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Abstract—Storage in the blockchain is crucial because full
nodes maintain vast amounts of information to decentralize the
validation system. The validation system consists of approving
new transactions that basically follow two steps: verifying the
chain’s state and recording the transactions into a block. Verifi-
cation is processed in many different ways, according to the data
model used by the consensus. The most known data models used
are UTXO and balance models. UTXO model stores individual
transaction receipts in chronological order to check the balance
for accounting, the set of all transaction outputs is the global
state. The balance model incorporates accounts and keeps track
of all balances as a global state; each transaction has a public
nonce attached that is incremented by one with each outgoing
transaction. Their transactions will only continue to grow in size
over time. Therefore, scalability remains a key challenge in the
blockchain when dealing with large amounts of data.

Our research focuses on designing a scalable permissionless
blockchain in Proof of Work systems. We present SparseChain,
a storage sharding protocol that allows scalable storage and
provides permanent availability of data by incentive. The protocol
decreases block replication while maintaining security. Peers can
validate transactions even if their local chain is a shard and
store only a part of the whole blockchain, making the validation
process suitable for lightweight peers. The peers are incentivized
to keep only a suitable amount of data and are rewarded for
storing historical data. We present the protocol, and then we
analyze its performance compared to the traditional blockchain.

Index Terms—Permissionless Blockchain, Proof of Work, De-
centralization, Security, Availability, Proof of Random Access.

I. INTRODUCTION

The blockchain is a series of blocks of data created by
peers and validated in a distributed way without depending
on central entities, allowing parties that do not trust each
other to exchange funds and agree on a common view of
their states. The blockchain system is built by respecting
decided rules that make the consensus. Bitcoin [1] is the first
digital currency implementation that introduces a blockchain
system. This proposition is attractive since the technology
complies with cryptographic algorithms (Elliptic Curve [23])
and hashing functions to protect the integrity and immutability
of data stored on the distributed ledger using the Peer to Peer
(P2P) network to interconnect nodes. Nodes are divided into
light nodes, full nodes, and miners. The light node keeps only
a copy of the block header. The full node validates transactions
and blocks, and relays them to all miner nodes. Although
technically not required, a miner is a full node (i.e., has full

knowledge of the blockchain) that creates new blocks and is
different from nodes that only validate data. All miner nodes
rely on the full nodes to create blocks.

Bitcoin maintains a continuously-growing history of orga-
nized information to establish consensus and provide security.
Full nodes replicate all previous transactions to avoid double-
spending attacks, which are utilized as proof of correct status
to keep the system running, i.e., full nodes validate new
transactions by checking their states (recorded transactions)
and then storing them, which requires a lot of storage space.
Ethereum does not record all transactions but instead keeps
track of the sequence number (”nonce”) of the most recent
transaction issued from a specific account [3]. Even if the
account has no balance, this nonce must be saved and causes
storage costs to grow linearly and unintentionally caused
Ethereum issues when a smart contract establishes several
zero-balance accounts.

A long line of research proposes various techniques to
make blockchain more scalable. For example, On chain ap-
proaches, i.e., sharding nodes into multiple subsets [11], [13],
[14], and Off chain approaches, i.e., Lightning Network [12].
Partitioning data into separate shards managed by different
subsets of nodes reduces performance as more messages are
exchanged to build consensus without improving robustness;
in such an approach, the data grows linearly with the number
of nodes and transactions. Executing transactions Off chain
overcoming the scalability limitations of blockchains, i.e., un-
trusted peers can build direct payment channels on the Light-
ning network, allowing them to make Off chain micropay-
ments without committing each transaction to the underlying
blockchain. A payment channel is made up of a blockchain-
based contract that stores the funds of the peers involved in
the transaction. These techniques provide scalability but affect
decentralization and result in security vulnerabilities, i.e., the
Off chain scalability solutions can introduce security threats
to the blockchain because the data is stored not directly on
the blockchain but through third-party protocols.

