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Stochastic Proximal Subgradient Descent Oscillates in the Vicinity of its Accumulation Set

We analyze the stochastic proximal subgradient descent in the case where the objective functions are path differentiable and verify a Sard-type condition. While the accumulation set may not be reduced to unique point, we show that the time spent by the iterates to move from one accumulation point to another goes to infinity. An oscillation-type behavior of the drift is established. These results show a strong stability property of the proximal subgradient descent. Using the theory of closed measures, Bolte, Pauwels and Ríos-Zertuche [6] established this type of behavior for the deterministic subgradient descent. Our technique of proof relies on the classical works on stochastic approximation of differential inclusions, which allows us to extend results in the deterministic case to a stochastic and proximal setting, as well as to treat these different cases in a unified manner.

Introduction

Let d be a positive integer, let X be a nonempty, closed and convex set and let f, g : R d Ñ R be two locally Lipschitz functions. In this note, we study the behavior of the stochastic proximal subgradient descent (SPGD):

x n`1 P prox γn g,X px n ´γn v n `γn η n`1 q ,

where prox γn g,X is the proximal operator for the function g on X (see Eq. [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF] for a definition), pγ n q is a sequence of stepsizes, pη n q is a noise sequence and for each n P N, v n is in the set Bf px n q of Clarke's subgradients of f at x n .

Let N X pxq be the normal cone of X at x. It is known (see [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF], [START_REF] Majewski | Analysis of nonsmooth stochastic approximation: the differential inclusion approach[END_REF]) that, under mild conditions on f , g and pη n q, every limit point of px n q is included in the set Z :" tx : 0 P Bf pxq `Bgpxq `NX pxqu. The proof leans on the seminal paper of Benaïm, Hofbauer and Sorin [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF] (see also [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF], [START_REF] Duchi | Stochastic methods for composite and weakly convex optimization problems[END_REF]), which analyzes Eq. ( 1) as an Euler-like discretization of the differential inclusion (DI): 9 xptq P ´Bf pxptqq ´Bgpxptqq ´NX pxptqq .

(

) 2 
While the sequence px n q is known to converge to Z, recent work [START_REF] Rios-Zertuche | Examples of pathological dynamics of the subgradient method for lipschitz path-differentiable functions[END_REF] shows that in principle, it might not converge to a unique point. In [14, Section 2] Ríos-Zertuche considers the deterministic subgradient descent (that is to say g " 0, X " R d , η n " 0) and constructs f , which verifies main assumptions of nonsmooth optimization (such as Whitney stratifiability or Kurdyka-Łojasiewicz inequality) but the limit set of px n q is equal to Z " tx : x " 1u. This encourages a more precise study of Eq. [START_REF] Aubin | of Grundlehren der Mathematischen Wissenschaften[END_REF].

In [START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF] the authors, using the theory of closed measures, show that in the case of the deterministic subgradient descent the convergence to Z arises in a structured manner. First, they prove that if x, y are two distinct accumulation points of px n q, then the time that the iterates spend to get from a neighborhood of x to a neighborhood of y goes to infinity. Second, in a first approximation their results imply that if x is an accumulation point of px n q, then

ř n i"1 γ i v i 1 x i PBpx,δq ř n i"1 γ i 1 x i PBpx,δq ÝÝÝÝÑ nÑ`8 0 ,
(see [START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF]Th. 7] or Section 3 for a precise statement). Intuitively speaking, this means that even if x n ´x0 " ř n i"0 γ i v i does not converge, on average, the drift coming from the subgradients compensate itself and vanishes at infinity. This behavior captures an oscillation phenomenon of the iterates around the critical set. Results of this type show a strong stability property of the deterministic subgradient descent.

In practical settings, when the function f is either unknown or computation of its gradient is expensive, the deterministic gradient descent is often replaced by its stochastic version, in many cases, this may lead to a faster convergence (see e.g. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]). Proximal methods, on the other hand, along with the regularizer function g, are widely used to regularize the initial problem of minimizing f . Depending on the choice of g, we can, for instance, preserve the boundedness of the iterates [START_REF] Duchi | Stochastic methods for composite and weakly convex optimization problems[END_REF] or promote the sparsity of solutions [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. It is therefore interesting to establish stability results of the type [START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF] for the SPGD.

