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BUILDING PRESCRIBED QUANTITATIVE ORBIT
EQUIVALENCE WITH Z

Amandine Escalier®

May 20, 2022

Two groups are orbit equivalent if they both admit an action on a same

probability space that share the same orbits. In particular the Ornstein-
Weiss theorem implies that all infinite amenable groups are orbit equivalent
to the group of integers. To refine this notion between infinite amenable
groups Delabie, Koivisto, Le Maitre and Tessera introduced a quantitative
version of orbit equivalence. They furthermore obtained obstructions to the
existence of such equivalence using the isoperimetric profile.
In this article we offer to answer the inverse problem (find a group being
orbit equivalent toa prescribed group with prescribed qu:mtiiieation) in the
case of the group of integers using the so called Folner tiling shifts introduced
by Delabic et al. To do so we use the diagonal products defined by Bricussel
and Zheng giving groups with preseribcd isoperimetric proﬁle.
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INTRODUCTION

Two groups arc orbit Cquivalcnt if tbcy admit free measurc-preserving actions on a same
standard probability space (X, u) which share the same orbits. 'This notion —emerging
from the seminal work of Dye [Dyes9, Dye63]— can be seen as the ergodic version of the
famous measure equivalence introduced by Gromov [GNR93]. A famous result of Ornstein
and Weiss (see Theorem 1.2) implies that all amenable groups are orbit equivalent. In
particular —unlike quasi-isometry— orbit equivalence does not preserve coarse geometric
invariants.

To overcome this issue it is therefore natural to look for some refinements of this orbit
equivalence notion. Assume for example that G and H are two finitely generatecl orbit
equivalent groups over a probability space (X, ). Recall that we can consider the Schreier
graph associated to the action of G (resp. H) on X and equip it with the usual metric
ds. (resp. ds,), fixing the length of an edge to one. A first way to refine the measure
equivalence is to quantify how close the two actions are by studying for all g € G and
h € H the integrability of the two following maps

x — dsg (x,h-x) x — ds,, (x,g - x).

When these two maps are LP we say that the groups are LP-orbit equivalent (see [BFSi;]
for more details). In this refined framework a famous result of Bader, Furman and Sauer
[BFS13] implies that any group L'-orbit equivalent to a lattice in SO(n, 1) for some n > 2
is virtually a lactice in SO(n, 1). This refinement also lead Bowen to prove in the appendix
of [Aus16] chat volume growtb was invariant under L'-orbit equivalence.

Delabie, Koivisto, Le Maitre and Tessera offered in [DKLMT20] to extend this quantifi-
cation to a family of functions larger than {x — xP, p € [0, 400} (see Definition 1.3). They
furthermore showed the monotonicity of the isoperimetric proﬁlc under this quantiﬁcd
measure equivalence definition (see Theorem 1.5). In [BZ21] Brieussel and Zbeng man-
aged to construct amenable groups with prescribed isoperimetric profile called diagonal
product. Considering the monotonicity of the isoperimetric profile, the striking result of
Brieussel and Zheng thus triggers a new question: instead oftrying to quantify the equiv-
alence relation between two given groups, can one find a group that is orbit equivalent to
a prescribed group with a prescribed quantification?

This is the problcm we address in this article. Using Bricusscl—Zbcng’s construction
we exhibit a group that is orbit equivalent to Z with a prescribed quantification (see
Theorem 1.8). Comparing the obtained coupling to the constraints given by Theorem 1.5
we show that our couplings is close to being optimal for a sense of “optimal” that we

precise in Section 1.2.
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11 Quantitative orbit equivalence

Let us recall some material of [DKLMT20]. A measure-preserving action of a discrete count-
able group G on a measured space (X, p) is an action of G on X such that the map (g,x) —
g - x is a Borel map and w(E) = u(g-E) for all E € B(X) and all g € G. We will say that a
measure-preserving action of G on (X, ) isfree if for almost every x € X we have g-x =x
if and only ifg=ecq.

We recall below the definition of orbit equivalence and the quantified version as intro-
duced by Delabie, Koivisto, Le Maitre and Tessera [DKLMT20]. We conclude by studying

the relation between isoperimetric profile and orbit equivalence.

Definition 1.1

Let G and H be two ﬁnitciy gcncmtcd groups. We say that G and H are orbit equivalcnt
if there exists a probability space (X, p) and a measure-preserving free action of G (resp.
H) on (X, p) such that for almost every x € X we have G-x = H-x. We call (X, ) an orbit

equivalence coupling from G to H.

By the Ornstein Weiss theorem [OW 80, Th. 6] below, all infinite amenable groups are

in the same equivalence class.

Theorem 1.2 ([OW80])

All infinite amenable groups are orbit equivalent to Z.

To refine this equivalence relation and “distinguish” amenable groups we introduce the
quantified version of orbit equivalence.

Recall that if a finitely generated group G acts on a space X and if S is a finite generat-
ing sct of G, we can define the Schreier graph associated to this action as bcing the graph
whose set of vertices is X and set Ofedges is {(x,s-x)|s € Sk}. This graph is endowed with
a natural metric ds, fixing the length of an edge to one. Remark that if S§ is another
generating set of G then there exists C > 0 such that for all x € X and g € G

1
cdse (%, 9°%) < ds; (%,9-x) < Cdsg (x, 9 x).

Definition 1.3 ([DKLMTzo0, Def. 2.18])

We say that an orbit equivalence coupling (X, 1) from G to H is (@, V)-integrable if for
all g € G (resp. h € H) there exists ¢g > 0 (resp. cn > 0) such that

J © (ldsH (g-x, x)) du(x) < 400 and J 1) (ldsG (h-x, x)) du(x) < +o0.
X C X Ch

9

We introduce the constants ¢q and cp, in the definition for the integrability to be inde-
pendent of the choice of generating sets Sg and Sy If @(x) = xP we will sometimes talk
of (LP,p)-integrability instead of (@, )-integrability. In particular L° means that no in-
tegmbility assumption is made. Fin:tiiy7 note that every (L“,lb)—integmble Coupling is
((p,lb)—integtabie for any increasing map @ : R* — R*. When ¢ =1 we will say that the
coupling is @-integrable instead of (¢, @)-integrable.

Examples 1.4 ([DKLMT20]).
1. There exists an orbit equivalence coupling between Z* and the Heisenberg group
Heis(Z) that is LP-integrable for all p < 1.
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2. Let k € N*. Their exists an (L*, cxp)—intcgrablc orbit Cquivalcnce coup]ing from
the 1amp1ighter group to the Baumslag—Solitar group BS(1,k).

More examples will be given in Section 3.1. Let us conclude on the quantification by
a remark. We chose to refine orbit equivaience using the integmble point of view. But
it is not the only possible sharpening. For example Kerr and Li [KL21] defined Shannon
orbit equivalence: instead of looking at the integrability of distance maps they consider the

Shannon entropy of partitions associated to the coupling.

1.2 Isoperimetric profile

As stated before, the orbit equivalence does not preserve the coarse geometric invariants.
But the quantiﬁcd version defined above allowed Delabie et al. [DKLMT20] to geta rela-
tion between the isoperimetric pi‘ofiles of two orbit equivalent groups which we describe
below.

Recall that if G is generated by a finite set S, the isoperimetric profile of G is defined as!

Al

Ig(n):= sup Al

[Al<n
For example the isoperimetric profile of Z verifies I7(x) ~ x. Remark that due to Folner
criterion, a group is amenable if and only if'its isoperimetric profile is unbounded. Hence
we can see the isoperimetric profile as a way to measure the amenability of a group: the
faster Ig tends to infinity, the more amenable G is.

The behaviour of the isoperimetric proﬁle under measure cquivalencc Coupiing is given
by the theorem below. If f and g are two real functions we denote f < g if there exists
some constant C > 0 such that f(x) = 0(g(Cx)) as x tends to infinity. We write f = g if
f<Xgand g f.

Theorem 15 (IDKLMTz0, Th.1])

Let G and H be two finitely generated groups admitting a (¢, L°)-integrable orbit equiv-
alence coupling. If ¢ and t/@(t) are increasing then

@oly <X Ig.

