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Abstract

Protein structural class prediction for low similarity sequences is a significant
challenge and one of the deeply explored subjects. This plays a important
role in drug design, folding recognition of protein, functional analysis and
several other biology applications. In this paper, we worked with two bench-
mark databases existing in the literature 1) 25PDB and 2) 1189 to apply
our proposed method for predicting protein structural class. Initially, we
transformed protein sequences into DNA sequences and then into binary
sequences. Furthermore, we applied symmetrical recurrence quantification
analysis (the new approach), where we got 8 features from each symmetry
plot computation. Moreover, the machine learning algorithms such as Lin-
ear Discriminant Analysis , Random Forest and Support Vector Machine are
used. In addition, comparison was made to find the best classifier for pro-
tein structural class prediction. Results show that symmetrical recurrence
quantification as feature extraction method with RF classifier outperformed
existing methods with an overall accuracy of 100% without overfitting.

Keywords: Protein structural classes, Symmetry, Symmetrical recurrence
quantification analysis, Recurrence plot, Machine learning, SVM, LDA,
Random Forest

1. Introduction1

Today, the structural classes in four levels (quaternary, ternary, secondary2

and primary) play a significant role in theoretical and experimental studies3

of protein science. The protein quaternary and the tertiary structures are4

Preprint submitted to Neural Networks May 15, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1476927121000177
Manuscript_6cf91bfe008347bbcdcfb4c75be19f03

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1476927121000177
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1476927121000177


determined via the process of protein folding. Protein secondary structure is5

the three-dimensional form of local segments of proteins whose amino acids6

linear sequence (in a peptide or protein) forms the protein primary structure.7

As mentioned by Chou et Zhang in 1995[1], it is important and helpful to8

predict higher proteinic classes from primary proteinic sequences for two9

reasons. Firstly, if the structural class of the protein under study is known10

then the searching scope of conformation can be reduced [2]. Secondly, the11

structural class is related to various protein properties [3]. Since there is12

no simple and direct way for the protein tertiary structure prediction from13

its primary structure, four secondary structural classes of proteins based on14

the types and arrangement of their secondary structural class are proposed15

by Levitt and Chothi [4]. These classes are the α, the β and those with a16

mixture of α and β shapes called the α/β and the α + β.17

These four protein structural classes can be used to 1) implement a heuris-18

tic method for deciding tertiary structure [5], 2) reduce search space of prob-19

able conformations of tertiary structure [6, 2], 3) improve prediction of sec-20

ondary structure accuracy and 4) predict function from amino acid sequence21

information. Protein structural class prediction plays an essential role in22

functional analysis, protein structures, drug designs and a lot of other simi-23

lar applications in biology [7].24

For the last 10 years, prediction of protein structural class for low similar-25

ity sequences [8, 9] is a tough challenge for the scientific community. There-26

fore, an automated and accurate protein structural class prediction for newly27

established proteins is required. In order to extract the feature sequences28

from protein, various feature extraction techniques are used in the recent29

studies which can be later useful for classification of the structural classes.30

Most of used techniques include Amino Acid Composition(AAC) [10, 11, 12],31

Average Chemical Shift (ACS) [13, 14, 15], Pseudo Amino Acid (PSeAA) [16],32

polypeptides composition [17], PsiBlast [18, 19] and etc. These techniques33

do not facilitate to reach 70% of classification results individually therefore,34

extracted features from different feature extraction techniques are fused. Fur-35

thermore, to classify the structural classes, various classification methods are36

applied such as Fisher’s Linear Discriminant Algorithm (LDA) [20], Support37

Vector machines (SVM) [11, 21, 22, 23], Artificial Neural Network (ANN)38

[24] and Bayesian Classifier [25].39

From the studies presented above, it is noticed that there is a great dispar-40

ity in the protein sequences encoding and feature extraction. Furthermore,41

classification performance can be improved by using the fused feature en-42
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gineering technique and machine learning methods. The need to introduce43