In this work we investigate further the questions of oscillations of the SPGD. Our contributions are threefold. First, we show that the time spent by the SPGD to move from one accumulation point to another goes to infinity. Second, we establish an oscillation-type behavior of the drift. These two results extend [START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF]Th. 7.] to a stochastic and a proximal setting. Finally, our technique of proof doesn't rely on the theory of closed measures used in [START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF] but is build upon the classical works on stochatic approximation of differential inclusions ( [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF], [START_REF] Duchi | Stochastic methods for composite and weakly convex optimization problems[END_REF], [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]). We feel that this approach gives a simpler proof and allows us to treat the deterministic, the stochastic and the proximal cases in a unified manner.

Paper organisation. In Section 2, we recall some known facts about Clarke subgradient, path differentiable functions and differential inclusions. Our main results are given in Section 3. Section 4 is devoted to proofs.

Preliminaries

Notations

For S Ă R d , we denote cl S its closure and conv S its closed convex hull. For a function F : R d Ñ R, we denote ∇F its gradient. Constants will usually be denoted as C, C 1 , C 2 . . . , they can change from line to line. For a sequence px n q, we denote acctx n u its set of accumulation points. The space of continuous functions from R `to R d will be denoted as CpR `, R d q, we endow this set with d the metric of uniform convergence on compact intervals, that is to say dpx n , yq ÝÝÝÝÑ nÑ`8 0 ðñ @T ą 0, sup hPr0,T s

x n phq ´yphq ÝÝÝÝÑ nÑ`8 0 .

(3)

Perturbed solutions of differential inclusions

We say that H : R d Ñ R d is a set valued map if for each x P R d we have that Hpxq is a subset of R d . Consider the DI:

9 xptq P Hpxptqq . (4) 
We say that an absolutely continuous curve (a.c.) x : R `Ñ R d is a solution to (4) starting at x P R d , if xp0q " x and Eq. ( 4) holds for almost every t ě 0, we denote S Hpxq the set of these solutions and S H " Y xPR d S H pxq. We say that H is upper semi continuous at a point x P R d if for every U a neighborhood of Hpxq, there is δ ą 0 such that y ´x ď δ ùñ Hpyq Ă U . We say that H is upper semi continuous (usc) if it is upper semicontinuous at every point. We have the following existence result.

Theorem 1 ([1]

). Assume that, for each x in R d , Hpxq is nonempty, convex and compact, and there is a constant C ě 0 s.t. supt v : v P Hpxqu ď Cp1 ` x q. Assume that H is usc, then for every x P R d , the set S Hpxq is nonempty.

For a set-valued map H and δ ą 0, we denote H δ pxq " tv P Hpyq : y ´x ď δu. In this work we will be interested in perturbed solutions of the DI associated to H.

Definition 1 ([3]). Assume that H " ř l i"1 H i ,
where each H i is a set valued map from R d to R d . We say that an a.c. curve X P CpR `, R d q is a perturbed solution of the DI associated to H if the following holds. i) There is a function b : R `Ñ R `and a locally integrable function ρ : R `Ñ R d s.t. for almost every t ě 0, we have:

9 Xptq ´ρptq P l ÿ i"1 H bptq i pXptqq .
ii) lim tÑ`8 bptq " 0 .

iii) For every T ą 0, we have:

lim tÑ`8 sup 0ďhďT ż t`h t ρpuq du " 0 .
The following theorem states that, in some sense, when t goes to infinity a perturbed solution shadows a solution of the corresponding DI. Its proof can be found in [3, Proof of Th.

4.2].

Theorem 2. Let X be a perturbed solution associated with H " ř l i"1 H i and assume that each of the H i satisfies the assumptions of Th. 1. Then the family tXpt `¨q : t P R `u is relatively compact (in CpR `, R d q) and we have:

lim tÑ`8
dpXpt `¨q, S H q " 0 Remark 1. Strictly speaking, in [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF], a perturbed solution to the DI 9

xptq P Hpxptqq was required to satisfy 9

Xptq ´ρptq P H bptq pXptqq, where H " ř l i"1 H i . Nevertheless, the proof of [3, Th. 4.2] goes through with our definition.

