Building prescribed orbit equivalence with the group of integers

Amandine Escalier

To cite this version:

Amandine Escalier. Building prescribed orbit equivalence with the group of integers. 2022. hal03676671v1

HAL Id: hal-03676671
 https://hal.science/hal-03676671v1

Preprint submitted on 24 May 2022 (v1), last revised 6 Oct 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BuILDing prescribed quantitative orbit EQUIVALENCE WITH \mathbb{Z}

Amandine Escalier*

May 20, 2022

Abstract

Two groups are orbit equivalent if they both admit an action on a same probability space that share the same orbits. In particular the OrnsteinWeiss theorem implies that all infinite amenable groups are orbit equivalent to the group of integers. To refine this notion between infinite amenable groups Delabie, Koivisto, Le Maître and Tessera introduced a quantitative version of orbit equivalence. They furthermore obtained obstructions to the existence of such equivalence using the isoperimetric profile. In this article we offer to answer the inverse problem (find a group being orbit equivalent to a prescribed group with prescribed quantification) in the case of the group of integers using the so called Felner tiling shifts introduced by Delabie et al. To do so we use the diagonal products defined by Brieussel and Zheng giving groups with prescribed isoperimetric profile.

CONTENTS

1 InTRODUCTION 2
1.1 Quantitative orbit equivalence 3
1.2 Isoperimetric profile 4
1.3 Main results 5
2 DIAGONAL PRODUCTS OF LAMPLIGHTER GROUPS 6
2.1 Definition of diagonal products 6
2.2 Range and support 9
2.3 From the isoperimetric profile to the group 11
3 FØLNER TILING SHIFTS 13
3.1 Følner tiling shifts 13
3.2 Følner tiling shifts of diagonal products 15
4 COUPLING with \mathbb{Z} 20
4.1 Tiles for \mathbb{Z} 21
4.2 Estimates: diameter and boundary 21
4.3 Integrability of the coupling 23

[^0]5 CONCLUSION AND OPEN PROBLEMS 26
5.1 Optimality and coupling building techniques 26
5.2 Inverse problem 26
Bibliography 27
Notations 28

1 INTRODUCTION

Two groups are orbit equivalent if they admit free measure-preserving actions on a same standard probability space (X, μ) which share the same orbits. This notion -emerging from the seminal work of Dye [Dye59, Dye63] - can be seen as the ergodic version of the famous measure equivalence introduced by Gromov [GNR93]. A famous result of Ornstein and Weiss (see Theorem 1.2) implies that all amenable groups are orbit equivalent. In particular -unlike quasi-isometry- orbit equivalence does not preserve coarse geometric invariants.

To overcome this issue it is therefore natural to look for some refinements of this orbit equivalence notion. Assume for example that G and H are two finitely generated orbit equivalent groups over a probability space (X, μ). Recall that we can consider the Schreier graph associated to the action of G (resp. H) on X and equip it with the usual metric $d_{S_{G}}$ (resp. $d_{S_{H}}$), fixing the length of an edge to one. A first way to refine the measure equivalence is to quantify how close the two actions are by studying for all $\mathrm{g} \in \mathrm{G}$ and $h \in H$ the integrability of the two following maps

$$
x \mapsto \mathrm{~d}_{\mathrm{S}_{\mathrm{G}}}(x, h \cdot x) \quad x \mapsto \mathrm{~d}_{\mathrm{S}_{\mathrm{H}}}(\mathrm{x}, \mathrm{~g} \cdot \mathrm{x}) .
$$

When these two maps are L^{p} we say that the groups are L^{p}-orbit equivalent (see [BFS_{13}] for more details). In this refined framework a famous result of Bader, Furman and Sauer [BFS ${ }_{13}$] implies that any group L^{1}-orbit equivalent to a lattice in $\operatorname{SO}(n, 1)$ for some $n \geqslant 2$ is virtually a lattice in $S O(n, 1)$. This refinement also lead Bowen to prove in the appendix of [Aus16] that volume growth was invariant under L^{1}-orbit equivalence.

Delabie, Koivisto, Le Maitre and Tessera offered in [DKLMTzo] to extend this quantification to a family of functions larger than $\left\{x \mapsto x^{p}, p \in[0,+\infty]\right\}$ (see Definition 1.3). They furthermore showed the monotonicity of the isoperimetric profile under this quantified measure equivalence definition (see Theorem 1.5). In [BZ_{21}] Brieussel and Zheng managed to construct amenable groups with prescribed isoperimetric profile called diagonal product. Considering the monotonicity of the isoperimetric profile, the striking result of Brieussel and Zheng thus triggers a new question: instead of trying to quantify the equivalence relation between two given groups, can one find a group that is orbit equivalent to a prescribed group with a prescribed quantification?

This is the problem we address in this article. Using Brieussel-Zheng's construction we exhibit a group that is orbit equivalent to \mathbb{Z} with a prescribed quantification (see Theorem 1.8). Comparing the obtained coupling to the constraints given by Theorem 1.5 we show that our couplings is close to being optimal for a sense of "optimal" that we precise in Section 1.2.

1.1 Quantitative orbit equivalence

Let us recall some material of [DKLMTzo].A measure-preserving action of a discrete countable group G on a measured space (X, μ) is an action of G on X such that the map $(g, x) \mapsto$ $g \cdot x$ is a Borel map and $\mu(E)=\mu(g \cdot E)$ for all $E \subseteq \mathcal{B}(X)$ and all $g \in G$. We will say that a measure-preserving action of G on (X, μ) is free if for almost every $x \in X$ we have $g \cdot x=x$ if and only if $g=e_{G}$.

We recall below the definition of orbit equivalence and the quantified version as introduced by Delabie, Koivisto, Le Maître and Tessera [DKLMT2o]. We conclude by studying the relation between isoperimetric profile and orbit equivalence.

Definition 1.1

Let G and H be two finitely generated groups. We say that G and H are orbit equivalent if there exists a probability space (X, μ) and a measure-preserving free action of G (resp. H) on (X, μ) such that for almost every $x \in X$ we have $G \cdot x=H \cdot x$. We call (X, μ) an orbit equivalence coupling from G to H .

By the Ornstein Weiss theorem [OW8o, Th. 6] below, all infinite amenable groups are in the same equivalence class.

Theorem 1.2 ([OW8o])
All infinite amenable groups are orbit equivalent to \mathbb{Z}.
To refine this equivalence relation and "distinguish" amenable groups we introduce the quantified version of orbit equivalence.

Recall that if a finitely generated group G acts on a space X and if S_{G} is a finite generating set of G, we can define the Schreier graph associated to this action as being the graph whose set of vertices is X and set of edges is $\left\{(x, s \cdot x) \mid s \in S_{K}\right\}$. This graph is endowed with a natural metric $\mathrm{d}_{\mathrm{S}_{\mathrm{G}}}$ fixing the length of an edge to one. Remark that if $\mathrm{S}_{\mathrm{G}}^{\prime}$ is another generating set of G then there exists $C>0$ such that for all $x \in X$ and $g \in G$

$$
\frac{1}{\mathrm{C}} \mathrm{~d}_{\mathrm{S}_{\mathrm{G}}}(x, g \cdot x) \leqslant \mathrm{d}_{S_{G}^{\prime}}(x, g \cdot x) \leqslant \operatorname{Cd}_{S_{G}}(x, g \cdot x)
$$

Definition 1.3 ([DKLMTzo, Def. 2.18])

We say that an orbit equivalence coupling (X, μ) from G to H is (φ, ψ)-integrable if for all $\mathrm{g} \in \mathrm{G}($ resp. $\mathrm{h} \in \mathrm{H})$ there exists $\mathrm{c}_{\mathrm{g}}>0\left(\right.$ resp. $\left.\mathrm{c}_{\mathrm{h}}>0\right)$ such that

$$
\int_{X} \varphi\left(\frac{1}{c_{g}} d_{S_{H}}(g \cdot x, x)\right) d \mu(x)<+\infty \quad \text { and } \quad \int_{X} \psi\left(\frac{1}{c_{h}} d_{S_{G}}(h \cdot x, x)\right) d \mu(x)<+\infty .
$$

We introduce the constants c_{g} and c_{h} in the definition for the integrability to be independent of the choice of generating sets S_{G} and S_{H}. If $\varphi(x)=x^{p}$ we will sometimes talk of $\left(L^{p}, \psi\right)$-integrability instead of (φ, ψ)-integrability. In particular L^{0} means that no integrability assumption is made. Finally, note that every $\left(L^{\infty}, \psi\right)$-integrable coupling is (φ, ψ)-integrable for any increasing map $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$. When $\varphi=\psi$ we will say that the coupling is φ-integrable instead of (φ, φ)-integrable.

Examples 1.4 ([DKLMTzo]).

1. There exists an orbit equivalence coupling between \mathbb{Z}^{4} and the Heisenberg group $\operatorname{Heis}(\mathbb{Z})$ that is L^{p}-integrable for all $\mathrm{p}<1$.
2. Let $k \in \mathbb{N}^{*}$. Their exists an $\left(L^{\infty}, \exp \right)$-integrable orbit equivalence coupling from the lamplighter group to the Baumslag-Solitar group $\mathrm{BS}(1, \mathrm{k})$.

More examples will be given in Section 3.1. Let us conclude on the quantification by a remark. We chose to refine orbit equivalence using the integrable point of view. But it is not the only possible sharpening. For example Kerr and Li [KL21] defined Shannon orbit equivalence: instead of looking at the integrability of distance maps they consider the Shannon entropy of partitions associated to the coupling.

1.2 Isoperimetric profile

As stated before, the orbit equivalence does not preserve the coarse geometric invariants. But the quantified version defined above allowed Delabie et al. [DKLMTzo] to get a relation between the isoperimetric profiles of two orbit equivalent groups which we describe below.

Recall that if G is generated by a finite set S , the isoperimetric profile of G is defined as^{1}

$$
\mathrm{I}_{\mathrm{G}}(\mathrm{n}):=\sup _{|A| \leqslant n} \frac{|A|}{|\partial A|}
$$

For example the isoperimetric profile of \mathbb{Z} verifies $I_{\mathbb{Z}}(x) \simeq x$. Remark that due to Følner criterion, a group is amenable if and only if its isoperimetric profile is unbounded. Hence we can see the isoperimetric profile as a way to measure the amenability of a group: the faster I_{G} tends to infinity, the more amenable G is.

The behaviour of the isoperimetric profile under measure equivalence coupling is given by the theorem below. If f and g are two real functions we denote $f \preccurlyeq g$ if there exists some constant $C>0$ such that $f(x)=\mathcal{O}(g(C x))$ as x tends to infinity. We write $f \simeq g$ if $\mathrm{f} \preccurlyeq \mathrm{g}$ and $\mathrm{g} \preccurlyeq \mathrm{f}$.

Theorem 1.5 ([DKLMT2o, Th.1])

Let G and H be two finitely generated groups admitting a (φ, L^{0})-integrable orbit equivalence coupling. If φ and $t / \varphi(t)$ are increasing then

$$
\varphi \circ \mathrm{I}_{\mathrm{H}} \preccurlyeq \mathrm{I}_{\mathrm{G}} .
$$

This theorem provides an obstruction for finding φ-integrable couplings with certain functions φ between two amenable groups. For example for a coupling with $H=\mathbb{Z}$ the integrability has to verify $\varphi \preccurlyeq \mathrm{I}_{\mathrm{G}}$. This lead the authors of [DKLMT2o] to ask the following question.

Question 1.6 ([DKLMT20, Question 1.2]). Given an amenable finitely generated group G, does there exist a $\left(I_{G}, L^{0}\right)$-integrable orbit equivalence coupling from G to \mathbb{Z} ?

This interrogation contains actually two questions, starting with the "inverse problem" stated below.

Question 1.7. Given a function φ is there a group G such that there exists a $\left(\varphi, \mathrm{L}^{0}\right)$-measure equivalent from G to \mathbb{Z} ?

[^1]We answer the above question for a large family of maps φ in Theorem 1.8.
The second interrogation that Question 1.6 triggers is whether Theorem 1.5 is optimal when $G=\mathbb{Z}$. In other words one can ask if G in Question 1.7 can be chosen such that $\varphi \simeq \mathrm{I}_{\mathrm{G}}$. We will see that this relation is verified up to a logarithmic factor.

1.3 Main results

In this paper we show the following main theorem and its corollary below.

Theorem 1.8

For all non-decreasing function $\rho:[1,+\infty[\rightarrow[1,+\infty[$ such that $\rho(1)=1$ and $x / \rho(x)$ is non-decreasing, there exists a group G such that

- $\mathrm{I}_{\mathrm{G}} \simeq \rho \circ \mathrm{log} ;$
- there exists an orbit equivalence coupling from G to \mathbb{Z} that is ($\varphi_{\varepsilon}, \exp \circ \rho$)-integrable for all $\varepsilon>0$, where $\varphi_{\varepsilon}(x):=\rho \circ \log (x) /(\log \circ \rho \circ \log (x))^{1+\varepsilon}$.

Let us discuss the optimality of this result. Consider a (φ, L^{0}) -integrable orbit equivalence coupling from some group G to \mathbb{Z}. By Theorem 1.5 it verifies $\varphi \circ I_{\mathbb{Z}} \preccurlyeq I_{G}$. In particular since $\mathrm{I}_{\mathbb{Z}}(\mathrm{x}) \simeq x$, we can not have a better integrability than $\varphi(x) \simeq \mathrm{I}_{\mathrm{G}}$. Since $\mathrm{I}_{\Delta} \simeq \rho \circ \log$ our above theorem is optimal up to a logarithmic error. We discuss this in more length in Section 5.
main ingredients The main tools of the proof of Theorem 1.8 are Brieussel-Zheng's diagonal products (see Section 2) and Følner tiling shifts (see Section 3). We show that a diagonal product Δ admits a coupling with \mathbb{Z} satisfying Theorem 1.8. To prove it we use the integrability criterion given by Theorem 3.5 and involving Følner tiling shifts.

Therefore we compute in Section 3.2 a Følner tiling shift $\left(\Sigma_{n}\right)_{n}$ for Δ. We also estimate the tiles' diameter and the proportion of elements in the boundary. We construct a Følner tiling shift for \mathbb{Z} in Section 4.1 and show that these two tiling shifts verify Theorem 3.5.

Let us now consider the possible generalisations of this result to other groups than the group of integers. To do so we can use the composition of couplings described in [DKLMT2o, Section 2].

Given the above theorem, once we have a measure equivalence coupling from \mathbb{Z} to a group H we can compose the two couplings to obtain a measure equivalence from G to H . If the growth of the isoperimetric profile of H is close to the one of \mathbb{Z}, the integrability of the obtained coupling will be close to the optimal one given by Theorem 1.5. It is for example the case when $\mathrm{H}=\mathbb{Z}^{\mathrm{d}}$.