new simple methods with high performance is expected.44

The proposed work is a continuation of the previously undertaken stud-45

ies [21, 26] on the use of recurrences and the recent work done by Girault46

[27] based on the link between recurrences and symmetries. In addition, the47

presence of symmetry in the tertiary structures of proteins [28] suggests that48

symmetry can be an important property which has to be explored. Conse-49

quently, it is appropriate to investigate the consideration of symmetries for50

the classification of proteins. The major contributions of this study is to51

present:52

1. a simpler protein sequences encoding;53

2. an easy to use method;54

3. new feature vectors based on symmetry concept and recurrence;55

4. the best classifier by comparing different protein structural class pre-56

diction models such as SVM, LDA and RF.57

The remaining paper is arranged as follows. Material and methodology is58

presented in Section 2. Results illustrate in section 3 accompanied by dis-59

cussion in section 4. Finally, Section 5 concludes the paper.60

2. Materials and Methods61

2.1. The Framework62

The framework diagram of this study is shown in Fig.1. First, data63

set is split up into training and test sets with a ratio of 80:20. Second,64

the training and test sets are preprocessed through a coding phase. Then,65

symmetrical recurrence plots (SRP) are calculated and the feature extraction66

step is performed by applying symmetrical recurrence quantification analysis67

(SRQA). In total, three different features data sets are calculated: 8-SRQA-68

R, 8- SRQA-I, 16-SRQA, their definition will be presented in subsection 2.4.69

Third, the machine learning models such as the RF, SVM and LDA are used70

to training data set for training. The model parameters iteratively tune to71

improve the performance in the training process. Lastly, test data set is used72

to evaluate the the trained models.73
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Figure 1: Framework diagram.

2.2. Database74

In this work, we used two benchmark databases containing low similar-75

ity proteins which are widely used for predicting protein structural classes:76

the database 25PDB includes 1673 protein sequences with 40% sequence ho-77

mology and the database 1189 contains 1092 protein sequences with 25%78

sequence homology. Table 1 gives more details about the two databases [8]79

and the distribution of the four secondary structural classes.80

Dataset α β α/β α + β Total
25PDB 443 443 346 441 1673
1189 223 294 334 241 1092

Table 1: Structure of the two data sets used in our study.

2.3. Reverse Encoding & DNA Codification81

Each protein is formed with a linear sequence of Amino Acids (AAs). In82

addition, there are 20 standard genetic codes and multi-coded methods. So,83

each one protein could be expressed by different kinds of nucleotide sequences.84

The reverse encoding goes in inverse from protein to DNA sequence. As there85

is no uniqueness in the universal code of translating DNA into AAs, we used86

the codon (see in Table 2) as presented by Deschavanne and Tuffery [29]. In87

their study, the authors prove that this encoding gives the best results for88
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Figure 2: Representation of Protein 1A6M by a binary sequence.

the prediction of protein structural class. Furthermore, the authors guarantee89

the balance in base composition to maximize the difference between the AAs90

codes.91

A=GCT C=TGC D=GAC E=GAG F=TTC G=GGT H=CAC I=ATT K=AAG L=CTA
M=ATG N=AAC P=CCA Q=CAG R=CGA S=TCA T=ACT V=GTG W=TGG Y=TAC

Table 2: Reverse Encoding

There are a lot of representations of DNA sequences used in the biology92

field like: numerical representation [30], Chaos Game representation[31], bi-93

nary representation[32] and, Etc. For the sake of simplicity, we used a unique94

DNA representation performed by Elio Conte et al. [33] which is based on95

attributing:96

• (+1) to the purine: Adenine (A) and Guanine (G);97

• (-1) to the pyrimidine: Cytosine (C) and Thymine (T);98

The simple reverse binary encoding (reverse encoding + binary DNA encod-99

ing) constitutes the first contribution of our proposed approach. It permits100

the transformation of one protein sequence into a binary sequence, one ex-101

ample is shown in Fig2. This will help to visualize, extract and identify102

characteristics from the sequences such as symmetries and recurrences.103

2.4. Proposed Approach104

Our second contribution is an improvement of previously undertaken105

studies [20, 26] that are based on the use of recurrences. The improvement106

extracts four kinds of symmetrical recurrences as proposed initially in the107

recent work done by Girault [27]. These extracted symmetrical recurrences108
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have two advantages: they use symmetry properties that have not been used109

