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BUILDING PrEScrIBED qUANTITATIVE OrBIT
EqUIVALENcE WITH ℤ

Amandine Escalier*

May 20, 2022

Two groups are orbit equivalent if they both admit an action on a same
probability space that share the same orbits. In particular the Ornstein-
Weiss theorem implies that all infinite amenable groups are orbit equivalent
to the group of integers. To refine this notion between infinite amenable
groups Delabie, Koivisto, Le Maître and Tessera introduced a quantitative
version of orbit equivalence. They furthermore obtained obstructions to the
existence of such equivalence using the isoperimetric profile.
In this article we offer to answer the inverse problem (find a group being
orbit equivalent to a prescribed group with prescribed quantification) in the
case of the group of integers using the so called Følner tiling shifts introduced
by Delabie et al. To do so we use the diagonal products defined by Brieussel
and Zheng giving groups with prescribed isoperimetric profile.
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1 INTrODUcTION

Two groups are orbit equivalent if they admit free measure-preserving actions on a same
standard probability space (X, μ) which share the same orbits. This notion —emerging
from the seminal work of Dye [Dye59, Dye63]— can be seen as the ergodic version of the
famousmeasure equivalence introduced byGromov [GNR93]. A famous result ofOrnstein
and Weiss (see Theorem 1.2) implies that all amenable groups are orbit equivalent. In
particular —unlike quasi-isometry— orbit equivalence does not preserve coarse geometric
invariants.
To overcome this issue it is therefore natural to look for some refinements of this orbit

equivalence notion. Assume for example that G and H are two finitely generated orbit
equivalent groups over a probability space (X, μ). Recall that we can consider the Schreier
graph associated to the action of G (resp. H) on X and equip it with the usual metric
dSG (resp. dSH), fixing the length of an edge to one. A first way to refine the measure
equivalence is to quantify how close the two actions are by studying for all g ∈ G and
h ∈ H the integrability of the two following maps

x ↦ dSG(x, h ⋅ x) x ↦ dSH(x, g ⋅ x).

When these two maps are Lp we say that the groups are Lp-orbit equivalent (see [BFS13]
for more details). In this refined framework a famous result of Bader, Furman and Sauer
[BFS13] implies that any group L1-orbit equivalent to a lattice in SO(n, 1) for some n ≥ 2
is virtually a lattice in SO(n, 1). This refinement also lead Bowen to prove in the appendix
of [Aus16] that volume growth was invariant under L1-orbit equivalence.
Delabie, Koivisto, LeMaître and Tessera offered in [DKLMT20] to extend this quantifi-

cation to a family of functions larger than {x ↦ xp, p ∈ [0,+∞]} (see Definition 1.3). They
furthermore showed the monotonicity of the isoperimetric profile under this quantified
measure equivalence definition (see Theorem 1.5). In [BZ21] Brieussel and Zheng man-
aged to construct amenable groups with prescribed isoperimetric profile called diagonal
product. Considering the monotonicity of the isoperimetric profile, the striking result of
Brieussel and Zheng thus triggers a new question: instead of trying to quantify the equiv-
alence relation between two given groups, can one find a group that is orbit equivalent to
a prescribed group with a prescribed quantification?
This is the problem we address in this article. Using Brieussel-Zheng’s construction

we exhibit a group that is orbit equivalent to ℤ with a prescribed quantification (see
Theorem 1.8). Comparing the obtained coupling to the constraints given by Theorem 1.5
we show that our couplings is close to being optimal for a sense of “optimal” that we
precise in Section 1.2.
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1 Introduction

1.1 Quantitative orbit equivalence

Let us recall some material of [DKLMT20].A measure-preserving action of a discrete count-
able group G on a measured space (X, μ) is an action of G on X such that the map (g, x) ↦
g ⋅ x is a Borel map and μ(E) = μ(g ⋅ E) for all E ⊆ ℬ(X) and all g ∈ G. We will say that a
measure-preserving action of G on (X, μ) is free if for almost every x ∈ X we have g ⋅ x = x
if and only if g = eG.
We recall below the definition of orbit equivalence and the quantified version as intro-

duced by Delabie, Koivisto, Le Maître and Tessera [DKLMT20]. We conclude by studying
the relation between isoperimetric profile and orbit equivalence.

Definition 1.1

Let G and H be two finitely generated groups. We say that G and H are orbit equivalent
if there exists a probability space (X, μ) and a measure-preserving free action of G (resp.
H) on (X, μ) such that for almost every x ∈ X we have G⋅x = H ⋅x. We call (X, μ) an orbit
equivalence coupling from G to H.

By the Ornstein Weiss theorem [OW80, Th. 6] below, all infinite amenable groups are
in the same equivalence class.

Theorem 1.2 ([OW80])

All infinite amenable groups are orbit equivalent to ℤ.

To refine this equivalence relation and “distinguish” amenable groups we introduce the
quantified version of orbit equivalence.
Recall that if a finitely generated group G acts on a space X and if SG is a finite generat-

ing set of G, we can define the Schreier graph associated to this action as being the graph
whose set of vertices is X and set of edges is {(x, s ⋅ x) | s ∈ SK}. This graph is endowed with
a natural metric dSG fixing the length of an edge to one. Remark that if S′G is another
generating set of G then there exists C > 0 such that for all x ∈ X and g ∈ G

1
CdSG(x, g ⋅ x) ≤ dS′G(x, g ⋅ x) ≤ CdSG(x, g ⋅ x).

Definition 1.3 ([DKLMT20, Def. 2.18])

We say that an orbit equivalence coupling (X, μ) from G to H is (φ,ψ)-integrable if for
all g ∈ G (resp. h ∈ H) there exists cg > 0 (resp. ch > 0) such that

∫X
φ(

1
cg
dSH(g ⋅ x, x))dμ(x) < +∞ and ∫X

ψ(
1
ch
dSG(h ⋅ x, x))dμ(x) < +∞.

We introduce the constants cg and ch in the definition for the integrability to be inde-
pendent of the choice of generating sets SG and SH. If φ(x) = xp we will sometimes talk
of (Lp, ψ)-integrability instead of (φ,ψ)-integrability. In particular L0 means that no in-
tegrability assumption is made. Finally, note that every (L∞, ψ)-integrable coupling is
(φ,ψ)-integrable for any increasing map φ ∶ ℝ+ → ℝ+. When φ = ψ we will say that the
coupling is φ-integrable instead of (φ,φ)-integrable.

Examples 1.4 ([DKLMT20]).
1. There exists an orbit equivalence coupling between ℤ4 and the Heisenberg group

Heis(ℤ) that is Lp-integrable for all p < 1.
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1 Introduction

2. Let k ∈ ℕ∗. Their exists an (L∞, exp)-integrable orbit equivalence coupling from
the lamplighter group to the Baumslag-Solitar group BS(1, k).

More examples will be given in Section 3.1. Let us conclude on the quantification by
a remark. We chose to refine orbit equivalence using the integrable point of view. But
it is not the only possible sharpening. For example Kerr and Li [KL21] defined Shannon
orbit equivalence: instead of looking at the integrability of distance maps they consider the
Shannon entropy of partitions associated to the coupling.

1.2 Isoperimetric profile

As stated before, the orbit equivalence does not preserve the coarse geometric invariants.
But the quantified version defined above allowed Delabie et al. [DKLMT20] to get a rela-
tion between the isoperimetric profiles of two orbit equivalent groups which we describe
below.
Recall that if G is generated by a finite set S, the isoperimetric profile of G is defined as1

IG(n) ∶= sup
|A|≤n

|A|
|∂A| .

For example the isoperimetric profile of ℤ verifies Iℤ(x) ≃ x. Remark that due to Følner
criterion, a group is amenable if and only if its isoperimetric profile is unbounded. Hence
we can see the isoperimetric profile as a way to measure the amenability of a group: the
faster IG tends to infinity, the more amenable G is.
The behaviour of the isoperimetric profile under measure equivalence coupling is given

by the theorem below. If f and g are two real functions we denote f ≼ g if there exists
some constant C > 0 such that f(x) = 𝒪(g(Cx)) as x tends to infinity. We write f ≃ g if
f ≼ g and g ≼ f.

Theorem 1.5 ([DKLMT20, Th.1])

LetG andH be twofinitely generated groups admitting a (φ, L0)-integrable orbit equiv-
alence coupling. If φ and t/φ(t) are increasing then

φ ∘ IH ≼ IG.

This theorem provides an obstruction for finding φ-integrable couplings with certain
functionsφ between two amenable groups. For example for a coupling withH = ℤ the in-
tegrability has to verify φ ≼ IG. This lead the authors of [DKLMT20] to ask the following
question.

Question 1.6 ([DKLMT20, Question 1.2]). Given an amenable finitely generated group G,
does there exist a (IG, L0)-integrable orbit equivalence coupling from G to ℤ?

This interrogation contains actually two questions, starting with the “inverse problem”
stated below.

Question 1.7. Given a functionφ is there a groupG such that there exists a (φ, L0)-measure
equivalent from G to ℤ?

1We chose to adopt the convention of [DKLMT20]. Note that in [BZ21], the isoperimetric profile is defined
as ΛG = 1/IG.
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1 Introduction

We answer the above question for a large family of maps φ in Theorem 1.8.
The second interrogation that Question 1.6 triggers is whether Theorem 1.5 is optimal

when G = ℤ. In other words one can ask if G in Question 1.7 can be chosen such that
φ ≃ IG. We will see that this relation is verified up to a logarithmic factor.