The solutions to achieve scalability must not compromise
the decentralization and security of blockchain networks.
Therefore, the ability to scale a blockchain lies primarily in
improving the foundation of blockchain technology, preventing
the hardware shortages triggered by classical Proof of Access
cryptocurrencies. This paper presents a new blockchain de-
sign to address the storage bottleneck. We suggest a storage



sharding of the blockchain with sparse distribution over the
nodes instead of a full replication to reduce the impact of the
ever-growing state in blockchain while providing robustness
through data replication.

The main contributions of this paper are summarized as
follows:

• The design of the storage sharding: distributing the block
storage in a sparse way over nodes while maintaining
security of the blockchain.

• Algorithm for a smart live adaptation of the storage
sharding scheme.

• Method for guaranteeing a positive behaviour of nodes,
and perpetual availability of all blocks.

The remainder of this paper is organized as follows. Section
II presents an overview of SparseChain, Section III discusses
the related work, Section IV describe the storage sharding
protocol which enhances the scalability of the blockchain,
section V discusses the protocol economics, and section VI
discusses the parameters for the protocol.

II. OVERVIEW

Previously, we proposed a sharding approach that reduces
block replication in the chain [21]. The idea is that the
process acts as in the Bitcoin protocol, but transactions are
not recorded in full replication. Only the blocks header are
stored by nodes to achieve consensus. Given a network with
C nodes, the block replication is αC, with (0 < α < 1).
Once a block is verified and confirmed by the network (i.e.,
a transaction is considered a success after six block confir-
mations), its replication decreases. We proposed an approach
for a finite number of nodes C, and we underlined the major
problem of data availability. Malicious behavior of miners
can cause deleting data from nodes. This paper proposes a
distributed protocol that scales the blockchain by decreasing
the replication of blocks and ensuring permanent availability.
We introduce an incentive mechanism to incentivize nodes to
store a suitable amount of data and keep the historical data.
We prove that every block will not be lost in time. Like the
way Arweave [4] incentivizes peers to store data permanently,
see II-C3, SparseChain rewards miners for two things were
mining and storing data. Miners are incentivized to maintain
data and can mine with a historical block or without.

A. Motivation

In traditional blokchain, each transaction is replicated redun-
dantly across multiple nodes. Bitcoin and Ethereum employ
a full replication process that makes it impossible to do
big blocks as it would become challenging for miners to
store them all. We propose algorithms to reduce blockchain
replication without affecting blockchain security and decen-
tralization while allowing scalability. Instead of storing the
whole blockchain on each full node, the overall state will be
shared on a subset of the nodes, and nodes store only a small
amount of data. More precisely, the block in the blockchain
is constituted on the block header and the body. The block
header contains the consensus data (Merkle root, previous

block hash, nonce, and other metadata), and the body includes
transactions. SparseChain deletes the body from blocks to
decrease replication and keep each block header to achieve
consensus. In addition, the protocol allows for an increase in
the block size to include more transactions. As a result, the
blockchain continues to receive transactions and improves the
number of transactions performed by nodes per second.

B. Objectives

The SparseChain protocol achieves the following main
goals:

1) Efficient Storage: Distribute the blockchain’s storage
costs across different network nodes by sharding without
sacrificing security. As a result, the node can store a
small amount of data while participating in the mainte-
nance of the blockchain.

2) Availability: Due to an incentive mechanism for nodes to
keep blocks in blockchains, all blockchain transactions
are guaranteed to be available (even old blocks). It
allows the verification of historical transactions and
prevents their falsification.

3) Transaction per second: The number of transactions per
second should be increased. By freeing up local storage,
the protocol lowers the cost of holding the blockchain;
in fact, the block size can be increased to allow more
transactions without overburdening the network.