Corollary 1.9

Let $\mathrm{d} \in \mathbb{N}^{*}$. For all non-decreasing function $\rho:[1,+\infty[\rightarrow[1,+\infty[$ such that $\rho(1)=1$ and $x / \rho(x)$ is non-decreasing, there exists a group G such that

- $\mathrm{I}_{\mathrm{G}} \simeq \rho \circ \log$;
- there exists an orbit equivalence coupling from G to \mathbb{Z}^{d} that is $\left(\varphi_{\varepsilon}, L^{0}\right)$-integrable for all $\varepsilon>0$, where $\varphi_{\varepsilon}(x):=\rho \circ \log (x) /(\log \circ \rho \circ \log (x))^{1+\varepsilon}$.
structure of the paper In Section 2 we present the diagonal products introduced by Brieussel and Zheng. We recall some of the properties shown in [BZ21] and compute Følner sequences. Section 3 is devoted to Følner tiling shifts. These tools built
by Delabie et al. [DKLMTzo] allow us to construct and quantify an orbit equivalence coupling between two groups. In this section we also construct Felner tiling shifts for diagonal products Δ. We show our main theorem in Section 4 combining the results of the two previous sections. Finally we discuss the limits of this construction and some open problems in Section 5.
acknowledgements I would like to thank my advisors, Romain Tessera and Jérémie Brieussel, under whose supervision the work presented in this article was carried out. I thank them for suggesting the topic, sharing their precious insights and for their many useful advices.

2

DIAGONAL PRODUCTS OF LAMPLIGHTER GROUPS

We recall here necessary material from $\left[B Z_{21}\right]$ concerning the definition of Brieussel-Zheng's diagonal products. We give the definition of such a group, recall and prove some results concerning the range (see Definition 2.7) of an element and use it to identify a Folner sequence. Finally we present in Section 2.3 the tools needed to recover such a diagonal product starting with a prescribed isoperimetric profile.

2.1 Definition of diagonal products

Recall that the wreath product of a group G with \mathbb{Z} denoted $G_{i} \mathbb{Z}$ is defined as $G / \mathbb{Z}:=$ $\oplus_{\mathfrak{m} \in \mathbb{Z}} G \rtimes \mathbb{Z}$. An element of G, \mathbb{Z} is a pair (f, t) where f is a map from \mathbb{Z} to G with finite support and t belongs to \mathbb{Z}. We refer to f as the lamp configuration and t as the cursor.

2.1.1 General definition

Let A and B be two finite groups. Let $\left(\Gamma_{m}\right)_{m \in \mathbb{N}}$ be a sequence of finite groups such that each Γ_{m} admits a generating set of the form $A_{m} \cup B_{m}$ where A_{m} and B_{m} are finite subgroups of Γ_{m} isomorphic respectively to A and B. For $a \in A$ we denote a_{m} the copy of a in A_{m} and similarly for B_{m}.

Finally let $\left(k_{m}\right)_{m \in \mathbb{N}}$ be a sequence of integers such that $k_{m+1} \geqslant 2 k_{m}$ for all m. We define $\Delta_{\mathrm{m}}=\Gamma_{\mathrm{m}} \imath \mathbb{Z}$ and endow it with the generating set

$$
S_{\Delta_{\mathrm{m}}}:=\{(\mathrm{id}, 1)\} \cup\left\{\left(\mathrm{a}_{\mathrm{m}} \delta_{0}, 0\right) \mid \mathrm{a}_{\mathrm{m}} \in A_{\mathrm{m}}\right\} \cup\left\{\left(\mathrm{b}_{\mathrm{m}} \delta_{\mathrm{k}_{\mathrm{m}}}, 0\right) \mid \mathrm{b}_{\mathrm{m}} \in A_{\mathrm{m}}\right\}
$$

Definition 2.1

The Brieussel-Zheng's diagonal product associated to $\left(\Gamma_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ and $\left(\mathrm{k}_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ is the subgroup Δ of $\left(\Pi_{m} \Gamma_{\mathrm{m}}\right), \mathbb{Z}$ generated by

$$
S_{\Delta}:=\left\{\left((\mathrm{id})_{\mathfrak{m}}, 1\right)\right\} \cup\left\{\left(\left(a_{m} \delta_{0}\right)_{\mathfrak{m}}, 0\right) \mid a \in A\right\} \cup\left\{\left(\left(b_{m} \delta_{k_{m}}\right)_{\mathfrak{m}}, 0\right) \mid b \in B\right\} .
$$

The group Δ is uniquely determined by the sequences $\left(\Gamma_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ and $\left(k_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$. Let us give an illustration of what an element in such a group looks like. We will denote by \mathbf{g} the sequence $\left(g_{m}\right)_{m \in \mathbb{N}}$.

Example 2.2. We represent in Figure 1 the element (\mathbf{g}, t) of Δ verifying

$$
(\mathbf{g}, \mathrm{t})=\left(\left(g_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}, t\right):=\left(\left(a_{\mathfrak{m}} \delta_{0}\right)_{\mathfrak{m}}, 0\right)\left(\left(b_{\mathfrak{m}} \delta_{k_{\mathfrak{m}}}\right)_{\mathfrak{m}}, 0\right)(0,3)
$$

when $k_{m}=2^{m}$. The cursor is represented by the blue arrow at the bottom of the figure. The only value of g_{0} different from the identity is $g_{0}(0)=\left(a_{0}, b_{0}\right)$. Now if $m>0$ then the only values of g_{m} different from the identity are $g_{m}(0)=a_{m}$ and $g_{m}\left(k_{m}\right)=b_{m}$.

Figure 1: Representation of $(\mathbf{g}, \mathrm{t})=\left(\left(a_{m} \delta_{0}\right)_{\mathfrak{m}}, 0\right)\left(\left(b_{\mathfrak{m}} \delta_{k_{m}}\right)_{\mathfrak{m}}, 0\right)(0,3)$ when $k_{m}=2^{m}$.

2.1.2 The expanders case

In this article we will restrict ourselves to a particular familiy of groups $\left(\Gamma_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ called expanders. Recall that $\left(\Gamma_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ is said to be a sequence of expanders if the sequence of diameters $\left(\operatorname{diam}\left(\Gamma_{\mathfrak{m}}\right)\right)_{\mathfrak{m} \in \mathbb{N}}$ is unbounded and if there exists $\boldsymbol{c}_{0}>0$ such that for all $\mathfrak{m} \in \mathbb{N}$ and all $n \leqslant\left|\Gamma_{m}\right| / 2$ the isoperimetric profile verifies $I_{\Gamma_{m}}(n) \leqslant c_{0}$.

When talking about diagonal products we will always make the following assumptions. We refer to [BZ21, Example 2.3] for an explicit example of diagonal product verifying (H).

Hypothesis (H)

- $\left(k_{m}\right)_{m}$ and $\left(l_{m}\right)_{m}$ are sub-sequences of geometric sequences.
- $k_{m+1} \geqslant 2 k_{m}$ for all $m \in \mathbb{N}$;
- $\left(\Gamma_{m}\right)_{m \in \mathbb{N}}$ is a sequence of expanders such that Γ_{m} is a quotient of $A * B$ and there exists $c>0$ such that $1 / \mathrm{cl}_{\mathrm{m}} \leqslant \operatorname{diam}\left(\Gamma_{\mathrm{m}}\right) \leqslant \mathrm{cl}_{\mathrm{m}}$ for all $\mathrm{m} \in \mathbb{N}$;
- $k_{0}=0$ and $\Gamma_{0}=A_{0} \times B_{0}$;
- $\left.\left\langle\left\langle\left[A_{m}, B_{m}\right]\right\rangle\right\rangle\right\rangle \Gamma_{m} \simeq A_{m} \times B_{m}$ where $\left\langle\left\langle\left[A_{m}, B_{m}\right]\right\rangle\right\rangle$ denotes the normal closure of $\left[A_{m}, B_{m}\right]$.

Recall (see [BZ21, page 9]) that in this case there exist $c_{1}, c_{2}>0$ such that, for all m

$$
\begin{equation*}
c_{1} l_{m}-c_{2} \leqslant \ln \left|\Gamma_{m}\right| \leqslant c_{1} l_{m}+c_{2} \tag{2.1}
\end{equation*}
$$

Finally we adopt the convention of [BZ21, Notation 2.2] and allow $\left(k_{m}\right)_{m}$ to take the value $+\infty$. In this case Δ_{s} is the trivial group. In particular when $k_{1}=+\infty$ the diagonal product Δ corresponds to the usual lamplighter $(A \times B) \imath \mathbb{Z}$.

2.1.3 Relative commutators subgroups

For all $m \in \mathbb{N}$ let $\theta_{m}: \Gamma_{m} \rightarrow\left\langle\left\langle\left[A_{m}, B_{m}\right]\right\rangle\right\rangle \backslash \Gamma_{m} \simeq A_{m} \times B_{m}$ be the natural projection. Let θ_{m}^{A} and θ_{m}^{B} denote the composition of θ_{m} with the projection to A_{m} and B_{m} respectively.

Now let $m \in \mathbb{N}$ and define $\Gamma^{\prime}{ }_{m}:=\left\langle\left\langle\left[A_{m}, B_{m}\right]\right\rangle\right\rangle$. If $\left(g_{m}, t\right)$ belongs to Δ_{m} then there exists a unique $g_{\mathfrak{m}}^{\prime}: \mathbb{Z} \rightarrow \Gamma^{\prime}{ }_{\mathfrak{m}}$ such that $g_{\mathfrak{m}}=g_{\mathfrak{m}}^{\prime} \theta_{\mathfrak{m}}\left(g_{\mathfrak{m}}\right)$.

Example 2.3. Let $(\mathbf{g}, 3)$ be the element described in Figure 1. Then the only non-trivial value of $\theta_{0}\left(g_{0}\right)$ is $\theta_{0}\left(g_{0}(0)\right)=\left(a_{0}, b_{0}\right)$. If $m>0$ then the only non trivial values of $\theta_{m}\left(g_{m}\right)$ are $\theta_{\mathfrak{m}}\left(g_{\mathfrak{m}}(0)\right)=\left(a_{m}, e\right)$ and $\theta_{\mathfrak{m}}\left(g_{\mathfrak{m}}\left(k_{m}\right)\right)=\left(e, b_{m}\right)$. Finally for all m we have $g_{m}^{\prime}=i d$ since there are no commutators appearing in the decomposition of $(\mathbf{g}, 0)$.

Example 2.4. Assume that $k_{m}=2^{m}$ and consider first the element $(f, 0)$ of Δ defined by $(f, 0):=\left(0,-k_{1}\right)\left(\left(a_{m} \delta_{0}\right)_{m}, 0\right)\left(0, k_{1}\right)$. Now define the commutator

$$
(\mathbf{g}, 0)=(f, 0) \cdot\left(\left(b_{m} \delta_{k_{m}}\right)_{m}, 0\right) \cdot(f, 0)^{-1} \cdot\left(\left(b_{m}^{-1} \delta_{k_{m}}\right)_{m}, 0\right)
$$

and let us describe the values taken by \mathbf{g} and the induced maps $\theta_{\mathfrak{m}}\left(g_{m}\right)$ and g_{m}^{\prime} (see Figure 2 for a representation of \mathbf{g}). The only non-trivial commutator appearing in the values taken by g is $g_{1}\left(k_{1}\right)$ which is equal to $a_{1} b_{1} a_{1}^{-1} b_{1}^{-1}$. In other words g_{0} is the identity, thus $\theta_{0}=\mathrm{id}$. Moreover when $m=1$ we have $\theta_{1}=\mathrm{id}$ and the only value of $g_{1}^{\prime}(x)$ different from e is $g_{1}^{\prime}\left(k_{1}\right)=a_{1} b_{1} a_{1}^{-1} b_{1}^{-1}$ (on a blue background in Figure 2). Finally if $m>1$ then g_{m} is the identity thus $\theta_{m}=\mathrm{id}$ and $\mathrm{g}_{\mathrm{m}}^{\prime}=\mathrm{id}$.

Figure 2: Representation of $(\mathbf{g}, 0)$ defined in Example 2.4
Let us study the behaviour of this decomposition under product of lamp configurations.
Claim 2.5. If $g_{\mathfrak{m}}, f_{\mathfrak{m}}: \mathbb{Z} \rightarrow \Gamma_{\mathfrak{m}}$ then $\left(g_{\mathfrak{m}} f_{\mathfrak{m}}\right)^{\prime}=g_{\mathfrak{m}}^{\prime} \theta_{\mathfrak{m}}\left(g_{\mathfrak{m}}\right) f_{m}^{\prime}\left(\theta_{\mathfrak{m}}\left(g_{\mathfrak{m}}\right)\right)^{-1}$.
Proof. Since $g_{m}=\theta_{m}\left(g_{m}\right) g_{m}^{\prime}$ and $f_{m}=\theta_{m}\left(f_{m}\right) f_{m}^{\prime}$ we can write

$$
g_{\mathfrak{m}} f_{\mathfrak{m}}=g_{\mathfrak{m}}^{\prime} \theta_{\mathfrak{m}}\left(g_{\mathfrak{m}}\right) \cdot f_{m}^{\prime} \theta_{\mathfrak{m}}\left(f_{\mathfrak{m}}\right)=g_{\mathfrak{m}}^{\prime} \theta_{\mathfrak{m}}\left(g_{\mathfrak{m}}\right) f_{m}^{\prime} \theta_{\mathfrak{m}}\left(g_{\mathfrak{m}}\right)^{-1} \theta_{\mathfrak{m}}\left(g_{\mathfrak{m}}\right) \theta_{\mathfrak{m}}\left(f_{\mathfrak{m}}\right)
$$

But $\theta_{m}\left(g_{m}\right) \theta_{m}\left(f_{m}\right)$ takes values in $A_{m} \times B_{m}$ and $\Gamma^{\prime}{ }_{m}$ is a normal subgroup of Γ_{m} thus the map $g_{m}^{\prime} \theta_{\mathfrak{m}}\left(g_{m}\right) f_{m}^{\prime} \theta_{\mathfrak{m}}\left(g_{m}\right)^{-1}$ takes values in $\Gamma^{\prime}{ }_{m}$. Hence the claim.

Combining Lemma 2.7 and Fact 2.9 of [$\left.\mathrm{BZ}_{21}\right]$, we get the following result.

Lemma 2.6

Let $(\mathbf{g}, \mathbf{t}) \in \Delta$. For all $\boldsymbol{m} \in \mathbb{N}$ and $x \in \mathbb{Z}$

$$
g_{\mathfrak{m}}(x)=g_{\mathfrak{m}}^{\prime}(x) \theta_{\mathfrak{m}}^{A}\left(g_{0}(x)\right) \theta_{m}^{B}\left(g_{0}\left(x-k_{m}\right)\right)
$$

In particular the sequence $\mathbf{g}=\left(\boldsymbol{g}_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ is uniquely determined by g_{0} and $\left(g_{\mathfrak{m}}^{\prime}\right)_{\mathfrak{m} \in \mathbb{N}}$.
In the next subsection we are going to see that we actually need only a finite number of elements of the sequence $\left(g_{m}^{\prime}\right)_{m \in \mathbb{N}}$ to characterize \mathbf{g}.

