-

surdum. When xmin is not the lowest local minimum

xmin xmax
xmax
- ℝ

ℝ

x* x**

Fig. 10: Proof of (P1).

xmin xmax
xmax
-

ℝ

xxmin
2 xmax

+

xmax
2

<

Fig. 11: Proof of (P2) in the case where x+
max is finite.

of f on the interval [x−max,xmax], then there exists an-

other local minimum x∗ ∈ [x−max,xmax] of f (see Fig-

ure 10) which satisfies f(x∗) < f(xmin) (x∗ and xmin

being distinct local extrema of f , their images by f are

not equal). Then, because the path joining xmin and x∗

belongs to C (defined in Subsection 2.2), we have:

dyn(xmin) ≤ max{f(x)− f(xmin) ; x ∈ iv(x∗,xmin)}.

Let us call x∗∗ := arg maxx∈[iv(xmin,x∗)] f(x), we can de-

duce that f(x∗∗) < f(xmax) since x∗∗ ∈ iv(x∗,xmin) ⊆
]x−max,xmax[. In this way,

dyn(xmin) ≤ f(x∗∗)− f(xmin),

which is lower than f(xmax) − f(xmin); this is a con-

tradiction since xmin and xmax are paired by dynamics.

(P1) is then proved.

Now let us prove (P2). Let us assume that x+
max is

finite and let xmin
2 be the representative of [xmax,x

+
max]

relatively to f . Let us assume that f(xmin
2) > f(xmin).

Note that we cannot have equality of f(xmin
2) and
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xmin
x

xmaxxmax xmax
- + ℝxmin

ℝ

<

\/

Fig. 12: A D-Morse function f : R → R where the

local extrema xmin and xmax are paired by persistence

relatively to f .

f(xmin), since xmin and xmin
2 are both local extrema of

f . Then we obtain Figure 11. Since with x ∈ [xmax,x
+
max],

we have f(x) ≥ f(xmin
2) > f(xmin), and because xmin

is paired with xmax by dynamics with xmin < xmax,

then there exists a value x on the right of xmax where

f(x) is lower than f(xmin). In other words, there exists:

x< := inf{x ∈ [xmax,+∞[ ; f(x) < f(xmin)}

such that for some arbitrarily small value ε > 0, f(x<+

ε) < f(xmin). Since x< > x+
max, any path γ joining xmin

to x< goes through a local maximum x2
max defined by

x2
max := arg max

x∈[x+
max,x<]

f(x)

which satisfies f(x2
max) > f(x+

max). Then the dynamics

of xmin is greater than or equal to f(x2
max) − f(xmin)

which is greater than f(xmax) − f(xmin). We obtain a

contradiction. Then we have f(xmin
2) < f(xmin). The

proof of (P2) is done.

Thanks to (P1) and (P2), we obtain directly (P3)

by applying Algorithm 1.

Proposition 2. Let f : R→ R be a D-Morse function

with unique critical values. Now, let us assume that a

local minimum xmin ∈ R of f is paired with a local

maximum xmax of f by persistence. We assume without

loss of generality that xmin < xmax (the reasoning is

the same for the opposite assumption). Then, xmax and

xmin are paired by dynamics.

Proof: We denote by (x−max,x
+
max) ∈ R2

the two

values verifying:

[x−max,x
+
max] = clR(CC([f ≤ f(xmax)],xmax)).

Since xmin is paired by persistence to xmax with

xmin < xmax (see Figure 12), then:

xmin = rep([x−max,xmax], f) ∈ R,

and, by Algorithm 1, we know that x−max > −∞ (then

x−max is finite).

When x+
max < +∞ (Case 1), the representative x∀min

of [xmax,x
+
max] relatively to f is exists in ]xmax,x

+
max[

and is unique, and its image by f is lower than f(xmin).