1.3 Main results

In this paper we show the following main theorem and its corollary below.

Theorem 1.8

For all non-decreasing function ρ ∶ [1, +∞[→ [1,+∞[ such that ρ(1) = 1 and x/ρ(x) is
non-decreasing, there exists a group G such that

• IG ≃ ρ ∘ log;
• there exists an orbit equivalence coupling from G to ℤ that is (φε, exp ∘ρ)-inte-
grable for all ε > 0, where φε(x) ∶= ρ ∘ log(x)/(log ∘ρ ∘ log(x))

1+ε.

Let us discuss the optimality of this result. Consider a (φ, L0)-integrable orbit equiva-
lence coupling from some groupG toℤ. ByTheorem 1.5 it verifiesφ∘Iℤ ≼ IG. In particular
since Iℤ(x) ≃ x, we can not have a better integrability than φ(x) ≃ IG. Since IΔ ≃ ρ ∘ log
our above theorem is optimal up to a logarithmic error. We discuss this in more length
in Section 5.

MAIN INGrEDIENTS Themain tools of the proof ofTheorem 1.8 are Brieussel-Zheng’s
diagonal products (see Section 2) and Følner tiling shifts (see Section 3). We show that a
diagonal product Δ admits a coupling with ℤ satisfying Theorem 1.8. To prove it we use
the integrability criterion given by Theorem 3.5 and involving Følner tiling shifts.
Therefore we compute in Section 3.2 a Følner tiling shift (Σn)n for Δ. We also estimate

the tiles’ diameter and the proportion of elements in the boundary. We construct a Følner
tiling shift for ℤ in Section 4.1 and show that these two tiling shifts verify Theorem 3.5.

Let us now consider the possible generalisations of this result to other groups than
the group of integers. To do so we can use the composition of couplings described in
[DKLMT20, Section 2].
Given the above theorem, once we have a measure equivalence coupling from ℤ to a

group H we can compose the two couplings to obtain a measure equivalence from G to H.
If the growth of the isoperimetric profile of H is close to the one of ℤ, the integrability
of the obtained coupling will be close to the optimal one given by Theorem 1.5. It is for
example the case when H = ℤd.

Corollary 1.9

Let d ∈ ℕ∗. For all non-decreasing function ρ ∶ [1, +∞[→ [1,+∞[ such that ρ(1) = 1 and
x/ρ(x) is non-decreasing, there exists a group G such that

• IG ≃ ρ ∘ log ;
• there exists an orbit equivalence coupling fromG toℤd that is (φε, L0)-integrable
for all ε > 0, where φε(x) ∶= ρ ∘ log(x)/(log ∘ρ ∘ log(x))

1+ε.

STrUcTUrE OF THE PAPEr In Section 2 we present the diagonal products intro-
duced by Brieussel and Zheng. We recall some of the properties shown in [BZ21] and
compute Følner sequences. Section 3 is devoted to Følner tiling shifts. These tools built
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2 Diagonal products of lamplighter groups

by Delabie et al. [DKLMT20] allow us to construct and quantify an orbit equivalence
coupling between two groups. In this section we also construct Følner tiling shifts for di-
agonal products Δ. We show our main theorem in Section 4 combining the results of the
two previous sections. Finally we discuss the limits of this construction and some open
problems in Section 5.

I

AcKNOWLEDGEMENTS Iwould like to thankmy advisors, RomainTessera and Jérémie
Brieussel, under whose supervision the work presented in this article was carried out. I
thank them for suggesting the topic, sharing their precious insights and for their many
useful advices.

2 DIAGONAL PrODUcTS OF LAMPLIGHTEr GrOUPS

We recall here necessarymaterial from [BZ21] concerning the definition of Brieussel-Zheng’s
diagonal products. We give the definition of such a group, recall and prove some results
concerning the range (see Definition 2.7) of an element and use it to identify a Følner
sequence. Finally we present in Section 2.3 the tools needed to recover such a diagonal
product starting with a prescribed isoperimetric profile.

2.1 Definition of diagonal products

Recall that the wreath product of a group G with ℤ denoted G ≀ ℤ is defined as G ≀ ℤ ∶=
⊕m∈ℤG ⋊ ℤ. An element of G ≀ ℤ is a pair (f, t) where f is a map from ℤ to G with finite
support and t belongs to ℤ. We refer to f as the lamp configuration and t as the cursor.

2.1.1 General definition

LetA and B be two finite groups. Let (Γm)m∈ℕ be a sequence of finite groups such that each
Γm admits a generating set of the form Am ∪ Bm where Am and Bm are finite subgroups
of Γm isomorphic respectively to A and B. For a ∈ A we denote am the copy of a in Am
and similarly for Bm.
Finally let (km)m∈ℕ be a sequence of integers such that km+1 ≥ 2km for allm. We define

Δm = Γm ≀ ℤ and endow it with the generating set

SΔm ∶= {(id, 1)} ∪ {(amδ0, 0) | am ∈ Am} ∪ {(bmδkm , 0) | bm ∈ Am}.

Definition 2.1

The Brieussel-Zheng’s diagonal product associated to (Γm)m∈ℕ and (km)m∈ℕ is the sub-
group Δ of (∏m Γm) ≀ ℤ generated by

SΔ ∶= {((id)m, 1)} ∪ {((amδ0)m, 0) | a ∈ A} ∪ {((bmδkm)m, 0) | b ∈ B}.

The group Δ is uniquely determined by the sequences (Γm)m∈ℕ and (km)m∈ℕ. Let us
give an illustration of what an element in such a group looks like. We will denote by 𝐠
the sequence (gm)m∈ℕ.

6



2 Diagonal products of lamplighter groups

Example 2.2. We represent in Figure 1 the element (𝐠, t) of Δ verifying

(𝐠, t) = ((gm)m∈ℕ, t) ∶= ((amδ0)m, 0)((bmδkm)m, 0)(0, 3),

when km = 2m. The cursor is represented by the blue arrow at the bottom of the figure.
The only value of g0 different from the identity is g0(0) = (a0, b0). Now ifm > 0 then the
only values of gm different from the identity are gm(0) = am and gm(km) = bm.

…
0 2 4 2n1 3

Cursor

(a0,b0)g0

a1 b1g1

a2 b2g2

⋮
an bngn

Figure 1: Representation of (𝐠, t) = ((amδ0)m, 0)((bmδkm)m, 0)(0, 3) when km = 2m.

2.1.2 The expanders case

In this article we will restrict ourselves to a particular familiy of groups (Γm)m∈ℕ called
expanders. Recall that (Γm)m∈ℕ is said to be a sequence of expanders if the sequence of
diameters (diam (Γm))m∈ℕ is unbounded and if there exists c0 > 0 such that for all m ∈ ℕ
and all n ≤ |Γm|/2 the isoperimetric profile verifies IΓm(n) ≤ c0.
When talking about diagonal products we will always make the following assumptions.

We refer to [BZ21, Example 2.3] for an explicit example of diagonal product verifying (H).

Hypothesis (H)
• (km)m and (lm)m are sub-sequences of geometric sequences.
• km+1 ≥ 2km for all m ∈ ℕ;
• (Γm)m∈ℕ is a sequence of expanders such that Γm is a quotient of A ∗ B
and there exists c > 0 such that 1/clm ≤ diam (Γm) ≤ clm for all m ∈ ℕ;

• k0 = 0 and Γ0 = A0 × B0;
• ⟨⟨[Am, Bm]⟩⟩\Γm ≃ Am × Bm where ⟨⟨[Am, Bm]⟩⟩ denotes the normal
closure of [Am, Bm].

Recall (see [BZ21, page 9]) that in this case there exist c1, c2 > 0 such that, for all m

c1lm − c2 ≤ ln |Γm| ≤ c1lm + c2. (2.1)

Finally we adopt the convention of [BZ21, Notation 2.2] and allow (km)m to take the
value +∞. In this case Δs is the trivial group. In particular when k1 = +∞ the diagonal
product Δ corresponds to the usual lamplighter (A × B) ≀ ℤ.

2.1.3 Relative commutators subgroups

For all m ∈ ℕ let θm ∶ Γm → ⟨⟨[Am, Bm]⟩⟩\Γm ≃ Am × Bm be the natural projection. Let
θAm and θBm denote the composition of θm with the projection to Am and Bm respectively.

7



2 Diagonal products of lamplighter groups

Now let m ∈ ℕ and define Γ ′m ∶= ⟨⟨[Am, Bm]⟩⟩. If (gm, t) belongs to Δm then there exists
a unique g′m ∶ ℤ → Γ′m such that gm = g′mθm(gm).

Example 2.3. Let (𝐠, 3) be the element described in Figure 1. Then the only non-trivial
value of θ0(g0) is θ0(g0(0)) = (a0, b0). Ifm > 0 then the only non trivial values of θm(gm)
are θm(gm(0)) = (am, e) and θm(gm(km)) = (e, bm). Finally for all m we have g′m = id
since there are no commutators appearing in the decomposition of (𝐠, 0).

