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Abstract

Traditional blockchains such as Bitcoin and Ethereum today contain hundreds of gigabytes
of data, and their transactions will only continue to grow in size over time. This paper focuses on
block storage scalability. We design a new consensus algorithm that rewards nodes for storing
historical data and incentivizes them to store a suitable amount of data. Unlike Arweave, our
approach provides efficient storage features making it convenient for lightweight peers. Indeed,
the consensus distributes specific blocks to store to miners according to their hash rate and
rewards them for the storage with Proof of Random Access. In addition, we provide theoretical
results that guarantee the immutability and permanent availability of the data.

Key words. Permissionless Blockchain, Decentralized, Security, Availability, Proof of Random
Access.

1 Introduction

Permissionless blockchains, also known as distributed public ledgers, were first proposed as a
technical solution [9] for deploying the Bitcoin digital currency and payment system. Permis-
sionless blockchains strive to be a persistent, distributed, consistent, and ever-growing trans-
action log publicly auditable by anyone who can join or leave the network without permission.
Those blockchains work along with two components of consensus to ensure security and consis-
tency: The full blockchain replication that each node records make data tampering impossible
and guarantee data tamper-evident, adding on top of that, solving the Proof_of_Work (PoW),
this cryptography puzzle is demonstrably secure against a large proportion of participants who
wish to disrupt the system and allows a configurable and independent rate of block creation
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regardless of the size of the system. About the last one, the broadcast primitive relies on
Peer_to_Peer (P2P) network properties, without the presence of a trusted third party, despite
the malicious behavior of specific nodes. Proof_of_X systems summarize other consensus tech-
niques utilized in blockchain protocols; for example, Ethereum blockchain technology evolves
and moves toward a less computationally intensive design. Ethereum [13] popularised the con-
cept of smart contract to implement any application on top of the blockchain or meant actual
word certification to token validated by the blockchain. Furthermore, the consensus aims to
provide finality, which means that no value inserted into the ledger can ever be withdrawn.
Once a value is registered, it is hard to change it. Security is the responsibility of the nodes
that maintain the blockchain, the more nodes store the blockchain, the more secure it is. The
replication of the blockchain across all nodes that constitute the network is a hugely inefficient
use of the memory storage of the system because the node in a blockchain system (such as
the Bitcoin system) does not rely on a central organization, and each node stores a full copy
of the transactions. This aspect, however, indicates that the size of blockchain transactions
is overgrowing. Therefore, the node memory needs to be expanded to support the system
running with continuous system operations. One of the issues with blockchain scalability is
the growth in storage costs as the number of transactions increases, necessitating substantial
memory capacity to store the blockchain and which excludes small nodes from the validation
process. The accounting/balance models used in blockchain (UTXO model used in Bitcoin and
the account model used in Ethereum) need to be stored for validation, called the validation
state. Traditional blockchain maintains a continuously-growing history of ordered information
to achieve consensus and provide security to the blockchain. Full nodes replicate all previous
validation states to prevent double-spending, used as proof of correct status to keep the system
functioning. Full nodes validate new transactions by checking their states (recorded transac-
tions) and then storing them, which requires a lot of storage space. Ethereum does not record
all transactions but instead keeps track of the sequence number ("nonce") of the most recent
transaction issued from a specific account [3]. Even if the account has no balance, this nonce
must be saved and causes storage costs to grow linearly and unintentionally caused Ethereum
issues when a smart contract establishes several zero-balance accounts. Furthermore, designing
a cryptocurrency with storage costs that scale well with the number of users and transactions
is difficult due to various constraints. A long line of research proposes various techniques to
make blockchain more scalable. For example, On_chain approaches, i.e., sharding nodes into
multiple subsets [7, 8, 15], and Off_chain approaches, i.e., Lightning Network [5]. Partitioning
data into separate shards managed by different subsets of nodes reduces performance as more
messages are exchanged to build consensus without improving robustness; in such an approach,
the data grows linearly with the number of nodes and transactions, the Off_chain scalability
solutions can introduce their security threats to the blockchain because the data is not stored
directly on the blockchain but rather through third-party protocols. These techniques provide
scalability but affect decentralization and result in security vulnerabilities.

The solutions to achieve scalability must not compromise the decentralization and security of
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blockchain networks. Therefore, the ability to scale a blockchain lies primarily in improving the
foundation of blockchain technology, preventing the hardware shortages triggered by classical
Proof_of_Access cryptocurrencies. This paper presents a new blockchain design to address the
storage bottleneck. We suggest a storage sharding of the blockchain with sparse distribution
over the nodes instead of a full replication to reduce the impact of the ever-growing state in
blockchain while providing robustness through data replication.

The main contributions of this paper are summarized as follows:

• The design of the storage sharding: distributing the block storage in a sparse way over
nodes while maintaining security of the blockchain. The proposed system is named as
SparseChain.