currently and the symmetrical nature of recurrences does not require an em-110

bedding phase, therefore, making it much simpler. To further explore the111

symmetrical recurrences and to make the paper autonomous, we recalled the112

concept of standard recurrences plot in the appendix.113

2.4.1. Symmetrical Recurrence Plot114

As proposed by Girault in [27], taking symmetrical properties of recur-115

rences in consideration make processes understandable and detect invisible116

transitions effectively. The present work is an application of this new concept117

to biological discrete sequences. From the concept of symmetrical recurrence118

plot, four novel recurrence matrices are proposed. In [27], it is seen that re-119

spective matrices are sensitive to the occurrence of diverse symmetry types.120

Four types of transformation are performed i.e. Translation, Reflection, In-121

version and Glide (TRIG). Furthermore, corresponding components of the122

two-dimensional matrix Mk (a new matrix) can be presented in the general-123

ized framework as below:124

Mk(j, i) = 	[ε− ‖ X(j)−GkX(i) ‖] (1)

with ε a gauge and k ∈ {T,R, I,G}.125

The theoretical framework proposed is similar to the one proposed in [34]:126

‖ X(j)−GkX(i) ‖≤ ε. (2)

Four types of operations are considered:127

• GT [X(j)] = X(j + n) represents a translation of n samples, k = T;128

• GR[X(j)] = X(−j + n) represents a reflection at the position n, k =129

R;130

• GI [X(j)] = −X(−j+n) represents an inversion at the position n, k =131

I;132

• GG[X(j)] = −X(j + n) represents a glide reflection of n samples, k =133

G.134

An interesting properties of symmetrical recurrence plots are 1) not useful135

to embed and 2) sojourn points are naturally removed. This means that136

standard settings are fix to d = 1 (embedding dimension), τ = 0 (time137
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delay). Also, the gauge is null (ε = 0) since we are working on binary138

sequences. In the particular case of binary data, MT = MR and MI = MG.139

This is observed in Fig.3 where the four symmetrical recurrence plots (SRP)140

were computed using Equ.1 by considering a protein sequence. We clearly141

noticed that the Translation and Reflection presented the same plot. In142

addition, Glide and Inversion gave the identical plot. Owing to these two143

matching results, we will consider just the Reflection and the Inversion in144

the rest of the paper. Finally, The quantification step is very significant and145

useful to investigate the difference between local and global symmetries in146

the symmetrical recurrence analysis.147

2.4.2. Symmetry Recurrence Quantification analysis148

In order to quantify the different types of recurrences, it is recommended149

to extend the current recurrence descriptors to other forms of recurrence such150