Example 2.4. Assume that km = 2m and consider first the element (𝐟, 0) of Δ defined by
(𝐟, 0) ∶= (0,−k1)((amδ0)m, 0)(0, k1). Now define the commutator

(𝐠, 0) = (𝐟, 0) ⋅ ((bmδkm)m, 0) ⋅ (𝐟, 0)−1 ⋅ ((b−1m δkm)m, 0)

and let us describe the values taken by 𝐠 and the induced maps θm(gm) and g′m (see Fig-
ure 2 for a representation of 𝐠). The only non-trivial commutator appearing in the values
taken by 𝐠 is g1(k1) which is equal to a1b1a−11 b−11 . In other words g0 is the identity, thus
θ0 = id. Moreover whenm = 1 we have θ1 = id and the only value of g′1(x) different from
e is g′1(k1) = a1b1a−11 b−11 (on a blue background in Figure 2). Finally if m > 1 then gm is
the identity thus θm = id and g′m = id.

(a0a−10 ,b0b−10 )

(e,e)

g0
a1b1a−11 b−11g1
a2a−12 = e b2b−12 = eg2

0 1 k1 = 2 3 k2 = 4

Cursor

Figure 2: Representation of (𝐠, 0) defined in Example 2.4

Let us study the behaviour of this decomposition under product of lamp configurations.

Claim 2.5. If gm, fm ∶ ℤ → Γm then (gmfm)′ = g′mθm(gm)f′m(θm(gm))
−1
.

Proof. Since gm = θm(gm)g′m and fm = θm(fm)f′m we can write

gmfm = g′mθm(gm) ⋅ f′mθm(fm) = g′mθm(gm)f′mθm(gm)−1θm(gm)θm(fm).

But θm(gm)θm(fm) takes values in Am ×Bm and Γ ′m is a normal subgroup of Γm thus the
map g′mθm(gm)f′mθm(gm)−1 takes values in Γ ′m. Hence the claim.

Combining Lemma 2.7 and Fact 2.9 of [BZ21], we get the following result.

Lemma 2.6

Let (𝐠, t) ∈ Δ. For all m ∈ ℕ and x ∈ ℤ

gm(x) = g′m(x)θAm(g0(x))θBm(g0(x − km)).

In particular the sequence 𝐠 = (gm)m∈ℕ is uniquely determined by g0 and (g′m)m∈ℕ.

In the next subsection we are going to see that we actually need only a finite number of
elements of the sequence (g′m)m∈ℕ to characterize 𝐠.

8



2 Diagonal products of lamplighter groups

2.2 Range and support

In this subsection we introduce the notion of range of an element (𝐠, t) in Δ and link it to
the supports of the lamp configurations (gm)m∈ℕ.

2.2.1 Range

We denote by π2 ∶ Δ → ℤ the projection on the second factor and for all n ∈ ℕ denote by
𝔩(n) the integer such that k𝔩(n) ≤ n < k𝔩(n)+1.

Definition 2.7

If w = s1…sm is a word over SΔ we define its range as

range(w) ∶=
{
π2
(

i

∏
j=1

sj
)
| i = 1,… , n

}
.

The range is a finite subinterval of ℤ. It represents the set of sites visited by the cursor.

Definition 2.8

The range of an element δ ∈ Δ is defined as the minimal diameter interval obtained as
the range of a word over SΔ representing δ. We denote it range(δ).

When there is no ambiguity we will denote range(δ) the diameter of this interval.

Example 2.9. Let (𝐠, 0) ∈ Δ such that range(𝐠, 0) = [0, 6], that is to say: the cursor can only
visit sites between 0 and 6. Then the map gm can “write” elements of Am only on sites
visited by the cursor, that is to say from 0 to 6, and it can write elements of Bm only from
km to 6 + km. Thus g0 is supported on [0, 6], since k0 = 0. Moreover, commutators (and
hence elements of Γ ′m) can only appear between km and 6, thus supp(g′m) ⊆ [km, 6]. In
particular supp(g′m) is empty when km > 6.
Such a (𝐠, 0) is represented in Figure 3 for km = 2m.

g1

k1

g2

k2

g3

k3

g0

gn

70

...
...

kn

gm(x) belongs to…

A0 ×B0 Am Γm Bm

Figure 3: An element of Δ

Recall that gm : ℤ → Γm. If m ≤ 𝔩(6), then gm(x) belongs to Am if x ∈ [0, km − 1], it belongs to Γm
if x ∈ [km, 6] and to Bm if x ∈ [7, 6 + km] and equals e elsewhere. If m > 𝔩(6) then gm(x) belongs to

Am if x ∈ [0, 6] and to Bm if x ∈ [km, 6 + km] and equals e elsewhere.

Let us now recall a useful fact proved in [BZ21].
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2 Diagonal products of lamplighter groups

Claim 2.10 ([BZ21, Fact 2.9]). An element (𝐠, t) ∈ Δ is uniquely determined by t, g0 and
the sequence (g′m)m≤𝔩(range(𝐠,t)).

Example 2.11. Consider again (𝐠, 0) ∈ Δ such that range(𝐠, 0) = [0, 6], which was illustrated
in Figure 3. Since k3 = 8 > 6, the element (𝐠, 0) is uniquely determined by the data g0
(that is to say, the values read in the bottom line) and the values of g′i for i = 1, 2 (namely,
the value taken in the blue area). Figure 4 represents the aforementioned characterizing
data.

g′
1

k1

g′
2

k2

g0

70

Figure 4: Data needed to characterized 𝐠 such that range(𝐠) ⊂ [0, 6] when km = 2m

2.2.2 Relation between range and support

Recall that for all m ∈ ℕ we can write gm(x) = g′m(x)θAm(g0(x))θBm(g0(x − km)).
To work with the Følner sequence we compute in Section 2.2.3 and deduce a Følner

tiling shift from it, we will need to link the range of (𝐠, t) in Δ with the support of g0 and
the sequence of supports of (g′m)m∈ℕ. This is what the following lemma formalises.

Lemma 2.12

Let n ∈ ℕ and take (𝐠, t) ∈ Δ. Then range(𝐠, t) is included in [0, n] if and only if

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

t ∈ [0, n]
supp(g0) ⊂ [0, n]
supp(g′m) ⊆ [km, n] ∀1 ≤ m ≤ 𝔩(n)
g′m ≡ e ∀m > 𝔩(n).

Proof. Let n ∈ ℕ andf first assume that range(𝐠, t) ⊆ [0, n], that is to say: the cursor can
only visit sites between 0 and n. Let (𝐠, t) = ∏l

i=0 si be a decomposition in a product
of elements of SΔ of minimal length. Let m ∈ ℕ, then by definition of SΔ an element si
can “write” elements of Am only between 0 and n, and it can write elements of Bm only
between km and n + km. Thus g0 is supported on [0, n], since k0 = 0. And commutators
can only appear between km and n, hence supp(g′m) ⊆ [km, n]. In particular if km > n
then g′m ≡ e. Finally we obtain that t belongs to [0, n] by noting that t = π2 (∏

l
j=1 sj).

Now let us prove the other way round. Consider m ∈ [1, 𝔩(n)] then g′m(x) ∈ Γ′m. It is
therefore a product of conjugates of commutators of the form [am, bm], where am ∈ Am
and bm ∈ Bm. Applying Example 2.4 with x instead of k1 we can show that we can write
[am, bm] at gm(x) without changing any other entry in 𝐠 (see also Figure 2). In a similar
way, we can write a conjugate of [am, bm] at gm(x) without changing any other entry in 𝐠.
Finally writing (a0, b0) at the entry g0(x) writes am at gm(0) and bm at gm(km) (see also
Figure 1). Therefore using Lemma 2.6 we can obtain (𝐠, 0) by first considering the word
in Δ that writes all the values of g0, then multiplying it on the left by a word that writes
the value of g′1, and continue this process to write all g′m for m ≤ 𝔩(n).

10



2 Diagonal products of lamplighter groups

Let us now check that the cursor remains in [0, n] when writing g0 and g′m. Take m ∈
[1, 𝔩(n)], then km ≤ n and supp(g′m) is contained in [km, n]. Now let x ∈ supp(g′m) ⊆
[km, n]. Since Γ ′m ⊆ Γm which is generated by Am × Bm we can decompose g′m(x) as a
product of elements in Am and Bm. To write some am ∈ Am at the position x the cursor
needs to visit sites in [0, x]. To write some bm ∈ Bm it needs to visit sites in [0, x − km].
Therefore, the cursor remains in [0, n] when writing gm(x) at position x. Finally, for all x
the cursor needs only to visit position x in order towrite g0(x). Since supp(g0) is contained
in [0, n] then the cursor needs only to visit sites between 0 and n.
Combining what precedes with Lemma 2.6 and the hypothesis that t ∈ [0, n], we get

that the cursor needs only to visit cites between [0, n] to write (𝐠, t). Hence the lemma.

2.2.3 Følner sequence

In this subsection we describe a Følner sequence (Fn)n∈ℕ for Δ. Recall that 𝔩(n) denotes
the integer such that k𝔩(n) ≤ n < k𝔩(n)+1.

Proposition 2.13

The following sequence is a Følner sequence of Δ

Fn ∶= {(𝐟, t) | range (𝐟, t) ⊆ {0,… , n − 1}} .

Proof. Letn ∈ ℕ and δ ∈ Fn and let s1, … , sl ∈ SΔ such that δ = s1⋯sl. Now take sl+1 ∈ SΔ.
If sl+1 = ((amδ0), 0) for some a ∈ A or if sl+1 = ((bmδkm), 0) for some b ∈ B then since
the cursor of sl+1 equals 0,

range(δsl+1) =
{
π2
(

i

∏
j=1

sj
)
| i = 1,… , l + 1

}
= range(δ).