C. Background

1) Blockchain infrastructure: As adopted in most public
cryptocurrencies, the blockchain infrastructure is based on
distributed ledger (DLT). Blockchain requires consensus to
ensure node replication. Each node (or peer) in the network
follows the same set of rules, including transaction processing,
block creation. Nodes communicate by sending messages
through Gossip protocol and form a P2P network topology
on top of the internet. Transactions are entered into the
blockchain in chronological order and stored as a series of
blocks scattered over multiple nodes. Each node replicates and
saves an identical copy of the ledger on its computer, which
it updates itself according to the protocol’s rules. Every block
encloses a set of transactions that should be valid and clear of
double spending, and the full nodes store the chain since the
genesis block. The blockchain is distributed, tamper resistant
and does not rely on a centralized authority.

2) Incentive mechanism in distributed system: Transaction
in Bitcoin uses The Unspent Transaction Outputs (UTXO) data
model, which can have a single or multiple inputs and outputs.
Permissionless blockchains allow any node to join or leave the
P2P network without authentication. When a new transaction
is broadcast on the network, it is received and verified by a
group of nodes to ensure that it is correctly signed and has
not been previously recorded in the blockchain. Once verified,
the transaction is added to a valid transaction block by miners
competing and executing a consensus to extend the longest
chain with blocks they generate.



Fig. 1. An overview of the block data structure illustrates the link to both the previous block and recall block.

Traditional blockchain has robust incentive mechanisms to
encourage nodes to maintain the network running econom-
ically. For example, miners are rewarded for their labor by
getting a fee each time their proposed block is accepted.
Besides Bitcoin, file sharing is the most common use of P2P
technologies such as BitTorrent. Nodes in Bittorent participate
in a game called the ’optimistic tit-for-tat algorithm’ [6]. In this
game, nodes share data reciprocally with other nodes that share
data with them. Network participants use information about
favors to calculate peer rankings. The participants then use
these rankings to determine how they will share their resources
with other network participants preferring those who have
higher rankings. Occasionally, nodes share data at random,
interacting with each other without taking peer rankings into
account. This game leads to a Nash equilibrium [25] where all
nodes are incentivized to share resources (data) freely at the
network’s maximum capacity and perform prosocial behaviors.

3) Arweave: Arweave set out to solve the problem of
long-term data storage on the internet. It used blockchain
technology to store data and implemented an incentive system
for peers to store data permanently. Arweave constructed
a blockweave instead of a blockchain. The blockweave is
held together by many links inside the whole data storage.
Therefore, the only way to add new data to the blockweave
is for a peer to recall a randomly selected block already on
the blockweave. Only the peers that can recall the previous
random block are allowed to store new data [5]. Miners have
an incentive to store vast amounts of data to enhance their
chances of finding a good recall block because the selection
of recall blocks is random. This improvement in data storage
and economic rewards for miners who keep the data create
conditions for data to be stored for long periods. In addition,
Arweave introduces a synchronization block generated once
every 12 blocks, containing a full list of the balance of
every wallet in the system and a hash of every previous
block without the transaction. Synchronization blocks help
new participants in the network to bootstrap, and there is no
need to download all blocks from the genesis block. Node rates
its peers based on two main criteria, first, the peer’s generosity
- sending new transactions and blocks - and second, the peer’s
responsiveness - responding quickly to information requests.
Instead, it allows each actor to maintain private, local scores
for other peers. Nodes are incentivized through the Adaptive
Interacting Incentive Agent (AIIA) meta-game [4], i.e., nodes

with low AIIA social rank risk their messages (including new
candidate blocks) being propagated too slowly to be accepted
by the network.

D. Architecture of SparseChain

Consider a system with 100 billion transactions and 1
million online nodes as an extreme example. We then have 33
thousand blocks, and each block is held by about 250 nodes
by Proposition V.1, enabling a high degree of availability, the
possibility for lightweight nodes to fully participate into the
protocol, and a division by 135 of the storage space needed
among the network.