• Algorithm for a smart live adaptation of the storage sharding scheme.

• Method for guaranteeing a positive behaviour of nodes, and perpetual availability of all
blocks.

The remainder of this paper is organized as follows. Section 2 presents the motivation,
Section 3 discusses the related work, Section 4 provides background on blockchains. Section
5 presents an overview of SparseChain. Section 6 describe the storage sharding mechanism
which enhances the scalability of the blockchain, section 7 discusses the protocol economics,
and section 8 discusses the parameters for the protocol.

2 Motivation

Each transaction is replicated redundantly across multiple storage nodes. Therefore, the classic
blockchain’s scalable storage bottleneck is primarily due to the concerns listed below.

• Storage capacity per full node: Every full node in the traditional blockchain stores and
processes all states and transactions. A full node is a node in a blockchain network
that can independently verify all transactions and the current state of the network. This
process enhances security and maintains traceability, but limits the scalability because
the volume of data that each node must store will continue to grow. The nodes must
maintain all states and supply extra hardware and memory capacity to store the massive
volumes of data for the blockchain to continue functioning. Off_chain storage solutions,
such as IPFS or Arweare [11], allow for scalability but accentuate the centralization of the
blockchain because a user must obtain permission and request to access the blockchain
history stored on Off_chain.

• Cost of using blockchain network : As the number of users and transactions on the
blockchain network increases, nodes need to process and store more data with higher
fees to maximize their earnings. Since All transaction requests require fees, Miners pri-
oritize transactions that pay higher fees. Therefore, if transactions need to be verified
quickly, the user must pay higher fees to get priority. The more a user agrees to pay
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high transaction fees, the faster they will be processed. The Bitcoin Cash protocol [1]
helps reduce transaction fees and improves transaction speed. It rejects the block size
limitation introduced by Bitcoin (limited to 1MB). Blocks in the Bitcoin cash chain cor-
respond to a limit of 32 MB, or approximately 250 transactions per second (compared
to 24,000 transactions per second for Visa). As the blocks of the Bitcoin cash are large
enough to allow miners to mine all transactions, there is no need to pay transaction fees
for the transaction to be mined on the next block. Although, Bitcoin cash raises concerns
regarding the difficulty of hosting a full node.

We propose algorithms to reduce blockchain replication without affecting blockchain security
and decentralization while allowing scalability. Instead of storing the whole blockchain on each
full node, the overall state will only be replicated on a subset of the nodes, and we increase
the block size to include more transactions. As a result, the blockchain continues to receive
transactions and improves the number of transactions performed by nodes per second.

3 Related Work

A long line of research proposes to make the blockchain more scalable. Executing transac-
tions Off_chain overcoming the scalability limitations of blockchains, i.e., untrusted peers can
build direct payment channels on the Lightning network, allowing them to make Off_chain
micropayments without committing each transaction to the underlying blockchain. A payment
channel is made up of a blockchain-based contract that stores the funds of the peers involved
in the transaction.

Sharding blockchain is the closest work to ours. Elastico is the first public sharding
blockchain that tolerates byzantine adversaries [8]. Elastico divides the network into shards
and assures probabilistic correctness by allocating nodes to committees randomly, with each
shard is verified in parallel by a separate committee of nodes. It uses costly PoW to construct
committees, with nodes joining committees randomly and running PBFT (Practical Byzan-
tine Fault Tolerance) for intra-committee consensus. Omniledger [7], unlike Elastico, proposes
novel methods for assigning nodes to shards with a higher security guarantee and employs both
PoW and BFT. In addition, it uses an atomic protocol for across-shard transactions (Atomix)
to achieve global synchronization of transactions. The intra-shard consensus protocol uses a
variation of ByzCoin [6]. It assumes partially synchronous channels to achieve speedier trans-
actions, resilient against a weakly dynamic adversary that corrupts up to 25% faulty nodes in
each committee and 33% malicious nodes tolerated by the network.

OmniLedger restricts the responsibility of verifiers to prevent double-spending attacks.
These proposals appear tempting because they lower the costs of storage, bandwidth, and
latency, allowing the system to scale throughput arbitrarily. But unfortunately, attackers that
control a small portion of the currency can manipulate the systems. Shard replication factors
fall as shard size decreases, and as a result, transactions in a specific shard are confirmed by a
small number of clients. In addition, an adversary may own a key fraction of a shard’s stake,
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allowing it to control the entire shard. As a result, these systems necessitate an unfavorable
trade-off between scaling and security, limiting the amount of sharding that can be done.

Rapidchain [15] also supports cross-shard transactions using Byzantine consensus protocols
but requires strong synchronous communication among shards which is hard to achieve with
resilience up to 33% and 50% of committee resiliency. In sharding-based systems, database
performance scales linearly with the number of nodes, necessitating the creation of complicated
protocols to enable shard connectivity.