Thus δsl+1 ∈ Fn. Finally denote by [x, y] the range of δ. Using the same formula as above
we get

range(δ ⋅ (id, 1)) ⊆ [x, y + 1] if t = y,
range(δ ⋅ (id, 1)) ⊆ [x, y] if t < y.

Hence for all t < n−1we have range(δ⋅(id, 1)) ⊆ [0, n−1]. Now if t = n−1 then the cursor
of δ(id, 1) visits the site n, thus range(δ ⋅ (id, 1)) is not included in [0, n − 1] and therefore
δ(id, 1) does not belong to Fn.
A similar argument shows that δ(0,−1) belongs to Fn if and only if t ≠ 0. Hence ∂Fn =

{(𝐟, t) ∈ Fn ∶ t = 0, n} and thus

|∂Fn|/|Fn| = 2/n ⟶
n→∞

0.

2.3 From the isoperimetric profile to the group

We saw how to define a diagonal product from two sequences (km)m and (lm)m. In this
section we recall the definition given in [BZ21, Appendice B] of a Brieussel-Zheng’s group
from its isoperimetric profile. We conclude with some useful results concerning the met-
ric of these groups.
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2 Diagonal products of lamplighter groups

2.3.1 Definition of Δ

Recall that in the particular case of expanders (see Section 2.1.2) a Brieussel-Zheng’s group
is uniquely determined by the sequences (km)m∈ℕ and (lm)m∈ℕ (where lm corresponds to
the diameter of Γm). Thus, starting from a prescribed function ρ, we will define sequences
(km)m∈ℕ and (lm)m∈ℕ such that the corresponding Δ verifies IΔ ≃ ρ ∘ log. Let

𝒞 ∶=
{
ζ ∶ [1, +∞) → [1,+∞)

|
ζ continue, ζ(1) = 1

ζ and x ↦ x/ζ(x)non-decreasing}
.

Equivalently this is the set of functions ζ satisfying ζ(1) = 1 and

(∀x, c ≥ 1) ζ(x) ≤ ζ(cx) ≤ cζ(x). (2.2)

So let ρ ∈ 𝒞. Combining [BZ21, Proposition B.2 and Theorem 4.6] we can show the fol-
lowing result (remember that with our convention the isoperimetric profile considered
in [BZ21] corresponds to 1/IΔ).

Proposition 2.14

Let κ, λ ≥ 2. For any ρ ∈ 𝒞 there exists a subsequence (km)m∈ℕ of (κn)n∈ℕ and a
subsequence (lm)m∈ℕ of (λn)n∈ℕ such that the group Δ defined in Section 2.1.2 verifies
IΔ(x) ≃ ρ ∘ log.

Example 2.15 ([BZ21, Example 4.5]). Let α > 0. If ρ(x) ∶= x1/(1+α) then the diagonal
product Δ defined by km = κm and lm = καm verifies IΔ ≃ ρ ∘ log.

2.3.2 Technical tools

We recall the intermediate functions defined in [BZ21, Appendix B] and some of their
properties.
Let ρ ∈ 𝒞 and let f such that ρ(x) = x/f(x). The construction of a group corresponding

to the given isoperimetric profile ρ∘ log is based on the approximation of f by a piecewise
linear function ̄f. For the quantification of orbit equivalence, many of our computations
will use ̄f and some of its properties. We recall below all the needed results, beginning
with the definition of ̄f.

Lemma 2.16

Let ρ ∈ 𝒞 and f such that ρ(x) = x/f(x). Let (km) and (lm) given by Proposition 2.14
above and Δ the corresponding diagonal product. The function ̄f defined by

̄f(x) ∶=
⎧
⎨⎩

lm if x ∈ [kmlm, km+1lm],
x

km+1
if x ∈ [km+1lm, km+1lm+1],

(2.3)

verifies ̄f ≃ f. In particular the map ̄ρ defined by ̄ρ(x) = x/ ̄f(x) verifies ̄ρ ≃ ρ.

Example 2.17. If ρ(x) = x then f(x) = 1 leads to lm = 1 for all m and km = +∞ for all
m ≥ 1. In this case Δ = (A × B) ≀ ℤ.

Remark that both ̄f and ̄ρ belong to 𝒞. In particular they verify eq. (2.2), which is only
true when c and x are greater than 1. When c < 1 we get the following inequality.

Claim 2.18. If 0 < c′ < 1 and x′ ≥ 1/c′ then c′ ̄ρ(x′) ≤ ̄ρ(c′x′).

12



3 Følner tiling shifts

Proof. If 0 < c′ < 1 then 1/c′ > 1, thus we can apply eq. (2.2) with c = 1/c′ and x = c′x to
obtain ̄ρ(x′) = ̄ρ ( 1c′c′x′) = ̄ρ(cx) ≤ c ̄ρ(x) = 1

c′ ̄ρ(c′x′).

2.3.3 Metric

We recall here some useful material about the metric of Δ and refer to [BZ21, Section 2.2]
for more details. First, let (x)+ ∶= max{x, 0}.

Definition 2.19

For j ∈ ℤ and m ∈ ℕ let Imj ∶= [jkm/2, (j + 1)km/2 − 1]. Let fm : ℤ → Γm. The essential
contribution of fm is defined as

Em(fm) ∶= km ∑
j:range(fm,t)∩Imj ≠∅

max
x∈Imj

(|fm(x)|Γm − 1)+ .

The following proposition sums up [BZ21, Lemma 2.13, Proposition 2.14].

Proposition 2.20

For any δ = (𝐟, t) ∈ Δ we have

|(𝐟, t)|Δ ≤ 500
𝔩(range(δ))

∑
m=0

|(fm, t)|Δm ,

|(fm, t)|Δm ≤ 9 (range(fm, t) + Em(fm)) .

3 FØLNEr TILING SHIFTS

We start by recalling some material of [DKLMT20] about Følner tiling shifts and then
construct such a tiling for diagonal products.

3.1 Følner tiling shifts

The tools we are going to use to build orbit equivalence are Følner tiling shifts2. These se-
quences lead to Følner sequences defined recursively: the term of rank (n+1) is composed
of a finite number of translates of the n-th term of the sequence.

Definition 3.1

LetG be an amenable group and (Σn)n∈ℕ be a sequence of finite subsets ofG. Define by
induction the sequence (Tn)n∈ℕ by T0 ∶= Σ0 and Tn+1 ∶= TnΣn+1. We say that (Σn)n∈ℕ
is a (left) Følner tiling shift if

• (Tn)n∈ℕ is a left Følner sequence, viz.

(∀g ∈ G) lim
n→∞

|gTn\Tn|
|Tn|

= 0,

• Tn+1 = ⊔σ∈Σn+1σTn.
We call Σn the set of shifts and (Tn)n∈ℕ the tiles.

2Delabie et al. [DKLMT20] use the term “Folner tiling sequence”. We chose to call (Σn)n a tiling shift in
order to avoid confusion with usual Følner sequences.
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3 Følner tiling shifts

We can also consider right Følner tiling shifts, that is to say sequences (Σn)n such that
Tn+1 ∶= Σn+1Tn defines a right Følner sequence.

Definition 3.2

Let S be a generating part of G. We say that (Σn)n∈ℕ is a (Rn, εn)-Folner tiling shift if
for all n we have

diam (Tn) ≤ Rn, |sTn\Tn| ≤ εn|Tn| (∀s ∈ S).

Delabie et al. showed in [DKLMT20] the two following examples.

Example 3.3. If G = ℤ the sequence defined by Σn+1 ∶= {0, 2n} is a (2n, 21−n)-Følner tiling
shift and the sequence (Tn) thus defined verifies Tn = [0, 2n − 1].

Example 3.4. If G = (ℤ/2ℤ) ≀ ℤ then the sequence (Σn)n∈ℕ defined by

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

Σ0 ∶= {(f, 0) ∈ G | supp(f) ⊆ {0, 1}} ,
Σn+1 ∶= {(f, 0) ∈ G | supp(f) ⊆ [2n, 2n+1 − 1]}

∪ {(f, 2n) ∈ G | supp(f) ⊆ [0, 2n − 1]} ,

is a right (3 ⋅ 2n, 2−n)-Følner tiling shift. Moreover the tiling (Tn)n∈ℕ thus defined verifies
Tn = {(f,m) ∈ G | supp(f) ⊆ [0, 2n − 1], m ∈ [0, 2n − 1]}.

In [DKLMT20] the authors gave a condition for two amenable groups admitting both
Følner tiling shifts to be orbit equivalent. Indeed if G admits a Følner tiling shift (Σn)n∈ℕ
then we can define X ∶= ∏n∈ℕ Σn and endow it with an action of G. Up to measure zero,
two elements of X will be in the same orbit under that action if and only if they differ
by a finite number of indices. The equivalence relation thus induced is called the cofinite
equivalence relation. Now if G′ admits a Følner tiling shift (Σ′n)n∈ℕ verifying |Σn| = |Σ′n| for
all integer n, then there exists a natural bijection between X and X′ ∶= ∏n∈ℕ Σ′n which
preserves the cofinite equivalence relation. That is to say G and H are orbit equivalent.
Furthermore they showed that if we know the diameter and the ratio of elements in the
boundary of each tile then we can deduce the integrability of the coupling. This is what
the following proposition sums up.