This theorem provides an obstruction for finding ¢-integrable couplings with certain
functions ¢ between two amenable groups. For example for a coupling with H = Z the in-
tegrabiiity has to Verify ¢ < Ig. This lead the authors of [DKLMT20] to ask the following

question.

Question 1.6 ([DKLMT2o0, Question 1.2]). Given an amenable ﬁnitcly gcncratcd group G,
does there exist a (Ig, L°)-integrable orbit equivalence coupling from G to Z?

This interrogation contains actually two questions, starting with the “inverse problem”

stated below.

Question 1.7. Given a function ¢ is there a group G such that there exists a (¢, L%)-measure

equivalent from G to Z?

"We chose to adopt the convention of [DKLMT20]. Note that in [BZ21], the isoperimetric profile is defined
as /\G =1 /IG
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We answer the above question fora 1:1rgc family ofmaps ¢ in Theorem 1.8.
The second interrogation that Question 1.6 triggers is whether Theorem L5 is optimal
when G = Z. In other words one can ask if G in Question 1.7 can be chosen such that

¢ ~ Ig. We will sce that this relation is verified up to a logarithmic factor.

1.3 Main results

In this paper we show the following main theorem and its corollary below.

Theorem 1.8
For all non—dccrcasing function p : [1, +oco[— [1, +oo[ such that p(1) = 1 and x/p(x) is
non-decreasing, there exists a group G such that

e Ig=po 10g;

« there exists an orbit equivalence coupling from G to Z that is (¢, exp op)-inte-

grable for all € > 0, where @ (x) := p o log(x)/(logop o log(x)) e

Let us discuss the optimality of this result. Consider a (¢, L°)-integrable orbit equiva-
lence coupling from some group G to Z. By Theorem 1.5 it verifies olz < Ig. Inparticular
since Iz(x) = x, we can not have a better intcgrability than @(x) ~ Ig. Since Ipn ~po log
our above theorem is optim:d up to a logarithmic error. We discuss this in more length

in Section 5.

MAIN INGREDIENTS  The main tools of the proof of Theorem 1.8 are Bricussel-Zheng’s
diagonal products (see Section 2) and Folner tiling shifts (see Section 3). We show that a
diagonal product A admits a coupling with Z satisfying Theorem 1.8. To prove it we use
the integrability criterion given by Theorem 3.5 and involving Felner tiling shifts.
Therefore we compute in Section 3.2 a Folner tiling shift (Zn)n for A. We also estimate
the tiles’ diameter and the proportion of elements in the boundary. We construct a Folner
tiling shift for Z in Section 4.1 and show that these two tiling shifts verify Theorem 3.5.

Let us now consider the possible generalisations of this result to other groups than
the group of integers. To do so we can use the composition of couplings described in
[DKLMT20, Section 2].

Given the above theorem, once we have a measure equivalence coupling from Z to a
group H we can compose the two couplings to obtain a measure equivalence from G to H.
If the growth of the isoperimetric proﬁ]c of H is close to the one of Z, the intcgrability
of the obtained coupling will be close to the optimal one given by Theorem 1.5. It is for
example the case when H = Z4.

Corollary 1.9
Let d € N*. For all non—decreasing function p : [1,4o00[— [1, +oo[ such that p(1) =1 and
x/p(x) is non-decreasing, there exists a group G such that

« Ig=~polog;

« there exists an orbit Cquivnlcncc coupling from G to Z9 that is (@, LO)—intcgrablc

for all € > 0, where @, (x) := polog(x)/(logop o log(x))wa

STRUCTURE OF THE PAPER  In Section 2 we present the diagonal products intro-
duced by Bricussel and thng We recall some of the properties shown in [BZ21] and
compute Folner sequences. Section 3 is devoted to Folner tiling shifts. These tools built



2 Diagonal products of lamplighter groups

by Delabie et al. [DKLMT20] allow us to construct and quantify an orbit cquivalcncc
coupling between two groups. In this section we also construct Folner tiling shifts for di-
agonal products A. We show our main theorem in Section 4 combining the results of the
two previous sections. Finally we discuss the limits of this construction and some open

problcms in Section 5.

ACKNOWLEDGEMENTS  Iwould like to thank my advisors, Romain Tessera and Jérémie
Brieussel, under whose supervision the work prcscntcd in this article was carried out. I
thank them for suggesting the topic, sharing their precious insights and for their many

useful advices.

DIAGONAL PRODUCTS OF LAMPLIGHTER GROUPS

We recall here necessary material from [BZ21] concerning the definition of Brieussel-Zheng’s
diagonal products. We give the definition of such a group, recall and prove some resules
concerning the range (see Definition 2.7) of an element and use it to identify a Folner
sequence. Finally we present in Section 2.3 the tools needed to recover such a diagonal
product starting with a prescribed isoperimetric profile.

2.1 Definition of diagonal products

Recall that the wreath product of a group G with Z denoted G Z is defined as G Z :=
SmezG X Z. An clement of G Z is a pair (f,t) where f is a map from Z to G with finite

support and t bClOI’lgS to Z. We I'CfCI' to f as thC lamp configumtion ﬂl’ld t as thC cursor.

2.1 General definition

Let A and B be two finite groups. Let (M )men bea sequence of finite groups such that each
Im admits a generating set of the form Ay, U By, where Ay, and By, are finite subgroups
of Ty, isomorphic respectively to A and B. For a € A we denote ay, the copy of a in Ay,
and simi]arly for By,.

Finally let (ki )men bea sequence ofintegers such that k41 > 2k, for all m. We define
A =Tm 1 Z and endow it with the generating set

San = {(id, D} U {(and0,0) [ am € A} U{ (bm8i,,0) [bm € A}

Definition 2.1

The Brieussel-Zheng’s diagonal product associated to (Tm)men and (km)men is the sub-
group A of ([T,, 'm) ¢ Z generated by

Sa = {((id)m, 1)} U {((amao)m,o) lac A} U {((bmékm)m,o) Ibe B}.

The group A is uniquely determined by the sequences (Tm)men and (K )men. Let us
give an illustration of what an element in such a group looks like. We will denote by g

the sequence (gm)men-
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Example 2.2. We represent in Figure 1 the element (g, t) of A verifying

(gvt) = ((gm)meﬁ\ht) = ((améo)m,O)((bmékm)m,O) (073))

when km, = 2™. The cursor is represented by the blue arrow at the bottom of the figure.
The only value of go different from the identity is go(0) = (ao, bo). Now if m > 0 then the
only values of g, different from the idcntity are gm(0) = am and gm (k) = b

gn an | bn
|
|
92 az bl i
! |
g1 a; b | :
90 (a,bo) | | |

| | | | | | .

Cursor

Figure 1: Representation of (g,t) = ((@md0)m,0) ((bmdk,, Jm,0)(0,3) when kp = 2™,

2.2 The expanders case

In this article we will restrict ourselves to a particular familiy ofgroups (M) men called
expanders. Recall that (Ty)men is said to be a sequence of expanders if the sequence of
diameters (diam (T ))men is unbounded and if there exists ¢y > 0 such that for all m € N
and all n < |1, 1/2 the isoperimetric profile verifies I, (n) < co.

When talking about diagonnl products we will :ﬂways make the foilowing assumptions.

We refer to [BZz21, Example 2.3] for an explicit example ofdiagonal product verifying (H).

Hypothesis (H)
* (km)m and (Ln)m are sub-sequences of geometric sequences.
« ka1 =2k for all me N;
¢ (Mm)men is a sequence of expanders such that Iy, is a quotient of A% B
and there exists ¢ > 0 such that 1/cl,, < diam (M) < cly for all me N;
« ko =0 and Iy = Ay x Bo;
« {([Am, Bm]))\I'm =~ A x By where (([A, Bim])) denotes the normal

closure of [Am, Bl

Recall (see [BZ21, page 9]) that in this case there exist ¢y, ¢; > 0 such that, for all m

cilm —cz2 < InjMnl < el + 2. (2.1)

Finally we adopt the convention of [BZz21, Notation 2.2] and allow (km)m to take the
value +oo. In this case A is the trivial group. In particular when k; = +o0 the diagonal

product A corresponds to the usual lamplighter (A x B): Z.