2.2 Range and support

In this subsection we introduce the notion of range of an element (\mathbf{g}, t) in Δ and link it to the supports of the lamp configurations $\left(g_{m}\right)_{m \in \mathbb{N}}$.

2.2.1 Range

We denote by $\pi_{2}: \Delta \rightarrow \mathbb{Z}$ the projection on the second factor and for all $n \in \mathbb{N}$ denote by $\mathfrak{l}(n)$ the integer such that $k_{\mathfrak{l}(n)} \leqslant n<k_{\mathfrak{l}(n)+1}$.

Definition 2.7

If $w=s_{1} \ldots s_{m}$ is a word over S_{Δ} we define its range as

$$
\operatorname{range}(w):=\left\{\pi_{2}\left(\prod_{j=1}^{i} s_{j}\right) \mid i=1, \ldots, n\right\} .
$$

The range is a finite subinterval of \mathbb{Z}. It represents the set of sites visited by the cursor.

Definition 2.8

The range of an element $\delta \in \Delta$ is defined as the minimal diameter interval obtained as the range of a word over S_{Δ} representing δ. We denote it range(δ).

When there is no ambiguity we will denote range(δ) the diameter of this interval.
Example 2.9. Let $(\mathbf{g}, 0) \in \Delta$ such that range $(\mathbf{g}, 0)=[0,6]$, that is to say: the cursor can only visit sites between 0 and 6 . Then the map g_{m} can "write" elements of \boldsymbol{A}_{m} only on sites visited by the cursor, that is to say from 0 to 6 , and it can write elements of B_{m} only from k_{m} to $6+k_{m}$. Thus g_{0} is supported on $[0,6]$, since $k_{0}=0$. Moreover, commutators (and hence elements of $\left.\Gamma^{\prime}{ }_{m}\right)$ can only appear between k_{m} and 6 , thus $\operatorname{supp}\left(g^{\prime}{ }_{m}\right) \subseteq\left[k_{m}, 6\right]$. In particular supp $\left(g^{\prime}{ }_{m}\right)$ is empty when $k_{m}>6$.
Such a $(\mathbf{g}, \mathbf{0})$ is represented in Figure 3 for $k_{m}=2^{m}$.

Figure 3: An element of Δ
Recall that $g_{m}: \mathbb{Z} \rightarrow \Gamma_{m}$. If $m \leqslant I(6)$, then $g_{m}(x)$ belongs to A_{m} if $x \in\left[0, k_{m}-1\right]$, it belongs to Γ_{m} if $x \in\left[k_{m}, 6\right]$ and to B_{m} if $x \in\left[7,6+k_{m}\right]$ and equals e elsewhere. If $m>l(6)$ then $g_{\mathfrak{m}}(x)$ belongs to A_{m} if $x \in[0,6]$ and to B_{m} if $x \in\left[k_{m}, 6+k_{m}\right]$ and equals e elsewhere.

Let us now recall a useful fact proved in [BZ 2_{21}].

Claim 2.10 $([$ BZ 21 , Fact 2.9 $])$. An element $(g, t) \in \Delta$ is uniquely determined by t, g_{0} and the sequence $\left(g_{m}^{\prime}\right)_{m \leqslant(\text { range }}(\underline{g}, \mathrm{t})$).
Example 2.11. Consider again $(\mathbf{g}, \mathbf{0}) \in \Delta$ such that $\operatorname{range}(\mathbf{g}, \mathbf{0})=[0,6]$, which was illustrated in Figure 3 . Since $k_{3}=8>6$, the element $(\mathbf{g}, 0)$ is uniquely determined by the data g_{0} (that is to say, the values read in the bottom line) and the values of g_{i}^{\prime} for $i=1,2$ (namely, the value taken in the blue area). Figure 4 represents the aforementioned characterizing data.

Figure 4: Data needed to characterized \mathbf{g} such that range $(\mathbf{g}) \subset[0,6]$ when $k_{m}=2^{m}$

2.2.2 Relation between range and support

Recall that for all $m \in \mathbb{N}$ we can write $g_{m}(x)=g_{m}^{\prime}(x) \theta_{m}^{A}\left(g_{0}(x)\right) \theta_{m}^{B}\left(g_{0}\left(x-k_{m}\right)\right)$.
To work with the Felner sequence we compute in Section 2.2.3 and deduce a Felner tiling shiff from it, we will need to link the range of (\mathbf{g}, t) in Δ with the support of g_{0} and the sequence of supports of $\left(g^{\prime}{ }_{m}\right)_{m \in \mathbb{N}}$. This is what the following lemma formalises.

Lemma 2.12

Let $n \in \mathbb{N}$ and take $(\mathbf{g}, \mathrm{t}) \in \Delta$. Then range (\mathbf{g}, t) is included in $[0, n]$ if and only if

$$
\begin{cases}\mathrm{t} \in[0, \mathrm{n}] & \\ \operatorname{supp}\left(\mathrm{g}_{0}\right) \subset[0, \mathrm{n}] & \\ \operatorname{supp}\left(\mathrm{g}_{\mathrm{m}}^{\prime}\right) \subseteq\left[\mathrm{k}_{\mathrm{m}}, \mathrm{n}\right] & \forall 1 \leqslant \mathfrak{m} \leqslant \mathfrak{l}(\mathfrak{n}) \\ \mathrm{g}_{\mathrm{m}}^{\prime} \equiv \mathrm{e} & \forall \mathfrak{m}>\mathfrak{l}(\mathfrak{n}) .\end{cases}
$$

Proof. Let $\mathfrak{n} \in \mathbb{N}$ andf first assume that range $(\mathbf{g}, \mathrm{t}) \subseteq[0, \mathrm{n}]$, that is to say: the cursor can only visit sites between 0 and n. Let $(\mathbf{g}, \mathrm{t})=\prod_{i=0}^{\mathrm{l}} \mathrm{s}_{\mathrm{i}}$ be a decomposition in a product of elements of S_{Δ} of minimal length. Let $\mathfrak{m} \in \mathbb{N}$, then by definition of S_{Δ} an element s_{i} can "write" elements of A_{m} only between 0 and n, and it can write elements of B_{m} only between k_{m} and $n+k_{m}$. Thus g_{0} is supported on $[0, n]$, since $k_{0}=0$. And commutators can only appear between k_{m} and n, hence supp $\left(g_{m}^{\prime}\right) \subseteq\left[k_{m}, n\right]$. In particular if $k_{m}>n$ then $g_{m}^{\prime} \equiv e$. Finally we obtain that t belongs to $[0, n]$ by noting that $t=\pi_{2}\left(\prod_{j=1}^{l} s_{j}\right)$.

Now let us prove the other way round. Consider $\mathfrak{m} \in[1, \mathfrak{l}(\mathfrak{n})]$ then $g_{\mathfrak{m}}^{\prime}(x) \in \Gamma^{\prime}{ }_{m}$. It is therefore a product of conjugates of commutators of the form $\left[a_{m}, b_{m}\right]$, where $a_{m} \in A_{m}$ and $b_{m} \in B_{m}$. Applying Example 2.4 with x instead of k_{1} we can show that we can write [$\left.a_{m}, b_{m}\right]$ at $g_{m}(x)$ without changing any other entry in \boldsymbol{g} (see also Figure 2). In a similar way, we can write a conjugate of $\left[a_{m}, b_{m}\right]$ at $g_{m}(x)$ without changing any other entry in \boldsymbol{g}. Finally writing $\left(a_{0}, b_{0}\right)$ at the entry $g_{0}(x)$ writes a_{m} at $g_{m}(0)$ and b_{m} at $g_{m}\left(k_{m}\right)$ (see also Figure 1). Therefore using Lemma 2.6 we can obtain ($\mathbf{g}, \mathbf{0}$) by first considering the word in Δ that writes all the values of g_{0}, then multiplying it on the left by a word that writes the value of g_{1}^{\prime}, and continue this process to write all g_{m}^{\prime} for $\mathfrak{m} \leqslant \mathfrak{l}(\mathfrak{n})$.

Let us now check that the cursor remains in $[0, n]$ when writing g_{0} and g_{m}^{\prime}. Take $m \in$ $[1, \mathfrak{l}(n)]$, then $k_{m} \leqslant n$ and $\operatorname{supp}\left(g_{m}^{\prime}\right)$ is contained in $\left[k_{m}, n\right]$. Now let $x \in \operatorname{supp}\left(g_{m}^{\prime}\right) \subseteq$ $\left[k_{\mathfrak{m}}, \mathfrak{n}\right]$. Since $\Gamma^{\prime}{ }_{m} \subseteq \Gamma_{m}$ which is generated by $A_{m} \times B_{m}$ we can decompose $g_{m}^{\prime}(x)$ as a product of elements in A_{m} and B_{m}. To write some $a_{m} \in A_{m}$ at the position x the cursor needs to visit sites in $[0, x]$. To write some $b_{m} \in B_{m}$ it needs to visit sites in $\left[0, x-k_{m}\right]$. Therefore, the cursor remains in $[0, n]$ when writing $g_{\mathfrak{m}}(x)$ at position x. Finally, for all x the cursor needs only to visit position x in order to write $g_{0}(x)$. Since supp $\left(g_{0}\right)$ is contained in $[0, n]$ then the cursor needs only to visit sites between 0 and n.

Combining what precedes with Lemma 2.6 and the hypothesis that $t \in[0, n]$, we get that the cursor needs only to visit cites between $[0, n]$ to write (\mathbf{g}, t). Hence the lemma.

2.2.3 Følner sequence

In this subsection we describe a Følner sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ for Δ. Recall that $\mathfrak{l}(n)$ denotes the integer such that $k_{\mathfrak{l}(n)} \leqslant n<k_{\mathfrak{l}(n)+1}$.

Proposition 2.13

The following sequence is a Følner sequence of Δ

$$
F_{n}:=\{(f, t) \mid \quad \text { range }(f, t) \subseteq\{0, \ldots, n-1\}\}
$$

Proof. Let $n \in \mathbb{N}$ and $\delta \in F_{n}$ and let $s_{1}, \ldots, s_{l} \in S_{\Delta}$ such that $\delta=s_{1} \cdots s_{l}$. Now take $s_{l+1} \in S_{\Delta}$. If $s_{l+1}=\left(\left(a_{m} \delta_{0}\right), 0\right)$ for some $a \in A$ or if $s_{l+1}=\left(\left(b_{m} \delta_{k_{m}}\right), 0\right)$ for some $b \in B$ then since the cursor of s_{l+1} equals 0 ,

$$
\operatorname{range}\left(\delta s_{l+1}\right)=\left\{\pi_{2}\left(\prod_{j=1}^{i} s_{j}\right) \mid i=1, \ldots, l+1\right\}=\operatorname{range}(\delta)
$$

Thus $\delta s_{l+1} \in F_{n}$. Finally denote by $[x, y]$ the range of δ. Using the same formula as above we get

$$
\begin{aligned}
\operatorname{range}(\delta \cdot(\mathrm{id}, 1)) \subseteq[x, y+1] & \text { if } t=y \\
\operatorname{range}(\delta \cdot(\mathrm{id}, 1)) \subseteq[x, y] & \text { if } t<y
\end{aligned}
$$

Hence for all $\mathrm{t}<\mathrm{n}-1$ we have range $(\delta \cdot(\mathrm{id}, 1)) \subseteq[0, n-1]$. Now if $\mathrm{t}=\mathrm{n}-1$ then the cursor of $\delta(\mathrm{id}, 1)$ visits the site n, thus range $(\delta \cdot(i d, 1))$ is not included in $[0, n-1]$ and therefore $\delta(i d, 1)$ does not belong to F_{n}.

A similar argument shows that $\delta(0,-1)$ belongs to F_{n} if and only if $t \neq 0$. Hence $\partial F_{n}=$ $\left\{(f, t) \in F_{n}: t=0, n\right\}$ and thus

$$
\left|\partial F_{n}\right| /\left|F_{n}\right|=2 / n \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

2.3 From the isoperimetric profile to the group

We saw how to define a diagonal product from two sequences $\left(k_{m}\right)_{m}$ and $\left(l_{m}\right)_{m}$. In this section we recall the definition given in [BZ21, Appendice B$]$ of a Brieussel-Zheng's group from its isoperimetric profile. We conclude with some useful results concerning the metric of these groups.

2.3.1 Definition of Δ

Recall that in the particular case of expanders (see Section 2.1.2) a Brieussel-Zheng's group is uniquely determined by the sequences $\left(k_{m}\right)_{m \in \mathbb{N}}$ and $\left(l_{m}\right)_{m \in \mathbb{N}}$ (where l_{m} corresponds to the diameter of Γ_{m}). Thus, starting from a prescribed function ρ, we will define sequences $\left(k_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ and $\left(l_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ such that the corresponding Δ verifies $I_{\Delta} \simeq \rho \circ \log$. Let

$$
\mathcal{C}:=\left\{\zeta:[1,+\infty) \rightarrow[1,+\infty) \left\lvert\, \begin{array}{c}
\zeta \text { continue, } \zeta(1)=1 \\
\zeta \text { and } x \mapsto x / \zeta(x) \text { non-decreasing }
\end{array}\right.\right\} .
$$

Equivalently this is the set of functions ζ satisfying $\zeta(1)=1$ and

$$
\begin{equation*}
(\forall x, c \geqslant 1) \quad \zeta(x) \leqslant \zeta(c x) \leqslant c \zeta(x) \tag{2.2}
\end{equation*}
$$

So let $\rho \in \mathcal{C}$. Combining [BZ21, Proposition B. 2 and Theorem 4.6] we can show the following result (remember that with our convention the isoperimetric profile considered in $\left[B Z_{21}\right]$ corresponds to $1 / \mathrm{I}_{\Delta}$).

Proposition 2.14

Let $\kappa, \lambda \geqslant 2$. For any $\rho \in \mathcal{C}$ there exists a subsequence $\left(k_{m}\right)_{m \in \mathbb{N}}$ of $\left(\kappa^{n}\right)_{n \in \mathbb{N}}$ and a subsequence $\left(l_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ of $\left(\lambda^{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbb{N}}$ such that the group Δ defined in Section 2.1.2 verifies $\mathrm{I}_{\Delta}(\mathrm{x}) \simeq \rho \circ \log$.

Example 2.15 ([BZ21, Example 4.5]). Let $\alpha>0$. If $\rho(x):=x^{1 /(1+\alpha)}$ then the diagonal product Δ defined by $k_{m}=\kappa^{m}$ and $l_{m}=\kappa^{\alpha m}$ verifies $I_{\Delta} \simeq \rho \circ \log$.

2.3.2 Technical tools

We recall the intermediate functions defined in [BZ_{21}, Appendix B] and some of their properties.

Let $\rho \in \mathcal{C}$ and let f such that $\rho(x)=x / f(x)$. The construction of a group corresponding to the given isoperimetric profile $\rho \circ \log$ is based on the approximation of f by a piecewise linear function \bar{f}. For the quantification of orbit equivalence, many of our computations will use \bar{f} and some of its properties. We recall below all the needed results, beginning with the definition of \bar{f}.

