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Abstract

We analyze the stochastic proximal subgradient descent in the case where the objective
functions are path differentiable and verify a Sard-type condition. While the accumulation
set may not be reduced to unique point, we show that the time spent by the iterates
to move from one accumulation point to another goes to infinity. An oscillation-type
behavior of the drift is established. These results show a strong stability property of
the proximal subgradient descent. Using the theory of closed measures, Bolte, Pauwels
and Ríos-Zertuche [6] established this type of behavior for the deterministic subgradient
descent. Our technique of proof relies on the classical works on stochastic approximation
of differential inclusions, which allows us to extend results in the deterministic case to
a stochastic and proximal setting, as well as to treat these different cases in a unified
manner.

1 Introduction

Let d be a positive integer, let X be a nonempty, closed and convex set and let f, g : Rd Ñ R be
two locally Lipschitz functions. In this note, we study the behavior of the stochastic proximal
subgradient descent (SPGD):

xn`1 P proxγng,X pxn ´ γnvn ` γnηn`1q , (1)

where proxγng,X is the proximal operator for the function g on X (see Eq. (10) for a definition),
pγnq is a sequence of stepsizes, pηnq is a noise sequence and for each n P N, vn is in the set
Bfpxnq of Clarke’s subgradients of f at xn.

Let NX pxq be the normal cone of X at x. It is known (see [10], [13]) that, under mild
conditions on f , g and pηnq, every limit point of pxnq is included in the set Z :“ tx : 0 P
Bfpxq`Bgpxq`NX pxqu. The proof leans on the seminal paper of Benaïm, Hofbauer and Sorin
[3] (see also [2], [11]), which analyzes Eq. (1) as an Euler-like discretization of the differential
inclusion (DI):

9xptq P ´Bfpxptqq ´ Bgpxptqq ´NX pxptqq . (2)

While the sequence pxnq is known to converge to Z, recent work [14] shows that in prin-
ciple, it might not converge to a unique point. In [14, Section 2] Ríos-Zertuche considers the
deterministic subgradient descent (that is to say g “ 0, X “ Rd, ηn “ 0) and constructs f ,
which verifies main assumptions of nonsmooth optimization (such as Whitney stratifiability
or Kurdyka-Łojasiewicz inequality) but the limit set of pxnq is equal to Z “ tx : ‖x‖ “ 1u.
This encourages a more precise study of Eq. (1).
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In [6] the authors, using the theory of closed measures, show that in the case of the
deterministic subgradient descent the convergence to Z arises in a structured manner. First,
they prove that if x, y are two distinct accumulation points of pxnq, then the time that the
iterates spend to get from a neighborhood of x to a neighborhood of y goes to infinity. Second,
in a first approximation their results imply that if x is an accumulation point of pxnq, then

řn
i“1 γivi1xiPBpx,δq
řn
i“1 γi1xiPBpx,δq

ÝÝÝÝÑ
nÑ`8

0 ,

(see [6, Th. 7] or Section 3 for a precise statement). Intuitively speaking, this means that even
if xn ´ x0 “

řn
i“0 γivi does not converge, on average, the drift coming from the subgradients

compensate itself and vanishes at infinity. This behavior captures an oscillation phenomenon
of the iterates around the critical set. Results of this type show a strong stability property of
the deterministic subgradient descent.

In practical settings, when the function f is either unknown or computation of its gradient
is expensive, the deterministic gradient descent is often replaced by its stochastic version, in
many cases, this may lead to a faster convergence (see e.g. [7]). Proximal methods, on the
other hand, along with the regularizer function g, are widely used to regularize the initial
problem of minimizing f . Depending on the choice of g, we can, for instance, preserve the
boundedness of the iterates [11] or promote the sparsity of solutions [16]. It is therefore
interesting to establish stability results of the type [6] for the SPGD.

In this work we investigate further the questions of oscillations of the SPGD. Our contri-
butions are threefold. First, we show that the time spent by the SPGD to move from one
accumulation point to another goes to infinity. Second, we establish an oscillation-type be-
havior of the drift. These two results extend [6, Th. 7.] to a stochastic and a proximal setting.
Finally, our technique of proof doesn’t rely on the theory of closed measures used in [6] but is
build upon the classical works on stochatic approximation of differential inclusions ([10], [11],
[3]). We feel that this approach gives a simpler proof and allows us to treat the deterministic,
the stochastic and the proximal cases in a unified manner.