When x+
max = +∞ (Case 2), limx→+∞ f(x) = −∞, and

then there exists one more time an abscissa x∀min ∈ R
whose image by f is lower than f(xmin). So, in both

cases, there exists a (finite) value x∀min ∈]xmax,x
+
max[

verifying f(x∀min) < f(xmin). This way, we know that

xmin is paired with some abscissa in R by dynamics.

In Case 1, we know that the path defined as:

γ : λ ∈ [0, 1]→ γ(λ) := (1− λ)xmin + λx∀min

belongs to the set of paths C defining the dynamics of

xmin (see Subsection 2.2). Then,

dyn(xmin) ≤ max{f(x)− f(xmin) ; x ∈ γ([0, 1])},

which is lower than or equal to f(xmax)−f(xmin) since

f is maximal at xmax on [x−max,x
+
max]. Then we have

the following property:

dyn(xmin) ≤ f(xmax)− f(xmin).

In Case 2, since f(x) is lower than f(xmax) for x ∈
]xmax,+∞[, then one more time we get dyn(xmin) ≤
f(xmax)− f(xmin). Let us call this property (P ).

Even if we know that there exists some local max-

imum of f which is paired with xmin by dynamics, we

do not know whether the abscissa of this local maxi-

mum is lower than or greater than xmin. Then, let us

assume that there exists a local maximum x∗ < xmin

(lower case) which is associated to xmin by dynamics.

We denote this property (H) and we depict it in Fig-

ure 13. Since f(x) is greater than or equal to f(xmin) for

x ∈ [x−max,xmin], (H) implies that x∗ < x−max. Then, we

can observe that the local maximum x1 of f of max-

imal abscissa in [x∗,x−max] satisfies f(x1) > f(xmax),

which implies that dyn(xmin) ≥ f(x1) − f(xmin) >

f(xmax) − f(xmin) (since we go through x1 to reach

x∗), which contradicts (P ). (H) is then false. In other

words, we are in the upper case: the local maximum

paired by dynamics to xmin belongs to ]xmin,+∞[, let

us call this property (P ′).

Now let us define:

x< := inf{x > xmin ; f(x) < f(xmin)},
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xmin xmax
xmax
- ℝ

ℝ

x*

x¹

Fig. 13: The proof that it is impossible to obtain a local

maximum x∗ < xmin paired with xmin by dynamics

when xmin is paired with xmax > xmin by persistence.

(see again Figure 12) and let us remark that x< > xmax

(because xmin is the representative of f on [x−max,xmax]).

Since we know by (P ′) that a local maximum x > xmin

of f is paired by dynamics with xmin, then the image

of every optimal path belonging to C contains {x<},
and then contains [xmin, x

<]. Indeed, an optimal path

in C whose image would not contain {x<} would then

contain an abscissa x < x−max and then we would obtain

dyn(xmin) > f(xmax) − f(xmin), which would contra-

dict (P ).

Now, the maximal value of f on [xmin, x
<] is equal to

f(xmax), then dyn(xmin) = f(xmax)−f(xmin). The only

local maximum of f whose value is f(xmax) is xmax,

then xmax is paired with xmin by dynamics relatively

to f .

Theorem 1. Let f : R → R be a D-Morse function

with a finite number of local extrema and unique critical

values. A local minimum xmin ∈ R of f is paired by

dynamics to a local maximum xmax ∈ R of f iff xmax

is paired by persistence to xmin. In other words, pairings

by dynamics and by persistence lead to the same result.

Furthermore, we obtain Per(xmax) = dyn(xmin).

Proof: This theorem results from Propositions 1

and 2.

Note that pairing by persistence has been proved

to be symmetric in [13] for Morse functions defined on

manifolds: the pairing is the same for a Morse function

and its negative.

Fig. 14: Every optimal descending path goes through a

1-saddle. Observe the path in blue coming from the left

side and decreasing when following the topographical

view of the Morse function f . The effort of this path to

reach the minimum of f is minimal thanks to the fact

that it goes through the saddle point at the middle of

the image.