SparseChain rewards the storage of the history of the
blockchain through the consensus algorithm. The only way
to reward storage without giving the possibility for an actor to
create multiple nodes in order to get all the storage reward is to
intricate the Proof of Random Access with mining through the
use of a recall block included in the new blocks for increasing
rewards (through decreasing the mining difficulty in the case of
using a recall block) as for Arweave. Therefore, there cannot
be pure storage nodes that get rewarded for this; the miners
need to be in charge of the storage by the protocol.

A group of miners is rewarded for mining blocks as well
as for proving that they are storing a subset of the blockchain
defined by the algorithms. This subset is designed to have a
reasonable size, in order to allow small miners to participate in
the process. Nodes are incentivized to store blocks since they
increase their chances of mining a new block and receiving
rewards. Unlike Arweave, nodes are rewarded for mining
blocks with a recall block or without the recall block. This
method allows all network nodes to participate in mining. The
difference between the two types of mines is that miners who
contain recall blocks have a high chance of finding the correct
nonce and calculating the new block. In order to allow the
nodes to validate transactions while only storing the 12 latest
blocks, the balance state of each wallet is summarized in a
synchronize block that appears in the chain every 12 blocks
(see Subsection II-C3). The block is cryptographically related
to the last block in the chain, and to an Arweave-like recall
block, i.e., a previous block in the chain’s history. However,
unlike Arweave, the potential candidates to be a recall block
are chosen thanks to our novel algorithm described in section
IV to make the scalability possible through sparsity.



III. RELATED WORK

Sharding blockchain is the closest work to ours. Elastico is
the first public sharding blockchain that tolerates byzantine
adversaries [14]. Elastico divides the network into shards
and assures probabilistic correctness by allocating nodes to
committees randomly, with each shard is verified in parallel by
a separate committee of nodes. It uses costly PoW to construct
committees, with nodes joining committees randomly and run-
ning PBFT (Practical Byzantine Fault Tolerance [24]) for intra-
committee consensus. Omniledger, unlike Elastico, proposes
novel methods for assigning nodes to shards with a higher
security guarantee and employs both PoW and BFT. In addi-
tion, it uses an atomic protocol for across-shard transactions
(Atomix) to achieve global synchronization of transactions
[11]. The intra-shard consensus protocol uses a variation
of ByzCoin [15]. It assumes partially synchronous channels
to achieve speedier transactions, resilient against a weakly
dynamic adversary that corrupts up to 25% faulty nodes in
each committee and 33% malicious nodes tolerated by the
network. In sharding-based systems, database performance
scales linearly with the number of nodes, necessitating the
creation of complicated protocols to enable shard connectivity.

Mbinkeu et al. [16] looked into the memory management
and access time of the Bitcoin protocol, which uses SQLite
databases. A memory optimization approach based on a redun-
dancy system is developed by Guo et al. [20] to reduce the
storage capacity of each node. It suggested a redundancy-based
optimization strategy that significantly reduces the storage ca-
pacity of blockchain system nodes and creates a fault-tolerant
mechanism. Wang et al. [17] looked at distributing data across
a blockchain network. This work proposed a balanced user
input solution for search time and space occupation.Gennaro et
al. [18] developed a centralized threshold signature mechanism
for more efficient Bitcoin systems in light of the challenges
with Bitcoin key management. To increase the performance
and scalability of data [39] sharing, El-Hindi et al. [19] added
a database layer to the blockchain system.

Mina [7] developed by O(1) labs is considered the smallest
blockchain. It integrates zero-knowledge proofs (”succinct
non-interactive argument of knowledge” or ”Zk-SNARKs”)
to validate transactions, which were first used by the Zcash
cryptocurrency [9]. The protocol generates a proof at each step
to validate a new transaction without consulting the register
of all the previous transactions; this proof drastically reduces
the size of the blockchain, which is never more than 22
KB. Mina stands out for data privacy. It allows users to use
the blockchain while maintaining control over their private
information. The objective is to connect to other participants
in a secure manner and without revealing any personal data.
However, block producer in Mina actually do store the full
state (a block producer must have the current state of the
blockchain), while block validators need not store anything.
So Mina still has a storage problem.