2.1.3  Relative commutators subgroups

Forallm e Nlet 0, : Ty — (A, Bml))\I'm = A x By be the natural projection. Let

07 and 08, denote the composition of 0,, with the projection to A, and By, respectively.
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Now let m € N and define I, := (([Am, Bml)). If (g, t) bc]ongs to A then there exists
aunique gy 1 Z =My such that g = ¢mBm(gm).

Example 2.3. Let (g,3) be the element described in Figure 1. Then the only non-trivial
value of 80(go) is 80(go(0)) = (ao, bo). If m > 0 then the only non trivial values of 8, (gm)
are Om(gm(0)) = (am,e) and O (gm(km)) = (e,bm). Finally for all m we have gf, = id
since there are no commutators appearing in the decomposition of (g,0).

Example 2.4. Assume that ky, = 2™ and consider first the element (f,0) of A defined by
(£,0) == (0,—k1) ((@md0)m,0)(0,k1). Now define the commutator

(9,0) = (£,0) * ((bmi,)Jm,0) « (£,0)7" - (b3 8k, ), 0)

and let us describe the values taken by g and the induced maps 0, (gm) and ghy (see Fig-
ure 2 for a representation of g). The oniy non-trivial commutator appearing in the values
taken by g is g1 (k1) which is equal to a;bya; b7, In other words go is the identity, thus
8o = id. Moreover when m = 1 we have 8; = id and the oniy value of‘g’1 (x) different from
eis gj (ki) = arby aﬁbf1 (on a blue background in Figure 2). Fin:llly if m > 1 then gy, is
the identity thus 6, = id and g}, = id.

g2 wa, =e boby ' =e

14,1
g1 a;bra; b,

Jgo (aoay ' boby ")
NS

(ee)
| | | | |
|0 i] |k1:2 i3 |kZ:4

Cursor

Figure 2: Representation of (g,0) defined in Example 2.4
Let us study the behaviour of this decomposition under product of lamp configurations.

-1
Claim 2.5. If gy fm @ Z = T then (gmfm)’ = gmOm(gm)fim <9m(gm)> .

Proof Since gm = O (gm) g and i, = 0.1 (fin ) fin We can write

Imfm = ImOm(gm)  fmOm(fm) = ginem(gm)flmem(gm)7]emigm)em(fm)-

But 0,1 (gm)0m (fm) takes values in A, x By and I, is a normal subgroup of Ty, thus the
map grmOm (gm)fmOm(gm) " takes values in Iy, Hence the claim. O

Combining Lemma 2.7 and Fact 2.9 of [BZ21], we get the following result.

Lemma 2.6

Let (g,t) € A. Forallme Nandx € Z

gm (x) = gin (x)O(go (x))OR (g0 (x — km)).

In particular the sequence g = (gm) is uniquely determined by go and (gin)

meN meN-

In the next subsection we are going to see that we actually need only a finite number of

clements of the sequence (gim)men to characterize g.
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2.2 Range and support

In this subsection we introduce the notion of range of an element (g, t) in A and link it to

the supports of the lamp configurations (gm)men-

2.2.1 Range

We denote by 7 : A — Z the projection on the second factor and for all n € N denote by
[(n) the integer such that km) <1 <k

Definition 2.7

If w = s7 ... 51 is 2 word over Sa we define its range as

range(w) = {7[2 <ﬁ sj) 1= 1,...,n} .
j=1

The range is a finite subinterval of Z. It represents the set of sites visited by the cursor.

Definition 2.8

The range of an element § € A is defined as the minimal diameter interval obtained as

the range of a word over Sa representing 5. We denote it range(d).

When there is no ambiguity we will denote range(8) the diameter of this interval.

Example 2.9. Let (g,0) € A such that range(g,0) = [0, 6], that is to say: the cursor can only
visit sites between 0 and 6. Then the map g can “write” elements of Ay, only on sites
visited by the cursor, that is to say from 0 to 6, and it can write elements of B, only from
Km €0 6 + km. Thus go is supported on [0, 6], since ko = 0. Moreover, commutators (and
hence elements of T,) can only appear between ky, and 6, thus supp(g'm) C [km,6]. In
particular supp(g’m) is empty when k., > 6.

Such a (g,0) is represented in Figure 3 for kyy =2™.

gm () belongs to...

B n O e 0 G

Figure 3: An element of A

Recall that g : Z — T If m < ((6), then gm(x) belongs to Ay, if x € [0, km — 1], it belongs to '
if x € [km, 6] and to By if x € [7,6 + k] and equals e elsewhere. If m > 1(6) then g (x) belongs to
A if x € [0,6] and to By, if x € [k, 6 + k] and equals e elsewhere.

Let us now recall a useful fact proved in [BZ21].
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Claim 2.10 ([BZ21, Fact 2.9]). An element (g,t) € A is uniquely determined by t, go and

the sequence () m<i(range(g,))-

Examplc 2.11. Consider again (g,0) € A such that range(g,0) = [0, 6], which was illustrated
in Figure 3. Since k3 = 8 > 6, the element (g,0) is uniquely determined by the data go
(that is to say, the values read in the bottom line) and the values of g for i = 1,2 (namely,
the value taken in the blue area). Figure 4 represents the aforementioned Chamcterizing

data.

0 9] k2 7

Figure 4: Data needed to characterized g such that range(g) C [0, 6] when k, =2™

222 Relation between range and support

Recall that for all m € N we can write gm (%) = gin (x)82(g0(x))08, (go (x — km)).

To work with the Folner sequence we compute in Section 2.2.3 and deduce a Folner
tiling shift from it, we will need to link the range of (g,t) in A with the support of go and
the sequence of supports of (g',,, )Jmew. This is what the following lemma formalises.
Lemma 2.12

Let n € N and take (g,t) € A. Then range(g, t) is included in [0,n] if and only if

t € [0,n]
supp(go) C [0,n]
supp(g’yy) C [kmynl V1 <m < [(n)

g,.=c vm > [(n).

Proof. Let n € N andf first assume that range(g,t) C [0,n], that is to say: the cursor can
only visit sites between 0 and n. Let (g,t) = ]_[1:0 sy be a decomposition ina product
of elements of Sa of minimal length. Let m € N, then by definition of So an element s;
can “write” elements of Ay, only between 0 and n, and it can write elements of By, only
between ki and n + k. Thus go is supportcd on [0,n], since ko = 0. And commutators
can only appear between ky, and n, hence supp(gin) € [km,nl. In particular ifkm >n
then gj, = e. Finally we obtain that t belongs to [0,n] by noting that t = 7, (H}:1 sj).
Now let us prove the other way round. Consider m € [1,1(n)] then gin(x) € M. It is
therefore a product of conjugates of commutators of the form [am, bw], where am € A
and by, € By, Applying Example 2.4 with x instead of k; we can show that we can write
[@m, bm] at gm(x) without changing any other entry in g (see also Figure 2). In a similar
way, We can write a conjugate of [am, bm] at gm (x) without changing any other entry in g.
Finally writing (ao, bo) at the entry go(x) writes am at gm(0) and by, at gm(km) (see also
Figure 1). Therefore using Lemma 2.6 we can obtain (g,0) by first considering the word
in A that writes all the values of go, then multiplying it on the left by a word that writes

the value of g, and continue this process to write all g, for m < I(n).

10
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Let us now check that the cursor remains in [0,n] when writing go and gh,. Take m €
[1,1(n)], then ky < n and supp(gh) is contained in [kym,n]. Now let x € supp(gh) C
[km,nl. Since Iy C Ty which is generated by Ay, x By, we can decompose gh(x) as a
product of elements in Ay, and By,. To write some am € Ay, at the position x the cursor
needs to visit sites in [0,x]. To write some by, € By, it needs to visit sites in [0,% — k).
Therefore, the cursor remains in [0,n] when writing gm(x) at position x. Finally, for all x
the cursor needs only to visit position x in order to write go(x). Since supp(go) is contained
in [0,n] then the cursor needs only to visit sites between 0 and n.