Paper organisation. In Section 2, we recall some known facts about Clarke subgradient,
path differentiable functions and differential inclusions. Our main results are given in Section 3.
Section 4 is devoted to proofs.

2 Preliminaries

2.1 Notations

For S Ă Rd, we denote clS its closure and convS its closed convex hull. For a function F :
Rd Ñ R, we denote ∇F its gradient. Constants will usually be denoted as C,C1, C2 . . . , they
can change from line to line. For a sequence pxnq, we denote acctxnu its set of accumulation
points. The space of continuous functions from R` to Rd will be denoted as CpR`,Rdq, we
endow this set with d the metric of uniform convergence on compact intervals, that is to say

dpxn, yq ÝÝÝÝÑ
nÑ`8

0 ðñ @T ą 0, sup
hPr0,T s

‖xnphq ´ yphq‖ ÝÝÝÝÑ
nÑ`8

0 . (3)
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2.2 Perturbed solutions of differential inclusions

We say that H : Rd Ñ Rd is a set valued map if for each x P Rd we have that Hpxq is a subset
of Rd. Consider the DI:

9xptq P Hpxptqq . (4)

We say that an absolutely continuous curve (a.c.) x : R` Ñ Rd is a solution to (4) starting at
x P Rd, if xp0q “ x and Eq. (4) holds for almost every t ě 0, we denote SHpxq the set of these
solutions and SH “ YxPRdSHpxq. We say that H is upper semi continuous at a point x P Rd if
for every U a neighborhood of Hpxq, there is δ ą 0 such that ‖y ´ x‖ ď δ ùñ Hpyq Ă U . We
say that H is upper semi continuous (usc) if it is upper semicontinuous at every point. We
have the following existence result.

Theorem 1 ([1]). Assume that, for each x in Rd, Hpxq is nonempty, convex and compact,
and there is a constant C ě 0 s.t. supt‖v‖ : v P Hpxqu ď Cp1` ‖x‖q. Assume that H is usc,
then for every x P Rd, the set SHpxq is nonempty.

For a set-valued map H and δ ą 0, we denote Hδpxq “ tv P Hpyq : ‖y ´ x‖ ď δu. In this
work we will be interested in perturbed solutions of the DI associated to H.

Definition 1 ([3]). Assume that H “
řl
i“1Hi, where each Hi is a set valued map from Rd to

Rd. We say that an a.c. curve X P CpR`,Rdq is a perturbed solution of the DI associated to H
if the following holds.

i) There is a function b : R` Ñ R` and a locally integrable function ρ : R` Ñ Rd s.t. for
almost every t ě 0, we have:

9Xptq ´ ρptq P
l
ÿ

i“1

H
bptq
i pXptqq .

ii) limtÑ`8 bptq “ 0 .

iii) For every T ą 0, we have:

lim
tÑ`8

sup
0ďhďT

∥∥∥∥ż t`h
t

ρpuq du

∥∥∥∥ “ 0 .

The following theorem states that, in some sense, when t goes to infinity a perturbed
solution shadows a solution of the corresponding DI. Its proof can be found in [3, Proof of Th.
4.2].

Theorem 2. Let X be a perturbed solution associated with H “
řl
i“1Hi and assume that each

of the Hi satisfies the assumptions of Th. 1. Then the family tXpt ` ¨q : t P R`u is relatively
compact (in CpR`,Rdq) and we have:

lim
tÑ`8

dpXpt` ¨q, SHq “ 0

Remark 1. Strictly speaking, in [3], a perturbed solution to the DI 9xptq P Hpxptqq was required
to satisfy 9Xptq ´ ρptq P HbptqpXptqq, where H “

řl
i“1Hi. Nevertheless, the proof of [3, Th. 4.2]

goes through with our definition.
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Given a set A, we say that a continuous function ϕ : Rd Ñ R is a strict Lyapunov function
for the DI (4), if for every t ą 0 and x P SHpxq, we have that ϕpxptqq ă ϕpxq if x R A and
ϕpxptqq ď ϕpxq otherwise. If such a ϕ exists, then more can be said about the behavior of a
perturbed solution.