Theorem 3.5 ([DKLMT20, Prop. 6.6])

LetG andG′ be two discrete amenable groups and let (Σn)n be an (εn, Rn)-Følner tiling
shift for G and (Σ′n)n be an (ε′n, R′n)-Følner tiling shift for G′.
If |Σn| = |Σ′n|, then the groups are orbit equivalent over X = ∏n∈ℕ Σn. Moreover if

φ ∶ ℝ+ → ℝ+ is a non-decreasing map such that the sequence (φ(2R′n) (εn−1 − εn))n∈ℕ
is summable, then the coupling from G to G′ is (φ, L0)-integrable.

Using this tiling technique and the above theorem, Delabie et al. [DKLMT20] obtained
the first point of Examples 1.4 and the two following quantifications.

Example 3.6. For all n and m there exists an orbit equivalence coupling from ℤm to ℤn
which is (φε, ψϵ)-integrable for every ε > 0 where

φε(x) =
xn/m

log(x)1+ε ψε(x) =
xm/n

log(x)1+ε .

Remark that in particular for all p < n/m and q < m/n there exists a (Lp, Lq)-orbit
equivalence coupling from ℤm to ℤn.
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3 Følner tiling shifts

Example 3.7. Letm ≥ 2. There exists an orbit equivalence coupling betweenℤ andℤmℤ≀ℤ
that is (exp, φε)-integrable for all ε > 0 where

φε(x) =
log(x)

log(log(x))1+ε .

Note that the above example corresponds to the case when ρ(x) = x in ourTheorem 1.8.

3.2 Følner tiling shifts of diagonal products

Let (km)m and (lm)m be two sequences verifying the conditions of (H) and consider Δ
the associated diagonal product (see Section 2). We define below a Følner tiling shift for
Δ. Our goal is to obtain a tiling verifying Tn = Fκn . After defining the shifts sets Σn we
prove that the sequence (Σn)n∈ℕ is actually a Følner tiling shift. Finally we precise this
last statement by computing (Rn)n∈ℕ and (εn)n∈ℕ such that (Σn)n∈ℕ is a (Rn, εn)-Følner
tiling shift (see Definition 3.1).

3.2.1 Definition of the shifts

For any n ∈ ℕ, let 𝔏(n) = 𝔩(κn − 1), that is to say 𝔏(n) is the integer such that k𝔏(n) ≤
κn − 1 < k𝔏(n)+1. For example if kn ∶= κn for all n ∈ ℕ, then 𝔏(n) = n − 1.
Before defining our sequence (Σn)n∈ℕ, let us show some practical results on 𝔏. First

remark that since (kn)n∈ℕ is a subsequence of (κn)n∈ℕ, it verifies kn ≥ κn for all n ∈ ℕ.
Thus 𝔏(n) ≤ n and

k𝔏(n) < κn ≤ k𝔏(n)+1.

Claim 3.8. Let n ≥ 0, then either 𝔏(n+1) = 𝔏(n) or 𝔏(n+1) = 𝔏(n)+1. Moreover in this
second case k𝔏(n+1) = κn.

Proof. Recall that by definition 𝔏(m) = max {i ∈ ℕ | ki ≤ κm − 1} for all m ∈ ℕ.
Let n ∈ ℕ, then 𝔏(n + 1) ≥ 𝔏(n). Moreover if k𝔏(n)+1 ≥ κn+1 then 𝔏(n + 1) < 𝔏(n) + 1.

That is to say 𝔏(n + 1) ≤ 𝔏(n) and thus 𝔏(n + 1) = 𝔏(n).
On the contrary, if k𝔏(n)+1 < κn+1 then 𝔏(n+ 1) ≥ 𝔏(n)+ 1. But, by definition of 𝔏(n)

it verifies k𝔏(n)+1 ≥ κn and by construction of (km)m∈ℕ we also have k𝔏(n)+2 ≥ κk𝔏(n)+1
thus k𝔏(n)+2 ≥ κn+1. Hence 𝔏(n + 1) < 𝔏(n) + 2 and the first assertion.
Finally if 𝔏(n + 1) = 𝔏(n) + 1 then by definition of 𝔏

k𝔏(n) < κn ≤ k𝔏(n)+1 = k𝔏(n+1) ≤ κn+1 − 1.

But (km)m∈ℕ is a subsequence of κm thus the above inequality implies k𝔏(n+1) = κn.

Now, let us define the shifts. First let Σ0 ∶= F0, then if n ≥ 0 we distinguish two cases
depending on whether 𝔏(n + 1) = 𝔏(n) or 𝔏(n + 1) = 𝔏(n) + 1 and in both cases we split
the set of shifts Σn+1 in κ parts.
If 𝔏(n + 1) = 𝔏(n), let for all j ∈ {0,… , κ − 1}

Σjn+1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(𝐠, jκn) ∈ Δ

|||||||||||||||||||

|

supp (g0) ⊆ [0, jκn − 1] ∪ [(j + 1)κn, κn+1 − 1] ,
∀m ∈ [1, 𝔏(n)]

supp (g′m) ⊆ [km, jκn + km − 1] ∪ [(j + 1)κn, κn+1 − 1] ,
∀m ∉ [0, 𝔏(n)]

supp (g′m) = ∅.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

.
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3 Følner tiling shifts

Now if 𝔏(n+1) = 𝔏(n)+1 we add the condition that g′𝔏(n)+1 has support contained in
[k𝔏(n+1), κn+1 − 1], namely

Σjn+1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(𝐠, jκn) ∈ Δ

|||||||||||||||||||||

|

supp (g0) ⊆ [0, jκn − 1] ∪ [(j + 1)κn, κn+1 − 1]
∀m ∈ [1, 𝔏(n)]
supp (g′m) ⊆ [km, jκn + km − 1] ∪ [(j + 1)κn, κn+1 − 1] ,

supp(g
′
𝔏(n)+1) ⊆ [k𝔏(n)+1, κ

n+1 − 1] ,

∀m ∉ [0, 𝔏(n + 1)] supp (g′m) = ∅.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

.

Finally, in both cases we define Σn+1 ∶= ∪κ−1j=0 Σjn+1.
Let (𝐠, t) be an element of some Σjn+1. We represent in Figure 5 the supports and the

sets where the maps g0, g′1, … , g′𝔏(n+1) take their values. The light-blue rectangle with
dotted outline is in Σjn+1 if and only if 𝔏(n + 1) = 𝔏(n) + 1.

g′1

g′2

g0

κn+1jκn (j + 1)κn0

⋮ ⋮

g′𝔏(n)

g′𝔏(n)+1

Present iff 𝔏(n + 1) = 𝔏(n) + 1

Figure 5: Support and values taken by (𝐠, t) ∈ Σjn

Now that we have the shifts sequence, let us turn to the definition of the tiles.

3.2.2 Tiling

Recall that (Fn)n∈ℕ denotes the Følner sequence of Δ defined in Proposition 2.13. The aim
of this section is to show the theorem below.

Theorem 3.9

The sequence (Σn)n∈ℕ defined in Section 3.2.1 is a Følner tiling shift of Δ.

Before showing that the sequence of tiles (Tn)n∈ℕ thus induced verifies indeed the condi-
tions of Definition 3.1, let us show the following lemma.

Lemma 3.10

The sequence (Tn)n∈ℕ defined by T0 ∶= F0 and Tn+1 ∶= Σn+1Tn for all n > 0 verifies

(∀n ∈ ℕ) Tn = Fκn .

Let us discuss the idea of the proof. We proceed by induction and use a double inclusion
argument to prove the induction step. To show that Σn+1Tn is included in Fκn+1 we rely
on Lemma 2.12, that is to say we verify that every element of Σn+1Tn has range included in
[0, κn+1−1]. For the reversed inclusion we consider an element (𝐡, t) of Fκn+1 and explicit
the elements (𝐠, jκn) of Σn+1 and (𝐟, t′) of Tn such that (𝐡, t) = (𝐠, jκn)(𝐟, t′).
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Mind the involved maps here: we study the values of gm and fm instead of the “derived”
functions g′m, f′m usually considered.

Proof of the lemma. The assertion is true for T0. Now let n ≥ 0 and assume that Tn = Fκn .
We show the induction step by double inclusion.

FIrST INcLUSION

Let us prove that Σn+1Tn ⊆ Fκn+1 . Recall that Σn+1 = ∪κ−1j=0 Σjn+1.
Let (𝐟, t) ∈ Tn and j ∈ {0,… , κ − 1}. Take (𝐠, jκn) ∈ Σjn+1, then the following product

(𝐠, jκn) (𝐟, t) = ((gmfm (⋅ − jκ
n) )m, t + jκn)

verifies t + jκn ∈ [jκn, κn − 1 + jκn] which is contained in [0, κn+1 − 1] since j ≤ κ − 1.
Moreover

g0(x)f0(x − jκn) =
⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

g0(x) if x ∈ [0, jκn] ∪ [(j + 1)κn, κn+1 − 1]
f0(x − jκn) if x ∈ [jκn, (j + 1)κn − 1]
0 else.

Thus supp(g0f0(⋅ − jκn)) ⊆ [0, κn+1 − 1]. Furthermore, for all m ∈ {1,… , 𝔏(n)}

supp(g′m) ⊂ [km, jκn + km − 1] ∪ [(j + 1)κn, κn+1 − 1]
supp (f′m (⋅ − jκn)) ⊆ [jκn + km, (j + 1)κn − 1],

hence by Claim 2.5 the support of (gmfm(⋅ − jκm))′ is contained in [km, κn+1 − 1].
Now if 𝔏(n+ 1) = 𝔏(n) + 1 considerm = 𝔏(n) + 1. In that case f′m ≡ e sincem > 𝔏(n).