5 The n-D equivalence

Let us make two important remarks that will help us

in the sequel.

Lemma 2. Let f : Rn → R be a Morse function and

let xmin be a local minimum of f . Then for any optimal

path Πopt in (Dxmin), there exists some `∗ ∈]0, 1[ such

that it is a maximum of f ◦Πopt and at the same time

Πopt(`∗) is the abscissa of a 1-saddle point of f .

Proof : This proof is depicted in Figure 14. Let us

proceed by counterposition, and let us prove that when

a path Π in (Dxmin
) does not go through a 1-saddle of

f , it cannot be optimal.

Let Π be a path in (Dxmin). Let us define `∗ ∈ [0, 1]
as one of the positions where the mapping f ◦ Π is

maximal:

`∗ ∈ arg max`∈[0,1]f(Π(`)),

and x∗ = Π(`∗). Let us prove that we can find another

path Π ′ in (Dxmin
) whose effort is lower than the one

of Π.

At x∗, f can satisfy three possibilities:

– When we have ∇f(x∗) 6= 0 (see the left side of Fig-

ure 15), then locally f is a plane of slope ‖∇f(x∗)‖,
and then we can easily find some path Π ′ in (Dxmin

)

with a lower effort than Effort(Π). More precisely,

let us fix some arbitrary small value ε > 0 and draw

the closed topological ball B̄(x∗, ε), we can define

three points:

`min = min{` | Π(`) ∈ B̄(x∗, ε)},
`max = max{` | Π(`) ∈ B̄(x∗, ε)},

xB = x∗ − ε. ∇f(x∗)

‖∇f(x∗)‖
.
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Fig. 15: How to compute descending paths of lower ef-

forts. The initial path going through x∗ (the little gray

ball) is in red, the new path of lower effort is in green

(the non-zero gradient case is on the left side, the zero-

gradient case is on the right side).

Thanks to these points, we can define a new path

Π ′:

Π|[0,`min] <> [Π(`min), xB ] <> [xB , Π(`max)] <> Π|[`max,1].

By doing this procedure at every point in [0, 1] where

f ◦ Π reaches its maximal value, we obtain a new

path whose effort is lower than the one of Π.

– When we have ∇f(x∗) = 0, then we are at a crit-

ical point of f . It cannot be a 0-saddle, that is, a

local minimum, due to the existence of the descend-

ing path going through x∗. It cannot be a 1-saddle

neither (by hypothesis). It is then a k-saddle point

with k ∈ [2, n] (see the right side of Figure 15). Us-

ing Lemma 1, f is locally equal to a second order

polynomial function (up to a change of coordinates

ϕ s.t. ϕ(x∗) = 0):

f◦ϕ−1(x) = f(x∗)−x21−x22−· · ·−x2k+x2k+1+· · ·+x2n.

Now, let us define for some arbitrary small value

ε > 0:

`min = min{` | Π(`) ∈ B̄(0, ε)},
`max = max{` | Π(`) ∈ B̄(0, ε)},

and

B =

x
∣∣∣ ∑
i∈[1,k]

x2i ≤ ε2 and ∀j ∈ [k + 1, n], xj = 0

\{0}.
This last set is connected since it is equal to a k-

manifold (with k ≥ 2) minus a point. Let us as-

sume without loss of generality that Π(`min) and

Π(`max) belong to B (otherwise we can consider

their orthogonal projections on the hyperplane of

lower dimension containing B but the reasoning is

the same). Thus, there exists some path ΠB joining

Π(`min) to Π(`max) in B, from which we can de-

duce the pathΠ ′ = Π|[0,`min] <> ΠB <> Π|[`max,1]

whose effort is lower than the one of Π since its im-

age is inside [f < f(x∗)].