Combining what precedes with Lemma 2.6 and the hypothesis that t € [0,n], we get
that the cursor needs only to visit cites between [0,n] to write (g,t). Hence the lemma.

O]

2.2.3  Folner sequence

In this subsection we describe a Folner sequence (Fr)nen for A. Recall that [(n) denotes

the integer such that ki) <1 < Kyn)41.

Proposition 2.13

The fol]owing sequence is a Folner sequence of A

Fn={(f,t) | range(f,t) C{0,..,n—1}}.

Proof. Letn € Nand s € F, and let sy, ..., st € Sa such that 8 = sy - 5. Now take si.1 € Sa.
If s1:1 = ((amd0),0) for some a € A or if si11 = ((bmdx,,),0) for some b € B then since
the cursor of sy41 equals 0,

range(8si41) = {7‘[2 <H s)-) [1= 1,...,l+1} = range(d).
i=1

Thus 8s141 € Fn. Finally denote by [x,y] the range of 6. Using the same formula as above
we get
range(8 - (id,1)) C b,y + 1] ift =y,
range(8- (id, 1)) € [x,y] ift <.

Hence for all t < n—1 we have range(8-(id, 1)) € [0,n—1]. Now if t = n—1 then the cursor
of 8(id, 1) visits the site n, thus range(d - (id, 1)) is not included in [0,n — 1] and therefore
8(id, 1) does not belong to Fy,.

A similar argument shows that §(0, —1) belongs to F,, if and only if t # 0. Hence 9F,, =
{(f,t) € Fp : t =0,n}and thus

[0Fn|/|Fnl=2/1n — 0.
n—oo

2.3 From the isoperimetric profile to the group

We saw how to define a diagonnl product from two sequences (km)m and (Iyn)m. In this
section we recall the definition given in [BZ21, Appendice B] of a Brieussel-Zheng’s group
from its isoperimetric profile. We conclude with some useful results concerning the met-

ric of these groups.



2 Diagonal products of lamplighter groups

231 Definition of A

Recall that in the particular case of expanders (see Section 2.1.2) a Bricussel-Zheng’s group
is uniquely determined by the sequences (km)men and (lm)men (where 1, corresponds to
the diameter of Thyy). Thus, starting from a prescribed function p, we will define sequences

(Km)men and (Ln)men such that the corresponding A verifies [n ~p o log. Let

€= {c:[1,+oo)w1,+oo) G continue, cll) =1 }

Cand x — x/C(X)non—decreasing

Equivalently this is the set of functions ¢ satisfying ¢(1) = 1 and

(vx,c>1)  ¢(x) < Clex) < ed(x). (2.2)

So let p € €. Combining [BZ21, Proposition B.2 and Theorem 4.6] we can show the fol-
lowing result (remember that with our convention the isoperimetric profile considered

in [BZ21] Corresponds to 1/1Ia).

Proposition 2.14

Let k,A > 2. For any p € € there exists a subsequence (km)men of (K™)nen and a
subsequence (L )men of (A™)new such that the group A defined in Section 2.1.2 verifies

Ia(x) = polog.

Example 2.5 ([BZ21, Example 45]). Let a > 0. If p(x) := x!/(1*%) then the diagonal
product A defined by km = k™ and 1, = k¥™ verifies [n ~po log.

2.3.2 Technical tools

We recall the intermediate functions defined in [BZ21, Appendix B] and some of their
properties.

Let p € € and let f such that p(x) = x/f(x). The construction of a group Corrcsponding
to the given isoperimetric profile polog is based on the approximation of f by a piecewise
linear function f. For the quantification of orbit equivalence, many of our computations
will use f and some of its properties. We recall below all the needed results, beginning
with the definition of f.

Lemma 2.16

Let p € € and f such that p(x) = x/f(x). Let (k) and (1) given by Proposition 2.14
above and A the corresponding diagonal product. The function f defined by

f(x) := (2.3)

kmx+1 il{“X < [km+‘| lm,km+‘|lm+]],

_ {lm ifx € Kol Kot 1 Ly

verifies f ~ f. In particular the map p defined by p(x) = x/f(x) verifies p ~ p.
Example 2.17. If p(x) = x then f(x) = 1 leads to l,, = 1 for all m and k;;, = +oo for all
m > 1. In this case A= (A x B), Z.

Remark that both f and 5] bclong to C. In particular thcy Vcrify eq. (2.2), which is only
true when ¢ and x are greater than 1. When ¢ < 1 we get the following inequnlity,

Claim 2.18. 1f0 < ¢’ < 1and x' > 1/c¢’ then ¢/p(x') < p(c/x).

12
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3 Folner ti]ing shifts

Proof: 1£0 < ¢’ <1 then 1/¢’ > 1, thus we can apply eq. (2.2) with ¢ = 1/¢/ and x = ¢/x to

obtain p(x') = p (Lc'x) = plex) < ep(x) = Lp(c/x). O

c/
2.3.3  Metric
We recall here some useful material about the metric of A and refer to [BZ21, Section 2.2]
for more details. Firse, let (x) := max{x, 0}.

Definition 2.19

Forj € Zand m € Nlet I™ := [jkm/2, (j + 1)km/2 = 1. Let fin : Z = Tin. The essential
contribution of f, is defined as

The following proposition sums up [BZ21, Lemma 2.13, Proposition 2.14).
Proposition 2.20
For any & = (f,t) € A we have

[(1‘:11136(5))
(£, )la <500 > [(fmyVlay,

m=0

[(fins A, <9 (mnge(fm,t) + Em(fm)) .

FOLNER TILING SHIFTS

We start by recalling some material of [DKLMT20] about Folner tiling shifts and then
construct such a tiling for diagonal products.

3.1 Folner tiling shifts

The tools we are going to use to build orbit equivalence are Folner tiling shiﬁsl. These se-
quences lead to Folner sequences defined recursively: the term of rank (n+1) is composed
of a finite number of translates of the n-th term of the sequence.

Definition 3.1

Let G be an amenable group and (£, )nen be a sequence of finite subsets of G. Define by
induction the sequence (T )nen by To == £o and Tniq == TaZpa1. We say that (Zn)nen
is a (left) Folner tiling shift if
o (Tn)nen is a left Folner sequence, viz.
(Vvge G)  lim 19T Tl _ 0,

n—oo [Tl

¢ Inp1 = |—|662n+1 UTn-
We call £,, the set of shifts and (T )new the tiles.

*Delabie et al. [DKLMT20] use the term “Folner tiling sequence”. We chose to call (£, a tiling shift in
order to avoid confusion with usual Felner sequences.

13



3 Folner tiling shifts

We can also consider right Folner tiling shifts, that is to say sequences (Z,)n such that

Tt :=Zny1Tn defines a right Folner sequence.

Definition 3.2
Let S be a generating part of G. We say that (Z,)new is a (Rn, e )-Folner tiling shift if

for flll n we l’lZlVﬁ

diam (Th) < Ry, IsTo\Tn| < enlTnl (Vs € S).

Delabie et al. showed in [DKLMT20] the two following examples.

Example 3.3. If G = Z the sequence defined by £,,41 :={0,2"} is a (2",2' ™)-Folner tiling
shift and the sequence (T,,) thus defined verifies T,, = [0,2™ —1].

Example 3.4. If G = (Z/27): Z then the sequence (Z)nen defined by

Lo ={(f,0) € Glsupp(f) C 0,1},
Saer ={(,0) € G| supp(f) C 2", 2" — 1)}
U {(f,2") € G | supp(f) € [0,2" — 1]},

is a right (3-2™,27™)-Folner tiling shift. Morcover the tiling (Tn )nen thus defined verifies
T, = {(f,m) € G |supp(f) € [0,2™ — 1], m € [0,2™ — l]}.