Theorem 3 ([3, Th. 3.6 and Prop. 3.27]). Assume that we are in the context of Th. 2 and let
ϕ be a strict Lyapunov function for a set A Ă Rd. Assume, moreover, that ϕpAq is of empty
interior, we have:

LX :“
č

tě0

cl tXpuq : u ě tu Ă A

and ϕ is constant on LX.

In this note, we will be primarily interested in two particular set valued maps. Consider
f : Rd Ñ R a locally Lipschitz function. By Rademacher’s theorem, f is differentiable almost
everywhere. The set Bfpxq of Clarke subgradients of f at x is defined as follows:

Bfpxq “ convtv : there is a sequence xi Ñ x s.t. f is differentiable at xi and ∇fpxiq Ñ vu .
(5)

The set tx : 0 P Bfpxqu of Clarke-critical points contains local extrema (see [8]). The map
Bf : Rd Ñ Rd is usc and for every x in Rd, Bfpxq is nonempty, compact and convex.
Given a convex set X Ă Rd, the normal cone of X is a set valued map NX : Rd Ñ Rd, defined
as:

NX pxq “ tv : xv, y ´ xy ď 0,@y P X u . (6)

For each x P X , NX pxq is a closed convex subset of Rd.

2.3 Semialgebraic and definable functions

An important case to which our results apply, is when f, g and X are semialgebraic, or more
generally definable. We say that a set A Ă RN is semialgebraic if it can be written as a
finite union and intersection of sets of the form tx : P pxq ď 0u, where P : RN Ñ R is some
polynomial. A function is semialgebraic if its graph is a semialgebraic set. While they may
be nonsmooth, semialgebraic functions present strong regularity properties. Among other
things, they are Ck differentiable on a dense open set (for any k ě 0) and stable under many
elementary operations such as composition, sum, multiplication.

A generalization of this notion, which preserve the aformentioned structural properties, is
the one of definableness in an o-minimal structure. While we will not mathematically define
this notion here, let us mention that any semialgebraic function, as well as the exponential
and the logarithm are definable (hence, also their composition). This explains their ubiquity
in the optimization literature. Up to our knowledge, the first work to exploit the link between
optimization and definableness was [5]. An interested reader can find more on definability and
its usefulness in optimization in [12], and more details in [17], [9], [10].

2.4 Path differentiable functions

We say that a locally Lipschitz function f : Rd Ñ R is path differentiable if for any a.c. curve
x : r0, 1s Ñ Rd, for almost every t P r0, 1s:

pf ˝ xq1ptq “ xv, 9xptqy @v P Bfpxptqq. (7)

4



By [4, Proposition 2], every convex, concave, semialgebraic or definable function is path dif-
ferentiable. Moreover, if another function g : Rd Ñ R is path differentiable, then f ` g is also
path differentiable [4, Corollary 4]. From a similar point of view, if X is a convex set, then
for any a.c. curve x : r0, 1s Ñ Rd, for almost every t P r0, 1s:

xv, 9xptqy “ 0 @v P NX pxptqq . (8)

Consider now f, g : Rd Ñ R path differentiable, X Ă Rd a convex set and x a solution to the
DI (2). Using Eq. (7) and (8) and the fact that Bpf ` gq Ă Bf ` Bg, we obtain

pf ` gqpxptqq ´ pf ` gqpxp0qq “ ´

ż t

0
‖ 9xpuq‖2 du . (9)

This implies that pf ` gqpxptqq ă pf ` gqpxp0qq if xp0q R Z. In other words, f ` g is a strict
Lyapunov function for the DI (2).

3 Main results

Consider pΩ,Ξ,Pq a probability space and pηnq a sequence of random variables with values in
Rd. Define proxγg,X : Rd Ñ Rd, the proximal operator for g on X with a step γ:

proxγg,X pxq “ arg min
yPX

tgpyq `
1

2γ
‖y ´ x‖2u . (10)

We study Eq. (1) under the following assumptions.