Lemma 2.16

Let $\rho \in \mathcal{C}$ and f such that $\rho(\mathrm{x})=\mathrm{x} / \mathrm{f}(\mathrm{x})$. Let $\left(\mathrm{k}_{\mathrm{m}}\right)$ and $\left(\mathrm{l}_{\mathrm{m}}\right)$ given by Proposition 2.14 above and Δ the corresponding diagonal product. The function \bar{f} defined by

$$
\bar{f}(x):= \begin{cases}l_{m} & \text { if } x \in\left[k_{m} l_{m}, k_{m+1} l_{m}\right] \tag{2.3}\\ \frac{x}{k_{m+1}} & \text { if } x \in\left[k_{m+1} l_{m}, k_{m+1} l_{m+1}\right]\end{cases}
$$

verifies $\bar{f} \simeq f$. In particular the map $\bar{\rho}$ defined by $\bar{\rho}(x)=x / \bar{f}(x)$ verifies $\bar{\rho} \simeq \rho$.

Example 2.17. If $\rho(x)=x$ then $f(x)=1$ leads to $l_{m}=1$ for all m and $k_{m}=+\infty$ for all $m \geqslant 1$. In this case $\Delta=(A \times B) \imath \mathbb{Z}$.

Remark that both \bar{f} and $\bar{\rho}$ belong to \mathcal{C}. In particular they verify eq. (2.2), which is only true when c and x are greater than 1 . When $\mathrm{c}<1$ we get the following inequality.

Claim 2.18. If $0<c^{\prime}<1$ and $x^{\prime} \geqslant 1 / c^{\prime}$ then $c^{\prime} \bar{\rho}\left(x^{\prime}\right) \leqslant \bar{\rho}\left(c^{\prime} x^{\prime}\right)$.

Proof. If $0<c^{\prime}<1$ then $1 / c^{\prime}>1$, thus we can apply eq. (2.2) with $c=1 / c^{\prime}$ and $x=c^{\prime} x$ to obtain $\bar{\rho}\left(x^{\prime}\right)=\bar{\rho}\left(\frac{1}{c^{\prime}} c^{\prime} x^{\prime}\right)=\bar{\rho}(c x) \leqslant c \bar{\rho}(x)=\frac{1}{c^{\prime}} \bar{\rho}\left(c^{\prime} x^{\prime}\right)$.

2.3.3 Metric

We recall here some useful material about the metric of Δ and refer to [BZ ${ }_{21}$, Section 2.2] for more details. First, let $(x)_{+}:=\max \{x, 0\}$.

Definition 2.19

For $\mathfrak{j} \in \mathbb{Z}$ and $m \in \mathbb{N}$ let $I_{j}^{m}:=\left[j k_{m} / 2,(j+1) k_{m} / 2-1\right]$. Let $f_{m}: \mathbb{Z} \rightarrow \Gamma_{m}$. The essential contribution of f_{m} is defined as

$$
E_{m}\left(f_{m}\right):=k_{m} \sum_{j: \text { range }\left(f_{m}, t\right) \cap I_{j}^{m} \neq \phi} \max _{x \in I_{j}^{m}}\left(\left|f_{m}(x)\right|_{r_{m}}-1\right)_{+} .
$$

The following proposition sums up [BZ21, Lemma 2.13, Proposition 2.14].

Proposition 2.20

For any $\delta=(\mathbf{f}, \mathrm{t}) \in \Delta$ we have

$$
\begin{aligned}
|(f, t)|_{\Delta} & \leqslant 500 \sum_{m=0}^{l(\operatorname{range}(\delta))}\left|\left(f_{m}, t\right)\right|_{\Delta_{m}}, \\
\left|\left(f_{m}, t\right)\right|_{\Delta_{m}} & \leqslant 9\left(\operatorname{range}\left(f_{m}, t\right)+E_{m}\left(f_{m}\right)\right) .
\end{aligned}
$$

3 FØLNER TILING SHIFTS

We start by recalling some material of [DKLMTzo] about Følner tiling shifts and then construct such a tiling for diagonal products.

3.1 Følner tiling shifts

The tools we are going to use to build orbit equivalence are Følner tiling shifts ${ }^{2}$. These sequences lead to Følner sequences defined recursively: the term of rank $(n+1)$ is composed of a finite number of translates of the n-th term of the sequence.

Definition 3.1

Let G be an amenable group and $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ be a sequence of finite subsets of G. Define by induction the sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ by $T_{0}:=\Sigma_{0}$ and $T_{n+1}:=T_{n} \Sigma_{n+1}$. We say that $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ is a (left) Følner tiling shift if

- $\left(T_{n}\right)_{n \in \mathbb{N}}$ is a left Følner sequence, viz.

$$
(\forall g \in G) \quad \lim _{n \rightarrow \infty} \frac{\left|g T_{n} \backslash T_{n}\right|}{\left|T_{n}\right|}=0
$$

- $\mathrm{T}_{\mathrm{n}+1}=\sqcup_{\sigma \in \Sigma_{n+1}} \sigma \mathrm{~T}_{\mathrm{n}}$.

We call Σ_{n} the set of shifts and $\left(T_{n}\right)_{n \in \mathbb{N}}$ the tiles.

[^2]We can also consider right Følner tiling shifts, that is to say sequences $\left(\Sigma_{n}\right)_{n}$ such that $T_{n+1}:=\Sigma_{n+1} T_{n}$ defines a right Følner sequence.

Definition 3.2

Let S be a generating part of G. We say that $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ is a $\left(R_{n}, \varepsilon_{n}\right)$-Folner tiling shift if for all n we have

$$
\operatorname{diam}\left(T_{n}\right) \leqslant R_{n}, \quad\left|s T_{n} \backslash T_{n}\right| \leqslant \varepsilon_{n}\left|T_{n}\right| \quad(\forall s \in S)
$$

Delabie et al. showed in [DKLMT20] the two following examples.
Example 3.3. If $\mathrm{G}=\mathbb{Z}$ the sequence defined by $\Sigma_{n+1}:=\left\{0,2^{n}\right\}$ is a $\left(2^{n}, 2^{1-n}\right)$-Følner tiling shift and the sequence $\left(T_{n}\right)$ thus defined verifies $T_{n}=\left[0,2^{n}-1\right]$.

Example 3.4. If $G=(\mathbb{Z} / 2 \mathbb{Z}) \imath \mathbb{Z}$ then the sequence $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
\left\{\begin{aligned}
\Sigma_{0} & :=\{(f, 0) \in G \mid \operatorname{supp}(f) \subseteq\{0,1\}\} \\
\Sigma_{n+1} \quad:= & \left\{(f, 0) \in G \mid \operatorname{supp}(f) \subseteq\left[2^{n}, 2^{n+1}-1\right]\right\} \\
& \cup\left\{\left(f, 2^{n}\right) \in G \mid \operatorname{supp}(f) \subseteq\left[0,2^{n}-1\right]\right\}
\end{aligned}\right.
$$

is a right $\left(3 \cdot 2^{n}, 2^{-n}\right)$-Følner tiling shift. Moreover the tiling $\left(T_{n}\right)_{n \in \mathbb{N}}$ thus defined verifies $T_{n}=\left\{(f, m) \in G \mid \operatorname{supp}(f) \subseteq\left[0,2^{n}-1\right], m \in\left[0,2^{n}-1\right]\right\}$.

In [DKLMTzo] the authors gave a condition for two amenable groups admitting both Følner tiling shifts to be orbit equivalent. Indeed if G admits a Følner tiling shift $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ then we can define $X:=\prod_{n \in \mathbb{N}} \Sigma_{n}$ and endow it with an action of G. Up to measure zero, two elements of X will be in the same orbit under that action if and only if they differ by a finite number of indices. The equivalence relation thus induced is called the cofinite equivalence relation. Now if G^{\prime} admits a Følner tiling shift $\left(\Sigma_{n}^{\prime}\right)_{n \in \mathbb{N}} \operatorname{verifying}\left|\Sigma_{n}\right|=\left|\Sigma_{n}^{\prime}\right|$ for all integer n, then there exists a natural bijection between X and $X^{\prime}:=\prod_{n \in \mathbb{N}} \Sigma_{n}^{\prime}$ which preserves the cofinite equivalence relation. That is to say G and H are orbit equivalent. Furthermore they showed that if we know the diameter and the ratio of elements in the boundary of each tile then we can deduce the integrability of the coupling. This is what the following proposition sums up.

Theorem 3.5 ([DKLMTzo, Prop. 6.6])

Let G and G^{\prime} be two discrete amenable groups and let $\left(\Sigma_{n}\right)_{n}$ be an $\left(\varepsilon_{n}, R_{n}\right)$-Følner tiling shift for G and $\left(\Sigma_{n}^{\prime}\right)_{n}$ be an $\left(\varepsilon^{\prime}{ }_{n}, R^{\prime}{ }_{n}\right)$-Følner tiling shift for G^{\prime}.

If $\left|\Sigma_{n}\right|=\left|\Sigma^{\prime}{ }_{n}\right|$, then the groups are orbit equivalent over $X=\prod_{n \in \mathbb{N}} \Sigma_{n}$. Moreover if $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a non-decreasing map such that the sequence $\left(\varphi\left(2 \mathbb{R}_{n}^{\prime}\right)\left(\varepsilon_{n-1}-\varepsilon_{n}\right)\right)_{n \in \mathbb{N}}$ is summable, then the coupling from G to G^{\prime} is (φ, L^{0})-integrable.

Using this tiling technique and the above theorem, Delabie et al. [DKLMTzo] obtained the first point of Examples 1.4 and the two following quantifications.

Example 3.6. For all n and m there exists an orbit equivalence coupling from \mathbb{Z}^{m} to \mathbb{Z}^{n} which is $\left(\varphi_{\varepsilon}, \psi_{\epsilon}\right)$-integrable for every $\varepsilon>0$ where

$$
\varphi_{\varepsilon}(x)=\frac{x^{n / m}}{\log (x)^{1+\varepsilon}} \quad \psi_{\varepsilon}(x)=\frac{x^{m / n}}{\log (x)^{1+\varepsilon}}
$$

Remark that in particular for all $\mathrm{p}<\mathrm{n} / \mathrm{m}$ and $\mathrm{q}<\mathrm{m} / \mathrm{n}$ there exists a ($\mathrm{L}^{\mathrm{p}}, \mathrm{L}^{\mathrm{q}}$) -orbit equivalence coupling from \mathbb{Z}^{m} to \mathbb{Z}^{n}.

Example 3.7. Let $m \geqslant 2$. There exists an orbit equivalence coupling between \mathbb{Z} and $\mathbb{Z} \mathbb{m}_{\mathbb{Z}} \mathbb{Z}$ that is $\left(\exp , \varphi_{\varepsilon}\right)$-integrable for all $\varepsilon>0$ where

$$
\varphi_{\varepsilon}(x)=\frac{\log (x)}{\log (\log (x))^{1+\varepsilon}} .
$$

Note that the above example corresponds to the case when $\rho(x)=x$ in our Theorem 1.8.

3.2 Følner tiling shifts of diagonal products

Let $\left(k_{m}\right)_{m}$ and $\left(l_{m}\right)_{m}$ be two sequences verifying the conditions of (H) and consider Δ the associated diagonal product (see Section 2). We define below a Følner tiling shift for Δ. Our goal is to obtain a tiling verifying $T_{n}=F_{\kappa^{n}}$. After defining the shifts sets Σ_{n} we prove that the sequence $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ is actually a Følner tiling shift. Finally we precise this last statement by computing $\left(R_{n}\right)_{n \in \mathbb{N}}$ and $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ such that $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ is a $\left(R_{n}, \varepsilon_{n}\right)$-Følner tiling shift (see Definition 3.1).

3.2.1 Definition of the shifts

For any $n \in \mathbb{N}$, let $\mathfrak{L}(n)=\mathfrak{l}\left(\kappa^{n}-1\right)$, that is to say $\mathfrak{L}(n)$ is the integer such that $k_{\mathfrak{L}(n)} \leqslant$ $\kappa^{n}-1<k_{\mathfrak{L}(n)+1}$. For example if $k_{n}:=\kappa^{n}$ for all $n \in \mathbb{N}$, then $\mathfrak{L}(n)=n-1$.

Before defining our sequence $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$, let us show some practical results on \mathfrak{L}. First remark that since $\left(k_{n}\right)_{n \in \mathbb{N}}$ is a subsequence of $\left(\kappa^{n}\right)_{n \in \mathbb{N}}$, it verifies $k_{n} \geqslant \kappa^{n}$ for all $n \in \mathbb{N}$. Thus $\mathfrak{L}(n) \leqslant n$ and

$$
k_{\mathfrak{L}(\mathfrak{n})}<\kappa^{n} \leqslant k_{\mathfrak{L}(n)+1}
$$

Claim 3.8. Let $\mathfrak{n} \geqslant 0$, then either $\mathfrak{L}(n+1)=\mathfrak{L}(n)$ or $\mathfrak{L}(n+1)=\mathfrak{L}(n)+1$. Moreover in this second case $k_{\mathfrak{L}(n+1)}=\kappa^{n}$.

Proof. Recall that by definition $\mathfrak{L}(m)=\max \left\{i \in \mathbb{N} \mid k_{i} \leqslant \kappa^{m}-1\right\}$ for all $m \in \mathbb{N}$.
Let $\mathfrak{n} \in \mathbb{N}$, then $\mathfrak{L}(n+1) \geqslant \mathfrak{L}(n)$. Moreover if $k_{\mathfrak{L}(n)+1} \geqslant \kappa^{n+1}$ then $\mathfrak{L}(n+1)<\mathfrak{L}(n)+1$. That is to say $\mathfrak{L}(n+1) \leqslant \mathfrak{L}(n)$ and thus $\mathfrak{L}(n+1)=\mathfrak{L}(n)$.

On the contrary, if $k_{\mathfrak{L}(n)+1}<\kappa^{n+1}$ then $\mathfrak{L}(n+1) \geqslant \mathfrak{L}(n)+1$. But, by definition of $\mathfrak{L}(n)$ it verifies $k_{\mathfrak{L}(n)+1} \geqslant \kappa^{n}$ and by construction of $\left(k_{m}\right)_{\mathfrak{m} \in \mathbb{N}}$ we also have $k_{\mathfrak{L}(n)+2} \geqslant \kappa k_{\mathfrak{L}(n)+1}$ thus $k_{\mathfrak{L}(n)+2} \geqslant \kappa^{n+1}$. Hence $\mathfrak{L}(n+1)<\mathfrak{L}(n)+2$ and the first assertion.