Fig. 16: A 1-saddle point leads to two open connected

components. At a 1-saddle point whose abscissa is xsad

(at the center of the image), the component [f ≤
f(xsad)] is locally the merge of the closure of two con-

nected components (in orange) of [f < f(xsad)] when f

is a Morse function.

Since we have seen that, in any possible case, Π is

not optimal, it concludes the proof.

Proposition 3. Let f be a Morse function from Rn to

R with n ≥ 1. When x∗ is a critical point of index 1,

then there exists ε > 0 such that:

Card (CC(B(x∗, ε) ∩ [f < f(x∗)])) = 2,

where Card is the cardinality operator.

Proof : The case n = 1 is obvious, let us then treat

the case n ≥ 2 (see Figure 16). Thanks to Lemma 1

and thanks to the fact that xsad is the abscissa of a 1-

saddle, we can say that (up to a change of coordinates

and in a small neighborhood around xsad) for any x:

f(x) = f(xsad) + xT .

[
−1 0

0 In−1

]
.x,

where In−1 is the identity matrix of dimension (n−
1) × (n − 1). In other words, around xsad, we obtain

that:

[f < f(xsad)] =

{
x
∣∣∣ − x21 +

n∑
i=2

x2i < 0

}
= C+ ∪ C−,

with:

C+ =

x
∣∣∣ x1 >

√√√√ n∑
i=2

x2i

 ,

and

C− =

x
∣∣∣ x1 < −

√√√√ n∑
i=2

x2i

 ,

where C+ and C− are two open connected compo-

nents of Rn. Indeed, for any pair (M,M ′) of C+, we
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have xM1 >
√∑n

i=2(xMi )2 and xM
′

1 >
√∑n

i=2(xM
′

i )2,

from which we define N = (xM1 , 0, . . . , 0)T ∈ C+ and

N ′ = (xM
′

1 , 0, . . . , 0)T ∈ C+ from which we deduce the

path [M,N ] <> [N,N ′] <> [N ′,M ′] joining M to M ′

in C+. The reasoning with C− is the same. Since C+

and C− are two connected (separated) disjoint sets, the

proof is done.

5.1 Pairing by persistence implies pairing by dynamics

in n-D

Theorem 2. Let f be a Morse function from Rn to R.

We assume that the 1-saddle point of f whose abscissa

is xsad is paired by persistence to a local minimum xmin

of f . Then, xmin is paired by dynamics to xsad.

Proof : Let us assume that xsad is paired by persis-

tence to xmin, then we have the hypotheses described in

Definition 1. Let us denote by Cmin the connected com-

ponent in {Ci}i∈Isad satisfying that xmin = rep(Cimin
).

Since xsad is the abscissa of a 1-saddle, by Propo-

sition 3, we know that Card(Isad) = 2, then there ex-

ists: x< = rep(C<) with C< the component Ci with

i ∈ I \ {imin}, then xmin is matchable. Let us assume

that the dynamics of xmin satisfies:

dyn(xmin) < f(xsad)− f(xmin). (HYP)

This means that there exists a path Π< in (Dxmin
) such

that:

max
`∈[0,1]

f(Π<(`))− f(xmin) < f(xsad)− f(xmin),

that is, for any ` ∈ [0, 1], f(Π<(`)) < f(xsad), and then

by continuity in space of Π<, the image of [0, 1] by Π<

is in Cmin. Because Π< belongs to (Dxmin
), there exists

then some x< ∈ Cmin satisfying f(x<) < f(xmin). We

obtain a contradiction, (HYP) is then false. Then, we

have dyn(xmin) ≥ f(xsad)− f(xmin).

Because for any i ∈ Isad, xsad is an accumulation

point of Ci in Rn, there exist a path Πm from xmin to

xsad such that:

∀` ∈ [0, 1],Πm(`) ∈ Csad,

∀` ∈ [0, 1[,Πm(`) ∈ Cmin.

In the same way, there exists a path ΠM from x<
to xsad such that:

∀` ∈ [0, 1],ΠM (`) ∈ Csad,

∀` ∈ [0, 1[,ΠM (`) ∈ C<.