Mina [2] developed by O(1) labs is considered the smallest blockchain. It integrates zero-
knowledge proofs ("succinct non-interactive argument of knowledge" or "Zk-SNARKs") to vali-
date transactions, which were first used by the Zcash cryptocurrency [1]. The protocol generates
a proof at each step to validate a new transaction without consulting the register of all the pre-
vious transactions; this proof drastically reduces the size of the blockchain, which is never more
than 22 KB. Mina stands out for data privacy. It allows users to use the blockchain while main-
taining control over their private information. The objective is to connect to other participants
in a secure manner and without revealing any personal data. Although, block producer in Mina
actually do store the full state (a block producer must have the current state of the blockchain),
while block validators need not store anything. So Mina still has a storage problem.

In Arweave [11], authors propose a blockchain that provides permanent storage by incentive.
Numerous blockchains (i.g., Solana [14]) that achieves scalability use Arweave for storing trans-
actions and only keep a few blocks on their On_chain. Solana is a high-throughput blockchain
that uses a network timestamp technique called Proof_of_History to achieve sub-second block
times and high throughput. If Solana operates at maximum capacity for a year, it is expected
to generate 4 petabytes of data. At all times, the full blockchain must be stored and accessible.
Arweave introduces a new block structure called "blockweaves" related to two previous blocks,
i.e., in addition to a pointer to the last block in the chain, blocks point to another randomly
chosen "recall block" of the prior history of the blockchain. When miners solve the problem
and find an appropriate hash they can share the new block and recall block with the network.
Arweave is constantly growing. Although its blockchain is designed to be archived forever,
few nodes are incentivized to store old chain data. This problem gets worse as the blockchain
network grows and has a storage problem.

4 Background

4.1 Incentive mechanism in distributed system

Transaction in Bitcoin uses The Unspent Transaction Outputs (UTXO) data model, which can
have a single or multiple inputs and outputs. Permissionless blockchains allow any node to join
or leave the P2P network without authentication. When a new transaction is broadcast over
the network, it is received and verified by a group of nodes to ensure that it is correctly signed
and has not been previously recorded in the blockchain, after which they are grouped into valid
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transaction blocks by miners competing and executing a consensus to extend the longest chain
with blocks they generate.

Traditional blockchain has robust incentive mechanisms to encourage nodes to maintain the
network running economically. Miners are rewarded for their labor by getting a fee each time
their proposed block is accepted. Besides Bitcoin, file sharing is the most common use of P2P
technologies such as BitTorrent. Nodes in Bittorent participate in a game called the ’optimistic
tit-for-tat algorithm’ [4]. In this game, nodes share data reciprocally with other nodes that share
data with them. Network participants use information about favors to calculate peer rankings.
The participants then use these rankings to determine how they will share their resources with
other network participants preferring those who have higher rankings. Occasionally, nodes
share data at random, interacting with each other without taking peer rankings into account.
This game leads to a Nash equilibrium where all nodes are incentivized to share resources
(data) freely at the network’s maximum capacity and perform prosocial behaviors. Bitcoin
acts similarly to BitTorrent [10]in that it is made up of computers and servers that host full
nodes through a P2P network, making it resistant to attacks.

4.2 Arweave

Each node in the Arweave network ranks its peers similarly to Bittorrent. Node rates its peers
based on two main criteria, first, the peer’s generosity - sending new transactions and blocks
- and second, the peer’s responsiveness - responding quickly to information requests. Instead,
it allows each actor to maintain private, local scores for other peers. Nodes are incentivised
through the Adaptive Interacting Incentive Agent (AIIA) meta-game, i.e., nodes with low AIIA
social rank risk their messages (including new candidate blocks) being propagated too slowly
to be accepted by the network. It mechanism incentivizes nodes to keep data, the miner must
include the recall block in the new block, otherwise, it won’t be able to produce a new block [12].
The recall block is one of the past historic blocks in the chain of nodes; including this block
to mine a new block is proof that the miner keeps data. Transactions of the recall block are
hashed alongside those found in the current block to generate the next block. Once mined, the
miner sends the new block with the recall block to be verified by the network, even if validators
do not have their copy of the recall block. Miners have an incentive to store vast amounts
of data to enhance their chances of finding a good recall block, because the selection of recall
blocks is random. Rewarding in Arweave is used (i) to encode data into the system and (ii) to
reward miners.

Arweave introduces a synchronization block generated once every 12 blocks, containing a
full list of the balance of every wallet in the system and a hash of every previous block without
the transaction. Synchronization blocks help new participants in the network to bootstrap, and
there is no need to download all the last blocks from the genesis block. Instead, when the miner
joins the Arweave network, they will download each previous block from the current block to
the last synchronization block.
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5 Overview

Figure 1: An overview of the block data structure illustrates the link to both the previous block
and recall block.