Finally if $\mathfrak{L}(n+1)=\mathfrak{L}(n)+1$ then by definition of \mathfrak{L}

$$
k_{\mathfrak{L}(n)}<\kappa^{n} \leqslant k_{\mathfrak{L}(n)+1}=k_{\mathfrak{L}(n+1)} \leqslant \kappa^{n+1}-1 .
$$

But $\left(k_{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathbb{N}}$ is a subsequence of $\kappa^{\mathfrak{m}}$ thus the above inequality implies $k_{\mathfrak{L}(n+1)}=\kappa^{n}$.
Now, let us define the shifts. First let $\Sigma_{0}:=F_{0}$, then if $n \geqslant 0$ we distinguish two cases depending on whether $\mathfrak{L}(n+1)=\mathfrak{L}(n)$ or $\mathfrak{L}(n+1)=\mathfrak{L}(n)+1$ and in both cases we split the set of shifts Σ_{n+1} in k parts.

If $\mathfrak{L}(n+1)=\mathfrak{L}(n)$, let for all $\mathfrak{j} \in\{0, \ldots, \kappa-1\}$

$$
\Sigma_{n+1}^{j}:=\left\{\begin{array}{l|l}
\left(\mathbf{g}, \mathfrak{j} \kappa^{n}\right) \in \Delta & \begin{array}{l}
\operatorname{supp}\left(g_{0}\right) \subseteq\left[0, j \kappa^{n}-1\right] \cup\left[(j+1) \kappa^{n}, \kappa^{n+1}-1\right] \\
\forall m \in[1, \mathfrak{L}(n)] \\
\operatorname{supp}\left(g_{m}^{\prime}\right) \subseteq\left[k_{m}, j \kappa^{n}+k_{m}-1\right] \cup\left[(j+1) \kappa^{n}, \kappa^{n+1}-1\right] \\
\forall \mathfrak{m} \notin[0, \mathfrak{L}(n)] \\
\operatorname{supp}\left(g_{m}^{\prime}\right)=\varnothing
\end{array}
\end{array}\right\} .
$$

Now if $\mathfrak{L}(n+1)=\mathfrak{L}(n)+1$ we add the condition that $g_{\mathfrak{L}(n)+1}^{\prime}$ has support contained in $\left[k_{\mathfrak{L}(n+1)}, \kappa^{n+1}-1\right]$, namely

$$
\Sigma_{\mathfrak{n}+1}^{\mathfrak{j}}:=\left\{\begin{array}{l|l}
\left(\mathbf{g}, \mathfrak{j} \kappa^{n}\right) \in \Delta & \begin{array}{l}
\operatorname{supp}\left(g_{0}\right) \subseteq\left[0, j \kappa^{n}-1\right] \cup\left[(j+1) \kappa^{n}, \kappa^{n+1}-1\right] \\
\forall \mathfrak{m} \in[1, \mathfrak{L}(\mathfrak{n})] \\
\operatorname{supp}\left(g_{\mathfrak{m}}^{\prime}\right) \subseteq\left[k_{\mathfrak{m}}, j \kappa^{n}+k_{\mathfrak{m}}-1\right] \cup\left[(j+1) \kappa^{n}, \kappa^{n+1}-1\right] \\
\operatorname{supp}\left(g_{\mathfrak{L}(\mathfrak{n})+1}^{\prime}\right) \subseteq\left[k_{\mathfrak{L}(\mathfrak{n})+1}, \kappa^{n+1}-1\right] \\
\forall \mathfrak{m} \notin[0, \mathfrak{L}(\mathfrak{n}+1)] \operatorname{supp}\left(g_{\mathfrak{m}}^{\prime}\right)=\varnothing .
\end{array}
\end{array}\right\} .
$$

Finally, in both cases we define $\Sigma_{n+1}:=\cup_{j=0}^{k-1} \Sigma_{n+1}^{j}$.
Let (\mathbf{g}, \mathbf{t}) be an element of some $\Sigma_{\mathrm{n}+1}^{\mathfrak{j}}$. We represent in Figure 5 the supports and the sets where the maps $g_{0}, g^{\prime}{ }_{1}, \ldots, g^{\prime}{ }_{\mathfrak{L}(n+1)}$ take their values. The light-blue rectangle with dotted outline is in $\Sigma_{n+1}^{\mathfrak{j}}$ if and only if $\mathfrak{L}(n+1)=\mathfrak{L}(n)+1$.

Figure 5: Support and values taken by $(\mathbf{g}, \mathbf{t}) \in \Sigma_{n}^{j}$
Now that we have the shifts sequence, let us turn to the definition of the tiles.

3.2.2 Tiling

Recall that $\left(F_{n}\right)_{n \in \mathbb{N}}$ denotes the Følner sequence of Δ defined in Proposition 2.13. The aim of this section is to show the theorem below.

Theorem 3.9

The sequence $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ defined in Section 3.2.1 is a Følner tiling shift of Δ.
Before showing that the sequence of tiles $\left(T_{n}\right)_{n \in \mathbb{N}}$ thus induced verifies indeed the conditions of Definition 3.1, let us show the following lemma.

Lemma 3.10
The sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ defined by $T_{0}:=F_{0}$ and $T_{n+1}:=\Sigma_{n+1} T_{n}$ for all $n>0$ verifies

$$
(\forall \mathrm{n} \in \mathbb{N}) \quad \mathrm{T}_{\mathrm{n}}=\mathrm{F}_{\mathrm{K}^{n}} .
$$

Let us discuss the idea of the proof. We proceed by induction and use a double inclusion argument to prove the induction step. To show that $\Sigma_{n+1} T_{n}$ is included in $F_{\kappa^{n+1}}$ we rely on Lemma 2.12, that is to say we verify that every element of $\Sigma_{n+1} T_{n}$ has range included in $\left[0, \kappa^{n+1}-1\right]$. For the reversed inclusion we consider an element (h, t) of $F_{\kappa^{n+1}}$ and explicit the elements $\left(\mathbf{g}, \mathbf{j} \kappa^{n}\right)$ of Σ_{n+1} and $\left(\mathbf{f}, \mathrm{t}^{\prime}\right)$ of T_{n} such that $(\mathbf{h}, \mathrm{t})=\left(\mathbf{g}, \mathbf{j} \kappa^{n}\right)\left(\mathbf{f}, \mathrm{t}^{\prime}\right)$.

Mind the involved maps here: we study the values of g_{m} and f_{m} instead of the "derived" functions $g_{m}^{\prime}, f_{m}^{\prime}$ usually considered.

Proof of the lemma. The assertion is true for T_{0}. Now let $n \geqslant 0$ and assume that $T_{n}=F_{\kappa^{n}}$. We show the induction step by double inclusion.

First inclusion

Let us prove that $\Sigma_{n+1} T_{n} \subseteq F_{\kappa^{n+1}}$. Recall that $\Sigma_{n+1}=\cup_{j=0}^{k-1} \Sigma_{n+1}^{j}$.
Let $(\mathbf{f}, \mathrm{t}) \in \mathrm{T}_{\mathrm{n}}$ and $\mathfrak{j} \in\{0, \ldots, \kappa-1\}$. Take $\left(\mathbf{g}, \boldsymbol{j} \kappa^{n}\right) \in \Sigma_{n+1}^{j}$, then the following product

$$
\left(\mathbf{g}, j \kappa^{n}\right)(f, t)=\left(\left(g_{\mathfrak{m}} f_{\mathfrak{m}}\left(\cdot-j \kappa^{n}\right)\right)_{\mathfrak{m}}, t+j \kappa^{n}\right)
$$

verifies $t+j \kappa^{n} \in\left[j \kappa^{n}, \kappa^{n}-1+j \kappa^{n}\right]$ which is contained in $\left[0, \kappa^{n+1}-1\right]$ since $j \leqslant \kappa-1$. Moreover

$$
g_{0}(x) f_{0}\left(x-j \kappa^{n}\right)= \begin{cases}g_{0}(x) & \text { if } x \in\left[0, j \kappa^{n}\right] \cup\left[(j+1) \kappa^{n}, \kappa^{n+1}-1\right] \\ f_{0}\left(x-j \kappa^{n}\right) & \text { if } x \in\left[j \kappa^{n},(j+1) \kappa^{n}-1\right] \\ 0 & \text { else. }\end{cases}
$$

Thus $\operatorname{supp}\left(g_{0} f_{0}\left(\cdot-j \kappa^{n}\right)\right) \subseteq\left[0, \kappa^{n+1}-1\right]$. Furthermore, for all $m \in\{1, \ldots, \mathfrak{L}(n)\}$

$$
\begin{aligned}
\operatorname{supp}\left(g_{m}^{\prime}\right) & \subset\left[k_{m}, j \kappa^{n}+k_{m}-1\right] \cup\left[(j+1) \kappa^{n}, \kappa^{n+1}-1\right] \\
\operatorname{supp}\left(f_{m}^{\prime}\left(\cdot-j \kappa^{n}\right)\right) & \subseteq\left[j \kappa^{n}+k_{m},(j+1) \kappa^{n}-1\right],
\end{aligned}
$$

hence by Claim 2.5 the support of $\left(g_{\mathfrak{m}} f_{\mathfrak{m}}\left(\cdot-j \kappa^{m}\right)\right)^{\prime}$ is contained in $\left[k_{m}, \kappa^{n+1}-1\right]$.
Now if $\mathfrak{L}(n+1)=\mathfrak{L}(n)+1$ consider $\mathfrak{m}=\mathfrak{L}(n)+1$. In that case $f^{\prime}{ }_{m} \equiv$ e since $m>\mathfrak{L}(n)$.
Thus $\left(g_{m} f_{m}\left(\cdot-j \kappa^{m}\right)\right)^{\prime}=g^{\prime}{ }_{n}$ whose support is contained in $\left[k_{\mathfrak{L}(n)+1}, \kappa^{n+1}-1\right]$.
Finally $\left(g_{m} f_{m}\left(\cdot-j \kappa^{m}\right)\right)^{\prime} \equiv 0$ for all $\mathfrak{m} \notin[0, \mathfrak{L}(n+1)]$. Hence by Lemma 2.12 the product $\left(\mathbf{g}, \mathbf{j} \kappa^{n}\right)(f, t)$ has range included in $\left[0, \kappa^{n+1}-1\right]$ and thus belongs to $F_{\kappa^{n+1}}$.

Second Inclusion

Let us show that $F_{\kappa^{n+1}}$ is contained in $\Sigma_{n+1} T_{n}$. So take (h, t) in $F_{\kappa^{n+1}}$. We want to define $\left(\mathbf{f}, \mathrm{t}^{\prime}\right) \in \mathrm{T}_{\mathrm{n}}$ and $\left(\mathbf{g}, \mathbf{j} \kappa^{n}\right) \in \Sigma_{\mathrm{n}+1}$ such that $\left(\mathbf{g}, \mathbf{j} \kappa^{\mathrm{n}}\right)\left(\mathbf{f}, \mathrm{t}^{\prime}\right)=(\mathbf{h}, \mathrm{t})$. First remark that $t<\kappa^{n+1}$ since (h, t) belongs to $F_{\kappa^{n+1}}$. Thus there exists t_{0}, \ldots, t_{n} in $[0, k-1]$ such that $t=\sum_{i=0}^{n} t_{i} \kappa^{i}$. Let $j=t_{n}$ and $t^{\prime}=\sum_{i=0}^{n-1} t_{i} \kappa^{i}$. Then j does belong to $[0, k-1]$ and t^{\prime} to $\left[0, \kappa^{n}-1\right]$. We now have to define f and g such that

$$
\left(\left(g_{\mathfrak{m}} f_{\mathfrak{m}}\left(\cdot-j \kappa^{n}\right)\right)_{\mathfrak{m}}, t^{\prime}+j \kappa^{n}\right)=(h, t)
$$

We refer to Figure 6 for an illustration of the different supports. Let

$$
\begin{aligned}
& f_{0}(x):= \begin{cases}h_{0}\left(x+j \kappa^{n}\right) & \text { if } x \in\left[0, \kappa^{n}-1\right], \\
e & \text { else, }\end{cases} \\
& g_{0}(x):= \begin{cases}h_{0}(x) & \text { if } x \in\left[0, j \kappa^{n}-1\right] \cup\left[(j+1) \kappa^{n}, \kappa^{n+1}-1\right], \\
e & \text { else. }\end{cases}
\end{aligned}
$$

Figure 6: Supports

One can verify immediately that $g_{0} f_{0}\left(\cdot-j \kappa^{n}\right)=h_{0}$. Then take $m \in[1, \mathfrak{L}(n)]$ and let

$$
\begin{aligned}
f^{\prime}(x) & := \begin{cases}h_{m}^{\prime}\left(x+j \kappa^{n}\right) & \text { if } x \in\left[k_{\mathfrak{m}}, \kappa^{n}-1\right], \\
e & \text { else, }\end{cases} \\
g^{\prime}{ }_{m}(x) & := \begin{cases}h_{m}^{\prime}(x) & \text { if } x \in\left[k_{m}, j \kappa^{n}+k_{m}-1\right] \cup\left[(j+1) \kappa^{n}, \kappa^{n+1}-1\right] \\
e & \text { else. }\end{cases}
\end{aligned}
$$

Now if $\mathfrak{L}(n+1)=\mathfrak{L}(n)+1$ then $k_{\mathfrak{L}(n+1)} \geqslant \kappa^{n}$ and in that case define $g_{\mathfrak{L}(n+1)}^{\prime}=h_{\mathfrak{L}(n+1)}^{\prime}$. Finally let $\mathfrak{f}^{\prime} \mathfrak{A}(n+1) \equiv \mathrm{e}$ and if $\boldsymbol{m}>\mathfrak{L}(n+1)$ let $\mathrm{g}^{\prime}{ }_{m} \equiv \mathbf{e} \equiv \boldsymbol{f}^{\prime}{ }_{m}$.

With the above definitions \mathbf{f} and \mathbf{g} are uniquely defined. Moreover, by definition $\left(\mathbf{g}, \mathbf{j} \kappa^{n}\right)$ belongs to Σ_{n+1}^{j} and by Lemma 2.12 we have range $(\mathbf{f}, \mathrm{t}) \subseteq\left[0, \kappa^{n}-1\right]$ thus $\left(\mathbf{f}, \mathrm{t}^{\prime}\right)$ belongs to T_{n}.
Now, using Lemma 2.6 we verify that $g_{m} f_{m}\left(\cdot-j \kappa^{n}\right)=h_{m}$ thus $(h, t) \in \Sigma_{n+1} T_{n}$.
Hence, combining the first and second inclusion we get $F_{\kappa^{n+1}}=T_{n}$.
We now know that $\left(T_{n}\right)_{n \in \mathbb{N}}$ is a Følner sequence. To prove Theorem 3.9 we have to show that $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ a Følner tiling shift.

Proof of Theorem 3.9. The sequence $\left(\mathrm{T}_{\mathrm{n}}\right)_{\mathfrak{n} \in \mathbb{N}}$ is a Følner sequence, by the last lemma. Thus we only have to show that for all $\sigma \neq \tilde{\sigma} \in \Sigma_{n+1}, \sigma T_{n} \cap \tilde{\sigma} T_{n}=\phi$. So let us denote by (\mathbf{h}, t) an element of $\sigma T_{n} \cap \tilde{\sigma} T_{n}$. We distinguish two cases.