We can then build a path Π which is the concatena-

tion of Πm and `→ ΠM (1−`), which goes from xmin to

x< and goes through xsad. Since this path stays inside

Csad, we know that Effort(Π) ≤ f(xsad)−f(xmin), and

then dyn(xmin) ≤ f(xsad)− f(xmin).

By grouping the two inequalities, we obtain that

dyn(xmin) = f(xsad) − f(xmin), and then by unique-

ness of the critical values of f , xmin is then paired by

dynamics to xsad.

5.2 Pairing by dynamics implies pairing by persistence

in n-D

Theorem 3. Let f be a Morse function from Rn to R.

We assume that the local minimum xmin of f is paired

by dynamics to a 1-saddle of f of abscissa xsad. Then,

xsad is paired by persistence to xmin.

Proof : Let us assume that xmin is paired to xsad by

dynamics. Let us recall the usual framework relative to

persistence:

Csad = CC([f ≤ f(xsad)],xsad),

{CIi }i∈I = CC([f < f(xsad)]),

{Csad
i }i∈Isad =

{
CIi |xsad ∈ clo(CIi )

}
,

∀i ∈ Isad, repi = arg minx∈Csad
i
f(x).

By Definition 1, xsad is paired to the representative

repi of Csad
i which maximizes f(repi).

1. Let us show that there exists some index imin such

that xmin is the representative of a component Csad
imin

of {Csad
i }i∈Isad .

(a) First, xmin is paired by dynamics with xsad and

dyn(xmin) is greater than zero, then f(xsad) >

f(xmin), then xmin belongs to [f < f(xsad)],

then there exists some imin ∈ I such that xmin ∈
Cimin (see Equation (2) above).

(b) Now, if we assume that xmin is not the repre-

sentative of Cimin
, there exists then some x< in

Cimin
satisfying that f(x<) < f(xmin), and then

there exists some Π in (Dxmin) whose image is

contained in Cimin
. In other words,

dyn(xmin) ≤ Effort(Π) < f(xsad)− f(xmin),

which contradicts the hypothesis that xmin is

paired with xsad by dynamics.

(c) Let us show that imin belongs to Isad, that is,

xsad ∈ clo(Cimin
). Let us assume that:

xsad 6∈ clo(Cimin
). (HYP2)

Every path in (Dxmin) goes outside of Cimin to

reach some point whose image by f is lower than
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f(xmin) since xmin has been proven to be the

representative of Cimin
. Then this path inter-

sects the boundary ∂ of Cimin
. Since by (HYP2),

xsad does not belong to the boundary ∂ of Cimin ,

any optimal path Π∗ in (Dxmin
) goes through

one 1-saddle xsad2 = arg max`∈[0,1]f(Π∗(`)) (by

Lemma 2) different from xsad and satisfying then

f(xsad2) > f(xsad). Thus, dyn(xmin) > f(xsad)−
f(xmin), which contradicts the hypothesis that

xmin is paired with xsad by dynamics. Then, we

have:

xsad ∈ clo(Cimin
).

2. Now let us show that f(xmin) > f(rep(Csad
i )) for

any i ∈ Isad \ {imin}. For this aim, we prove that

there exists some i ∈ Isad such that f(rep(Csad
i )) <

f(xmin) and we conclude with Proposition 3. Let us

assume that the representative r of each component

Csad
i except Cmin satisfies f(r) > f(xmin), then any

path Π of (Dxmin
) has to go outside Csad to reach

some point whose image by f is lower than f(xmin).

We obtain the same situation as before (see (1.c)),

and then we obtain that the effort of Π is greater

than f(xsad)− f(xmin), which leads to a contradic-

tion with the hypothesis that xmin is paired with

xsad by dynamics. We have then that there exists

i ∈ Isad such that f(rep(Csad
i )) < f(xmin). Thanks

to Proposition 3, we know then that xmin is the

representative of the components of [f < f(xsad)]

whose image by f is the greatest.