Thus (gmfm(⋅ − jκm))′ = g′n whose support is contained in [k𝔏(n)+1, κn+1 − 1].
Finally (gmfm(⋅ − jκm))′ ≡ 0 for allm ∉ [0, 𝔏(n+1)]. Hence by Lemma 2.12 the product

(𝐠, jκn) (𝐟, t) has range included in [0, κn+1 − 1] and thus belongs to Fκn+1 .

SEcOND INcLUSION

Let us show that Fκn+1 is contained in Σn+1Tn. So take (𝐡, t) in Fκn+1 . We want to
define (𝐟, t′) ∈ Tn and (𝐠, jκn) ∈ Σn+1 such that (𝐠, jκn) (𝐟, t′) = (𝐡, t). First remark that
t < κn+1 since (𝐡, t) belongs to Fκn+1 . Thus there exists t0, … , tn in [0, κ − 1] such that
t = ∑n

i=0 tiκi. Let j = tn and t′ = ∑n−1
i=0 tiκi. Then j does belong to [0, κ − 1] and t′ to

[0, κn − 1]. We now have to define 𝐟 and 𝐠 such that

((gmfm (⋅ − jκn))m, t′ + jκn) = (𝐡, t).

We refer to Figure 6 for an illustration of the different supports. Let

f0(x) ∶=
⎧
⎨⎩

h0(x + jκn) if x ∈ [0, κn − 1],
e else,

g0(x) ∶=
⎧
⎨⎩

h0(x) if x ∈ [0, jκn − 1] ∪ [(j + 1)κn, κn+1 − 1],
e else.
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3 Følner tiling shifts

km jκn jκn + km (j + 1)κn κn+1 κn+1 + km

Support of…
θAm(f0(⋅ − jκn))

θAm(g0)

f′m

g′m

θBm(f0(⋅ − jκn))

θBm(g0)

Figure 6: Supports

One can verify immediately that g0f0 (⋅ − jκn) = h0. Then take m ∈ [1, 𝔏(n)] and let

f′m(x) ∶=
⎧
⎨⎩

h′m(x + jκn) if x ∈ [km, κn − 1],
e else,

g′m(x) ∶=
⎧
⎨⎩

h′m(x) if x ∈ [km, jκn + km − 1] ∪ [(j + 1)κn, κn+1 − 1]
e else.

Now if 𝔏(n+1) = 𝔏(n)+1 then k𝔏(n+1) ≥ κn and in that case define g′𝔏(n+1) = h′𝔏(n+1).
Finally let f′𝔏(n+1) ≡ e and if m > 𝔏(n + 1) let g′m ≡ e ≡ f′m.
With the above definitions 𝐟 and 𝐠 are uniquely defined. Moreover, by definition

(𝐠, jκn) belongs to Σjn+1 and by Lemma 2.12 we have range(𝐟, t) ⊆ [0, κn − 1] thus (𝐟, t′)
belongs to Tn.
Now, using Lemma 2.6 we verify that gmfm(⋅ − jκn) = hm thus (𝐡, t) ∈ Σn+1Tn.
Hence, combining the first and second inclusion we get Fκn+1 = Tn.

We now know that (Tn)n∈ℕ is a Følner sequence. To proveTheorem 3.9 we have to show
that (Σn)n∈ℕ a Følner tiling shift.

Proof of Theorem 3.9. The sequence (Tn)n∈ℕ is a Følner sequence, by the last lemma. Thus
we only have to show that for all σ ≠ σ̃ ∈ Σn+1, σTn ∩ σ̃Tn = ∅. So let us denote by (𝐡, t)
an element of σTn ∩ σ̃Tn. We distinguish two cases.
First if σ ∈ Σjn+1 and σ̃ ∈ Σin+1 for some i ≠ j, then the cursor of σ is equal to jκn and

the one of σ̃ to iκn. Thus

(𝐡, t) ∈ σTn ⇒ t ∈ [jκn, (j + 1)κn − 1],
(𝐡, t) ∈ σ̃Tn ⇒ t ∈ [iκn, (i + 1)κn − 1].

But since i ≠ j these two intervals are disjoint, thus σTn ∩ σ̃Tn = ∅.
Now fix j ∈ {0,… , κ−1} and take σ, σ̃ ∈ Σjn+1. Let σ ∶= (𝐠, jκn) and σ̃ ∶= (𝐠̃, jκn). Assume

that there exists (𝐟, t) , ( ̃𝐟, ̃t) ∈ Tn such that (𝐠, jκn) (𝐟, t) = (𝐠̃, jκn) ( ̃𝐟, ̃t). Then

∀m ∈ ℕ gmfm(⋅ − jκn) = g̃m ̃fm(⋅ − jκn). (3.1)

First remark that

σ, σ̃ ∈ Σjn+1 ⟹ supp(g0), supp(g̃0) ⊆ [0, jκn − 1] ∪ [(j + 1)κn, κn+1 − 1]
(𝐟, t) , ( ̃𝐟, ̃t) ∈ Tn ⟹ supp(f0(⋅ − jκn)), supp( ̃f0(⋅ − jκn)) ⊆ [jκn, (j + 1)κn − 1].
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3 Følner tiling shifts

In other word the support of g0 (resp g̃0) is disjoint from the one of f0(⋅ − jκn) (resp
̃f0(⋅ − jκn)). Combining this with eq. (3.1) we obtain that g0 = g̃0 and f0 = ̃f0.
Now let m > 0 and let us show that gm = g̃m. Due to supports overlap (see Figure 7)

we need to decompose [0, κn+1 − 1] in five subintervals, namely

[0, κ
n+1 − 1] =[0, jκ

n − 1]⊔ [jκn, jκn + km − 1]⊔ [jκn + km, (j + 1)κn − 1],
⊔ [(j + 1)κn, (j + 1)κn + km − 1]⊔ [(j + 1)κn + km, κn+1 − 1].

If x ≤ jκn − 1 or x ≥ (j + 1)κn + km, then fm(x − jκn) = e = ̃fm(x − jκn) and thus
gm(x) = g̃m(x) by eq. (3.1).
If x ∈ [jκn, jκn + km − 1] then using Lemma 2.6 and the fact that on that subinterval

f0 = ̃f0, we get

fm(x − jκn) = θA0 (f0 (x − jκn)) = θA0 ( ̃f0 (x − jκn)) = ̃fm(x − jκn).

Hence by eq. (3.1) we get gm(x) = g̃m(x).
If x belongs to [jκn+km, (j+ 1)κn−1] then gm(x) = g̃m(x) = e and thus eq. (3.1) implies

that fm(x − jκn) = ̃fm(x − jκn), that is to say fm and ̃fm coïncide on [km, κn − 1].
Finally if x ∈ [(j+1)κn, (j+1)κn+km−1] then using Lemma 2.6 and the fact that f0 = ̃f0

on that subinterval, we get

fm(x − jκn) = θB0 (f0 (x − jκn − km)) = θB0 ( ̃f0 (x − jκn − km)) = ̃fm(x).

Hence by eq. (3.1), we have gm(x) = g̃m(x).
Thus 𝐠 = 𝐠̃ and then σ = σ̃. Which concludes the proof of the theorem.

m = 1

m = 2

m = 0

m = 𝔏(n) + 1

κn+1jκn (j + 1)κnκn = k𝔏(n)+10

fm(x) belongs to…

gm(x) belongs to…

A0 × B0

A0 × B0

Am

Am

Γm

Γm

Bm

Bm

Figure 7: Supports overlap

3.2.3 Diameter and boundary

Let us now quantify our shifts sequence.

Proposition 3.11

The sequence (Σn)n∈ℕ defined in Section 3.2.1 is a (Rn, εn)-Følner tiling shift where

Rn = CRκnl𝔏(n) εn =
2
κn ,

for some strictly positive constant CR.

First we prove the following lemma.
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4 Coupling with ℤ

Lemma 3.12

There exists CR > 0 depending only on Δ such that diam (Fn) ≤ CRnl𝔩(n−1) for all
n ∈ ℕ.

To show this result, we use Proposition 2.20.

Proof. Let n ∈ ℕ and (𝐟, t) ∈ Fn. First, take m ≤ 𝔩(n − 1) and let us bound Em by above.
Recall that Imj = [jkm/2, (j + 1)km/2 − 1]. Since (f, t) belongs to Fn its range is included in
[0, n − 1], thus

|{j ∈ ℤ ∶ range(fm, t) ∩ Imj ≠ ∅}| ≤ |{j ∈ ℤ ∶ [0, n − 1] ∩ [jkm/2, (j + 1)km/2 − 1] ≠ ∅}| ,

≤ |{j ∈ ℤ ∶ jkm/2 ≤ n − 1 and (j + 1)km/2 ≥ 1}| ,

≤ 2(n − 2)
km

+ 1.

Moreover remark that |fm(x)|Γm ≤ diam (Γm) ≤ clm for all x, thus

Em(fm) = km ∑
j:range(fm,t)∩Imj ≠∅

max
x∈Imj

(|fm(x)|Γm − 1)+ ,

≤ km ∑
j:range(fm,t)∩Imj ≠∅

lm,

≤ kmlm (
2(n − 2)
km

+ 1) = lm(2(n − 2) + km).

Thus, applying the second part of Proposition 2.20 we get

|(fm, t)|Δm ≤ 9 (range(fm, t) + Em(fm)) ≤ 9 (n + lm(2(n − 2) + km)) .