In a nutshell, Sparsechain is a permissionless, Proof_of_Work combined with sparse Proof_of_Access
inspired by Arweave, On_chain P2P cryptocurrency that (i) significantly reduce the storage
load by minimizing the replication of each block and (ii) ensure availability of all transactions.

5.1 Objectives

The SparseChain system achieve the following main goal:

1. Efficient Storage: Distribute the blockchain’s storage costs across different network nodes
by sharding without sacrificing security. As a result, the node can store a small amount
of data while participating in the maintenance of the blockchain.

2. Availability : Due to an incentive mechanism for nodes to keep blocks in blockchains, all
blockchain transactions are guaranteed to be available (even old blocks). It allows the
verification of historical transactions and prevents their falsification.

3. Transaction per second : The number of transactions per second should be increased. By
freeing up local storage, the system lowers the cost of holding the blockchain; in fact, the
block size can be increased to allow more transactions without overburdening the network.

SparseChain rewards the storage of the history of the blockchain through the very consensus
algorithm. As for Arweave, the only way to reward storage without giving the possibility for
an actor to create multiple nodes in order to get all the storage reward is to intricate the Proof
of Random Access with mining through the use of a recall block included in the new blocks for
increasing rewards (through decreasing the mining difficulty in the case of using a recall block).

Therefore, there cannot be pure storage nodes that get rewarded for this; the miners need
to be the ones in charge of the storage by the protocol.
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5.2 Architecture of SparseChain

The most popular blockchains, such as Bitcoin and Ethereum, employ a full replication process
that makes it impossible to do big blocks as it would become challenging for miners to store
them all. To address this problem, we present SparseChain, a storage sharding protocol that
allows scalable storage and provides permanent availability of data by incentive. It combine a
block structure, an incentive model, and a consensus rule. (2).
Sharding allows nodes to deal with large ledger sizes. Consider a system with 100 billion
transactions and 1 million online nodes as an extreme example. We then have 33 thousand
blocks, and each block is held by about 250 nodes by Proposition 7.1, enabling a high degree
of availability, the possibility for lightweight nodes to fully participate into the protocol, and a
division by 135 of the storage space needed among the network. A group of miners is rewarded
for mining blocks as well as for proving that they are storing a subset of the blockchain defined
by the algorithms. This subset is designed to have a reasonable size, in order to allow small
miners to participate in the process. Nodes are incentivized to store blocks since they increase
their chances of mining a new block and receiving rewards.

In order to allow the nodes to validate transactions while only storing the 12 latest blocks,
the balance state of each wallet is summarized in a synchronize block that appears in the
chain every 12 blocks (see Subsection 4.2). We provide a new data structure, The block is
cryptographically related to the last block in the chain, and to an Arweave-like recall block,
i.e., a previous block in the chain’s history. However, unlike Arweave, the potential candidates
to be a recall block are chosen thanks to our novel algorithm described in Section 6 to make
the scalability possible through sparsity (see Figure 1).

6 Storage Sharding Protocol

In this section, we describe the algorithm for storing of the blocks that preserves the security
and scalability in the blockchain.

6.1 System Model

We adopt an unspent transactions output (UTXO) model. A public key PKI distinguishes a
UTXO and its amount related. Furthermore, each public key is linked to the digital signature
schema with the uniqueness attribute, allowing users to utilize the public keys (or a hash
thereof) of their UTXOs as a reference to them. A user can own many UTXOs at any same
time. UTXOs can only be debited once, and once debited, they are no longer valid.

We provide a blockchain protocol that enables storage scalability by reducing block repli-
cation across the whole network and ensures security against attacks using the hash link prop-
erties.
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6.2 Block structure

A block is a data structure that contains valid transactions. When transactions enter the
network, they are initially verified. Once validated, the transactions are collected in a pool
until they are included in a block and confirmed by the network. Transactions that have been
mined by a node and confirmed by the network are withdrawn from the pool.

A block B contains a set of transactions txs, a previous block hash, a nonce that a miner of
that block found to calculate the valid block, a timestamp, and the recall block (i.e., the entire
contents of the recall block hashed with the previous block hash and current transactions) The
transactions are encoded in a Merkle tree (i.e., the Merkle tree is a data structure used for
efficiently and securely data storage). The blocks are ordered chronologically. Each block is
linked to both previously added block and the recall block in the chain, forming the blockchain.

Formally the block Bi, i ≥ 1, can be considered to be a quintuplet (hi, txsi, nonce, recallblock|∅).
hi is the hash to the previous block, txi is the set of transactions, the nonce that miner must
discover before solving for a block, as it is appended to a hashed block that, when rehashed,
meets the difficulty level restrictions, and a recallblock

SparseChain encourages nodes to store data; differently from Arweave, nodes are rewarded
for mining blocks with a recall block or without the recall block. This method allows all network
nodes to participate in mining. The difference between the two types of mines is that miners
who contain recall blocks have a high chance of finding the correct nonce and calculating the
new block.