3. It follows that xsad is paired with xmin by persis-

tence.

6 Perspectives: a research program linking

Topological Data Analysis and MM

This paper is a step towards exploring the possible in-

teractions between Topological Data Analysis (TDA)

and MM. In this section, we detail some ideas for a

research program linking these two fields.

As a very first example, let us look at Fig.17, which

provides an illustration of an image analysis pipeline

originally performed in the context of topological data

analysis using the library called Topology Toolkit [49,

37] (shortly TTK). In the original publication [36], the

steps are the following

1. The original data (microscopy image of cells and

their nuclei) are simplified with a small threshold of

persistence (Fig. 17.a)

2. The Morse-Smale complex leads to an oversegmen-

tation ((Fig. 17.b)

3. The persistence curve (Fig. 17.c) is the number of

persistent pairs as a function of their persistence.

The vertical dashed line on the left corresponds to

the level of simplification of Fig. 17.a and b. The

vertical dashed line on the right corresponds to the

level of simplification of Fig. 17.e and f.

4. The diagram of persistence (Fig. 17.d)

5. The image is simplified (Fig. 17.e) with a thresh-

old corresponding to the vertical dashed line on the

right of Fig. 17.c.

6. The Morse-Smale complex separatrices of Fig. 17.e

provides 1 maximum per nuclei, while the nuclei are

the maxima of the same image (Fig. 17.f).

Thanks to the result of this paper and some pre-

vious work, we can translate this process in mathe-

matical morphology. The filtering by persistence belong

to a class of morphological filters called connected fil-

ters [46], with a criterion named dynamics. The Morse-

Smale complexe is replaced by the watershed [15,14].

The persistence curve is called a granulometric curve

[38]. Hence, from a morphological perspective, the same

example can be done using Higra [44], a (morphologi-

cal) library that computes the various steps, and this

leads to the following description.

1. A connected filter with a small dynamics threshold

is first applied on the original data (Fig. 17.a)

2. The watershed of Fig. 17.a is oversegmented (see

Fig. 17.b)

3. The granulometric curve (Fig. 17.c) provides the

number of maximum as a function of the dynam-

ics

4. A connected filter of Fig. 17.a with a dynamics thres-

hold corresponding to the vertical dashed line on the

right of Fig. 17.c leads to Fig. 17.e.

5. The watershed of Fig. 17.e gives one region per cell,

while the nuclei are the maxima of the same image

(Fig. 17.f).

It is worthwhile to explore the differences between

the two approaches. In mathematical morphology, there

is no persistence diagram. On the other hand, there ex-

ist saliency maps [42,41,18]. Intuitively, a saliency map

can be obtained by filtering the original image/data for

all values of the criterion (here, dynamics), and stack-

ing (summing) the watersheds of all the filtered images.

A contour that is persistent is present many times in

the stack, and has a high value in the resulting saliency

map. Fig. 18 shows the saliency map of the original data

of Fig. 17 for the dynamics criterion.

In TDA, only a few criteria other than dynamics

have been studied [11] but MM has many more, see

[1] for a few of them. There exist also several ways to

simplify using non-increasing criteria [45,50,53].

The links between Morse-Smale Complex and wa-

tershed [15,14] need to be explored, specifically in the
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Fig. 17: An example of segmentation of a microscopy image of cells and their nuclei [36] with the topological

data analysis framework. The very same example can be seen as an application of the morphological data analysis

framework (see text).

Fig. 18: Saliency map corresponding to Fig.17. In this image, the contours that are the more persistent are darker

than the others (see text for details.)

context of Discrete Morse Theory [27]. We envision do-

ing such a study based on watershed cuts [17], see also

[16] that highlights some links between the watershed

and topology.