In [DKLMT20] the authors gave a condition for two amenable groups admitting both
Folner tiling shifts to be orbit equivalent. Indeed if G admits a Folner tiling shift (Zn)nen
then we can define X := ], ¢ Zn and endow it with an action of G. Up to measure zero,
two clements of X will be in the same orbit under that action if and only if they differ
by a finite number of indices. The Cquivalcnce relation thus induced is called the cofinire
equivalence relation. Now if G’ admits a Felner tiling shift (Z0)nen Verifying |Zn] = |Z4] for
all integer n, then there exists a natural bijection between X and X’ := [,y Zh which
preserves the cofinite equivalence relation. That is to say G and H are orbit equivalent.
Furthermore thcy showed that if we know the diameter and the ratio of elements in the
boundary of each tile then we can deduce the integrability of the coupling. This is what

the following proposition sums up.

Theorem 3.5 ([DKLMTzo0, Prop. 6.6])
Let G and G’ be two discrete amenable groups and let (24 )n be an (en, Ry )-Folner tiling
shift for G and (Z},)n be an (¢'n, R'w)-Folner tiling shift for G’

If |, = |Z], then the groups are orbit equivalent over X = [T, ¢,y Zn. Moreover if
©:R, >R, isa non—dccrcasing map such that the sequence (@(2R'n) (en—1 — &n))nen

is summable, then the coupling from G to G is (¢, L°)-integrable.

Using this tiling technique and the above theorem, Delabie et al. [DKLMT20] obtained
the first point of‘Examples 1.4 and the two following quantiﬁcations.

Example 3.6. For all n and m chere exists an orbit equivalence coupling from Z™ to Z™
which is (@¢,Pe)-integrable for every ¢ > 0 where
Xn/TrL Xm/n

@C(X):W Pe(x W

Remark that in particular for all p < n/m and q < m/n there exists a (LP,L9)-orbit

Cquivalcncc coupling from Z™ to Z™.

14



3 Folner ti]ing shifts

Example 3.7. Letm > 2. There exists an orbit Cquivalcncc coupling between Z and Zmz,Z
that is (exp, (ps)—integrable for all ¢ > 0 where

B 10g(x)
Pelx) = log(log(x))1+e”

Note that the above example corresponds to the case when p(x) = x in our Theorem 1.8.

3.2 Felner tiling shifts of diagonal products

Let (km)m and (lm)m be two sequences Verifying the conditions of (H) and consider A
the associated diagonal product (see Section 2). We define below a Folner tiling shift for
A. Our goal is to obtain a tiling verifying T, = Fen. After defining the shifts sets Z,, we
prove that the sequence (Zn)nen is actun]ly a Folner ti]ing shift. Finu]ly we precise this
last statement by computing (Rn)nen and (en)nen such that (Zn)nen is a (R, en)-Folner
tiling shift (see Definition 3.1).

3.21  Definition of the shifts

For any n € N, let £m) = (k™ — 1), that is to say £(n) is the integer such that kem) <
K™ —1 < Kg(n)+1. For example ifky ;=™ foralln e N, then £n)=n—1.

Before defining our sequence (Zn)nen, let us show some practical resules on €. First
remark that since (kn)nen is a subsequence of (k™)nep, it verifies kn > k™ for all n € N.
Thus £(n) < n and

Kem) < k™ < kgmy41-

Claim 3.8. Letn > 0, then cither £n+1) = £(n) or £(n+1) = £(n) + 1. Morcover in this

second case Keme1) = k™

Proof. Recall that by definition £(m) = max{i € N|k; < k™ — 1} for all m € N.

Letn € N, then £(n+1) > £(n). Moreover if kg(n)r1 = k™! then £n+1) < £(n) + 1.
That is to say £(n+ 1) < £(n) and thus £(n+1) = £(n).

On the contrary, if kg(n) 11 < k™1 then £(n+1) > £(n) + 1. But, by definition of £(n)
it verifies kem)+1 = k™ and by construction of (k) men we also have Kem)+2 = Kkg(n)4+1
thus ke(n)2 = k™. Hence £(n +1) < £(n) + 2 and the first assertion.

Finally if £n + 1) = £(n) 4+ 1 then by definition of £

ko) < K™ <kegnyr1 = kKener) <k

But (km)men is a subscqucncc of k™ thus the above incquality implics Kent1) = k™ ]

Now, let us define the shifts. First let £o := Fo, then if n > 0 we distinguish two cases
depending on whether £(n+1) = £(n) or £(n+1) = £(n) + 1 and in both cases we split
the set of shifts Z,,,1 in « parts.

If e(n+1)=£n), lec forallj € {0,..,k —1}

supp (go) C [0,jk™ = TJU [(j 4+ k™, k™1 —1],
vm e [1, £(n)]
=109k €A SUPP (ghn) € Ky K™ + ke — U [ + D™ k™ = 1]
vm ¢ [0, £(n)]

supp (gm) = @.

15



3 Felner tiling shifts

Now if £(n+1) = £(n) +1 we add the condition that g%, , has support contained in

Ke(ng), k™1 =11, namely
supp (go) C [0, iK™ — 1] U [ + 1)k™, k™1 —1]
vm e (1, £(n)]
Zilﬂ =1q(9,jk") €A SUPP () € Ky JK™ + ke — U [ 4+ D™ k™ — 1],
supp (gig(n)_'_]) C [ke(m)en, ™ —1],
vm ¢ [0, £(n + 1)) supp (¢in) = &.

Finally, in both cases we define .41 := U;!(:_o] ZLH.
Let (g,t) be an element of some ', ;. We represent in Figure 5 the supports and the
sets where the maps go, gy, ., ¢’ ¢(ns1) take their values. The light-blue rectangle with

dotted outline is in ZLH ifand only if £n+1) = £(n) + 1.

.
Ie(m)+1

Ien)

9

g\

9o

0 jK™ G+ 1™ k!

Figure 5: Support and values taken by (g,t) € £}
Now that we have the shifts sequence, let us turn to the definition of the tiles.

3.2.2  Tiling

Recall that (Fn)nen denotes the Folner sequence of A defined in Proposition 2.13. The aim

of this section is to show the theorem below.

Theorem 3.9

The sequence (£, )nen defined in Section 3.2.1 is a Felner tiling shift of A.

Before showing that the sequence of tiles (Tn )nen thus induced verifies indeed the condi-

tions of Defiition 3.1, let us show the following lemma.

Lemma 3.10

The sequence (Tn)nen defined by To := Fo and Tniq := Zn41 Ty for all n > 0 verifies

("neN) T,=F.

Let us discuss the idea of the proof. We proceed by induction and use a double inclusion
argument to prove the induction step. To show that £, Ty is included in Feni1 we rely
on Lemma 2.12, that is to say we verify that every element of £,,41 Ty, has range included in
[0, k™1 —1]. For the reversed inclusion we consider an element (h,t) of Fni1 and explicit
the elements (g,jk™) of L., 1 and (f,t) of T, such that (h,t) = (g,jk™)(f,t').



3 Folner ti]ing shifts

Mind the involved maps here: we study the values of g, and f,,, instead of the “derived”

functions gin, fin usually considered.
Proof of the lemma. The assertion is true for To. Now let n > 0 and assume that T, = Fen.
We show the induction step by double inclusion.

FIRST INCLUSION

Let us prove that 41Ty € Fener. Recall that Z,,44 :AU;;O] ZLH.
Let (f,t) € T, and j € {0, ...,k — 1}. Take (g,jx™) € £

) 1, then the following product

(951 (£,6) = ((gmfm (- =§K") )y t+ ")

verifies t + jk™ € [jk™, k™ — 1+ jk"] which is contained in [0,k™"" —1] since j < k — 1.
Moreover
go(x) ifx € [0,jk™ U [(j + D)k™ k™ —1]
go(X)fo(x —jk™) =< fo(x —jk™) if x € [jk™ (j + 1)k™ —1]

0 clse.
Thus supp(gofo(- —jk™)) C [O, kT — 1]. Furthermore, for all m € {1,..., £(n)}

supp(g'm) € ki, jk™ + kin = U [(G+ D™, k™ 1]
supp (Fm (- = k™) € GK™ + Ky ( + 1)&™ = 1],

hence by Claim 2.5 the support of (gmfm(-— ij))' is contained in [ky,, k™! —1].