First if $\sigma \in \Sigma_{n+1}^{\mathfrak{j}}$ and $\tilde{\sigma} \in \Sigma_{n+1}^{\mathfrak{i}}$ for some $\mathfrak{i} \neq \mathfrak{j}$, then the cursor of σ is equal to $\mathfrak{j} \kappa^{n}$ and the one of $\tilde{\sigma}$ to $i \kappa^{n}$. Thus

$$
\begin{aligned}
& (h, t) \in \sigma T_{n} \Rightarrow t \in\left[j \kappa^{n},(j+1) \kappa^{n}-1\right], \\
& (h, t) \in \tilde{\sigma} T_{n} \Rightarrow t \in\left[i \kappa^{n},(i+1) \kappa^{n}-1\right] .
\end{aligned}
$$

But since $\mathfrak{i} \neq \mathfrak{j}$ these two intervals are disjoint, thus $\sigma T_{n} \cap \tilde{\sigma} T_{n}=\phi$.
Now fix $\mathfrak{j} \in\{0, \ldots, \kappa-1\}$ and take $\sigma, \tilde{\sigma} \in \Sigma_{n+1}^{j}$. Let $\sigma:=\left(\mathbf{g}, \mathfrak{j} \kappa^{n}\right)$ and $\tilde{\sigma}:=\left(\tilde{\mathbf{g}}, j \kappa^{n}\right)$. Assume that there exists $(\mathbf{f}, \mathrm{t}),(\tilde{\mathbf{f}}, \tilde{\mathrm{t}}) \in \mathrm{T}_{\mathrm{n}}$ such that $\left(\mathbf{g}, \mathbf{j} \kappa^{n}\right)(\mathbf{f}, \mathrm{t})=\left(\tilde{\mathbf{g}}, \mathbf{j} \kappa^{n}\right)(\tilde{\mathbf{f}}, \tilde{\mathfrak{t}})$. Then

$$
\begin{equation*}
\forall m \in \mathbb{N} \quad g_{m} f_{m}\left(\cdot-j \kappa^{n}\right)=\tilde{g}_{m} \tilde{f}_{m}\left(\cdot-j \kappa^{n}\right) . \tag{3.1}
\end{equation*}
$$

First remark that

$$
\begin{aligned}
\sigma, \tilde{\sigma} \in \Sigma_{n+1}^{j} & \Longrightarrow \operatorname{supp}\left(g_{0}\right), \operatorname{supp}\left(\tilde{g}_{0}\right) \subseteq\left[0, j \kappa^{n}-1\right] \cup\left[(j+1) \kappa^{n}, \kappa^{n+1}-1\right] \\
(f, t),(\tilde{f}, \tilde{t}) \in T_{n} & \Longrightarrow \operatorname{supp}\left(f_{0}\left(\cdot-j \kappa^{n}\right)\right), \operatorname{supp}\left(\tilde{f}_{0}\left(\cdot-j \kappa^{n}\right)\right) \subseteq\left[j \kappa^{n},(j+1) \kappa^{n}-1\right] .
\end{aligned}
$$

In other word the support of $g_{0}\left(\right.$ resp $\left.\tilde{g}_{0}\right)$ is disjoint from the one of $f_{0}\left(\cdot-j \kappa^{n}\right)$ (resp $\tilde{f}_{0}\left(\cdot-j \kappa^{n}\right)$). Combining this with eq. (3.1) we obtain that $g_{0}=\tilde{g}_{0}$ and $f_{0}=\tilde{f}_{0}$.

Now let $\mathfrak{m}>0$ and let us show that $g_{\mathfrak{m}}=\tilde{g}_{\mathfrak{m}}$. Due to supports overlap (see Figure 7) we need to decompose $\left[0, \kappa^{n+1}-1\right]$ in five subintervals, namely

$$
\begin{aligned}
{\left[0, \kappa^{n+1}-1\right]=} & {\left[0, j \kappa^{n}-1\right] \sqcup\left[j \kappa^{n}, j \kappa^{n}+k_{m}-1\right] \sqcup\left[j \kappa^{n}+k_{m},(j+1) \kappa^{n}-1\right] } \\
& \sqcup\left[(j+1) \kappa^{n},(j+1) \kappa^{n}+k_{m}-1\right] \sqcup\left[(j+1) \kappa^{n}+k_{m}, \kappa^{n+1}-1\right] .
\end{aligned}
$$

If $x \leqslant j \kappa^{n}-1$ or $x \geqslant(j+1) \kappa^{n}+k_{m}$, then $f_{m}\left(x-j \kappa^{n}\right)=e=\tilde{f}_{m}\left(x-j \kappa^{n}\right)$ and thus $\boldsymbol{g}_{\mathfrak{m}}(x)=\tilde{g}_{\mathfrak{m}}(x)$ by eq. (3.1).

If $x \in\left[j \kappa^{n}, j \kappa^{n}+k_{m}-1\right]$ then using Lemma 2.6 and the fact that on that subinterval $f_{0}=\tilde{f}_{0}$, we get

$$
f_{m}\left(x-j \kappa^{n}\right)=\theta_{0}^{A}\left(f_{0}\left(x-j \kappa^{n}\right)\right)=\theta_{0}^{A}\left(\tilde{f}_{0}\left(x-j \kappa^{n}\right)\right)=\tilde{f}_{m}\left(x-j \kappa^{n}\right) .
$$

Hence by eq. (3.1) we get $g_{\mathfrak{m}}(x)=\tilde{g}_{\mathfrak{m}}(x)$.
If x belongs to $\left[j \kappa^{n}+k_{m},(j+1) \kappa^{n}-1\right]$ then $g_{m}(x)=\tilde{g}_{\mathfrak{m}}(x)=\mathbf{e}$ and thus eq. (3.1) implies that $f_{m}\left(x-j \kappa^{n}\right)=\tilde{f}_{m}\left(x-j \kappa^{n}\right)$, that is to say f_{m} and \tilde{f}_{m} coïncide on $\left[k_{m}, \kappa^{n}-1\right]$.

Finally if $x \in\left[(j+1) \kappa^{n},(j+1) \kappa^{n}+k_{m}-1\right]$ then using Lemma 2.6 and the fact that $f_{0}=\tilde{f}_{0}$ on that subinterval, we get

$$
f_{\mathfrak{m}}\left(x-j \kappa^{n}\right)=\theta_{0}^{B}\left(f_{0}\left(x-j \kappa^{n}-k_{m}\right)\right)=\theta_{0}^{B}\left(\tilde{f}_{0}\left(x-j \kappa^{n}-k_{\mathfrak{m}}\right)\right)=\tilde{f}_{m}(x) .
$$

Hence by eq. (3.1), we have $g_{m}(x)=\tilde{g}_{m}(x)$.
Thus $\mathbf{g}=\tilde{\mathbf{g}}$ and then $\sigma=\tilde{\sigma}$. Which concludes the proof of the theorem.

Figure 7: Supports overlap

3.2.3 Diameter and boundary

Let us now quantify our shifts sequence.

Proposition 3.11

The sequence $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ defined in Section 3.2.1 is a $\left(R_{n}, \varepsilon_{n}\right)$-Følner tiling shift where

$$
R_{n}=C_{R} K^{n} l_{\mathfrak{N}(n)} \quad \varepsilon_{n}=\frac{2}{\kappa^{n}},
$$

for some strictly positive constant C_{R}.
First we prove the following lemma.

Lemma 3.12

There exists $C_{R}>0$ depending only on Δ such that $\operatorname{diam}\left(F_{n}\right) \leqslant C_{R} n l_{\mathfrak{l}(n-1)}$ for all
$\mathfrak{n} \in \mathbb{N}$. $n \in \mathbb{N}$.

To show this result, we use Proposition 2.20.
Proof. Let $n \in \mathbb{N}$ and $(f, t) \in F_{n}$. First, take $m \leqslant \mathfrak{l}(n-1)$ and let us bound E_{m} by above. Recall that $I_{j}^{m}=\left[j k_{m} / 2,(j+1) k_{m} / 2-1\right]$. Since (f, t) belongs to F_{n} its range is included in [$0, n-1$], thus

$$
\begin{aligned}
\left|\left\{j \in \mathbb{Z}: \operatorname{range}\left(f_{m}, t\right) \cap I_{j}^{m} \neq \varnothing\right\}\right| & \leqslant\left|\left\{j \in \mathbb{Z}:[0, n-1] \cap\left[j k_{m} / 2,(j+1) k_{m} / 2-1\right] \neq \varnothing\right\}\right|, \\
& \leqslant \mid\left\{j \in \mathbb{Z}: j k_{m} / 2 \leqslant n-1 \text { and }(j+1) k_{m} / 2 \geqslant 1\right\} \mid, \\
& \leqslant \frac{2(n-2)}{k_{m}}+1 .
\end{aligned}
$$

Moreover remark that $\left|f_{m}(x)\right|_{\Gamma_{m}} \leqslant \operatorname{diam}\left(\Gamma_{m}\right) \leqslant \operatorname{cl}_{m}$ for all x, thus

$$
\begin{aligned}
E_{m}\left(f_{m}\right) & =k_{m} \sum_{j: \text { range }\left(f_{m}, t\right) \cap I_{j}^{m} \neq \phi} \max _{x \in I_{j}^{m}}\left(\left|f_{m}(x)\right|_{\Gamma_{m}}-1\right)_{+}, \\
& \leqslant k_{m} \sum_{j: \operatorname{range}\left(f_{m}, t\right) \cap I_{j}^{m} \neq \phi} l_{m}, \\
& \leqslant k_{m} l_{m}\left(\frac{2(n-2)}{k_{m}}+1\right)=l_{m}\left(2(n-2)+k_{m}\right) .
\end{aligned}
$$

Thus, applying the second part of Proposition 2.20 we get

$$
\left|\left(f_{m}, t\right)\right|_{\Delta_{m}} \leqslant 9\left(\operatorname{range}\left(f_{m}, t\right)+E_{m}\left(f_{m}\right)\right) \leqslant 9\left(n+l_{m}\left(2(n-2)+k_{m}\right)\right)
$$

But if $m \leqslant \mathfrak{l}(n-1)$ then $k_{m} \leqslant n-1 \leqslant n$ thus we can bound $\left|\left(f_{m}, t\right)\right|_{\Delta_{m}}$ by above by $9 \mathfrak{n}\left(3 l_{\mathfrak{m}}+1\right)$. Now remark that $\mathfrak{l}(\operatorname{range}(f, t)) \leqslant \mathfrak{l}(n-1)$. Thus, using the preceding inequality and the first part of Proposition 2.20, we get

$$
\begin{aligned}
|(f, t)|_{\Delta} \leqslant 500 \sum_{m=0}^{l(\text { range }(f, t))}\left|\left(f_{m}, t\right)\right|_{\Delta_{m}} & \leqslant 500 \sum_{m=0}^{l(n-1)} 9 n\left(3 l_{m}+1\right) \\
& \leqslant 4500 n \sum_{m=0}^{l(n-1)}\left(3 l_{m}+1\right)
\end{aligned}
$$

Finally, since l_{m} is a subsequence of a geometric sequence, there exists $C_{l}>0$ such that $\sum_{m=0}^{l(n-1)}\left(3 l_{m}+1\right) \leqslant C_{l} l_{l(n-1)}$. Denoting $C_{R}:=4500 C_{l}$ we get the lemma.

Let us now show the wanted proposition.
Proof of Proposition 3.11. First remark that by the proof of Proposition 2.13 we have

$$
\varepsilon_{n}=\frac{\left|\partial T_{n}\right|}{\left|T_{n}\right|}=\frac{\left|\partial F_{K^{n}}\right|}{\left|F_{K^{n}}\right|}=\frac{2}{\kappa^{n}} .
$$

Now by Lemma 3.12 we have $\operatorname{diam}\left(T_{n}\right)=\operatorname{diam}\left(F_{K^{n}}\right) \leqslant C_{R} K^{n} l_{\mathfrak{R}}(n)$.

4 COUPLING WITH \mathbb{Z}

Our aim in this section is to show Theorem 1.8. What we actually show is that a diagonal product Δ admits a coupling with \mathbb{Z} satisfying Theorem 1.8. We start by defining a Følner
tiling shift for \mathbb{Z} in Section 4.1. We compute in Section 4.2 an estimate the diameter of such tiles, namely the cardinal $\left|T_{n}\right|$. We conclude by showing the integrability of the coupling using the criterion given by Theorem 3.5. And then show that Δ thus considered satisfies Theorem 1.8.

4.1 Tiles for \mathbb{Z}

We will denote by $\left(\Sigma_{n}^{\prime}\right)_{n \in \mathbb{N}}$ a Følner tiling shift of \mathbb{Z} and by $\left(\mathrm{T}^{\prime}{ }_{n}\right)_{n}$ the corresponding tiles.
Consider $\left(\Sigma_{n}\right)_{n}$ and $\left(T_{n}\right)_{n}$ as defined in Section 3.2.1 and Lemma 3.10 respectively. In order to use Theorem 3.5 to get an orbit equivalence coupling between \mathbb{Z} and Δ we need Σ_{n+1} and $\Sigma^{\prime}{ }_{n+1}$ to have the same number of elements. We thus define

$$
\begin{cases} & \Sigma^{\prime}{ }_{0}=\left[0,\left|T_{0}\right|-1\right] \tag{4.1}\\ \forall n \in \mathbb{N} & \Sigma^{\prime}{ }_{n+1}:=\left\{0,\left|T_{n}\right|, 2\left|T_{n}\right|, \ldots,\left(\left|\Sigma_{n+1}\right|-1\right)\left|T_{n}\right|\right\} .\end{cases}
$$

It induces a sequence $\left(\mathrm{T}^{\prime}{ }_{n}\right)_{n \in \mathbb{N}}$ defined by $\mathrm{T}^{\prime}{ }_{0}=\Sigma^{\prime}{ }_{0}$ and $\mathrm{T}^{\prime}{ }_{n+1}=\Sigma^{\prime}{ }_{n+1} T^{\prime}{ }_{n}$ for all $n \geqslant 0$. We are going to prove that $\left(\Sigma^{\prime}{ }_{n}\right)_{n \in \mathbb{N}}$ is a Følner tiling shift for \mathbb{Z}.

Proposition 4.1

The sequence $\left(\Sigma^{\prime}{ }_{n}\right)_{n \in \mathbb{N}}$ defined by eq. (4.1) is a $\left(\mathrm{R}^{\prime}{ }_{n}, \varepsilon^{\prime}{ }_{n}\right)$-Følner tiling shifts for \mathbb{Z} with

$$
\mathrm{R}_{n}^{\prime}=\left|\mathrm{T}_{\mathrm{n}}\right| \quad \varepsilon^{\prime}{ }_{n}=2 /\left|\mathrm{T}_{\mathrm{n}}\right|
$$

Moreover the induced sequence $\left(T_{n}^{\prime}\right)_{n \in \mathbb{N}}$ verifies $T^{\prime}{ }_{n}=\left[0,\left|T_{n}\right|-1\right]$ for all $n \in \mathbb{N}$.