Definition 6.1. A block is a data structure that includes a header, valid transactions, and a
recall block. The header contains the previous hash block, timestamp, nonce, Merkle root, and
difficulty. A hash function H(z) converts a random data input z into a fixed-length string of
bytes, a transaction’s hash makes it simple to identify it on the blockchain.

6.3 Block validity rules

Every block must follow two rules to be considered valid:

6.3.1 Mining

A miner who demonstrates that he has a recall block must check the requirement that the block
hash is lower than the threshold Θrecall in order to mine a new block, the hash begins with
a number of zero bits. Validating a new block includes verifying this proof. Furthermore, a
miner who does not have access to the recall block must ensure that the block hash is lower
than Θ0, with Θ0 < Θrecall, as chows in Figure 2. Using the recall block is considered as proof
that the miner stores blocks. Demonstrating whether or not the miner has access to the recall
block is part of the block’s construction.

PoW difficulty is determined by the average number of blocks mined each hour. The diffi-
culty increases if the block is generated too quickly.
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Figure 2: An illustration of mining block in SparseChain

SparseChain protocol incites storage because miners who have access to recall blocks of
the blockchain history to mine new blocks have a higher probability of winning. The protocol
incentivizes miners to keep data available and ensure security, while reducing block replication.

In order to make sure that storage stays rewarded enough, Θrecall is adjusted in order to
have 50% of validating hashes ≤ Θ0. It then also ensures that the new miners that have never
mined blocks can never have less than 50% of disadvantage while mining. Thus leaving them
a good chance to validate blocks and get storage rewards.

6.3.2 Recall block validity

The goal of SparseChain is to give an incentive to miners to store the history of the blockchain.
For this we use the same concept of recall block than Arweave. The difference is that the
protocol we define gives a set of recall blocks among which miners can pick. These blocks are
given by (1) in Definition 6.2.

Another difference is that each miner gets a selected set of valid recall blocks to store so
that, unlike for Arweave, huge miners are not twice advantaged because they have a large
computation and a large storage capacity. SparseChain protocol is made so that the number
of potential recall blocks for a miner is proportional to its computing power. These blocks are
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given by (2) in Definition 6.2.
Let λ > 0, 0 ≤ α ≤ 1, and 1 ≤ kmin ≤ H be three parameters depending on the size of H

from which we will discuss the value in Section 8.

Definition 6.2. A block Bj for 1 ≤ j ≤ H is a valid recall block for mining if and only if:

Hash1
(
hashBH

, hashBj

)
hashmax

≤ λ

αH
. (1)

and

Hash2
(
hashBk

, hashBj

)
hashmax

≤ α, (2)

for some kmin ≤ k ≤ H so that the mining node has mined the block Bk.

Figure 3: A potential recall blocks.

Figure 3 illustrates the selection of blocks that could be recall blocks. The red circle indicates
the blocks that match condition (1), that are the same for all the nodes. Then each node has
a specific set of potential recall blocks that they can use from condition (2), represented in the
figure by the colored spots. For example, in this figure, the node N4 has no potential recall
block and needs to mine without it before the next block. Node N1 and N2 can both use only
one block, and it is the same. Finally, node N3 has two potential recall blocks that happen to
not be potential recall blocks for the other nodes represented.

In the rest of the paper we will denote N := H − kmin + 1 the number of blocks with
height higher than kmin. This is the number of block which mining gives the possibility to its
successful miner to use recall blocks and get higher mining rewards through a higher probability
of mining.
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7 Protocol Equilibrium

7.1 Block replication

The following Proposition indicates how many, under the protocol, blocks will be replicated,
and how many blocks a particular node will have to store.

Proposition 7.1. We assume that all miners has a fraction of the hash rate β ≪ 1√
αN

. Then
we have:

• A block will be replicated ≈ αN times among storage nodes.

• A node will store ≈ nαH blocks for the protocol, where n is the number of blocks with
height higher than kmin that the node has mined.

As a preparation to prove Proposition 7.1, we will prove the following Lemma:

Lemma 7.2. We assume that β ≪ 1√
αN

. Then most miners do not have a block to store from
the equation (2) for two different blocks Bk that they have mined.

Proof. If we denote n the number of blocks of height ≥ kmin mined by the node, the probability
that all these n blocks bring different history blocks to store is

n−1∏
k=0

H − kαH

H

as for each new of the n blocks, there remains H − kαH blocks that have not been selected
before among the H that will be chosen at random by the hash of (2). Then we have this
probability approximately equal to

n−1∏
k=0

H − kαH

H
=

n−1∏
k=0

(1− kα)

= exp

(
n−1∑
k=0

ln(1− kα)

)

≈ exp

(
−

n−1∑
k=0

kα

)

= exp

(
−(n− 1)n

2
α

)
.