Now if £ +1) = £(n) + 1 consider m = £(n) + 1. In that case f',,, = e since m > £(n).
Thus (gmfm(- —jk™))" = g'n whose support is contained in [ke(n)+1, k™" =11

Finally (gmfm (- —ijx™)) =0 forall m ¢ [0, £(n +1)]. Hence by Lemma 2.12 the product
(g,jx™) (f,t) has range included in [0,k™*" — 1] and thus belongs to Fon+1.

SECOND INCLUSION

Let us show that Fenv1 is contained in £,,1T,. So take (h,t) in Fentr. We want to
define (f,t') € Ty and (g,jx™) € Zn41 such that (g,jx™) (f,t') = (h,t). First remark that
t < k™1 since (h,t) belongs to Fens1. Thus there exists to,...,tn in [0,k — 1] such that
t=3 1 stikh Letj=t, and t' = Z?;OI tix*. Then j does belong to [0,k — 1] and t’ to
[0, k™ — 1]. We now have to define f and g such that

((gmf‘m ( - an)]m’ t’ + an) = (ha t)'
We refer to Figure 6 for an illustration of the different supports. Let

folx) = {]’Lo(X+an) ifx € [0, k™ — 1],

e else,

go(x) :=

ho(x) if x € [O’an_]]U[(j+]]Kn,K“+1 —1),
¢ else.
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3 Folner tiling shifts

Support of...

Figure 6: Supports

One can verify immediately that gofo (- — jk™) = ho. Then take m € [1, £(n)] and let

£ (x) = {h’m(X+jK“) if x € [k, kK™ — 1],

¢ else,

, hm(x) ifxe Ky JK™ + K — U [ + 1)K™, k™1 — 1]
g (x) =
c else.

=

Now if £(n+1) = £(n)+1 then kg(ny1) = k™ and in that case define g Sinit)-

n+1

Finally let fo(nyny =candif m> €+ 1) let g, = e = . )
With the above definitions f and g are uniquely defined. Morcover, by definition

(g,jk™) belongs to ZLH and by Lemma 2.12 we have range(f,t) C [0,«™ — 1] thus (f,t)

belongs to Tn.

Now, using Lemma 2.6 we verify that gmfm (- —jk™) = hy thus (hyt) € 41T

Hence, Combining the first and second inclusion we get Fenir =Ty, O

We now know that (T )new is a Folner sequence. To prove Theorem 3.9 we have to show
that (Z,.)new a Folner tiling shift.

Proof of Theorem 3.9. The sequence (Tn)new is a Folner sequence, by the last lemma. Thus
we on]y have to show that for all 0 #£ & € Z,.41, 0T, N 6T, = @. So let us denote by (h,t)
an element of 0T, N &T,. We distinguish two cases.

Firstif o € £, and & € £ ,, for some 1 # j, then the cursor of ¢ is equal to jk™ and

the one of & to ik™. Thus
(h,t) € oy = t € [jx™, (j+ D™ = 1],
(h,t) € 6T, = t e [ik™, i+ k™ —1].
But since i # j these two intervals are disjoint, thus 0T, N 6T, = @.

Now fixj € {0, ...,k—1} and take 0,5 € ZLH. Let 0:= (g,jk™) and & := (g,jk™). Assume

that there exists (f,t), (f, ) € T, such that (g,jk™) (f,t) = (§,j«™) (f,1). Then

vme N gmfm('_j'(n) :mem('—jK")- (31)
First remark that

0,6€%) ;= supp(go), supp(do) C [0,jk™ — TJU[(j + 1K™, k™1 —1]
(1), (1) €Ta = supp(fo(- —jk™)), supp(fo(- —jk™)) € k™, (j+ 1)k™ = 1.
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3 Folner tiling shifts

In other word the support of go (resp go) is disjoint from the one of fo(- — jk™) (resp
fol- —jk™)). Combining this with eq. (3.1) we obtain that go = §o and fo = fo.

Now let m > 0 and let us show that gm = §m. Due to supports overlap (see Figure 7)
we need to decompose [0, k™1 — 1] in five subintervals, namely

[o, K] —1] =[0,jK“—]] L [jK",jK“+km—1] L [jK"-i—km, (j+1)Kn—1],

U [(i+1)»<“,(j+1)|<"+km—1} U [(j+1).<n+km,,<n+1 _1}_

Ifx <jk™=Torx > (j+ 1K™+ km, then i (x —jk™) = e = i (x — jk™) and thus
gm(x) = gm(x) by eq. (3.1).

If x € K™, jk™ + ki — 1] then using Lemma 2.6 and the fact that on that subinterval
fo = fo, we get

i (x —jK™) = 03 (fo (x —jk™)) = 07 (fo (x —jk™)) = fim (x —jK™).
Hence by eq. (3.1) we get gm (x) = gm (x).
If'x belongs to [jK™ +km, (j + 1)k™ —1] then gm(x) = §m(x) = ¢ and thus eq. (3.1) implies
that fi (x —jk™) = fi (x —j«™), that is to say fi, and i, coincide on [k, k™ —1].
Finally ifx € [G+1Dk™, (j+1)k™ +kmn—1] then using Lemma 2.6 and the fact that fo = fo
on that subinterval, we get

fn(x —jK™) = 8§ (fo (x — K™ —km)) = 08 (fo (x —jK™ —km)) = fm (x).

Hence by eq. (3.1), we have g (x) = §m (x).
Thus g = g and then o = 5. Which concludes the proof of the theorem. O

0 K" =Ke(n)+1 jr™ G+ k™ K+

fm(x) belongs to... AoxBy [] Am I ™ 0 Bm

gm(x) belongs to... Ao X Bo Am Fm B

Figure 7: Supports overlap

3.2.3 Diameter and boundary

Let us now quantify our shifts sequence.
Proposition 3.11

The sequence (Zn)nen defined in Section 3.2.11s 2 (Rp, en)-Folner tiling shift where

2
Rn = CRKnlﬂ(n] &n = Kfﬂ)

for some strictly positive constant Cr.

First we prove the fo]lowing lemma.
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4 Coupling with Z

Lemma 3.12

There exists Cg > 0 depending only on A such that diam (Fn) < Crnlyn_1) for all
nen.

To show this result, we use Proposition 2.20.

Proof. Letn € N and (f,t) € Fn. First, take m < [(n — 1) and let us bound E,, by above.
Recall that T™ = [jkm /2, (j + 1)km/2 — 11. Since (f,t) belongs to Fy, its range is included in
[0,n — 1], thus

)

(i ez rangelfn, 0N I £ B} <[ € 72 0,m =100 Gkin/2,(+ e /211 # 2}
<|j€Z:jkm/2<n—Tand (j+1)km/2 > 1}
< 2(n—2)

~X km

b

+1.

Moreover remark that [fm (X)Ir,, < diam (I'y,) < clyy, for all x, thus

Em(fm) =km Z In?zs (|fm(x)il‘m - ])+ )
j:r:mgc(fm,t)ﬂlg“;é(bxe j
Skmo ) m
j:r:mge(fm,t)ﬂll!“gé@
2(n—2)
Km

< Kl ( n 1) =1 (2(n—2) + k).

Thus, applying the second part of Proposition 2.20 we get
I(fmy, la, < 9 (range(fim, t) + Em(fm)) < 9 (M+Ln(2(n—2) +km)) .
But if m < I(n —1) then ki € n—1 < n thus we can bound |(fm, t)[a,, by above by

93l +1). Now remark that [ (range(f,t)) < [(n—1). Thus, using the preceding inequality
and the first part of Proposition 2.20, we get

[(r:mgc(f,t]) [(n—1)
(£, 1)la <500 > (fm,t)la,, <500 Y 9n(3ly +1),
m=0 m=0
[(n—1)
<4500n ) (Blm+1)
m=0

Finally, since 1, is a subsequence of a geometric sequence, there exists C; > 0 such that
Z[(nil) (3lm + 1) < Cilyn_1). Denoting Cg :=4500C; we get the lemma. O

m=0
Let us now show the wanted proposition.
Proof of Proposition 3.11. First remark that by the proof of Proposition 2.13 we have

|aTn| _ iaFKnl _ 2

|Tn| B |Fl<"i - Kn.