as symmetrical recurrences. Therefore, Symmetry Recurrence Quantification151

Analysis (SRQA) is proposed based on Recurrence Quantification Analysis152

(RQA) [35, 36, 37] .153

Eight descriptors are calculated for each recurrence matrix MR(j, i) and154

MI(j, i). Therefore, a total of sixteen descriptors were calculated with k ∈155

{R, I} (see (equation A.3 to equation A.11) in appendix): Recurrence Rate156

(RRk), Determinism (DETk), Entropy (ENTRk), Laminarity (LAMk), Max-157

line (Lmaxk), Meanline (Lk), Trapping Time (TTk) and Trend(TRENDk).158

Finally, we can define 3 sets of features as input’s classifiers simply:159

• 8-SRQA-R (RRR, DETR, ENTRR, LAMR, LmaxR, LR, TTR, TRENDR);160

• 8-SRQA-I (RRI , DETI , ENTRI , LAMI , LmaxI , LI , TTI , TRENDI);161

• 16-SRQA (RRR, DETR, ENTRR, LAMR, LmaxR, LR, TTR, TRENDR,162

RRI , DETI , ENTRI , LAMI , LmaxI , LI , TTI , TRENDI).163

2.5. Prediction Model and Performance Metrics164

As discussed in section I, the purpose of the study is to predict the protein165

structural classes such as α, β, α/β and α + β. The framework for classifi-166

cation is presented and described in Fig 1. In our study, 3 sets of features167

(8-SRQA-R, 8-SRQA-I, 16-SRQA) are fed into machine learning classifiers.168

Furthermore, machine learning classifiers such as SVM, LDA are used as169

suggested in [18, 19, 20] to predict the protein structural class. Besides, the170
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Figure 3: (a) Translation Recurrence Plot, (b) Reflection Recurrence Plot, (c) Inversion
Recurrence Plot, (d) Glide Recurrence Plot, for the Time series derived from protein
1A6M. The parameters used: ε=0, d=1, τ=0.
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ensemble technique such as RF is also considered. In order to compare each171

classifier and validate the accuracy of classification models, performance met-172

rics are utilized. We decide to use the performance metrics in line with the173

recent studies such as overall accuracy and sensitivity. These measures are174

calculated as below:175

OA =
TN + TP

TP + FP + TN + FN
(3)

176

sensitivity =
TP

FN + TP
(4)

where TP and TN are # True Positive and # True Negative respec-177

tively. In addition, FP and FN are # False Positive and # False Negatives178

accordingly.179

3. Result180

Sensitivity (%) and Overall Accuracy (%) were calculated considering two181

benchmark datasets (25PDB and 1189). For the sake of clarity, a synthesis182

of results obtained with the three classifiers (SVM, LDA, RF) is presented183

below in Tables 3-5. More details are presented in the appendix in Tables184

A.7-A.9.185

3.1. Support Vector Machine(SVM) Classifier186

During the training process, three hyper-parameters were tuned such as187

the kernel coefficient gamma (auto mode), the polynomial kernel function188

degree (set to 3) and on/off probability estimates (set to TRUE). Finally, a189

test set was used to evaluate the model.190

Dataset Scenarios Sensitivity
All-α All-β α/β α + β OA

25PDB 8-SRQA-I 100 82 70 71 81.2
16-SRQA 100 81 82 79 86.0

1189 8-SRQA-I 47 90 100 48 74
16-SRQA 62 100 94 57 80.4

Table 3: Sensitivity (%) of our method using SVM on the two benchmark datasets. Sce-
narios correspond to the two best feature sets.
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In Table 3, the best result is obtained with SVM[16-SRQA] in the both191

benchmark datasets for example All-α: 100%, All-β: 81%, α/β: 82% and192

α+β: 79% and with 86% overall accuracy for the database 25PDB, and All-α:193

62%, All-β: 100%, α/β: 94% and α+β: 57% and with 80.4% overall accuracy194

for the database 1189. According to Table 3 SVM classifier performs better195

with the database 25PDB as compared to the database 1189 considering196

sensitivity.197

3.2. Linear Discriminant Analysis (LDA) classifier198

During the training process, default hyper-parameters were used with a199

dimensionality reduction. Finally, a test set was used to evaluate the model.200

In Table 4, the best result is obtained with LDA[16-SRQA] in the both201

benchmark datasets for example All-α: 99%, All-β: 95%, α/β: 99% and202

α+β: 97% and with 97% overall accuracy for the database 25PDB, and All-α:203

99%, All-β: 97%, α/β: 96% and α+β: 100% and with 98.2% overall accuracy204

for the database 1189. According to Table 4, LDA classifier performs better205

with the database 1189 as compared to the database 25PDB considering206

sensitivity.207

Dataset Scenarios Sensitivity
All-α All-β α/β α + β OA

25PDB 8-SRQA-R 98 92 100 96 96.4
16-SRQA 99 95 99 97 97

1189 8-SRQA-I 97 95 98 100 98
16-SRQA 99 97 96 100 98.2

Table 4: Sensitivity (%) of our method using LDA on the two benchmark datasets. Sce-
narios correspond to the two best feature sets.