Proof. Let $\left(\Sigma^{\prime}{ }_{n}\right)_{n \in \mathbb{N}}$ be as defined by eq. (4.1) and recall that the induced tiling $\left(\mathrm{T}^{\prime}{ }_{n}\right)_{n \in \mathbb{N}}$ is the sequence defined by $T^{\prime}{ }_{0}:=\Sigma^{\prime}{ }_{0}$ and $T^{\prime}{ }_{n+1}=\Sigma^{\prime}{ }_{n+1} T^{\prime}{ }_{n}$ for all $n \in \mathbb{N}$. One can easily prove that for all $n \geqslant 0$

$$
\begin{equation*}
\mathrm{T}_{\mathrm{n}}^{\prime}=\left[0,\left|\mathrm{~T}_{\mathrm{n}}\right|-1\right] . \tag{4.2}
\end{equation*}
$$

It is now immediate to check that diam $\left(\mathrm{T}^{\prime}{ }_{n}\right)=\left|\mathrm{T}_{n}\right|$ and $\left|\partial \mathrm{T}^{\prime}{ }_{n}\right| /\left|\mathrm{T}^{\prime}{ }_{n}\right|=2 /\left|\mathrm{T}_{n}\right|$. Furthermore note that if $\sigma, \sigma^{\prime} \in \Sigma^{\prime}{ }_{n+1}$ such that $\sigma \neq \sigma^{\prime}$ then $d_{\mathbb{Z}}\left(\sigma, \sigma^{\prime}\right) \geqslant\left|T_{n}\right|=\operatorname{diam}\left(T_{n}^{\prime}\right)$. Thus for such σ and σ^{\prime} we get $\sigma T^{\prime}{ }_{n} \cap \sigma^{\prime} T_{n}=\phi$. Therefore $\left(\Sigma_{n}\right)_{n \in \mathbb{N}}$ is a Følner tiling shift and the proposition follows from the above quantifications on T_{n}.

4.2 Estimates: diameter and boundary

The integrability of the coupling between \mathbb{Z} and Δ depends on $\left(R_{n}, \varepsilon_{n}\right)$ and $\left(R_{n}^{\prime}, \varepsilon^{\prime}{ }_{n}\right)$ but by the above proposition, that last couple depends on the value of the cardinality of the tiles $\left(T_{n}\right)_{n \in \mathbb{N}}$. The aim of this section is to give estimates of $\left|T_{n}\right|$ involving only terms of $\left(k_{m}\right)_{\mathfrak{m} \in \mathbb{N}}$ and $\left(l_{m}\right)_{m \in \mathbb{N}}$. First let us precise the value of $\left|T_{n}\right|$.

Lemma 4.2

The sequence $\left(T_{n}\right)_{n}$ defined in Theorem 3.9 verifies

$$
\left|T_{n}\right|=\kappa^{n}(|A||B|)^{\kappa^{n}} \prod_{m=1}^{\mathfrak{R}(\mathfrak{n})}\left|\Gamma_{m}^{\prime}\right|^{\kappa^{n}-k_{m}} .
$$

Proof. Recall that $T_{n}=F_{\kappa^{n}}=\left\{(f, t) \mid\right.$ range $\left.(f, t) \subseteq\left\{0, \ldots, \kappa^{n}-1\right\}\right\}$ for all $n \in \mathbb{N}$. We use here Lemma 2.12 linking range and supports. Let $\mathfrak{n} \in \mathbb{N}$ and take $(\mathbf{f}, \mathrm{t}) \in \mathrm{T}_{\mathrm{n}}$, then there are exactly κ^{n} values of t possible. Moreover f is uniquely determined by f_{0} and $f^{\prime}{ }_{1}, \ldots, f^{\prime} \mathfrak{i}(\mathfrak{n})$ (see Lemma 2.6). But f_{0} is supported on $\left[0, \kappa^{n}-1\right]$ which is set of cardinal κ^{n} so there are exactly $(|\mathcal{A}||B|)^{\kappa^{n}}$ possible values for f_{0}. Moreover if $m>0$ then remark that f_{m}^{\prime} is supported on $\left[k_{m}, \kappa^{n}-1\right]$ which has $\kappa^{n}-k_{m}$ elements so there are exactly $\left|\Gamma_{m}^{\prime}\right|^{k^{n}-k_{m}}$ possible values for f_{m}^{\prime}. Thus the number of elements in T_{n} is

$$
\kappa^{n}(|A||B|)^{\kappa^{n}} \prod_{m=1}^{\mathfrak{L}(\mathfrak{n})}\left|\Gamma_{m}^{\prime}\right|^{k^{n}-k_{m}} .
$$

Now let us bound $\left|T_{n}\right|$ such that the bounds depend only on $\left(\kappa^{m}\right)_{m \in \mathbb{N}}$ and $\left(l_{m}\right)_{m \in \mathbb{N}}$.

Proposition 4.3

There exists two constants $C_{2}, C_{3}>0$ such that for all $n \in \mathbb{N}$,

$$
C_{2} \kappa^{n-1} l_{\mathfrak{N}(n)} \leqslant \ln \left|T_{n}\right| \leqslant C_{3} \kappa^{n} l_{\mathfrak{N}(n)} .
$$

Before showing the above proposition let us give an estimate of the right factor of the expression of $\left|T_{n}\right|$.

Lemma 4.4

There exists two constants $C_{1}, C_{2}>0$ such that for all $n \in \mathbb{N}$,

$$
C_{2} \kappa^{n-1} l_{\mathfrak{L}(\mathfrak{n})} \leqslant \ln \left(\prod_{m=1}^{\mathfrak{R}(n)}\left|\Gamma_{m}^{\prime}\right|^{k^{n}-k_{m}}\right) \leqslant C_{1} \kappa^{n} l_{\mathfrak{L}(n)} .
$$

Proof. Recall that by eq. (2.1) there exists $\mathrm{c}_{1}, \mathrm{c}_{2}>0$ such that, for all m

$$
c_{1} l_{m}-c_{2} \leqslant \ln \left|\Gamma_{m}\right| \leqslant c_{1} l_{m}+c_{2} .
$$

Since $\Gamma^{\prime}{ }_{m} \leqslant \Gamma_{m}$ we thus have

$$
\begin{aligned}
\ln \left(\prod_{\mathfrak{m}=1}^{\mathfrak{L}(\mathfrak{n})}\left|\Gamma^{\prime} \mathfrak{m}\right|^{\kappa^{n}-k_{m}}\right) & \leqslant \sum_{\mathfrak{m}=1}^{\mathfrak{L}(\mathfrak{n})}\left(\kappa^{n}-k_{\mathfrak{m}}\right) \ln \left|\Gamma_{\mathfrak{m}}\right|, \\
& \leqslant \sum_{\mathfrak{m}=1}^{\mathfrak{L}(\mathfrak{n})}\left(\kappa^{n}-k_{\mathfrak{m}}\right)\left(c_{1} l_{\mathfrak{m}}+c_{2}\right) .
\end{aligned}
$$

But we can bound $\kappa^{n}-k_{m}$ from above by κ^{n} and since $\left(l_{m}\right)_{m \in \mathbb{N}}$ is a subsequence of a sequence having geometric growth, the sum $\sum_{\mathfrak{m}=1}^{\mathfrak{L}(\mathfrak{n})}\left(\mathfrak{c}_{1} l_{\mathfrak{m}}+\mathfrak{c}_{2}\right)$ is bounded from above by its last term up to a multiplicative constant. That is to say: there exists $C_{1}>0$ such that

$$
\ln \left(\prod_{\mathfrak{m}=1}^{\mathfrak{L}(\mathfrak{n})}\left|\Gamma^{\prime} \mathfrak{m}\right|^{\kappa^{n}-k_{m}}\right) \leqslant C_{1} \kappa^{n} l_{\mathfrak{L}(\mathfrak{n})} .
$$

Hence the upper bound. Now, using that $\left[\Gamma_{\mathrm{m}}: \Gamma^{\prime}{ }_{\mathrm{m}}\right]=|A||B|$ we have

$$
\ln \left(\prod_{\mathfrak{m}=1}^{\mathfrak{L}(\mathfrak{n})}\left|\Gamma^{\prime}\right|^{k^{n}-k_{m}}\right)=\sum_{\mathfrak{m}=1}^{\mathfrak{L}(\mathfrak{n})}\left(\kappa^{\mathfrak{n}}-k_{m}\right) \ln \left|\Gamma_{m}^{\prime}\right|=\sum_{\mathfrak{m}=1}^{\mathfrak{L}(\mathfrak{n})}\left(\kappa^{\mathfrak{n}}-k_{m}\right) \ln \left(\frac{\left|\Gamma_{\mathfrak{m}}\right|}{|\mathcal{A}||B|}\right) .
$$

Bounding the sum from below by its last term and using once more eq. (2.1), we get

$$
\begin{aligned}
\ln \left(\prod_{\mathfrak{m}=1}^{\mathfrak{L}(\mathfrak{n})}\left|\Gamma^{\prime} \mathfrak{m}\right|^{k^{n}-k_{\mathfrak{m}}}\right) & \geqslant\left(\kappa^{n}-k_{\mathfrak{L}(\mathfrak{n})}\right) \ln \left(\frac{\left|\Gamma_{\mathfrak{L}(\mathfrak{n})}\right|}{|\mathcal{A}||\mathbf{B}|}\right), \\
& \geqslant\left(\kappa^{n}-k_{\mathfrak{L}(\mathfrak{n})}\right)\left(c_{1} l_{\mathfrak{L}(\mathfrak{n})}-c_{2}-\ln (|\mathcal{A}||\mathrm{B}|)\right), \\
& \geqslant C_{2}\left(\kappa^{n}-k_{\mathfrak{L}(\mathfrak{n})}\right) l_{\mathfrak{L}(\mathfrak{n})},
\end{aligned}
$$

for some $C_{2}>0$. We get the wanted inequality by noting that $\kappa^{n}-k_{\mathfrak{L}(n)} \geqslant \kappa^{n-1}$.
Proof of Proposition 4.3. Applying Lemma 4.4 to the cardinal of T_{n} given by Lemma 4.2 we obtain that there exists $C_{3}>0$ such that $\ln \left|T_{n}\right| \leqslant C_{3} K^{n} l_{\mathfrak{L}(\mathfrak{n})}$. Hence the upper bound. The minoration comes imediately from Lemma 4.4.

Equipped with these bounds on $\left|T_{n}\right|$ we can now show the wanted integrability for the coupling.

4.3 Integrability of the coupling

We will show that Δ is the group satisfying Theorem 1.8 , but first let us quantify the integrability of the orbit equivalence coupling with \mathbb{Z} induced by the Følner tiling shifts we built. Recall that \mathcal{C} denotes the set of non-decreasing functions $\rho:[1,+\infty[\rightarrow[1,+\infty[$ such that $x / \rho(x)$ is non-decreasing.

Theorem 4.5

Let $\rho \in \mathcal{C}$ and take Δ to be the Brieussel-Zheng's diagonal product defined from ρ. Let $\varepsilon>0$ and $\Psi:=\exp \circ \rho$ and let

$$
\varphi_{\varepsilon}(x):=\frac{\rho \circ \ln (x)}{(\ln \circ \rho \circ \ln (x))^{1+\varepsilon}}
$$

There exists an orbit equivalence coupling from Δ to \mathbb{Z} that is ($\varphi_{\varepsilon}, \Psi$)-integrable.
Let us discuss the strategy of the proof. The demonstration is based on Theorem 3.5, thus we first prove that $\left(\Psi\left(2 R_{n}\right) \varepsilon^{\prime}{ }_{n-1}\right)_{n}$ is summable and then that $\left(\varphi_{\varepsilon}\left(2 R_{n}^{\prime}\right) \varepsilon_{n-1}\right)_{n}$ is. In both cases we use Proposition 4.3 to get upper bounds. So far, we have the following quantifications.

$$
\begin{array}{lll}
R_{n}=C_{R} K^{n} l_{\mathfrak{L}(n)} & R^{\prime}{ }_{n}=\left|T_{n}\right| \\
\varepsilon_{n}=2 \kappa^{-n} & \varepsilon^{\prime}{ }_{n}=2 /\left|T_{n}\right|
\end{array}
$$

Proof of Theorem 4.5. Let $\rho \in \mathcal{C}$ and take Δ to be the diagonal product defined from ρ as described in Section 2.3.

To begin, let us recall some preliminary results about ρ. Remember that $\rho \simeq \bar{\rho}$ where $\bar{\rho}$ is defined below eq. (2.3). By definition of $\mathfrak{L}(n)$ we have $k_{\mathfrak{L}(\mathfrak{n})} l_{\mathfrak{L}(\mathfrak{n})} \leqslant \kappa^{n} l_{\mathfrak{L}(\mathfrak{n})} \leqslant k_{\mathfrak{L}(\mathfrak{n})+1} l_{\mathfrak{L}(\mathfrak{n})}$, thus by eq. (2.3)

$$
\begin{equation*}
\bar{\rho}\left(\kappa^{n} l_{\mathfrak{L}(n)}\right)=\kappa^{n} . \tag{4.3}
\end{equation*}
$$

Now let us show that the coupling from \mathbb{Z} to Δ is Ψ-integrable. To do so we prove that $\left(\Psi\left(2 R_{n}\right) \varepsilon^{\prime}{ }_{n-1}\right)$ is summable. First note that by Proposition 4.3 we have the following lower bound on $\left|T_{n-1}\right|$

$$
\begin{equation*}
\left|T_{n-1}\right| \geqslant \exp \left(C_{2} \kappa^{n-2} l_{\mathfrak{R}(n-1)}\right) . \tag{4.4}
\end{equation*}
$$

Moreover recall that $R_{n}=C_{R} K^{n} l_{\mathfrak{L}(n)}$ and $\varepsilon^{\prime}{ }_{n-1}=2 /\left|T_{n-1}\right|$ thus by the inequality above

$$
\begin{aligned}
\Psi\left(2 R_{n}\right) \varepsilon^{\prime}{ }_{n-1} & =\exp \left[\rho\left(2 C_{R} K^{n} l_{\mathfrak{L}(n)}\right)\right] \frac{2}{\left|T_{n-1}\right|}, \\
& \leqslant 2 \exp \left[\rho\left(2 C_{R} K^{n} l_{\mathfrak{L}(n)}\right)-C_{2} \kappa^{n-2} l_{\mathfrak{R}(n-1)}\right] .
\end{aligned}
$$

But remember that $\rho \simeq \bar{\rho}$. Thus using eqs. (2.2) and (4.3) we get

$$
\begin{equation*}
\rho\left(2 C_{R} K^{n} l_{\mathfrak{N}(n)}\right) \simeq \bar{\rho}\left(2 C_{R} K^{n} l_{\mathfrak{L}(\mathfrak{n})}\right) \leqslant 2 \mathrm{C}_{R} \bar{\rho}\left(\kappa^{n} l_{\mathfrak{L}(n)}\right)=2 C_{R} K^{n} \tag{4.5}
\end{equation*}
$$

Combining the above result with the previous inequality, we get

$$
\begin{aligned}
\Psi\left(2 R_{n}\right) \varepsilon^{\prime}{ }_{n-1} & \preccurlyeq 2 \exp \left[2 C_{R} K^{n}-C_{2} \kappa^{n-2} l_{\mathfrak{N}(n-1)}\right] \\
& =2 \exp \left[\kappa^{n-2}\left(2 C_{R} K^{2}-C_{2} l_{\mathfrak{L}(n-1)}\right)\right]
\end{aligned}
$$

which is summable. Indeed $l_{\mathfrak{L}(n)}$ tends to infinity and thus $\left(2 C_{R} K^{2}-C_{2} l_{\mathfrak{R}(n-1)}\right)<-1$ for n large enough. Hence by Theorem 3.5 the orbit equivalence from \mathbb{Z} to Δ si Ψ-integrable.