Given a set A, we say that a continuous function ϕ : R d Ñ R is a strict Lyapunov function for the DI (4), if for every t ą 0 and x P S Hpxq , we have that ϕpxptqq ă ϕpxq if x R A and ϕpxptqq ď ϕpxq otherwise. If such a ϕ exists, then more can be said about the behavior of a perturbed solution.

Theorem 3 ([3, Th. 3.6 and Prop. 3.27]). Assume that we are in the context of Th. 2 and let ϕ be a strict Lyapunov function for a set A Ă R d . Assume, moreover, that ϕpAq is of empty interior, we have:

L X :" č tě0 cl tXpuq : u ě tu Ă A and ϕ is constant on L X .
In this note, we will be primarily interested in two particular set valued maps. Consider f : R d Ñ R a locally Lipschitz function. By Rademacher's theorem, f is differentiable almost everywhere. The set Bf pxq of Clarke subgradients of f at x is defined as follows:

Bf pxq " convtv : there is a sequence x i Ñ x s.t. f is differentiable at x i and ∇f px i q Ñ vu .

(5) The set tx : 0 P Bf pxqu of Clarke-critical points contains local extrema (see [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF]). The map Bf : R d Ñ R d is usc and for every x in R d , Bf pxq is nonempty, compact and convex. Given a convex set X Ă R d , the normal cone of X is a set valued map N X : R d Ñ R d , defined as:

N X pxq " tv : xv, y ´xy ď 0, @y P X u .

For each x P X , N X pxq is a closed convex subset of R d .

Semialgebraic and definable functions

An important case to which our results apply, is when f, g and X are semialgebraic, or more generally definable. We say that a set A Ă R N is semialgebraic if it can be written as a finite union and intersection of sets of the form tx : P pxq ď 0u, where P : R N Ñ R is some polynomial. A function is semialgebraic if its graph is a semialgebraic set. While they may be nonsmooth, semialgebraic functions present strong regularity properties. Among other things, they are C k differentiable on a dense open set (for any k ě 0) and stable under many elementary operations such as composition, sum, multiplication. A generalization of this notion, which preserve the aformentioned structural properties, is the one of definableness in an o-minimal structure. While we will not mathematically define this notion here, let us mention that any semialgebraic function, as well as the exponential and the logarithm are definable (hence, also their composition). This explains their ubiquity in the optimization literature. Up to our knowledge, the first work to exploit the link between optimization and definableness was [START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]. An interested reader can find more on definability and its usefulness in optimization in [START_REF] Ioffe | An invitation to tame optimization[END_REF], and more details in [START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF], [START_REF] Coste | An Introduction to O-minimal Geometry[END_REF], [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF].

Path differentiable functions

We say that a locally Lipschitz function f : R d Ñ R is path differentiable if for any a.c. curve x : r0, 1s Ñ R d , for almost every t P r0, 1s: pf ˝xq 1 ptq " xv, 9

xptqy @v P Bf pxptqq.

By [4, Proposition 2], every convex, concave, semialgebraic or definable function is path differentiable. Moreover, if another function g : R d Ñ R is path differentiable, then f `g is also path differentiable [4, Corollary 4]. From a similar point of view, if X is a convex set, then for any a.c. curve x : r0, 1s Ñ R d , for almost every t P r0, 1s:

xv, 9 xptqy " 0 @v P N X pxptqq .

Consider now f, g : R d Ñ R path differentiable, X Ă R d a convex set and x a solution to the DI (2). Using Eq. ( 7) and ( 8) and the fact that Bpf `gq Ă Bf `Bg, we obtain pf `gqpxptqq ´pf `gqpxp0qq " ´ż t

0 9 xpuq 2 du . (9) 
This implies that pf `gqpxptqq ă pf `gqpxp0qq if xp0q R Z. In other words, f `g is a strict Lyapunov function for the DI (2).