IV. STORAGE SHARDING PROTOCOL

In this section, we describe the algorithm for storing of
the blocks that preserves the security and scalability in the
blockchain.

A. System Model

There are two primary ways to represent states in
blockchains. UTXO model is used in Bitcoin, in which the
state is comprised of the unspent transaction outputs, and the
Account model is used in Ethereum, which includes accounts
and their balances. For the rest of this paper, we assume
a Proof of Work chains. The exact state model, UTXO,
Account or something else are irrelevant for our purposes.
The blockchain is distributed over a higher number of nodes.
N is the number of blocks in the blockchain.

B. Block structure

A block B contains a set of transactions txs, a previous
block hash, a nonce that a miner of that block found to
calculate the valid block, a timestamp, and the recall block in
case the miner processes a new block with a recall block (i.e.,
the entire contents of the recall block hashed with the previous
block hash and current transactions), the block is linked to the
previously added block and the recall block in the chain (see
Fig.1). A miner can mine without a recall block; see IV-C.
The transactions are encoded in a Merkle tree (i.e., the Merkle
tree is a data structure used for efficiently and securely data
storage). The blocks are ordered chronologically.

C. Block validity rules

Every block must follow two rules to be considered valid:
1) Mining: A miner who demonstrates that he has a recall

block must check the requirement that the block hash is lower
than the threshold Θrecall in order to mine a new block, the
hash begins with a number of zero bits. Validating a new
block includes verifying this proof. Furthermore, a miner who
does not have access to the recall block must ensure that the
block hash is lower than Θ0, with Θ0 < Θrecall, as shown
in Fig.2. Using the recall block is considered as proof that
the miner stores blocks. Demonstrating whether or not the
miner has access to the recall block is part of the block’s
construction. PoW difficulty is determined by the average
number of blocks mined each hour. The difficulty increases
if the block is generated too quickly.

SparseChain protocol incites storage because miners who
have access to recall blocks of the blockchain history to mine
new blocks have a higher probability of winning. The protocol
incentivizes miners to keep data available and ensures security
while reducing block replication.

In order to make sure that storage stays rewarded enough,
Θrecall is adjusted to have 50% of validating hashes ≤ Θ0. It
also ensures that the new miners that have never mined blocks
can never have less than 50% of disadvantage while mining.
Thus leaving them a good chance to validate blocks and get
storage rewards.



Fig. 2. An illustration of mining block in SparseChain

2) Recall block validity: The goal of SparseChain is to give
an incentive to miners to store the history of the blockchain
same as Arweave. The difference is that the protocol we define
gives a set of recall blocks among which miners can pick.
These blocks are given by (1) in Definition IV.1.

Another difference is that each miner gets a set of valid
recall blocks to store. Unlike Arweave, huge miners are not
twice advantaged because they have a large computation and
storage capacity. SparseChain protocol is made so that the
number of potential recall blocks for a miner is proportional
to its computing power. These blocks are given by (2) in
Definition IV.1.

Let λ > 0, 0 ≤ α ≤ 1, and 1 ≤ kmin ≤ H be three
parameters depending on the size of H from which we will
discuss the value in Section VI.

Definition IV.1. A block Bj for 1 ≤ j ≤ H is a valid recall
block for mining if and only if:

Hash1

(
hashBH

, hashBj

)
hashmax

≤ λ

αH
. (1)

and

Hash2

(
hashBk

, hashBj

)
hashmax

≤ α, (2)

for some kmin ≤ k ≤ H so that the mining node has mined
the block Bk.

Fig.3 illustrates the selection of blocks that could be recall
blocks. The red circle indicates the blocks that match condition
(1), that are the same for all the nodes. Then each node has
a specific set of potential recall blocks they can use from
condition (2), represented in the figure by the colored spots.
For example, in this figure, the node N4 has no potential recall
block and needs to mine without it before the next block. Node
N1 and N2 can use only one block, which is the same. Finally,

Fig. 3. A potential recall blocks.

node N3 has two potential recall blocks that are not potential
recall blocks for the other nodes represented.