But if m ≤ 𝔩(n − 1) then km ≤ n − 1 ≤ n thus we can bound |(fm, t)|Δm by above by
9n(3lm+1). Now remark that 𝔩 (range(𝐟, t)) ≤ 𝔩(n−1). Thus, using the preceding inequality
and the first part of Proposition 2.20, we get

|(𝐟, t)|Δ ≤ 500
𝔩(range(𝐟,t))

∑
m=0

|(fm, t)|Δm ≤ 500
𝔩(n−1)

∑
m=0

9n (3lm + 1) ,

≤ 4500n
𝔩(n−1)

∑
m=0

(3lm + 1)

Finally, since lm is a subsequence of a geometric sequence, there exists Cl > 0 such that
∑𝔩(n−1)
m=0 (3lm + 1) ≤ Cll𝔩(n−1). Denoting CR ∶= 4500Cl we get the lemma.

Let us now show the wanted proposition.

Proof of Proposition 3.11. First remark that by the proof of Proposition 2.13 we have

εn =
|∂Tn|
|Tn|

= |∂Fκn |
|Fκn |

= 2
κn .

Now by Lemma 3.12 we have diam (Tn) = diam (Fκn) ≤ CRκnl𝔏(n).

4 cOUPLING WITH 𝕫

Our aim in this section is to showTheorem 1.8. What we actually show is that a diagonal
product Δ admits a coupling with ℤ satisfyingTheorem 1.8. We start by defining a Følner
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4 Coupling with ℤ

tiling shift forℤ in Section 4.1. We compute in Section 4.2 an estimate the diameter of such
tiles, namely the cardinal |Tn|. We conclude by showing the integrability of the coupling
using the criterion given by Theorem 3.5. And then show that Δ thus considered satisfies
Theorem 1.8.

4.1 Tiles for ℤ

Wewill denote by (Σ′n)n∈ℕ a Følner tiling shift of ℤ and by (T ′n)n the corresponding tiles.
Consider (Σn)n and (Tn)n as defined in Section 3.2.1 and Lemma 3.10 respectively. In

order to use Theorem 3.5 to get an orbit equivalence coupling between ℤ and Δ we need
Σn+1 and Σ′n+1 to have the same number of elements. We thus define

⎧
⎨⎩

Σ′0 = [0, |T0| − 1]
∀n ∈ ℕ Σ′n+1 ∶= {0, |Tn|, 2|Tn|, … , (|Σn+1| − 1) |Tn|} .

(4.1)

It induces a sequence (T ′n)n∈ℕ defined by T′0 = Σ′0 and T′n+1 = Σ′n+1T′n for all n ≥ 0.
We are going to prove that (Σ′n)n∈ℕ is a Følner tiling shift for ℤ.

Proposition 4.1

The sequence (Σ′n)n∈ℕ defined by eq. (4.1) is a (R′n, ε′n)-Følner tiling shifts for ℤ with

R′n = |Tn| ε′n = 2/|Tn|.

Moreover the induced sequence (T ′n)n∈ℕ verifies T′n = [0, |Tn| − 1] for all n ∈ ℕ.

Proof. Let (Σ′n)n∈ℕ be as defined by eq. (4.1) and recall that the induced tiling (T ′n)n∈ℕ
is the sequence defined by T′0 ∶= Σ′0 and T′n+1 = Σ′n+1T′n for all n ∈ ℕ. One can easily
prove that for all n ≥ 0

T′n = [0, |Tn| − 1] . (4.2)

It is now immediate to check that diam (T ′n) = |Tn| and |∂T ′n|/|T ′n| = 2/|Tn|. Furthermore
note that if σ, σ′ ∈ Σ′n+1 such that σ ≠ σ′ then dℤ(σ, σ′) ≥ |Tn| = diam (T ′n). Thus for
such σ and σ′ we get σT′n ∩ σ′Tn = ∅. Therefore (Σn)n∈ℕ is a Følner tiling shift and the
proposition follows from the above quantifications on Tn.

4.2 Estimates: diameter and boundary

The integrability of the coupling between ℤ and Δ depends on (Rn, εn) and (R′n, ε′n) but
by the above proposition, that last couple depends on the value of the cardinality of the
tiles (Tn)n∈ℕ. The aim of this section is to give estimates of |Tn| involving only terms of
(km)m∈ℕ and (lm)m∈ℕ. First let us precise the value of |Tn|.

Lemma 4.2

The sequence (Tn)n defined in Theorem 3.9 verifies

|Tn| = κn(|A||B|)
κn 𝔏(n)

∏
m=1

|Γ ′m|
κn−km .
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4 Coupling with ℤ

Proof. Recall that Tn = Fκn = {(𝐟, t) | range (𝐟, t) ⊆ {0,… , κn − 1}} for all n ∈ ℕ. We use
here Lemma 2.12 linking range and supports. Let n ∈ ℕ and take (𝐟, t) ∈ Tn, then there are
exactly κn values of t possible. Moreover 𝐟 is uniquely determined by f0 and f′1, … , f′𝔏(n)
(see Lemma 2.6). But f0 is supported on [0, κn − 1] which is set of cardinal κn so there
are exactly (|A||B|)

κn possible values for f0. Moreover if m > 0 then remark that f′m is
supported on [km, κn − 1] which has κn − km elements so there are exactly |Γ ′m|

κn−km

possible values for f′m. Thus the number of elements in Tn is

κn(|A||B|)
κn 𝔏(n)

∏
m=1

|Γ ′m|
κn−km .

Now let us bound |Tn| such that the bounds depend only on (κm)m∈ℕ and (lm)m∈ℕ.

Proposition 4.3

There exists two constants C2, C3 > 0 such that for all n ∈ ℕ,

C2κn−1l𝔏(n) ≤ ln |Tn| ≤ C3κnl𝔏(n).

Before showing the above proposition let us give an estimate of the right factor of the
expression of |Tn|.

Lemma 4.4

There exists two constants C1, C2 > 0 such that for all n ∈ ℕ,

C2κn−1l𝔏(n) ≤ ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
≤ C1κnl𝔏(n).

Proof. Recall that by eq. (2.1) there exists c1, c2 > 0 such that, for all m

c1lm − c2 ≤ ln |Γm| ≤ c1lm + c2.

Since Γ ′m ≤ Γm we thus have

ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
≤

𝔏(n)

∑
m=1

(κn − km) ln |Γm|,

≤
𝔏(n)

∑
m=1

(κn − km) (c1lm + c2) .

But we can bound κn − km from above by κn and since (lm)m∈ℕ is a subsequence of a
sequence having geometric growth, the sum∑𝔏(n)

m=1 (c1lm + c2) is bounded from above by
its last term up to a multiplicative constant. That is to say: there exists C1 > 0 such that

ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
≤ C1κnl𝔏(n).

Hence the upper bound. Now, using that [Γm ∶ Γ ′m] = |A||B| we have

ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
=
𝔏(n)

∑
m=1

(κn − km) ln |Γ ′m| =
𝔏(n)

∑
m=1

(κn − km) ln(
|Γm|
|A||B|) .
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Bounding the sum from below by its last term and using once more eq. (2.1), we get

ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
≥ (κn − k𝔏(n)) ln(

|Γ𝔏(n)|
|A||B| ) ,

≥ (κn − k𝔏(n)) (c1l𝔏(n) − c2 − ln (|A||B|)) ,
≥ C2(κn − k𝔏(n))l𝔏(n),

for some C2 > 0. We get the wanted inequality by noting that κn − k𝔏(n) ≥ κn−1.

Proof of Proposition 4.3. Applying Lemma 4.4 to the cardinal of Tn given by Lemma 4.2 we
obtain that there exists C3 > 0 such that ln |Tn| ≤ C3κnl𝔏(n). Hence the upper bound. The
minoration comes imediately from Lemma 4.4.

Equipped with these bounds on |Tn| we can now show the wanted integrability for the
coupling.

4.3 Integrability of the coupling

We will show that Δ is the group satisfying Theorem 1.8, but first let us quantify the
integrability of the orbit equivalence coupling with ℤ induced by the Følner tiling shifts
we built. Recall that 𝒞 denotes the set of non-decreasing functions ρ∶ [1, +∞[→ [1,+∞[
such that x/ρ(x) is non-decreasing.

Theorem 4.5

Let ρ ∈ 𝒞 and take Δ to be the Brieussel-Zheng’s diagonal product defined from ρ. Let
ε > 0 and Ψ ∶= exp ∘ρ and let

φε(x) ∶=
ρ ∘ ln(x)

(ln ∘ρ ∘ ln(x))
1+ε .

There exists an orbit equivalence coupling from Δ to ℤ that is (φε, Ψ)-integrable.

Let us discuss the strategy of the proof. The demonstration is based on Theorem 3.5,
thus we first prove that (Ψ(2Rn)ε′n−1)n is summable and then that (φε(2R′n)εn−1)n is.
In both cases we use Proposition 4.3 to get upper bounds. So far, we have the following
quantifications.