3.3. Random Forest (RF) classifier208

During the training process, hyper-parameter such as the number of esti-209

mators and the maximum depth were tuned. These parameters were selected210

as 9 (for the number of estimators) and 6 (for the maximum depth). Finally,211

a test set was used to evaluate the model.212

In Table 5, the best result is obtained with RF [8-SQRA-I] in both bench-213

mark datasets for example All-α: 100%, All-β: 100%, α/β: 100% and α+β:214

100% and with 100%. According to Table 5, RF classifiers performs in a215

similar way to whatever the dataset based on sensitivity.216
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3.4. Classifier Comparison:217

From Tables 3, 4 and 5, it can be claimed that the best combination218

between classifier input features and the classifier is RF[8-SRQA-I] with219

on overall of 100% without overfitting on both benchmark data sets with220

the same encoding. The second best combination is obtained with LDA[16-221

SRQA] with an overall of 97%. The worst combination is obtained with222

SVM[16-SRQA] with an overall of 80.5%. Consequently, we recommend us-223

ing RF[8-SRQA-I].224

Dataset Scenarios Sensitivity
All-α All-β α/β α + β OA

25PDB 8-SRQA-I 100 100 100 100 100
16-SRQA 78 81 75 94 82

1189 8-SRQA-I 100 100 100 100 100
16-SRQA 91 93 97 87 92.2

Table 5: Sensitivity (%) of our method using RF on the two benchmark data sets. Sce-
narios correspond to the two best feature sets.

4. Discussion:225

In this study, we showed the possibility to classify the 4 protein structural226

classes: All-α, All-β, α/β, α + β without error by considering: 1) a binary227

encoding of protein sequences, 2) the calculation of symmetrical recurrences228

and its 8 associated descriptors/features and 3) a classifier. In our study,229

the best combination of classifiers and their inputs is RF [8-SRQA-I]. From230

our point of view, the joint use of 1) a simple encoding, 2) taking into ac-231

count descriptors based on symmetrical recurrences and 3) use the ensemble232

classifier is proved very significant for better results.233

In Table 6 a comparison is made between our method (8-SRQA-I) and234

existing methods (RQA) obtained in [20] and [26] on the same data sets.235

In [20], the protein sequences are encoded in two time series via the Chaos-236

Game-Representation (CGR) approach, 8-RQA and a LDA classifier were237

applied. In [20], the data are embedded in a space with d = 8 dimensions238

and with a delay τ=2 and ε=0.3. The results obtained having sensitivity %239

64.3(All-α), 65(All- β), 61.7(α/β) and 65(α + β) with an overall prediction240

accuracy of 64% for 25PDB dataset. Similar behavior is seen in [26] with241

overall prediction accuracy 90% and LDA was applied.242
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In Table 6 a comparison is made between our best results obtained with243

RF[8-SRQA-I] and other existing methods [20, 38, 26, 39, 40, 41]. From244

Table 6, it is clearly shown that our best configuration i.e. RF[8-SRQA-I ]245

outperformed the recent results of Wang et al [39]. In addition, from Ta-246

bles A.7-A.9 we see that RF[ 8-SRQA-I], RF[8-SRQA-R] overpass the recent247

results of Wang et al [39] for any type of symmetry. Moreover, the percent-248

age accuracy and sensitivity on training and testing are the almost same.249

Besides, the RF model is tuned with 6 as maximum depth and results ap-250

proached to 100%. Cross-validation shows the same results. Therefore, our251

classification model is not overfitting.252

It is often tricky to find the right parameters. In our approach, the253

data are binary coded therefore, ε = 0. In order to choose the embedded254

dimension, a value greater than 1 eliminates false recurrences (sojourn point).255