We can approximate in order of magnitude that n ≈ βN by looking at the probability of mining
each block. Then the assumption that β ≪ 1√

αN
makes this probability close to 1, which proves

that most miners do not have a block to store from the equation (2) for two different blocks
Bk that they have mined. The result is proved. □

Proof of Proposition 7.1 We start with the second point: as each of the n mined blocks
from the miner allows to use αH blocks as recall blocks by (2) by the fact that each of the H

block has a probability α to verify this equation together with the law of large numbers, we
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have that the second point of the Proposition is proved as all these potential recall blocks are
different by Lemma 7.3.

The first point stems from the fact that for a given block Bj , each of the N blocks with
height ≥ kmin have a probability α to verify (2), and therefore they are potential recall blocks
for αN blocks Bk approximately by the law of large numbers, and these Bk are all from different
nodes from Lemma 7.2. □

7.2 Average reward of a miner

Similar to Arweave, the reward given to the miner incentives him to store as many blocks as
possible among the blocks he is meant to store, as he may then benefit of a better mining rate.
We quantify this reward in this section.

To understand the reward of a miner, we first need to give an intermediary result on the
probability distribution of the number of valid potential recall block that a miner has.

Lemma 7.3. Let n ≥ 0 be the number of blocks that the node has validated. Then the
probability for the node to have k ≥ 0 valid recall blocks is given by

(λn)k

k!
e−λn. (3)

Proof. At each iteration of the block validation, there are approximately λ(αH)−1H = λα−1

potential recall blocks that satisfy condition (1). Independently, there will be approximately
αH, blocks satisfying the condition (2). As this holds for all the n blocks that the miner has
validated in the past, we have by Proposition 7.1 that αnH blocks are satisfying the condition
(2) for one of the blocks mined by the miner. We can get the probability to have k ≥ 0 blocks
in the intersection thanks to the binomial law probability:(

λα−1

k

)
(nα)k(1− nα)λα

−1−k.

Now using the fact that k ≪ λα−1, we have(
λα−1

k

)
≈ (λα−1)k

k!
.

Using that nα ≪ 1, we have that

(1− nα)λα
−1−k = e(λα

−1−k) ln(1−nα)

≈ e−n(λα−1−k)α

≈ e−nλ.

Therefore we have finally(
λα−1

k

)
(nα)k(1− nα)λα

−1−k ≈ (λn)k

k!
e−λn.

The result is proved. □
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Theorem 1. If a miner mines under the sharding protocol of Section 6, then its average reward
is given by:

rwdtot
hashrateminer

hashratetotal

1

2

(
1 +

1− e−nλ∑∞
k=0(1− e−kλ)νk

)
, (4)

Where rwdtot is the total reward distributed to miners, hashrateminer and hashratetotal are
the hash rate of the miner and the total hash rate, n is the number of blocks that the miner
has already mined, and for all k ≥ 0, νk is the fraction of the hash rate delivered by the miners
that have mined k blocks.

Proof.
We use Lemma 7.3 to get that at each new block mining step, if a node has validated n

blocks in the past, the probability he has to have no recall blocks is given by e−nλ. Let β1 be
the mining rate with the hash of the mined block being lower than Θ0, and let β2 be the mining
rate with the hash of the mined block being higher than Θ0 (but lower than Θrecall). Let νk

be the fraction of the computing power of miners that have already mined k blocks. The total
win rate of hashing is given by

β1

∞∑
k=0

νk + β2

∞∑
k=0

νk(1− e−kλ)

= β1 + β2

∞∑
k=0

νk(1− e−kλ),

where the second term is obtained as the bonus that miners have if they can have a recall block.
From the definition of the protocol, the difficulties are adjusted so that these two win rates are
made equal. Hence, we get that β2 = β1∑∞

k=0(1−e−kλ)νk
. We finally get the average expectation

of reward obtained by a miner that is fully storing its attributed recall blocks if he has already
mined n blocks by re-injecting this ratio. We then get the result we wanted to prove:

rwdtot
hashrateminer

hashratetotal

1

2

(
1 +

1− e−nλ∑∞
k=0(1− e−kλ)νk

)
.

□

7.3 Optimal behaviour of miners

7.3.1 Storage of their allocated blocks

We see from the reward equation (4) that the miners are rewarded to store the ≈ nαH blocks
satisfying (2), where we denote by n ≥ 0 the number of blocks with indices higher than kmin

validated by the miner. This reward is strictly higher than the reward obtained with a block
without recall block, therefore if the miner wants to maximize its reward, he will chose to
store its attributed blocks, also knowing the the number of blocks to store should not be too
important by design.
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7.3.2 Sharing of all the stored blocks

The storage nodes have an incentive to share their blocks, as similar to Arweave, the file sharing
system uses the AIIA meta-game, and well behaving nodes receive the new blocks quicker than
less well-ranked nodes.