Many other comparisons should be done. To men-

tion one of those, the contour tree [29] from TDA is

closely related to the tree of shapes [12] from MM.

Comparing those trees and the algorithms for comput-

ing them from TDA [10,33] and from MM [30,19,8]

would be rewarding. In particular, the morphological

algorithms for computing the tree of shapes, which are

quasi-linear whatever the dimension of the space, are

based on the ones for computing the tree of upper or

lower level sets, called the component trees [9], and seem

more efficient than the ones from TDA.

7 Conclusion

In this paper, we have proved that persistence and dy-

namics lead to the same pairings in n-D, n ≥ 1, which

implies that they are equal whatever the dimension.

Concerning the future works, we propose to investigate

the relationship between persistence and dynamics in

the discrete case [27] (that is, on complexes). We will

also check under which conditions pairings by persis-

tence and by dynamics are equivalent for functions that

are not Morse. Furthermore, we will examine if the fast

algorithms used in MM like watershed cuts, Betti num-

bers computations or attribute-based filtering are ap-

plicable to PH. Conversely, we will study if some PH

concepts can be seen as the generalization of some MM
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concepts (for example, dynamics seems to be a partic-

ular case of persistence).

More generally, we believe that exploring the links

and differences between TDA and MM would benefit

to the two communities.
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A Ambiguities occurring when values are not

unique

Fig. 19: Ambiguities can occur when critical values are

not unique for pairing by dynamics and for pairing by

persistence.

As depicted in Figure 19, the abscissa of the blue point
can be paired by persistence to the abscissas of the orange
and/or the red points. The same thing appears when we want
to pair the abscissa of the pink point to the abscissas of the
green and/or blue points. This shows how much it is impor-
tant to have unique critical values on Morse functions. This
point is discussed in detail in [3], where it is shown that a
strict total order relation on the set of minima allows for a
good definition of the dynamics.
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algorithm to compute the morphological tree of shapes of
nd images. In 2014 IEEE International Conference on
Image Processing (ICIP), pages 2933–2937. IEEE, 2014.

20. Tamal K Dey and Rephael Wenger. Stability of critical
points with interval persistence. Discrete & Computa-
tional Geometry, 38(3):479–512, 2007.

21. Herbert Edelsbrunner and John Harer. Persistent Ho-
mology - A survey. Contemporary Mathematics, 453:257–
282, 2008.

22. Herbert Edelsbrunner and John Harer. Computational
Topology: an Introduction. American Mathematical So-
ciety, 2010.

https://higra.readthedocs.io/en/stable/python/tree_attributes.html
https://higra.readthedocs.io/en/stable/python/tree_attributes.html


Some equivalence relation between PH and MD 17

23. Herbert Edelsbrunner, John Harer, Vijay Natarajan, and
Valerio Pascucci. Morse-Smale complexes for piecewise
linear 3-manifolds. In Proceedings of the Nineteenth
Annual Symposium on Computational Geometry, pages
361–370, 2003.

24. Herbert Edelsbrunner, John Harer, and Afra Zomoro-
dian. Hierarchical Morse-Smale complexes for piecewise
linear 2-manifolds. Discrete and Computational Geome-
try, 30(1):87–107, 2003.

25. Herbert Edelsbrunner, David Letscher, and Afra Zomoro-
dian. Topological persistence and simplification. In
Foundations of Computer Science, pages 454–463. IEEE,
2000.

26. Robin Forman. A Discrete Morse Theory for cell com-
plexes. In S.-T. Yau, editor, Geometry, Topology for
Raoul Bott. International Press, Somerville MA, 1995.

27. Robin Forman. Morse Theory for cell complexes, 1998.
28. Robin Forman. A user’s guide to Discrete Morse Theory.

Sém. Lothar. Combin, 48:35pp, 2002.
29. H Freeman and SP Morse. On searching a contour

map for a given terrain elevation profile. Journal of the
Franklin Institute, 284(1):1–25, 1967.
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