Main results

Consider pΩ, Ξ, Pq a probability space and pη n q a sequence of random variables with values in R d . Define prox γ g,X : R d Ñ R d , the proximal operator for g on X with a step γ:

prox γ g,X pxq " arg min yPX tgpyq `1 2γ y ´x 2 u . (10) 
We study Eq. ( 1) under the following assumptions.

Assumption 1.

i) The set X is a closed convex subset of R d .

ii) The functions f, g : R d Ñ R are locally Lipschitz continuous.

iii) There is a filtration pF n q nPN , such that pη n q is a martingale difference sequence adapted to it, and x n is F n measurable for every n P N.

iv) The sequence of stepsizes pγ n q is nonnegative and such that ř `8 i"0 γ i " `8.

Note that if g is nonconvex, prox γ g,X pxq is a set in R d . However, as soon as x n`1 is chosen in a measurable manner (relatively to η n`1 and x n ), px n q will be adapted to pF n q. Such a choice is always possible (see e.g. [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF]).

By [15, 10.2 and 10.10], we can rewrite Eq. (1) as:

x n`1 " x n ´γn pv n `vg n `vX n q `γn η n`1 , (11) 
where v g n P Bgpx n`1 q and v X n P N X px n`1 q.

Assumption 2.

i) Almost surely, sup n x n ă `8.

ii) There is q ě 2 such that

`8 ÿ i"0 γ 1`q{2 i ă `8 , (12) 
and, for any compact set

K Ă R d , sup nPN Er η n`1 q 1 xnPK |F n s ă `8 . (13) 
Assumptions of this type are standard in the field of stochastic approximation. Assumption 2-(i) prevent the algorithm to diverge. Note that it is superfluous if X is compact. Otherwise it can be obtained by a proper choice of the regularizer g (see [START_REF] Duchi | Stochastic methods for composite and weakly convex optimization problems[END_REF]).

Let τ n " ř n i"1 γ i be the discrete time of the algorithm. Define the linearly interpolated process X P CpR `, R d q by: Xptq " x n `t ´τn γ n`1 px n`1 ´xn q for τ n ď t ă τ n`1 .

Following [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF] we will show that X is a perturbed solution of the DI (2). The next two assumptions ensure us that f `g will be a Lyapunov function for the DI (2).

Assumption 3. The functions f and g are path differentiable. Assumption 4 is a classical Sard-type condition. It ensures the fact that if x is a solution to the DI (2), with xp0q P Z, then x is constant. As established in [START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF], it is satisfied as soon as f, g and X are definable.

The next two propositions are not new and can be found in one way or another in e.g. [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF], [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning[END_REF], [START_REF] Majewski | Analysis of nonsmooth stochastic approximation: the differential inclusion approach[END_REF], [START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF]. Nevertheless, since our set of assumptions is slightly different and their proof is a simple application of Section 2.2, for completeness, we include it in Section 4.1. Proposition 4. Let Assumptions 1 and 2 hold, then the family pXpt `¨qq tě0 is relatively compact. Moreover, if a sequence t n Ñ `8 and x P CpR `, R d q is such that dpXpt n `¨q, xq Ñ 0, then x is a solution to the DI (2). Proposition 5. Under Assumptions 1-4, the set acctx n u is included in Z and f `g is constant on acctx n u.

The next theorem tells us that even if acctx n u is not a single point, the time that it takes to px n q to go from one accumulation point to another goes to infinity. This is an extension of [6, Th. 6.i), Th. 7.i)], to the best of our knowledge this result is new in a stochastic and proximal setting. Theorem 6. Let Assumptions 1-4 hold. Let x, y be two distinct points in acctx n u. Consider two sequences n i , n j , with n i ď n j , such that x n i Ñ x and x n j Ñ y. Then τ n j ´τn i Ñ `8.

Under Assumptions 1-3, the same result is true if pf `gqpxq ď pf `gqpyq.