Assumption 1.

i) The set X is a closed convex subset of Rd.

ii) The functions f, g : Rd Ñ R are locally Lipschitz continuous.

iii) There is a filtration pFnqnPN, such that pηnq is a martingale difference sequence adapted
to it, and xn is Fn measurable for every n P N.

iv) The sequence of stepsizes pγnq is nonnegative and such that
ř`8
i“0 γi “ `8.

Note that if g is nonconvex, proxγg,X pxq is a set in Rd. However, as soon as xn`1 is chosen
in a measurable manner (relatively to ηn`1 and xn), pxnq will be adapted to pFnq. Such a
choice is always possible (see e.g. [10]).

By [15, 10.2 and 10.10], we can rewrite Eq. (1) as:

xn`1 “ xn ´ γnpvn ` v
g
n ` v

X
n q ` γnηn`1 , (11)

where vgn P Bgpxn`1q and vXn P NX pxn`1q.

Assumption 2.

i) Almost surely, supn ‖xn‖ ă `8.
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ii) There is q ě 2 such that

`8
ÿ

i“0

γ
1`q{2
i ă `8 , (12)

and, for any compact set K Ă Rd,

sup
nPN

Er‖ηn`1‖q 1xnPK|Fns ă `8 . (13)

Assumptions of this type are standard in the field of stochastic approximation. Assump-
tion 2-(i) prevent the algorithm to diverge. Note that it is superfluous if X is compact.
Otherwise it can be obtained by a proper choice of the regularizer g (see [11]).

Let τn “
řn
i“1 γi be the discrete time of the algorithm. Define the linearly interpolated

process X P CpR`,Rdq by:

Xptq “ xn `
t´ τn
γn`1

pxn`1 ´ xnq for τn ď t ă τn`1 .

Following [3] we will show that X is a perturbed solution of the DI (2). The next two assump-
tions ensure us that f ` g will be a Lyapunov function for the DI (2).

Assumption 3. The functions f and g are path differentiable.

Assumption 4. The set of Clarke critical values tfpxq`gpxq : x P Zu has an empty interior.

Assumption 4 is a classical Sard-type condition. It ensures the fact that if x is a solution
to the DI (2), with xp0q P Z, then x is constant. As established in [5], it is satisfied as soon as
f, g and X are definable.

The next two propositions are not new and can be found in one way or another in e.g. [10],
[4], [13], [6]. Nevertheless, since our set of assumptions is slightly different and their proof is
a simple application of Section 2.2, for completeness, we include it in Section 4.1.

Proposition 4. Let Assumptions 1 and 2 hold, then the family pXpt ` ¨qqtě0 is relatively
compact. Moreover, if a sequence tn Ñ `8 and x P CpR`,Rdq is such that dpXptn`¨q, xq Ñ 0,
then x is a solution to the DI (2).

Proposition 5. Under Assumptions 1–4, the set acctxnu is included in Z and f`g is constant
on acctxnu.

The next theorem tells us that even if acctxnu is not a single point, the time that it takes
to pxnq to go from one accumulation point to another goes to infinity. This is an extension
of [6, Th. 6.i), Th. 7.i)], to the best of our knowledge this result is new in a stochastic and
proximal setting.

Theorem 6. Let Assumptions 1–4 hold. Let x, y be two distinct points in acctxnu. Consider
two sequences ni, nj, with ni ď nj, such that xni Ñ x and xnj Ñ y. Then τnj ´ τni Ñ `8.

Under Assumptions 1–3, the same result is true if pf ` gqpxq ď pf ` gqpyq.
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As it is shown in [14], it is possible that acctxnu is not reduced to a unique point. Neverthe-
less, Th. 6 implies that the “nonconvergence" happens in a very slow manner. Asymptotically,
the time spent by the algorithm to move from one accumulation point to another goes to
infinity.

We now investigate the question of oscillations. Given U, V two open sets, such that
clU Ă V , we will call I “ rn1, n2s a maximal interval related to U, V if the set Xn2

n1
:“

txn1 , xn1`1, . . . , xn2u is such that Xn2
n1
Ă V , Xn2

n1
XU ‰ H and either xn1´1 or xn2`1 is not in

V . The next two results are an extension of [6, Th. 7] to a stochastic setting.