En =

Now by Lemma 3.12 we have diam (T,,) = diam (Fen ) < Cre™lg(n). ]

COUPLING WITH z

Our aim in this section is to show Theorem 1.8. What we actually show is that a diagonal
product A admits a Coupling with Z satisfying Theorem 1.8. We start by dcfming a Folner
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4 Coupling with Z

tiling shift for Z in Section 4.1. We compute in Section 4.2 an estimate the diameter of such
tiles, namely the cardinal |T,|. We conclude by showing the integrability of the coupling
using the criterion given by Theorem 3.5. And then show that A thus considered satisfies
Theorem 1.8.

41 Tiles for Z

We will denote by (£'1)new a Folner tiling shift of Z and by (T'w ) the corresponding tiles.
Consider (Z3)n and (Tn)n as defined in Section 3.2.1 and Lemma 3.10 respectively. In
order to use Theorem 3.5 to get an orbit equivalence coupling between Z and A we need

o1 and I’ 41 to have the same number of elements. We thus define

{ o = [0,[Tol — 1] )

vneN Z/Tl+'| = {07 lTnl)ZlTnl, sy (lzn—l—] l - 1) lTnl}«

It induces a sequence (T'y)nen defined by T'o = £/ and Ty = £/ 1 T/ foralln > 0.
We are going to prove that (2’1 )nen is a Folner tiling shift for Z.
Proposition 4.1

The sequence (£'n)new defined by eq. (4.1) is a (R'n, e’n)-Folner tiling shifts for Z with
R/n = lTnl E/n = z/lTnl

Moreover the induced sequence (T'n)nen verifies T/, = [0, |T| — 1] for alln € N.

Proof. Let (Z'n)nen be as defined by eq. (4.1) and recall that the induced tiling (T'w)new
is the sequence defined by To:=2'0and Tt = 21 7w for all n € N One can easily
prove that for alln >0

T/n = lov lTnl - ll . (42)

It is now immediate to check that diam (T'w) = [Tl and [0T'|/|T'w| = 2/|Twl. Furthermore
note that if 0,0’ € £’ 41 such that o # o then dz(0,0') > |T| = diam (T’n). Thus for
such o and o’ we get 0T, N 0'Ty = @. Therefore (Zy)nen is a Folner tiling shift and the
proposition follows from the above quantifications on Ty. O

42 Estimates: diameter and boundary

The integmbility of the coupling between Z and A depends on (Rp, en) and (R'y,, €'5) but
by the above proposition, that last couple depends on the value of the cardinality of the
tiles (Tn)nen. The aim of this section is to give estimates of [T, | involving only terms of

(Km)men and (L )men. First let us precise the value of [T,,|.

Lemma 4.2
The sequence (Tp)n defined in Theorem 3.9 verifies
£(n)

Tl = k™ (JAIB) "

m=1

K" —Km

IMm
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4 Coupling with Z

Proof. Recall that T, = Fen = {(f,t) | range (f,t) C {0, ..., k™ — 1}} for all n € N. We use
here Lemma 2.12 linking range and supports. Let n € N and take (f,t) € Ty, then there are
exactly k™ values of t possible. Moreover f is uniquely determined by fo and 'y, ..., f'g(n)
(see Lemma 2.6). But fo is supported on [0, k™ — 1] which is set of cardinal ™ so there

are cxacdy (IAIIBI) < possiblc values for fo. Moreover if m > 0 then remark that ., is

KM —Km
supported on [km, k™ — 1] which has k™ — k, elements so there are exactly |7,
possible values for . Thus the number of elements in T, is

£(n) n
K™ KM —Km
< (IAIB)" T |l :
m=1
O]

Now let us bound [T, | such that the bounds depend only on (k™) en and (L) men-
Proposition 4.3

There exists two constants Cp, Cz > 0 such that for all n e N,

Cak™ Mgy < InfThl < C3x™g(n).-

Before showing the above proposition let us give an estimate of the right factor of the
expression of [Ty .
Lemma 4.4

There exists two constants Cy, C2 > 0 such chat for alln € N,

£(n)

Cani]lg(n] < In (H ‘F/m

m=1

K'17k|11
< CikMlegmy.

Prooﬁ Recall that by eq. (2.1) there exists ¢y, ¢z > 0 such that, for all m
Cilm —c2 < InfMyf < eyl + c2.

Since Iy, < M we thus have

2

£(n) ek <
In{ ] |Fm <) (K" —km) In [Tl

m=1

L 3
= 1

< (k™ —km) (c1lm +c2).

3
I

But we can bound k™ — k,, from above by k™ and since (L )men is 2 subsequence of a
sequence having geometric growth, the sum Zm(:f (¢1lm + c2) is bounded from above by
its last term up to a multiplicative constant. That is to say: there exists Cy > 0 such that

£(m) [
hl <H ‘F’m‘ ) < C] Knlg(n).
1

m=

Hence the upper bound. Now, using that [Ty, : 1] = |A|[B| we have

| £(n) K™K £(n) | £(n) | Tl
/ _ n__ / — n__ -
n{ []|Mm =) (K" —kn) Nl = ) (K" — k) n(lAIIBI)'

m=1 m=1 m=1
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4 Coupling with Z

Bounding the sum from below by its last term and using once more ¢q. (2.1), we get

ln lﬁ)‘r/ K" —Km >(ank )11] |r2(n)‘
m = £(n) |A||B| )

m=1

> (K™ —ke(n)) (e1lem) —c2 — In (JAB]),

z C2(k™ —kem))le(n),
for some C; > 0. We get the wanted inequality by noting that k™ —kg(y) = «™ 1. O

Proof of Proposition 4.3. Applying Lemma 4.4 to the cardinal of T, given by Lemma 4.2 we
obtain that there exists C3 > 0 such that In|T,| < C3 K" lg(n). Hence the upper bound. The

minoration comes imediately from Lemma 4.4. O

Equipped with these bounds on [T, | we can now show the wanted integrability for the

coupling.
43 Integrability of the coupling

We will show that A is the group satisfying Theorem 1.8, but first let us qunntify the
integmbility of the orbit Cquivaience coupling with Z induced by the Folner tiling shifts
we built. Recall that € denotes the set of non-decreasing functions p: [1,+00[— [1, 400l

such that x/p(x) is non-decreasing.

Theorem 4.5
Let p € € and take A to be the Brieussel-Zheng’s diagonal product defined from p. Let

¢ >0and ¥ :=expop and let

poln(x)

Qe (x) = )1+5'

(in op o In(x)

There exists an orbit equivalence coupling from A to Z that is (@, ¥)-integrable.

Let us discuss the strategy of the proof. The demonstration is based on Theorem 3.5,
thus we first prove that (W(2Rn)e'n_1)n is summable and then that (@¢(2R'y)en—1)n is.
In both cases we use Proposition 4.3 to get upper bounds. So far, we have the following

quantifications.

Rn = CRKnlﬂ(n) R,n = iT‘rl|
En  =2kT e =2/Thl

Proof of Theorem 4.5. Let p € € and take A to be the diagonal product defined from p as
described in Section 2.3.

To bcgin, let us recall some prc]iminary results about p. Remember that p ~ p where p is
defined below eq. (2.3). By definition of £(n) we have ke(nylem) < «™lem) < kem)+1len),
thus by eq. (2.3)

p(k™gmy) = k™. (4.3)
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4 Coupling with Z

Now let us show that the coupling from Z to A is W-integrable. To do so we prove
that (‘P(ZRn)a/n_1) is summable. First note that by Proposition 4.3 we have che foliowing
lower bound on [T,,_1]

Taoal > exp (C2k™ 2lg(n_1)) - (4.4)

Moreover recall that Ry = Crx™lg(n) and e’n_1 = 2/|T_1] thus by the inequality above

_Z
|Tn—1 | ’

<2 exp {p (ZCR Knlg(n)) —Cy Kn_zlg(n,1 ):| .