As it is shown in [START_REF] Rios-Zertuche | Examples of pathological dynamics of the subgradient method for lipschitz path-differentiable functions[END_REF], it is possible that acctx n u is not reduced to a unique point. Nevertheless, Th. 6 implies that the "nonconvergence" happens in a very slow manner. Asymptotically, the time spent by the algorithm to move from one accumulation point to another goes to infinity.

We now investigate the question of oscillations. Given U, V two open sets, such that cl U Ă V , we will call I " rn 1 , n 2 s a maximal interval related to U, V if the set X n 2 n 1 :"

tx n 1 , x n 1 `1, . . . , x n 2 u is such that X n 2 n 1 Ă V , X n 2 n 1 X U ‰ H and either x n 1 ´1 or x n 2 `1 is not in V .
The next two results are an extension of [START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF]Th. 7] to a stochastic setting.

Theorem 7 (Long intervals). Let Assumptions 1-4 hold. Consider x P acctx n u and U, V two neighborhoods of x such that cl U Ă V . For i P N, denote I i " rn i 1 , n i 2 s a sequence of distinct maximal intervals related to U, V . Then, either one of I i is unbounded or τ n i 2 ´τn i 1 Ñ `8.

Theorem 8 (Oscillation compensation). Let Assumptions 1-4 hold, and fix U , V and I i as in Th. 7. Denote A " Ť I i , then

ř n i"1 γ i pv i `vg i `vX i q1 A px i q ř n i"1 γ i 1 A px i q ÝÝÝÝÑ nÑ`8 0 . ( 14 
)
Th. 8 gives an intuitive explanation of why Th. 6 holds. Indeed, while the drift coming from one iteration v i `vg i `vX i might not go to zero (as it happens for such a simple example as f pxq " x , g " 0 and X " R d ), on average, it compensates itself. Th. 6 and 8 suggest that the algorithm oscillates around its accumulation set, while the center of these oscillations moves in acctx n u with a vanishing speed.

Let us finish with a remark on the Eq. ( 14). At first sight, maximal intervals in Th. 8 and Th. 7 may seem artificial. A more satisfactory result would be

ř n i"1 γ i pv i `vg i `vX i q1 U px i q ř n i"1 γ i 1 U px i q ÝÝÝÝÑ nÑ`8 0 , ( 15 
)
where U is an open neighborhood of an accumulation point x. Looking at the proof of Th. 8, to obtain Eq. ( 15), we could think of defining maximal intervals as

I i " rn i 1 , n i 2 s such that tx n i 1 , . . . , x n i 2 u Ă U and x n i 1 ´1, x n i 2 `1 R U .
Unfortunately, for this type of intervals we dont have an equivalent of Th. 7, i.e. it may very well be that the quantity τ n i 2 ´τn i 1 is bounded. Actually, it is not very hard to show, that for the function from [14, Section 2], there are x, U such that Eq. ( 15) is false. Nevertheless, as explained in [START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF], Eq. ( 14) is a good approximation of Eq. ( 15). Indeed, apply Th. 8 with U and V " U δ , where U δ " ty P R d : Dz P U, z ´y ă δu, then, as an approximation, we have

lim δÑ0 lim nÑ`8 ř n i"1 γ i`1 pv i `vg i `vX i q1 A px i q ř n i"1 γ i`1 1 A px i q « lim nÑ`8 ř n i"1 γ i`1 pv i `vg i `vX i q1 U px i q ř n i"1 γ i`1 1 U px i q .

Proofs

In the following we will denote x n`1{2 " x n ´γn v n `γn η n`1 and N pT, nq " inftj ě n s.t. τ j ´τn ě T u .

(16)

Proof of Prop. 4 and 5

To put ourselves in the context of Section 2.2 we need to alter the map ´Bf ´Bg ´NX in a way that it verifies assumptions of Th. 2 and 3. While this section is slightly technical, conceptually, we just find a set-valued map G verifying assumptions of Th. 3 and s.t.

x n`1 P Gpx n q. A convinced reader may want to skip to Section 4.2.

We start with two technical lemmas.