7.3.3 Downloading of all the blocks allocated for storage

It is better for a miner to download all the blocks it is responsible for. Indeed, as ≈ λ
αHH = α−1

potential recall blocks are selected for each new blocks by (1), the miner needs to store as much
of these blocks to maximise its likelihood to obtain the reward enhanced by the addition of a
recall block.

We could even quantify this level of incentive.

Theorem 2. If a miner has mined n ≥ 1 blocks with a height higher than kmin, then the reward
loss of not storing one block from the miner’s allocation is given by

rwdtot
hashrateminer

hashratetotal

λ

2αH

e−nλ∑∞
k=0(1− e−kλ)νk

. (5)

Proof. The result is obtained by differentiating n by − 1
αH in (4). □

We study in Subsection ?? the best parameter λ to choose.

7.3.4 Downloading in priority rare blocks

As the blocks that satisfy (1) and therefore are potential recall blocks are the same set for every
miner, if one of them is rarely spread (because it has been less selected at random, or it has
been chosen by nodes that became inactive), there will be less competition for the mining when
they are selected, and these rare blocks will be downloaded in priority.

Notice that we could object that this incentive is relatively weak. Notice that we could
tweak the protocol to solve this problem by adding a 10% probability to use the Arweave
mining protocol, providing this way an incentive to focus on the rare blocks.

7.3.5 Staying an active miner

Recall that we denote N the number of blocks that allows the use of a recall block for mining.
As the privilege of being an storage node gives a very large reward increase, and the privilege
is short-term as we take N ≪ H, the nodes that mine blocks tend to stay active.

7.4 Block storage handling by miners

We have proved that the optimal behaviour of miners is to store all the blocks satisfying (2).

Now we explain how to do it in practice. For all k and j, the equation
Hash2

(
hashBk

,hashBj

)
hashmax ≤ α

will never become true after having been false, as α decreases over time. Therefore the algorithm
that the miner can apply to know which block to store is the following:
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• When the miner mines succesfully a new block Bk, he computes Hash2
(
hashBk

, hashBj

)
for all j ≥ 1.

• the miner stores these values for all j so that the equation (2) is satisfied. He can then
download the associated block.

• At each new block validation and update of α, the miner goes through all the values of
Hash2

(
hashBk

, hashBj

)
that he has stored, and delete all these that become higher than

the deacreasing α. He may then delete all the associated blocks that he no longer needs
to store to secure the history of the blockchain.

This approach is efficient since each block mined only requires H calculations. Notice
that including hashBk

in the equation makes the result unpredictable to avoid the miner from
"selecting" the moments when to use their computing power. α varies with the height H of
the blockchain, as the number of blocks grows, α approaches 0, and old blocks are erased from
memory, but they are stored by new successful miners, as showed by Theorem 3.

Figure 4: The chain in a node that stores block according to 6.2

Figure 4 shows an example of the inclusion of a block in the storage of a given node that

has mined the block B2. Let B be a block, we denote f(B) :=
Hash2(hashB2

,hashB)
hashmax . Recall

that by (2), the node is rewarded for using Bj as a recall block if f(Bj) ≤ α. The line in the
figure represents α, as we can see, α converges to zero as the height H of the blockchain goes to
infinity. The node stores the two blocks B7 and B8 (blocks to the left of the line), on the other
side, blocks B6, B2, B5, and B1 are not stored by the node (blocks to the right of the line).
According to 6.2, the result of this equation for the new block B9 entering the blockchain is
greater than α, so the node does not store it, and for B10 the result is less than α, so the node
stores it. As α moves to zero while H goes to infinity, we see an evolution in the blocks stored
by the node. For example, blocks B3 and B4 will provide recall block rewards to the node at
H = 20, but it will no more be the case when H = 40. On the long run, all these blocks will
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stop providing recall blocks rewards, but they will be replaced by new blocks B having a small
f(B).

Even if a node removes older blocks, all network nodes keep the block hashes.

7.5 Guarantee that no block will be lost

If α decreases too fast, there is a risk that not enough miners are rewarded to store a given
block, and an attacker could try to lose the data, resulting in a permanent data loss. Therefore,
we provide here a condition on the size of α that guarantees that no block will be lost.

Theorem 3. Let γ > 0 be the fraction of computing power of misbehaving nodes. Then if for
some δ > 0 we have

α ≥ 2 + δ

1− γ

ln(H)

N
, (6)

then with a probability 1, all the history of blocks will stay available for H large enough.