With the combined use of binary data and symmetric recurrences, there are256

no more sojourn points. Therefore, search for an embedding dimension or a257

delay is not required. Consequently, the right parameters are d=1, τ=0 and258

ε=0.259

5. Conclusion260

In this paper, we have shown that the judicious combination of 1) a sim-261

ple reverse encoding followed by a binary coding, 2) the calculation of sym-262

metrical recurrences features and, 3) a classifier like RF, provide the best263

classifications of 4 structural classes of proteins such as All-α, All-β, α/β264

and α + β without overfitting. The simple recurrences settings (d = 1, τ=0265

and ε=0) are proved useful to calculate the recurrences. The consideration of266

symmetry suggested by the presence of symmetric tertiary structures of pro-267

teins results in 100% classification without error. This proposed classification268

method can be used for other applications having binary or quaternary data.269

Furthermore, our proposed method will help in improving the drug design,270

folding recognition of protein, functional analysis and several other biology271

applications.272

Appendix A. Appendix273

Appendix A.1. Recurrence Plot274

Eckmann et al. [42] proposed the concept of recurrence plot initially to275

identify the presence of identical neighboring points in a time series such as276
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Dataset Methods Classifier Sensitivity OA
All-α All-β α/β α + β

25PDB AAD-CGR [20] LDA 64.3 65 61.7 65 64
SCPRED[40] SVM 92.6 80.1 74 71 79.7
Zhang et Al.[41] SVM 96.7 80.8 82.4 75.5 83.7
H. Olyaee[26] LDA 95.6 89.5 88.1 87 90
WD PseAAC[38] SVM 95.7 97.7 94.8 84.4 93.1
Wang [39] KNN 98 98.9 98 97.5 98.1
Our Method LDA 99 95 99 97 97

SVM 100 81 82 79 86
RF 100 100 100 100 100

1189 AAD-CGR [20] LDA 62.3 67.7 63.1 66.5 65.2
SCPRED [40] SVM 89.1 86.7 89.6 53.8 80.6
Zhang et Al[41] SVM 92.4 84.4 84.4 73.4 83.6
H. Olyaee[26] LDA 92.3 90.1 86.5 75.2 -
WD PseAAC[38] SVM 98.7 99 94 68.9 90.8
Wang et Al[39] KNN 98.2 99.3 99.1 91.3 97.3
Our Method LDA 99 97 96 100 98.2

SVM 62 100 94 57 80.4
RF 100 100 100 100 100

Table 6: Comparison of our method (8-SRQA-I) with other studies.

x(n) = x1, x2, ..., xN . This time series is embedded into a phase space with277

an embedding dimension d and a time delay τ . Two points such as X(i)278

and X(j) in the d-dimensional space are considered recurrent if they satisfy279

the following test [42]:280

‖ X(i)−X(j) ‖≤ ε. (A.1)

A two-dimensional matrix N x N, M (recurrence Matrix) can be calculated281

as followed:282

M(i, j) = 	[ε− ‖ X(i)−X(j) ‖]. (A.2)

The recurrence matrix M is a binary matrix composed of zeros and ones283

where zero components present the same state and non-zero components284

exhibit different states. Besides, the right selection of d is very important,285

as incorrect selection will lead towards recurrences contamination [35, 43]286
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(false recurrences/sojourn points). In addition, The embedding dimension is287

usually set with d≥2 to avoid the presence of sojourn points. The increase288

in dimensionality usually reduces the number of false recurrences; however,289

other approaches are proposed by Zaylaa et al.[44].290

Appendix A.2. Recurrence Quantification Analysis291

The Recurrence Quantification Analysis (RQA) extracts quantitative fea-292

tures (descriptors) from the binary matrix M. It permits to measure differ-293

ently appearing recurrence plots (RPs) with the help of small-scale structures294

present inside it. A main advantage of RQA is to give effective information295

for non-stationary and short data while other techniques fail to do so. It296

may be applied to versatile types of data. Moreover, to quantify the com-297

plexity, different measures of RQA introduced heuristically in [35, 36, 37] as298

described below.299

Recurrence Rate (RR): it measures of the density of recurrent points300

present in the matrix M. RR ranges between 0 to 100% where 100% reflect301

that all the points are recurrent.302

RR =
1

N2

N∑
i,j−1

M(i, j) ∀i 6= j (A.3)