In the rest of the paper, we will denote N := H−kmin+1
the number of blocks with a height higher than kmin. This is
the number of blocks which mining gives the possibility to its
successful miner to use recall blocks and get higher mining
rewards through a higher probability of mining.

V. PROTOCOL EQUILIBRIUM

A. Block replication

The following Proposition indicates how many, under the
protocol, blocks will be replicated and how many blocks a
particular node will have to store.

Proposition V.1. We assume that all miners has a fraction of
the hash rate β ≪ 1√

αN
. Then we have:

• A block will be replicated ≈ αN times among storage
nodes.

• A node will store ≈ nαH blocks for the protocol, where
n is the number of blocks with height higher than kmin

that the node has mined.

B. Average reward of a miner

Like Arweave, the reward given to the miner incentivizes
him to store as many blocks as possible among the blocks he
is meant to store, as he may benefit from a better mining rate.
We quantify this reward in this section.

To understand a miner’s reward, we first need to give
an intermediary result on the probability distribution of the
number of valid potential recall blocks a miner has.

Lemma V.2. Let n ≥ 0 be the number of blocks the node has
validated. Then the probability for the node to have k ≥ 0
valid recall blocks is given by

(λn)k

k!
e−λn. (3)

Now we quantify the reward obtain by each miner.

Theorem 1. If a miner mines under the sharding protocol of
Section IV, then its average reward is given by:

rwdtot
hashrateminer

hashratetotal

1

2

(
1 +

1− e−nλ∑∞
k=0(1− e−kλ)νk

)
, (4)



Where rwdtot is the total reward distributed to miners,
hashrateminer and hashratetotal are the hash rate of the
miner and the total hash rate, n is the number of blocks that
the miner has already mined. For all k ≥ 0, νk is the fraction
of the hash rate delivered by the miners that have mined k
blocks.

C. Optimal behaviour of miners

1) Storage of their allocated blocks: We see from the
reward equation (4) that the miners are rewarded for storing
the ≈ nαH blocks satisfying (2), where we denote by n ≥ 0
the number of blocks with indices higher than kmin validated
by the miner. This reward is strictly higher than the reward
obtained with a block without a recall block. Therefore if the
miner wants to maximize its reward, he will choose to store
its attributed blocks. Also, knowing the number of blocks to
store should not be too important by design.

2) Sharing of all the stored blocks: The storage nodes have
an incentive to share their blocks, as similar to Arweave,
the file sharing system uses the AIIA meta-game, and well-
behaving nodes receive the new blocks quicker than less well-
ranked nodes.

3) Downloading of all the blocks allocated for storage:
A miner should download all the blocks it is responsible for.
Indeed, as ≈ λ

αHH = α−1 potential recall blocks are selected
for each new block by (1), the miner needs to store as many
of these blocks to maximize its likelihood of obtaining the
reward enhanced by the addition of a recall block.

We could even quantify this level of incentive.
Theorem 2. If a miner has mined n ≥ 1 blocks with a height
higher than kmin, then the reward loss of not storing one block
from the miner’s allocation is given by

rwdtot
hashrateminer

hashratetotal
· λ

2αH
· e−nλ∑∞

k=0(1− e−kλ)νk
. (5)

Proof. The result is obtained by differentiating n by − 1
αH in

(4). □
We study in Subsection VI-D the best parameter λ to

choose.
4) Downloading in priority rare blocks: As the blocks that

satisfy (1) and therefore are potential recall blocks are the same
set for every miner, if one of them is rarely spread (because
it has been less selected at random, or it has been chosen by
nodes that became inactive), there will be less competition for
the mining when they are selected, and these rare blocks will
be downloaded in priority.