Theorem 7 (Long intervals). Let Assumptions 1-4 hold. Consider x P acctxnu and U, V two
neighborhoods of x such that clU Ă V . For i P N, denote Ii “ rni1 , ni2s a sequence of distinct
maximal intervals related to U, V . Then, either one of Ii is unbounded or τni2

´ τni1
Ñ `8.

Theorem 8 (Oscillation compensation). Let Assumptions 1-4 hold, and fix U , V and Ii as
in Th. 7. Denote A “

Ť

Ii, then
řn
i“1 γipvi ` v

g
i ` v

X
i q1Apxiq

řn
i“1 γi1Apxiq

ÝÝÝÝÑ
nÑ`8

0 . (14)

Th. 8 gives an intuitive explanation of why Th. 6 holds. Indeed, while the drift coming
from one iteration vi` v

g
i ` v

X
i might not go to zero (as it happens for such a simple example

as fpxq “ ‖x‖, g “ 0 and X “ Rd), on average, it compensates itself. Th. 6 and 8 suggest
that the algorithm oscillates around its accumulation set, while the center of these oscillations
moves in acctxnu with a vanishing speed.

Let us finish with a remark on the Eq. (14). At first sight, maximal intervals in Th. 8 and
Th. 7 may seem artificial. A more satisfactory result would be

řn
i“1 γipvi ` v

g
i ` v

X
i q1U pxiq

řn
i“1 γi1U pxiq

ÝÝÝÝÑ
nÑ`8

0 , (15)

where U is an open neighborhood of an accumulation point x. Looking at the proof of Th. 8,
to obtain Eq. (15), we could think of defining maximal intervals as Ii “ rni1 , ni2s such that
txni1

, . . . , xni2
u Ă U and xni1

´1, xni2
`1 R U . Unfortunately, for this type of intervals we dont

have an equivalent of Th. 7, i.e. it may very well be that the quantity τni2
´ τni1

is bounded.
Actually, it is not very hard to show, that for the function from [14, Section 2], there are x, U
such that Eq. (15) is false.

Nevertheless, as explained in [6], Eq. (14) is a good approximation of Eq. (15). Indeed,
apply Th. 8 with U and V “ U δ, where U δ “ ty P Rd : Dz P U, ‖z ´ y‖ ă δu, then, as an
approximation, we have

lim
δÑ0

lim
nÑ`8

řn
i“1 γi`1pvi ` v

g
i ` v

X
i q1Apxiq

řn
i“1 γi`11Apxiq

« lim
nÑ`8

řn
i“1 γi`1pvi ` v

g
i ` v

X
i q1U pxiq

řn
i“1 γi`11U pxiq

.

4 Proofs

In the following we will denote xn`1{2 “ xn ´ γnvn ` γnηn`1 and

NpT, nq “ inftj ě n s.t. τj ´ τn ě T u . (16)
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4.1 Proof of Prop. 4 and 5

To put ourselves in the context of Section 2.2 we need to alter the map ´Bf´Bg´NX in a way
that it verifies assumptions of Th. 2 and 3. While this section is slightly technical, conceptually,
we just find a set-valued map G verifying assumptions of Th. 3 and s.t. xn`1 P Gpxnq. A
convinced reader may want to skip to Section 4.2.
We start with two technical lemmas.

Lemma 1. Under Assumptions 1 and 2, almost surely, for every T ą 0, we have:

lim
nÑ`8

sup
nďjďNpT,nq

∥∥∥∥∥
j
ÿ

i“n

γiηi`1

∥∥∥∥∥ “ 0 . (17)

As a consequence, the sequence p
∥∥xn`1{2∥∥q is almost surely bounded.

Proof. Indeed, since almost surely sup ‖xn‖ ă `8, for each δ ą 0, there is C ą 0 s.t. if
we denote A “ t@n P N ‖xn‖ ď Cu, then PpAq ą 1 ´ δ. Define η̃n`1 “ ηn`11‖xn‖ďC ,
then Erη̃n`1|Fns “ 0 and supnPN Er‖η̃n`1‖qs ă `8. Hence, by [2, Prop. 4.2], we have
supnďjďNpT,nq