Proof. We denote γN the set of blocks with height higher than kmin mined by malicious
nodes. Recall that we denote by N the total number of blocks with height higher than kmin.
Let b be a block, we compute the probability that no mis-behaving node stores b. Recall that a
node having mined a block from N \γN stores b with probability α for this node by Proposition
7.1, therefore the probability that none stored b is given by:

P (b /∈ N \ γN) = (1− α)(1−γ)N

= eln(1−α)(1−γ)N

≈ e−(1−γ)αN

Then as the probability of multiple possible events is lower than the sum of their probabilities,
we have

P (∃b /∈ N \ γN) ≤ He−(1−γ)αN (7)

≤ e−(1−γ)αN+ln(H) (8)

Then injecting (6) in (7), we have

P (∃b /∈ N \ γN) ≤ H−(1+δ)

which is the term of a converging series, therefore by the Borel-Cantelli theorem, the event the
all blocks are stored by at least one well-behaving node will be always true for H large enough
almost surely. □

8 Choice of parameters for the protocol

Recall that we denote H the height of the blockchain, i.e. the total number of blocks, and we
denote by N the number of blocks with height higher than kmin allowing their miner to get
storage reward. Notice that N = H − kmin + 1.
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8.1 Make sure that no block of the history of the blockchain is
lost

In practice, Theorem 3 ensures that the storage of the Sparsechain protocol will be safe against
75% of misbehaving nodes if we set

α :=
10 ln(H)

N
. (9)

8.2 Make sure storage nodes are renewed enough while still di-
viding well the memory

In order to satisfy the incentive from subsection 7.3.5, we need to have N ≪ H. As this can
stay very marginal, we can pick

N :=
H

ln(ln(H))
. (10)

Then, by (9), we have

α :=
10 ln(H) ln(ln(H))

H
. (11)

8.3 Trade-off with memory and transactions per seconds

By Proposition 7.1, a node stores αN = 10 ln(H) blocks. From proportional scaling of Bitcoin
figures, a year sees the validation of 50000 blocs, and we can have 6000 transactions per second
for each Gb in a block. With these numbers, we obtain the following equation:

#tx/s =
600

ln(H) ln(ln(H))
#Gb/node

1 year
= 25#Gb/node

Then for example, if we want to reach 5000 transaction per seconds, each storage node needs
to store 200Gb per year, which seems ok for retail nodes. Then each block has a size 200Gb

αH =

800Mb.

8.4 Reward per stored block

We have from Theorem 2 that the reward for storing the last block is

rwdtot
hashrateminer

hashratetotal

λ

2αH

e−nλ∑∞
k=0(1− e−kλ)νk

. (12)

In order of magnitude we can do estimations, using the approximation:

β :=
hashrateminer

hashratetotal
≈ n

N
, (13)
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as this is an approximation of the fraction of blocks that the miner would have successfully
mined. Notice that here we neglect on purpose the impact of the compounding rewards due to
additional storage rewards.

Now if we incorporate (11), (10) and (13) in (4), we get that the reward of the miner is
approximately:

rwdtot
βλN

20H ln(H)

e−βλN∑∞
k=0(1− e−kλ)νk

.

We have that
∑∞

k=0(1−e−kλ)νk ≤ 1 an d in a mature market it converges to 1, as all important
miners will have mined enough to have 1 − e−kλ ≈ 1. Also, in the worst case, a very strong
miner should have β := 1% of the hashing power. To reward enough the miners to incentive
them to store we need to have:

rwdtot
βλN

20H ln(H)
e−βλN ≥ costblock. (14)

Notice that the cost to store 1Gb during one year is ≈ $0.06. From subsection 8.3, we have that
a good block size is 800Mb. As the exponential would become overwhelming and prevent any
profitability of storing the blocks if βλN ≫ 1, we will do our computation with the assumption
that βλN ≈ 10, as we are mostly interested in an order of magnitude. We get that we need to
have for one year long (assuming annual mining reward of $100m):

λ ≤ 1

βN
ln

(
rwdtot

2H ln(H)costblock

)
=

1

βN
ln

(
100000000

2 · 50000 ln(50000)0.06 · 0.8

)
≈ 7

βN
.

Then a good option would be taking

λ :=
500

N
, (15)

as the cost of storage would diminish faster than the raise of H ln(H).

9 Conclusion

SparseChain is a new cryptocurrency design based on Proof_of_work and Proof of Random
Access that allows storage scalability without compromising security and guarantees availabil-
ity. SparseChain achieves its goals using three techniques: (1) Sharding storage, which helps
SparseChain securely distribute the storage over nodes and helps nodes with a small capacity
to participate in the network and maintain the blockchain; (2) Incentivizes storage, as min-
ers need access to random blocks from the chain‚Äôs history to quickly mine new blocks and
receive mining rewards; and (3) Valid block rules, SparseChain is made so that the number
of potential recall blocks for a miner is proportional to its computing power. The protocol
achieves scalability in a decentralized way, availability of data, and security guarantees.
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