Rn = CRκnl𝔏(n) R′n = |Tn|
εn =2κ−n ε′n = 2/|Tn|

Proof of Theorem 4.5. Let ρ ∈ 𝒞 and take Δ to be the diagonal product defined from ρ as
described in Section 2.3.
To begin, let us recall some preliminary results about ρ. Remember that ρ ≃ ̄ρwhere ̄ρ is

defined below eq. (2.3). By definition of 𝔏(n)we have k𝔏(n)l𝔏(n) ≤ κnl𝔏(n) ≤ k𝔏(n)+1l𝔏(n),
thus by eq. (2.3)

̄ρ(κnl𝔏(n)) = κn. (4.3)
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Now let us show that the coupling from ℤ to Δ is Ψ-integrable. To do so we prove
that (Ψ(2Rn)ε′n−1) is summable. First note that by Proposition 4.3 we have the following
lower bound on |Tn−1|

|Tn−1| ≥ exp (C2κn−2l𝔏(n−1)) . (4.4)

Moreover recall that Rn = CRκnl𝔏(n) and ε′n−1 = 2/|Tn−1| thus by the inequality above

Ψ(2Rn)ε′n−1 = exp [ρ(2CRκ
nl𝔏(n))]

2
|Tn−1|

,

≤ 2 exp [ρ (2CRκ
nl𝔏(n)) − C2κn−2l𝔏(n−1)].

But remember that ρ ≃ ̄ρ. Thus using eqs. (2.2) and (4.3) we get

ρ (2CRκnl𝔏(n)) ≃ ̄ρ (2CRκnl𝔏(n)) ≤ 2CR ̄ρ (κnl𝔏(n)) = 2CRκn. (4.5)

Combining the above result with the previous inequality, we get

Ψ(2Rn)ε′n−1 ≼ 2 exp [2CRκn − C2κn−2l𝔏(n−1)] ,
= 2 exp [κn−2 (2CRκ2 − C2l𝔏(n−1))] ,

which is summable. Indeed l𝔏(n) tends to infinity and thus (2CRκ2 − C2l𝔏(n−1)) < −1 for
n large enough. Hence by Theorem 3.5 the orbit equivalence from ℤ to Δ si Ψ-integrable.
Now, let us show that for all ε > 0 the coupling from Δ to ℤ is φε-integrable. Based

on Theorem 3.5 we only have to prove that φε(2R′n)εn−1 is summable. Recall that R′n =
|Tn| and εn−1 = 2/κn−2 and remark that by both the lower and upper bounds given in
Proposition 4.3 we have

φε(2R′n)εn−1 =
2ρ ∘ ln (2|Tn|)

( ln ∘ρ ∘ ln (2|Tn|))
1+ε

κn−1
≤ 2ρ(2C3κnl𝔏(n))

( ln ∘ρ (2C2κn−1l𝔏(n)) )
1+ε

κn−1
.

Let us give a lower bound for ρ (2C2κn−1l𝔏(n)). Recall that ρ ≃ ̄ρ furthemore if 2C2 ≥ 1
then by eq. (4.3) and since ̄ρ is non-decreasing

κn−1 = ̄ρ (κn−1l𝔏(n)) ≤ ̄ρ (2C2κn−1l𝔏(n)) ≃ ρ (2C2κn−1l𝔏(n)) .

Now if 2C2 < 1 using Claim 2.18 with c′ = 2C2 and x′ = κn−1l𝔏(n) we get (for n large
enough)

2C2κn−1 = 2C2 ̄ρ(κn−1l𝔏(n)) ≤ ̄ρ(2C2κn−1l𝔏(n)) ≃ ρ (2C2κn−1l𝔏(n))

Hence, in both cases κn−1 ≼ ρ(2C2κn−1l𝔏(n)). Finally replacing CR by C3 in eq. (4.5) we
can show that ρ (2C3κnl𝔏(n)) ≤ 2C3κn. Thus, combining the two preceding results we
obtain

φε(R′n)εn−1 ≤
2ρ(C3κnl𝔏(n))

( ln ∘ρ (C2κn−1l𝔏(n)) )
1+ε

κn−1

≼ κn

( ln (κn−1) )
1+ε

κn−1
= κ
((n − 1) ln(κ))

1+ε ,

which is a summable sequence. Hence byTheorem 3.5 the orbit equivalence coupling from
Δ to ℤ si φε-integrable.
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Remark 4.6. This result is stated in the general case, that is to say for an abstract ρ.
Nonetheless, for some particular functions ρ the quantification can be improved. For
example the case where kn = 2n and ln = 2αn corresponds to ρ(x) ≃ x1/(1+α). In that case
𝔏(n) = n− 1 and we can show that the coupling from ℤ to Δ is exp-integrable (instead of
exp ∘ρ-integrable). Indeed, let cφ < C2/(CR23+α) and Ψ(x) ∶= exp(cφx), then by eq. (4.4)

Ψ(2Rn)ε′n−1 = exp [cφ2CRknln−1]
2

|Tn−1|
≤ exp [cφ2CR2n2α(n−1) − C22n−22α(n−2)] 2
= 2 exp [2n−22α(n−2) (cφCR23+α − C2)] .

Which is summable by choice of cφ.

Remark 4.7. We can verify that the integrability obtained for the coupling from Δ to ℤ is
“almost” optimal. Indeed if the coupling from Δ to ℤ is φ-integrable, then byTheorem 1.5
we have

φ ∘ Iℤ ≼ IΔ

where we recall that Iℤ(n) ≃ n and IΔ(n) ≃ ρ ∘ ln(n). Thus using the inequality above,
we get φ(n) ≼ ρ ∘ ln(n). Hence the quantification of Theorem 4.5 is optimal up to a
logarithmic factor.

It is now easy to prove our first main theorem.

Proof of Theorem 1.8. Let ρ ∈ 𝒞 and Δ to be the group defined in Proposition 2.14. By the
aforementioned proposition it verifies IΔ ≃ ρ ∘ log. Moreover by Theorem 4.5 there exists
an orbit equivalence coupling fromΔ andℤ that is (φε, exp ∘ρ)-integrable for all ε > 0.

To prove Corollary 1.9 we use the composition of couplings introduced in [DKLMT20].
We recall below the proposition concerning the integrability of this composition and
refer to [DKLMT20, Sections 2.3 and 2.5] for more details on the construction of the cor-
responding coupling.

Proposition 4.8 ([DKLMT20, Prop. 2.9 and 2.29])

If (X1, μ1) (resp. (X2, μ2)) is a (φ, L0)-integrable (resp. (ψ, L0)-integrable) orbit equiv-
alence coupling from Γ to Λ (resp. Λ to Σ), the composition of couplings gives a
(φ ∘ ψ, L0)-integrable orbit equivalence coupling from Γ to Σ.

Let us now show Corollary 1.9 concerning the coupling with ℤd.

Proof of Corollary 1.9. Let ρ ∈ 𝒞 and let Δ be the group defined in Proposition 2.14, in
particular it verifies IΔ ≃ ρ ∘ log.
Let d ≥ 1 and recall (see Example 3.6) that for all p < d and all q < 1/d there exists a

(Lp, Lq)-integrable orbit equivalence coupling from ℤ to ℤd. Hence, using the composi-
tion of couplings described in [DKLMT20] we can deduce from Theorem 1.8 and Propo-
sition 4.8 above that there exists a (φε(⋅p), L0)-integrable orbit equivalence coupling from
Δ to ℤd. Now if d > p ≥ 1 by eq. (2.2)

ρ ∘ log(x) ≤ ρ(p log(x)) ≤ pρ ∘ log(x).

Since ρ(p log(x)) = ρ∘log(xp)we thus have ρ∘log(xp) ∼ ρ∘log. When p < 1, usingClaim 2.18
instead of eq. (2.2) we obtain a similar equivalence. Thus in both cases φε(xp) ≃ φε(x).
Hence the corollary.
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5 Conclusion and open problems

5 cONcLUSION AND OPEN PrOBLEMS

Let us conclude with some questions and remarks.

5.1 Optimality and coupling building techniques

The tiling technique —though inspiring— is not always usable to get orbit equivalence
couplings. Indeed the condition that the two Følner tiling shiftsmust have at each step the
same cardinality is very restrictive. Furthemore this technique does not seem to produce
couplings with the best quantification: wether it is our coupling with ℤ or the one built
in [DKLMT20] (Examples 3.6 and 3.7) the integrability is always optimal up to a logarithmic
factor. One can thus ask: is the optimal integrability reachable? Is the logarithmic error
due to the building technique?

5.2 Inverse problem

We studied here the inverse problem for the group of integers (Question 1.7) but one can
also ask the same question for other groups than ℤ.

Question 5.1. Given a function φ and a group H is there a group G such that there exists
a (φ, L0)-measure equivalent from G to H? Can G be chosen such that φ ∘ IH ≃ IG?

In a future article we plan to answer this question when H is a diagonal product, in
particular H can be a lamplighter group. This coupling will be obtained with another
building technique than the tiling process and the integrability will be optimal, answering
the questions of Section 5.1 positively.
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Notations

NOTATIONS INDEX

≼, ≃ See above Theorem 1.5.
|X| Cardinal of the set X.
∂F Boundary of the set F.
Δ See Definition 2.1.
Δm See Section 2.1.
Fn Følner sequence of Δ.
𝐠 The sequence of maps (gm)m∈ℕ.
g′m See Section 2.1.3.
Γ ′m Normal closure of [Am, Bm].
IG Isoperimetric profile of G.
Rn Diameter of Tn.
R′n Diameter of T′n.
SG A generating set of the group G.
Σn Følner tiling shifts (of Δ).
Σ′n Følner tiling shifts of ℤ.
Tn Tile of Δ defined by Tn = ∏n

i=0 Σi
T′n Tile of ℤ defined by T′n = ∏n

i=0 Σ′i
θAm(fm) Natural projection of fm on Am (see Section 2.1.3).
θBm(fm) Natural projection of fm on Bm (see Section 2.1.3).
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