Determinism (DET): it measures the presence of temporal correlation303

and appears through the presence of diagonal/anti diagonal. DET is the304

percentage of recurrence points assembled to build diagonal lines.305

DET =

∑N
l=lmin

lp(l)

N2(RR)
(A.4)

where p(l) represents the probability of finding diagonal line/ anti-diagonal306

of l. lmin is the segment which is shortest and considered often as 2.307

Entropy: it measures the deterministic structureś complexity within the308

system. It depends on the bin-number sensitively.309

ENTR = −
N∑

l=lmin

p(l)ln(p(l)) (A.5)

where p(l) represents the chances of occurrence is that diagonal segment is310

of exact length(l) which is calculated based on frequency distribution P(l).311
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p(l) =
p(l)∑N

l=lmin
p(l)

(A.6)

Laminarity: it measures of the total number of recurrence points which312

combine to form a vertical line.313

LAM =

∑N
v=vmin

vp(v)

N2(RR)
(A.7)

where p(v) represents the probability of finding vertical lines of v which has314

at least vmin as length.315

Maxline is the longest length of the diagonal line.316

LMAX = max(li; i = 1, . . . , Nl) (A.8)

Meanline: the vertical and diagonal line’s length can be measured. There-317

fore, the average diagonal line length is called the meanline which is associ-318

ated with the predictability interval of the dynamic system.319

L =

∑N
l=lmin

l(p(l))∑N
l=lmin

p(l)
(A.9)

Trapping Time (TT): it measures the average length of the vertical lines,320

which is directly connected to the laminarity interval of the dynamic system321

i.e. how long the dynamic system will remain in some specific state.322

TT =

∑N
v=vmin

v(p(v))∑N
v=vmin

p(v)
(A.10)

Trend (TREND): it is the regression coefficient of the linear association323

among the density of recurrence points in a line parallel to the line of Identity324

and its distance to the line of Identity. In addition, the trend gives significant325

information about the system’s stationarity.326

TREND =

∑N
l=1(i−

N
2

)(RR− < RR >)∑N
i=1 (i− N

2
)
2 (A.11)

where N is the Maximal number of diagonals parallel to the LOI.327
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Appendix A.3. Tables328

Tables A.7-A.9 present sensitivity (%) obtained with the three different329

classifiers (SVM, LDA and RF). In each table, the two benchmark data sets330

25PDB and 1189 are analyzed. For each row, All-α, All-β, α/β and α + β331

are tested.332

Firstly, considering the SVM classifier, it is observed in Table A.7 that the333

best performances are globally obtained with 16-SRQA (Fusion) in 25PDB334

benchmark data set. However, with data set 1189, the best outcome comes335

from 8-SRQA-R.336

Secondly, considering the LDA classifier, it is noticed in Table A.8 that337

the best performances are globally obtained with 16-SRQA (Fusion) in both338

benchmark data sets.339

Thirdly, considering the RF classifier, it can be seen in Table A.9 that the340

best performances are globally obtained with 8-SQRA-I in both benchmark341

data sets. Note that outcomes obtained with 8-SRQA-R and 16-SRQA are342

fairly close to those obtained with 8-SRQA-I.343

Dataset Methods Sensitivity
All-α All-β α/β α + β

25PDB 8-SRQA-R 100 76 66 79
8-SRQA-I 100 82 70 71
16-SRQA 100 81 82 79

1189 8-SRQA-R 44 100 100 98
8-SRQA-I 47 90 100 48
16-SRQA 62 100 94 57

Table A.7: Sensitivity of our proposed method using SVM on the two benchmark datasets.
Classifier input features are 8-SRQA-R (Reflection), 8-SRQA-I (Inversion) and 16-SRQA.
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