Notice that we could object that this incentive is relatively
weak. Notice that we could tweak the protocol to solve this
problem by adding a 10% probability to use the Arweave
mining protocol, providing an incentive to focus on the rare
blocks.

5) Staying an active miner: Recall that we denote N as
the number of blocks that allows the use of a recall block for
mining. As the privilege of being a storage node gives a very
large reward increase, and the privilege is short-term as we
take N ≪ H , the nodes that mine blocks tend to stay active.

D. Block storage handling by miners

We have proved that the optimal behavior of miners
is to store all the blocks satisfying (2). Now we explain
how to do it in practice. For all k and j, the equation
Hash2(hashBk

,hashBj )
hashmax ≤ α will never become true after

having been false, as α decreases over time. Therefore the
algorithm that the miner can apply to know which block to
store is the following:

• When the miner mines succesfully a new block Bk, he
computes Hash2

(
hashBk

, hashBj

)
for all j ≥ 1.

• the miner stores these values for all j so that the equation
(2) is satisfied. He can then download the associated
block.

• At each new block validation and update of α, the miner
goes through all the values of Hash2

(
hashBk

, hashBj

)
that he has stored and deletes all these that become
higher than the decreasing α. He may then delete all the
associated blocks he no longer needs to store to secure
the history of the blockchain.

This approach is efficient since each block mined only
requires H calculations. Notice that including hashBk

in the
equation makes the result unpredictable, preventing the miner
from ”selecting” the moments when to use their computing
power. α varies with the height H of the blockchain; as the
number of blocks grows, α approaches 0, and old blocks are
erased from memory, but new successful miners store them,
as shown by Theorem 3.

Fig. 4. The chain in a node that stores block according to IV.1

Fig.4 shows an example of the inclusion of a block in the
storage of a given node that has mined the block B2. Let B

be a block, we denote f(B) :=
Hash2(hashB2

,hashB)
hashmax . Recall

that by (2), the node is rewarded for using Bj as a recall block
if f(Bj) ≤ α. The line in the figure represents α. As we can
see, α converges to zero as the height H of the blockchain
goes to infinity. The node stores the two blocks B7 and B8

(blocks to the left of the line). On the other side, blocks B6,
B2, B5, and B1 are not stored by the node (blocks to the right
of the line). According to IV.1, the result of this equation for
the new block B9 entering the blockchain is greater than α,
so the node does not store it, and for B10 the result is less
than α, so the node stores it. As α moves to zero, while H
goes to infinity, we see an evolution in the blocks stored by



the node. For example, blocks B3 and B4 will provide recall
block rewards to the node at H = 20, but it will no more be
the case when H = 40. In the long run, all these blocks will
stop providing recall blocks rewards, but they will be replaced
by new blocks B having a small f(B).

Even if a node removes older blocks, all network nodes
keep the block hashes.

E. Guarantee that no block will be lost

If α decreases too fast, there is a risk that not enough
miners are rewarded for storing a given block, and an attacker
could try to lose the data, resulting in a permanent data
loss. Therefore, we provide a condition on the size of α that
guarantees no block will be lost.

Theorem 3. Let γ > 0 be the fraction of the computing power
of misbehaving nodes. Then if for some δ > 0, we have

α ≥ 2 + δ

1− γ

ln(H)

N
, (6)

then with a probability of 1, all the history of blocks will stay
available for H large enough.

VI. CHOICE OF PARAMETERS FOR THE PROTOCOL

Recall that we denote H the height of the blockchain, i.e.,
the total number of blocks, and we denote by N the number
of blocks with a height higher than kmin allowing their miner
to get storage reward. Notice that N = H − kmin + 1.