∥∥∥řj
i“n γiη̃i`1

∥∥∥ ÝÝÝÝÑ
nÑ`8

0. Since δ is arbitrary, Eq. (17) follows.

Lemma 2. Let Assumptions 1 and 2 hold. Let A P Ξ be a probability one set on which pxnq
and pxn`1{2q are bounded, and let C be a random variable s.t. ‖xn‖ ă C and C is finite
valued on A. Then, for each ω P A, there are two globally Lipschitz functions g̃, f̃ : Rd Ñ R
and a bounded set-valued map rNX : Rd Ñ Rd s.t. in Eq. (11) we have vnpwq P Bf̃pxnpwqq,
vgnpwq P Bg̃pxn`1pwqq and vXn pwq P rNX pxn`1pwqq.
Moreover, if x is a solution to the DI:

9xptq P ´Bf̃pxptqq ´ Bg̃pxptqq ´ rNX pxptqq , (18)

and that x remains in Bp0, Cq X X , then x is a solution to the DI (2).
Finally, denoting rZ “ tx : 0 P Bf̃pxq ` Bg̃pxq ` rNX pxqu, we have the equality rZ X Bp0, Cq “
Z XBp0, Cq.

Proof. Let ΠC`1 : Rd Ñ Rd be the projection on Bp0, C ` 1q. Define f̃pxq “ fpΠC`1pxqq,
g̃pxq “ gpΠC`1pxqq. By construction, we have that vn P Bf̃pxnq and vgn P Bgpxn`1q and
that vn, v

g
n are bounded by Lf̃ , Lg̃ the Lipschitz constants of f̃ and g̃. Hence, since xn`1{2

is bounded, there is C2 s.t. supt
∥∥vXn ∥∥ : n P Nu ă C2. Defining rNX pxq “ tv : ‖v‖ ď

maxpC2, Lf , Lgq, v P ΠX pxqu, where ΠX is a projection on X , proves the first claim. The two
other statements immediately follow from our construction.

To prove Prop. 4 it remains to show that X is a perturbed solution to the DI (18). For
t P rτn, τn`1q, we define ρptq “ ηn`1 and bptq “ ‖xn`1 ´ xn‖. The condition on ρ immediately
follows from Lemma 1. The condition on b follows from the following lemma.

Lemma 3. Under Assumptions 1 and 2, almost surely, we have that ‖xn`1 ´ xn‖ ÝÝÝÝÑ
nÑ`8

0.

Proof. By Lemma 1, we have that
∥∥xn`1{2 ´ xn∥∥ ÝÝÝÝÑ

nÑ`8
0, moreover, we have:

gpxn`1q `
1

2γn

∥∥xn`1 ´ xn`1{2∥∥2 ď gpxnq `
1

2γn

∥∥xn ´ xn`1{2∥∥2 .
8



Therefore,

1

2γn
‖xn`1 ´ xn‖2 ď gpxnq ´ gpxn`1q ´

1

γn
xxn`1 ´ xn, xn ´ xn`1{2y

ď ‖xn`1 ´ xn‖

˜

Lg `

∥∥xn ´ xn`1{2∥∥
γn

¸

,

and
‖xn`1 ´ xn‖ ď γnLg `

∥∥xn ´ xn`1{2∥∥ ,
which finishes the proof.

To finish the proof of Prop. 4 consider tn Ñ `8 and x s.t. dpXptn ` ¨q, xq Ñ 0. Then, by
Th. 2, x is a solution to the DI (18), moreover, it remains in Bp0, Cq XX , therefore, it is also
a solution to the DI (2).

For the proof of Prop. 5, notice that f̃ ` g̃ is path differentiable (as a composition of path
differentiable functions). Then, in the same way as in Section 2.4, we have that f̃ ` g̃ is a
strict Lyapunov function for the DI (18) and for the set Z̃. Since acctxnu “ LX Ă clBp0, Cq,
by Th. 3 we have that LX Ă rZ X clBp0, Cq Ă Z, and that f ` g is constant on acctxnu.