Lemma 1. Under Assumptions 1 and 2, almost surely, for every T ą 0, we have:

lim nÑ`8 sup nďjďN pT,nq j ÿ i"n γ i η i`1 " 0 . ( 17 
)
As a consequence, the sequence p x n`1{2 q is almost surely bounded.

Proof. Indeed, since almost surely sup x n ă `8, for each δ ą 0, there is C ą 0 s. 

9 xptq P ´B f pxptqq ´Bgpxptqq ´r N X pxptqq , (18) 
and that x remains in Bp0, Cq X X , then x is a solution to the DI (2). Finally, denoting r Z " tx : 0 P B f pxq `Bgpxq `r N X pxqu, we have the equality r Z X Bp0, Cq " Z X Bp0, Cq.

Proof. Let Π C`1 : R d Ñ R d be the projection on Bp0, C `1q. Define f pxq " f pΠ C`1 pxqq, gpxq " gpΠ C`1 pxqq. By construction, we have that v n P B f px n q and v g n P Bgpx n`1 q and that v n , v g n are bounded by L f , L g the Lipschitz constants of f and g. Hence, since x n`1{2 is bounded, there is

C 2 s.t. supt v X n : n P Nu ă C 2 . Defining r N X pxq " tv : v ď maxpC 2 , L f , L g q, v P Π X pxqu
, where Π X is a projection on X , proves the first claim. The two other statements immediately follow from our construction.

To prove Prop. 4 it remains to show that X is a perturbed solution to the DI (18). For t P rτ n , τ n`1 q, we define ρptq " η n`1 and bptq " x n`1 ´xn . The condition on ρ immediately follows from Lemma 1. The condition on b follows from the following lemma. Proof. By Lemma 1, we have that x n`1{2 ´xn ÝÝÝÝÑ nÑ`8 0, moreover, we have:

gpx n`1 q `1 2γ n x n`1 ´xn`1{2 2 ď gpx n q `1 2γ n x n ´xn`1{2 2 .
Therefore,

1 2γ n x n`1 ´xn 2 ď gpx n q ´gpx n`1 q ´1 γ n xx n`1 ´xn , x n ´xn`1{2 y ď x n`1 ´xn ˜Lg ` x n ´xn`1{2 γ n ¸, and 
x n`1 ´xn ď γ n L g ` x n ´xn`1{2 , which finishes the proof.

To finish the proof of Prop. 4 consider t n Ñ `8 and x s.t. dpXpt n `¨q, xq Ñ 0. Then, by Th. 2, x is a solution to the DI (18), moreover, it remains in Bp0, Cq X X , therefore, it is also a solution to the DI (2).

For the proof of Prop. 5, notice that f `g is path differentiable (as a composition of path differentiable functions). Then, in the same way as in Section 2.4, we have that f `g is a strict Lyapunov function for the DI (18) and for the set Z. Since acctx n u " L X Ă cl Bp0, Cq, by Th. 3 we have that L X Ă r Z X cl Bp0, Cq Ă Z, and that f `g is constant on acctx n u. 

Moreover, if for some h ě 0, pf `gqpxphqq " pf `gqpxp0qq, then xph 1 q " xp0q for every h 1 P r0, hs. If additionally Assumption 4 holds, then:

xphq " xp0q, @h P R `. (20) 
Proof. By Prop. 4, x is a solution to the DI (2), and the first result follows by Eq. ( 9). Under Assumption 4, we have that xpR `q Ă acctx n u Ă Z, hence, by Prop. 5, we have that pf `gq ˝x is constant. Using Assumption 3, we have for all h P R `, 0 " pf `gqpxphqq ´pf `gqpxp0qq " ´ż h

0 9 xpuq 2 du . (21) 
This implies that ş h 0 9 xpuq 2 du " 0. Hence, 9 xphq " 0 for almost every h P R `and we obtain Eq. (20).

Suppose that there is T ą 0 such that τ n j ´τn i ď T . The sequence Xpτ n i `¨q is relatively compact, and after extraction it converges to x a solution to [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]. Extract once again to have τ n j ´τn i Ñ h. Then Xpτ n j q ´Xpτ n i q Ñ xphq ´xp0q " y ´x , and we obtain a contradiction with Lemma 4.