Now, let us show that for all $\varepsilon>0$ the coupling from Δ to \mathbb{Z} is φ_{ε}-integrable. Based on Theorem 3.5 we only have to prove that $\varphi_{\varepsilon}\left(2 R^{\prime}{ }_{n}\right) \varepsilon_{n-1}$ is summable. Recall that $R^{\prime}{ }_{n}=$ $\left|T_{n}\right|$ and $\varepsilon_{n-1}=2 / \kappa^{n-2}$ and remark that by both the lower and upper bounds given in Proposition 4.3 we have

$$
\varphi_{\varepsilon}\left(2 R_{n}^{\prime}\right) \varepsilon_{n-1}=\frac{2 \rho \circ \ln \left(2\left|T_{n}\right|\right)}{\left(\ln \circ \rho \circ \ln \left(2\left|T_{n}\right|\right)\right)^{1+\varepsilon} \kappa^{n-1}} \leqslant \frac{2 \rho\left(2 C_{3} \kappa^{n} l_{\mathfrak{L}(n)}\right)}{\left(\ln \circ \rho\left(2 C_{2} \kappa^{n-1} l_{\mathfrak{L}(n)}\right)\right)^{1+\varepsilon} \kappa^{n-1}} .
$$

Let us give a lower bound for $\rho\left(2 \mathrm{C}_{2} \mathrm{~K}^{n-1} l_{\mathfrak{L}(\mathrm{n})}\right)$. Recall that $\rho \simeq \bar{\rho}$ furthemore if $2 \mathrm{C}_{2} \geqslant 1$ then by eq. (4.3) and since $\bar{\rho}$ is non-decreasing

$$
\kappa^{n-1}=\bar{\rho}\left(\kappa^{n-1} l_{\mathfrak{L}(n)}\right) \leqslant \bar{\rho}\left(2 C_{2} \kappa^{n-1} l_{\mathfrak{L}(n)}\right) \simeq \rho\left(2 C_{2} \kappa^{n-1} l_{\mathfrak{L}(n)}\right) .
$$

Now if $2 \mathrm{C}_{2}<1$ using Claim 2.18 with $\mathrm{c}^{\prime}=2 \mathrm{C}_{2}$ and $x^{\prime}=\kappa^{n-1} \boldsymbol{l}_{\mathfrak{L}(\mathrm{n})}$ we get (for n large enough)

$$
2 C_{2} \kappa^{n-1}=2 C_{2} \bar{\rho}\left(\kappa^{n-1} l_{\mathfrak{L}(n)}\right) \leqslant \bar{\rho}\left(2 C_{2} \kappa^{n-1} l_{\mathfrak{L}(n)}\right) \simeq \rho\left(2 C_{2} \kappa^{n-1} l_{\mathfrak{L}(n)}\right)
$$

Hence, in both cases $\kappa^{n-1} \preccurlyeq \rho\left(2 C_{2} \kappa^{n-1} l_{\mathfrak{L}(\mathfrak{n})}\right)$. Finally replacing C_{R} by C_{3} in eq. (4.5) we can show that $\rho\left(2 C_{3} K^{n} l_{\mathfrak{L}(n)}\right) \leqslant 2 C_{3} k^{n}$. Thus, combining the two preceding results we obtain

$$
\begin{aligned}
\varphi_{\varepsilon}\left(R_{n}^{\prime}\right) \varepsilon_{n-1} & \leqslant \frac{2 \rho\left(C_{3} \kappa^{n} l_{\mathfrak{L}(n)}\right)}{\left(\ln \circ \rho\left(C_{2} \kappa^{n-1} l_{\mathfrak{L}(n)}\right)\right)^{1+\varepsilon} \kappa^{n-1}} \\
& \preccurlyeq \frac{\kappa^{n}}{\left(\ln \left(\kappa^{n-1}\right)\right)^{1+\varepsilon} \kappa^{n-1}}=\frac{\kappa}{((n-1) \ln (\kappa))^{1+\varepsilon}},
\end{aligned}
$$

which is a summable sequence. Hence by Theorem 3.5 the orbit equivalence coupling from Δ to \mathbb{Z} si φ_{ε}-integrable.

Remark 4.6. This result is stated in the general case, that is to say for an abstract ρ. Nonetheless, for some particular functions ρ the quantification can be improved. For example the case where $k_{n}=2^{n}$ and $l_{n}=2^{\alpha n}$ corresponds to $\rho(x) \simeq x^{1 /(1+\alpha)}$. In that case $\mathfrak{L}(n)=n-1$ and we can show that the coupling from \mathbb{Z} to Δ is exp-integrable (instead of $\exp \circ \rho$-integrable). Indeed, let $c_{\varphi}<C_{2} /\left(C_{R} 2^{3+\alpha}\right)$ and $\Psi(x):=\exp \left(c_{\varphi} x\right)$, then by eq. (4.4)

$$
\begin{aligned}
\Psi\left(2 R_{n}\right) \varepsilon^{\prime}{ }_{n-1} & =\exp \left[c_{\varphi} 2 C_{R} k_{n} l_{n-1}\right] \frac{2}{\left|T_{n-1}\right|} \\
& \leqslant \exp \left[c_{\varphi} 2 C_{R} 2^{n} 2^{\alpha(n-1)}-C_{2} 2^{n-2} 2^{\alpha(n-2)}\right] 2 \\
& =2 \exp \left[2^{n-2} 2^{\alpha(n-2)}\left(c_{\varphi} C_{R} 2^{3+\alpha}-C_{2}\right)\right] .
\end{aligned}
$$

Which is summable by choice of c_{φ}.
Remark 4.7. We can verify that the integrability obtained for the coupling from Δ to \mathbb{Z} is "almost" optimal. Indeed if the coupling from Δ to \mathbb{Z} is φ-integrable, then by Theorem 1.5 we have

$$
\varphi \circ \mathrm{I}_{\mathbb{Z}} \preccurlyeq \mathrm{I}_{\Delta}
$$

where we recall that $I_{\mathbb{Z}}(n) \simeq n$ and $I_{\Delta}(n) \simeq \rho \circ \ln (n)$. Thus using the inequality above, we get $\varphi(\mathfrak{n}) \preccurlyeq \rho \circ \ln (\mathfrak{n})$. Hence the quantification of Theorem 4.5 is optimal up to a logarithmic factor.

It is now easy to prove our first main theorem.
Proof of Theorem 1.8. Let $\rho \in \mathcal{C}$ and Δ to be the group defined in Proposition 2.14. By the aforementioned proposition it verifies $I_{\Delta} \simeq \rho \circ \log$. Moreover by Theorem 4.5 there exists an orbit equivalence coupling from Δ and \mathbb{Z} that is ($\varphi_{\varepsilon}, \exp \circ \rho$)-integrable for all $\varepsilon>0$.

To prove Corollary 1.9 we use the composition of couplings introduced in [DKLMTzo]. We recall below the proposition concerning the integrability of this composition and refer to [DKLMT20, Sections 2.3 and 2.5] for more details on the construction of the corresponding coupling.

Proposition 4.8 ([DKLMTzo, Prop. 2.9 and 2.29])

If $\left(X_{1}, \mu_{1}\right)$ (resp. $\left(X_{2}, \mu_{2}\right)$) is a ($\left.\varphi, \mathrm{L}^{0}\right)$-integrable (resp. $\left(\psi, L^{0}\right)$-integrable) orbit equivalence coupling from Γ to \wedge (resp. Λ to Σ), the composition of couplings gives a $\left(\varphi \circ \psi, \mathrm{L}^{0}\right)$-integrable orbit equivalence coupling from Γ to Σ.

Let us now show Corollary 1.9 concerning the coupling with \mathbb{Z}^{d}.
Proof of Corollary 1.9. Let $\rho \in \mathcal{C}$ and let Δ be the group defined in Proposition 2.14, in particular it verifies $I_{\Delta} \simeq \rho \circ \log$.

Let $d \geqslant 1$ and recall (see Example 3.6) that for all $p<d$ and all $q<1 / d$ there exists a $\left(L^{p}, L^{q}\right)$-integrable orbit equivalence coupling from \mathbb{Z} to \mathbb{Z}^{d}. Hence, using the composition of couplings described in [DKLMTzo] we can deduce from Theorem 1.8 and Proposition 4.8 above that there exists a $\left(\varphi_{\varepsilon}(\cdot \mathrm{p}), \mathrm{L}^{\mathrm{0}}\right)$-integrable orbit equivalence coupling from Δ to \mathbb{Z}^{d}. Now if $\mathrm{d}>\mathrm{p} \geqslant 1$ by eq. (2.2)

$$
\rho \circ \log (x) \leqslant \rho(p \log (x)) \leqslant p \rho \circ \log (x) .
$$

Since $\rho(p \log (x))=\rho \circ \log \left(x^{p}\right)$ we thus have $\rho \circ \log \left(x^{p}\right) \sim \rho \circ \log$. When $p<1$, using Claim 2.18 instead of eq. (2.2) we obtain a similar equivalence. Thus in both cases $\varphi_{\varepsilon}\left(x^{p}\right) \simeq \varphi_{\varepsilon}(x)$. Hence the corollary.

Let us conclude with some questions and remarks.

5.1 Optimality and coupling building techniques

The tiling technique - though inspiring - is not always usable to get orbit equivalence couplings. Indeed the condition that the two Følner tiling shifts must have at each step the same cardinality is very restrictive. Furthemore this technique does not seem to produce couplings with the best quantification: wether it is our coupling with \mathbb{Z} or the one built in [DKLMT20] (Examples 3.6 and 3.7) the integrability is always optimal up to a logarithmic factor. One can thus ask: is the optimal integrability reachable? Is the logarithmic error due to the building technique?

5.2 Inverse problem

We studied here the inverse problem for the group of integers (Question 1.7) but one can also ask the same question for other groups than \mathbb{Z}.

Question 5.1. Given a function φ and a group H is there a group G such that there exists a $\left(\varphi, \mathrm{L}^{0}\right)$-measure equivalent from G to H ? Can G be chosen such that $\varphi \circ \mathrm{I}_{\mathrm{H}} \simeq \mathrm{I}_{\mathrm{G}}$?

In a future article we plan to answer this question when H is a diagonal product, in particular H can be a lamplighter group. This coupling will be obtained with another building technique than the tiling process and the integrability will be optimal, answering the questions of Section 5.1 positively.

BIBLIOGRAPHY

[Aus16] T. Austin. Integrable measure equivalence for groups of polynomial growth. Groups, Geometry, and Dynamics, 10:117-154, February 2016.
[BFS13] U. Bader, A. Furman, and R. Sauer. Integrable measure equivalence and rigidity of hyperbolic lattices. Inventiones mathematicae, 194:313-379, 2013.
[BZ21] J. Brieussel and T. Zheng. Speed of random walks, isoperimetry and compression of finitely generated groups. Ann. of Math., 193:1-105, 2021. arXiv:1510.08040 [math.GR].
[DKLMTzo] T. Delabie, J. Koivisto, F. Le Maître, and R. Tessera. Quantitative measure equivalence, 2020. arXiv:2002.00719 [math.GR].
[DKT21] T. Delabie, J. Koivisto, and R. Tessera. Measure equivalence and sofic approximations, 2021. Article currently in writting.
[Dye59] H. A. Dye. On groups of measure preserving transformations. i. American Journal of Mathematics, 81(1):119-159, 1959.
[Dye63] H. A. Dye. On groups of measure preserving transformations. ii. American Journal of Mathematics, 85(4):551-576, 1963.
[GNR ${ }^{3}$] M. Gromov, G. Niblo, and M. Roller. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2: Asymptotic invariants of infinite groups, pages 1-295. Cambridge Univ. Press, 1993.
[KL21] D. Kerr and H. Li. Entropy, Shannon orbit equivalence, and sparse connectivity. Mathematische Annalen, 380:1497-1562, 2021. arXiv:1912.02764 [math.DS].
[OW8o] D.S. Ornstein and B. Weiss. Ergodic theory of amenable group actions. I: The Rohlin lemma. Bulletin of the American Mathematical Society, 2:161-164, 1980.

NOTATIONS INDEX

\preccurlyeq, \simeq See above Theorem 1.5.
$|X|$ Cardinal of the set X.
∂F Boundary of the set F.
Δ See Definition 2.1.
Δ_{m} See Section 2.1.
F_{n} Følner sequence of Δ.
\mathbf{g} The sequence of maps $\left(g_{m}\right)_{m \in N}$.
g_{m}^{\prime} See Section 2.1.3.
Γ_{m}^{\prime} Normal closure of $\left[A_{m}, B_{m}\right]$.
I_{G} Isoperimetric profile of G .
R_{n} Diameter of T_{n}.
$R^{\prime}{ }_{n}$ Diameter of $\mathrm{T}^{\prime}{ }_{n}$.
S_{G} A generating set of the group G.
Σ_{n} Følner tiling shifts (of Δ).
$\Sigma^{\prime}{ }_{n}$ Følner tiling shifts of \mathbb{Z}.
T_{n} Tile of Δ defined by $\mathrm{T}_{\mathrm{n}}=\prod_{i=0}^{n} \Sigma_{i}$
$\mathrm{T}^{\prime}{ }_{n}$ Tile of \mathbb{Z} defined by $\mathrm{T}^{\prime}{ }_{n}=\prod_{i=0}^{n} \Sigma^{\prime}{ }_{i}$
$\theta_{m}^{A}\left(f_{m}\right)$ Natural projection of f_{m} on A_{m} (see Section 2.1.3).
$\theta_{m}^{B}\left(f_{m}\right)$ Natural projection of f_{m} on B_{m} (see Section 2.1.3).

[^0]: *Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -Project-ID 427320536 - SFB 1442, as well as under Germany's Excellence Strategy EXC 2044 - 390685587 , Mathematics Münster: Dynamics-Geometry-Structure.

[^1]: ${ }^{1}$ We chose to adopt the convention of [DKLMT20]. Note that in [BZ Z_{21}], the isoperimetric profile is defined as $\Lambda_{G}=1 / I_{G}$.

[^2]: ${ }^{2}$ Delabie et al. [DKLMT20] use the term "Folner tiling sequence". We chose to call $\left(\Sigma_{n}\right)_{n}$ a tiling shift in order to avoid confusion with usual Følner sequences.