Y(2Rp)em_q1 =exp [p(ZCRKnlﬂ(n))]

But remember that p ~ p. Thus using eqs. (2.2) and (4.3) we get

9] (ZCRKnlg(n)) ~ ﬁ <2CRKnlg(n)) § ZCRL_) (Knlg(n]) = ZCRKTL. (45)
Combining the above result with the previous inequ:liity, we get

Y(2Rp)em—1 = 2exp [2Crk™ — Cok™ 2lg(n_1)],
= ZCXp [K“fz (ZCRKZ — Czlg(n,”)] y

which is summable. Indeed lg(y) tends to infinity and thus (2Crk? — Calgn_1)) < —1 for
n 1argc Cnough. Hence by Theorem 35 the orbit Cquivnlcncc from Z to A si ‘lf—intcgrabic.

Now, let us show that for all ¢ > 0 the coupling from A to Z is (pg—integrable. Based
on Theorem 3.5 we only have to prove that ¢ (2R )en_1 is summable. Recall that R, =
ITal and €1 = 2/k™ 2 and remark that by both the lower and upper bounds given in

Proposition 4.3 we have

2poln (2ITyl) _ 2p(2C3k™g(n))
T+e

(ln opoln (Z\Tnl)) 1HK“*1 ) (in 0p (2C2k™ Mg () ) k-1 ‘

Qe (ZR,n)Enfl =

Let us give a lower bound for p (2C;k™ g (n)). Recall that p ~ p furcthemore if 2C; > 1
then by eq. (4.3) and since p is non-decreasing

KM =0 (k" Memy) < (2C2k™ Meny) = p (2C2k™ () -

Now if 2C, < 1 using Claim 2.18 with ¢/ = 2C; and ¥’ = K“*]lg(n) we get (forn iargc
enough)

2Cok™ T =2Cp(k™ Mgm)) < PR2Cok™ emy) = p (2C2k™ g(n))

Hence, in both cases k™1 < p(2C2k™ 'lg(n)). Finally replacing Cg by C3 in eq. (4.5) we
can show that p (2C3 Knlg(n)) < 2C3k™. Thus, Combining the two prcccding resules we
obtain
2p(C3 Knlg(n))
T+e
(in op (Canfng(n)) ) kn—1
KTl

4 T+¢ =

(ln (anl)) gn—1 ((Tl*]]iﬂ(K))

@E(R/n)ﬁnfl <

K

T1+¢)

which is a summable sequence. Hence by Theorem 3.5 the orbit equivalence coupling from
A to Z si g¢-integrable. O
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4 Coupling with Z

Remark 4.6. This result is stated in the general case, that is to say for an abstract p.
Nonetheless, for some pnrticular functions p the quantiﬁcation can be improved. For
example the case where k,, = 2™ and 1,, = 2*™ corresponds to p(x) = x"/ (") In that case
£(n) =n—1and we can show that the coupling from Z to A is exp-integrable (instead of

exp op—integrable). Indeed, let Cp < C,/(Cr23t%) and ¥(x) == exp(cex), then by eq. (4.4)

2
W(2Rn)e'n1 = exp [co2Crknln1]

< exp [cp2Cg2mM22 (1) — Cy2n222(n=2)] 2
=2exp [2022%(n72) (¢, Cr23 1> — C3)] .

Which is summable by choice of Cop-

Remark 4.7. We can verify that the integrability obtained for the coupling from A to Z is
“almost” optimal. Indeed if the coupling fromAtoZis (p—integrable, then by Theorem 1.5

we l’li{VC

polzxX1Ia

where we recall that I;(n) ~ n and Ix(n) ~ poIn(n). Thus using the inequality above,
we get @(n) <X poln(n). Hence the quantification of Theorem 4.5 is optimal up to a

logarithmic factor.
[t is now easy to prove our first main theorem.

Proof of Theorem 1.8. Let p € € and A to be the group defined in Proposition 2.14. By the
aforementioned proposition it verifies In = p o log. Moreover by Theorem 4.5 there exists
an orbit equivalence coupling from A and Z that is (¢, exp op)-integrable foralle > 0. [

To prove Corollary 1.9 we use the composition of‘couplings introduced in [DKLMT20].
We recall below the proposition concerning the integrability of this composition and
refer to [DKLMT20, Sections 2.3 and 2.5] for more details on the construction of the cor-
responding coupling.

Proposition 4.8 (IDKLMTzo0, Prop. 2.9 and 2.29])
If (X1, 1) (resp. (X2, 12)) is a (@, L°)-integrable (resp. (P, L°)-integrable) orbit equiv-

alence coupling from T' to A (resp. A to £), the composition of couplings gives a
(@ o, I_O)—integrable orbit equivalence coupling from T to Z.

Let us now show Corollary 1.9 concerning the coupling with Z4.

Proof of Corollary 1.9. Let p € € and let A be the group defined in Proposition 2.14, in
particular it verifies In = po log.

Let d > 1 and recall (see Example 3.6) that for all p<d and all qg<1/d there exists a
(LP, L9)-integrable orbit equivalence coupling from Z to Z9. Hence, using the composi-
tion of couplings described in [DKLMT20] we can deduce from Theorem 1.8 and Propo-
sition 4.8 above that there exists a (@ (-P), LO)—intcgrablc orbit cquivalencc coupling from
AtoZ% Nowifd>p >1byeq. (2.2)

polog(x) < p(plog(x)) < pp o log(x).
Since p(p log(x)) = polog(xP) we thus have polog(xP) ~ polog. Whenp < 1, using Claim 2.18

instead of eq. (2.2) we obtain a similar equivalcncc. Thus in both cases @¢(xP) =~ @.(x).

Hence the corollary. O
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5

5 Conclusion and open problems

CONCLUSION AND OPEN PROBLEMS

Let us conclude with some questions and remarks.
5.1 Optimality and coupling building techniques

The tiling technique —though inspiring— is not always usable to get orbit equivalence
couplings. Indeed the condition that the two Folner tiling shifts must have at each step the
same cardinality is very restrictive. Furthemore this tcchniquc does not seem to producc
couplings with the best quantiﬁcation: wether it is our coupling with Z or the one built
in [DKLMT20] (Examples 3.6 and 3.7) the integrability is always optimal up to a logarichmic
factor. One can thus ask: is the optimal integrability reachable? Is the logarithmic error
due to the building tcchniquc?

5.2 Inverse problem

We studied here the inverse problem for the group of integers (Question 1.7) but one can

QlSO ask thC same qUCStiOH fOT OthCI' groups th:ll’l Z.

Question 5.1. Given a function ¢ and a group H is there a group G such that there exists

a (@, L°%)-measure equivalent from G to H? Can G be chosen such that ¢ o Iy ~ Ig?

In a future article we plan to answer this question when H is a diagonal product, in
particular H can be a lamplighter group. This coupling will be obtained with another
building technique than the tiling process and the intcgrability will be optimal, answering

the questions of Section 5.1 positively.
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Notations

NOTATIONS INDEX

=, = Sce above Theorem 1.5.

IX| Cardinal of che set X.

OF Boundary of the set F.

A See Definition 2.1.

A See Section 2.1.

F. Folner sequence of A.

g The sequence of maps (gm)men-

gm See Section 2.1.3.

I"w Normal closure of [A, Bl

Ig Isoperimetric proﬁle of G.

R, Diameter of T,.

R’m Diameter of T',.

Sg A generating set of the group G.

. Folner tiling shifts (of A).

2’ Folner tiling shifts of Z.

Tn Tile of A defined by T,, = H?:o i

T’ Tile of Z defined by Th = H?:o pi

0 (fim) Natural projection of i, on Ay, (see Section 2.1.3).
0% (fim) Natural projection of i, on By, (see Section 2.1.3).
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