Proof of Th. 7

The next lemma is the key ingredient for the proofs of Th. 7 and Th. 8. Proof. Suppose that we have ε ą 0 and two sequences n k and n k ď j k ď N pT, n k q, such that for n k large enough:

j k ÿ i"n k γ i pv i `vg i `vX i q ą ε .
This implies:

x j k ´xn k `jk ÿ i"n k γ i η i`1 ą ε .
Extract a sequence such that Xpτ n k `¨q converges to x and τ j k ´τn k Ñ h, with h ď T . Then x j k Ñ xphq and x n k Ñ xp0q, but xphq ´xp0q ě ε which is impossible by Lemma 4.

Suppose that no I i is unbounded, then we can choose n i P I i " rn i 1 , n i 2 s such that x n i P U . Since x n i 2 `1 is in V c , after extraction x n i Ñ y 1 and x n i 2 `1 Ñ y 2 , with y 2 ‰ y 1 , moreover:

τ n i 2 `1 ´τn i ´γn i 2 `1 ď τ n i 2 ´τn i 1 . (22) 
By Th. 6, the first term of this inequality tends to infinity.

Proof of Th. 8

Take I i as in Th. 7, and A n " Ť iďn I i . Define u n " a n b n " ř γ i pv i `vg i `vX i q1 An px i q ř γ i 1 An px i q . Then,

u n`1 " a n `ř γ i pv i `vg i `vX i q1 I n`1 px i q b n `ř γ i 1 I n`1 px i q . ( 23 
)
Fix ε ą 0, by Lemma 5, there is n 0 such that, for n ě n 0 , ř j k i"n k γ i pv i `vg i `vX i q ď ε. Decompose I i " rn i 1 , n i 2 s " Ť 1ďkďK i ra i,k , a i,k`1 s, with a i,1 " n i 1 and a i,k`1 " mintN pT, a i,k q, n i 2 u. We obtain:

u n`1 "
a n `řkďKn ř a n,k`1 i"a n,k γ i pv i `vg i `vX i q b n `řkďKn ř a n,k`1 i"a n,k γ i ď a n `pK n qε b n `pK n ´1qT .

By Th. 7, we have that K n Ñ `8 and, therefore, for n large enough:

u n`1 ď a n `2pK n ´1qε b n `pK n ´1qT .

Hence, by induction:

u n`j ď a n `2ε ř n`j´1 k"n pK i ´1q b n `T ř n`j´1 k"n pK i ´1q

.

Therefore, lim u n ď 2ε T . Since ε is arbitrary, this finishes the proof.

Assumption 4 .

 4 The set of Clarke critical values tf pxq `gpxq : x P Zu has an empty interior.

Lemma 3 .

 3 Under Assumptions 1 and 2, almost surely, we have that x n`1 ´xn ÝÝÝÝÑ nÑ`8 0.

Lemma 5 .

 5 Under Assumptions 1-4, we have sup

  t. if we denote A " t@n P N x n ď Cu, then PpAq ą 1 ´δ. Define ηn`1 " η n`1 1 xn ďC , then Erη n`1 |F n s " 0 and sup nPN Er ηn`1 q s ă `8. Hence, by [2, Prop. 4.2], we have Lemma 2. Let Assumptions 1 and 2 hold. Let A P Ξ be a probability one set on which px n q and px n`1{2 q are bounded, and let C be a random variable s.t. x n ă C and C is finite valued on A. Then, for each ω P A, there are two globally Lipschitz functions g, f : R d Ñ R and a bounded set-valued map r N X : R d Ñ R d s.t. in Eq. (11) we have v n pwq P B f px n pwqq, v g n pwq P Bgpx n`1 pwqq and v X n pwq P r N X px n`1 pwqq. Moreover, if x is a solution to the DI:

	sup nďjďN pT,nq	ř j i"n γ i ηi`1 ÝÝÝÝÑ nÑ`8	0. Since δ is arbitrary, Eq. (17) follows.
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