4.2 Proof of Th. 6

Lemma 4. Let Assumptions 1– 3 hold, let τn be a positive sequence, with τn Ñ `8, and x
s.t. Xpτn ` ¨q Ñ x, then

pf ` gqpxphqq ď pf ` gqpxp0qq, @h P R` . (19)

Moreover, if for some h ě 0, pf ` gqpxphqq “ pf ` gqpxp0qq, then xph1q “ xp0q for every
h1 P r0, hs. If additionally Assumption 4 holds, then:

xphq “ xp0q, @h P R` . (20)

Proof. By Prop. 4, x is a solution to the DI (2), and the first result follows by Eq. (9).
Under Assumption 4, we have that xpR`q Ă acctxnu Ă Z, hence, by Prop. 5, we have that
pf ` gq ˝ x is constant. Using Assumption 3, we have for all h P R`,

0 “ pf ` gqpxphqq ´ pf ` gqpxp0qq “ ´

ż h

0
‖ 9xpuq‖2 du . (21)

This implies that
şh
0 ‖ 9xpuq‖2 du “ 0. Hence, 9xphq “ 0 for almost every h P R` and we obtain

Eq. (20).

Suppose that there is T ą 0 such that τnj ´ τni ď T . The sequence Xpτni ` ¨q is relatively
compact, and after extraction it converges to x a solution to (2). Extract once again to have
τnj ´ τni Ñ h. Then

Xpτnj q ´ Xpτniq Ñ xphq ´ xp0q “ y ´ x ,

and we obtain a contradiction with Lemma 4.
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4.3 Proof of Th. 7

The next lemma is the key ingredient for the proofs of Th. 7 and Th. 8.

Lemma 5. Under Assumptions 1–4, we have

sup
nďjďNpT,nq

∥∥∥∥∥
j
ÿ

i“n

γipvi ` v
g
i ` v

X
i q

∥∥∥∥∥ ÝÝÝÝÑnÑ`8
0 .

Proof. Suppose that we have ε ą 0 and two sequences nk and nk ď jk ď NpT, nkq, such that
for nk large enough: ∥∥∥∥∥

jk
ÿ

i“nk

γipvi ` v
g
i ` v

X
i q

∥∥∥∥∥ ą ε .

This implies: ∥∥∥∥∥xjk ´ xnk
`

jk
ÿ

i“nk

γiηi`1

∥∥∥∥∥ ą ε .

Extract a sequence such that Xpτnk
` ¨q converges to x and τjk ´ τnk

Ñ h, with h ď T . Then
xjk Ñ xphq and xnk

Ñ xp0q, but ‖xphq ´ xp0q‖ ě ε which is impossible by Lemma 4.

Suppose that no Ii is unbounded, then we can choose ni P Ii “ rni1 , ni2s such that xni P U .
Since xni2`1 is in V c, after extraction xni Ñ y1 and xni2`1 Ñ y2, with y2 ‰ y1, moreover:

τni2`1 ´ τni ´ γni2`1 ď τni2
´ τni1

. (22)

By Th. 6, the first term of this inequality tends to infinity.

4.4 Proof of Th. 8

Take Ii as in Th. 7, and An “
Ť

iďn Ii. Define

un “
an
bn
“

ř

γipvi ` v
g
i ` v

X
i q1Anpxiq

ř

γi1Anpxiq
.

Then,

un`1 “
an `

ř

γipvi ` v
g
i ` v

X
i q1In`1pxiq

bn `
ř

γi1In`1pxiq
. (23)

Fix ε ą 0, by Lemma 5, there is n0 such that, for n ě n0,
∥∥∥řjk

i“nk
γipvi ` v

g
i ` v

X
i q

∥∥∥ ď ε. De-
compose Ii “ rni1 , ni2s “

Ť

1ďkďKi
rai,k, ai,k`1s, with ai,1 “ ni1 and ai,k`1 “ mintNpT, ai,kq, ni2u.

We obtain:

un`1 “
an `

ř

kďKn

řan,k`1

i“an,k
γipvi ` v

g
i ` v

X
i q

bn `
ř

kďKn

řan,k`1

i“an,k
γi

ď
an ` pKnqε

bn ` pKn ´ 1qT
.

By Th. 7, we have that Kn Ñ `8 and, therefore, for n large enough:

un`1 ď
an ` 2pKn ´ 1qε

bn ` pKn ´ 1qT
.
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Hence, by induction:

un`j ď
an ` 2ε

řn`j´1
k“n pKi ´ 1q

bn ` T
řn`j´1
k“n pKi ´ 1q

.

Therefore, limun ď
2ε
T . Since ε is arbitrary, this finishes the proof.
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