A. Make sure that no block of the history of the blockchain is
lost

In practice, Theorem 3 ensures that the storage of the
SparseChain protocol will be safe against 75% of misbehaving
nodes if we set

α :=
10 ln(H)

N
. (7)

B. Make sure storage nodes are renewed enough while still
dividing well the memory

To satisfy the incentive from subsection V-C5, we need to
have N ≪ H . As this can stay very marginal, we can pick

N :=
H

ln(ln(H))
. (8)

Then, by (7), we have

α :=
10 ln(H) ln(ln(H))

H
. (9)

C. Trade-off with memory and transactions per seconds

By Proposition V.1, a node stores αN = 10 ln(H) blocks.
From proportional scaling of Bitcoin figures, a year sees the
validation of 50000 blocs, and we can have 6000 transactions
per second for each Gb in a block. With these numbers, we
obtain the following equation:

#tx/s =
600

ln(H) ln(ln(H))
#Gb/node

1 year
= 25#Gb/node

Then, for example, if we want to reach 5000 transactions per
second, each storage node needs to store 200Gb per year,
which seems ok for retail nodes. So then each block has a
size 200Gb

αH = 800Mb.

D. Reward per stored block

We have from Theorem 2 that the reward for storing the
last block is

rwdtot
hashrateminer

hashratetotal

λ

2αH

e−nλ∑∞
k=0(1− e−kλ)νk

. (10)

In order of magnitude we can do estimations, using the
approximation:

β :=
hashrateminer

hashratetotal
≈ n

N
, (11)

As this is an approximation of the fraction of blocks that the
miner would have successfully mined. Notice that here we
neglect, on purpose, the impact of the compounding rewards
due to additional storage rewards.

Now if we incorporate (9), (8) and (11) in (4), we get that
the reward of the miner is approximately:

rwdtot
βλN

20H ln(H)

e−βλN∑∞
k=0(1− e−kλ)νk

.

We have that
∑∞

k=0(1− e−kλ)νk ≤ 1 and in a mature market
it converges to 1, as all important miners will have mined
enough to have 1 − e−kλ ≈ 1. Also, in the worst case, a
powerful miner should have β := 1% of the hashing power.
To reward enough the miners to incentive them to store, we
need to have:

rwdtot
βλN

20H ln(H)
e−βλN ≥ costblock. (12)

Notice that the cost to store 1Gb during one year is ≈ $0.06.
From Subsection VI-C, we have that a good block size is
800Mb. As the exponential would become overwhelming and
prevent any profitability of storing the blocks if βλN ≫ 1, we
will do our computation with the assumption that βλN ≈ 10,
as we are mostly interested in the order of magnitude. We get
that we need to have it for one year long (assuming an annual
mining reward of $100m):

λ ≤ 1

βN
ln

(
rwdtot

2H ln(H)costblock

)
=

1

βN
ln

(
100000000

2 · 50000 ln(50000)0.06 · 0.8

)
≈ 7

βN
.

Then a good option would be taking

λ :=
500

N
, (13)



as the cost of storage would diminish faster than the raise of
H ln(H).

VII. SCALE COMPARISON

Fig. 5. Number of blocks stored after 13 years of blockchain for SparseChain
and Bitcoin

Figure 5 shows the evolution of the total number of blocks
stored for the Bitcoin blockchain and SparseChain. After 13
years, we see that SparseChain spares a factor of 1000 while
guaranteeing the network’s security.

We model the number of nodes of Bitcoin by nnodes =
15000(tyears/13)

1.5, then its total number of blocks stored is
given by Hnnodes.

When it comes to SparseChain, supposing that no node has
an excessive computation power, the total number of blocks
stored is given by NαH as αH blocks are stored for each
block Bk with k ≥ kmin, and these blocks are all different
with high probability if the node does not have excessive
computing power. From the formulas given by Section VI,
we get that the total number of blocks stored is given by
H 10 ln(H)

ln(ln(H)) .
Finally, for the evolution of the number of blocks with

respect to time for both Bitcoin and SparseChain, we take
H = 50000 · tyears.

VIII. CONCLUSION

SparseChain is a new cryptocurrency design based on
Proof of work and Proof of Random Access that allows stor-
age scalability without compromising security and guarantees
availability.
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