Marie Candito
email: marie.candito@u-paris.fr

Auxiliary Tasks to Boost Biaffine Semantic Dependency Parsing

 show modest but systematic performance gains on a near state-ofthe-art baseline using transformer-based contextualized representations. This provides a simple and robust method to boost SDP performance.

Introduction and related work

Semantic dependency parsing is the task of producing a dependency graph for a sentence. Depending on the datasets, these dependencies may correspond to predicate-argument relations, with labels numbering semantic arguments (as in or dependencies with intermediate status between syntax and semantics, with labels being canonical grammatical functions that normalize syntactic alternations (e.g. in Figure 1-bottom, the clitic l' (him) is the canonical object of the passive verb form sollicité (solicited)).

If one views each dependency as a decision to make, both dependency parsing (DP, outputing a syntactic tree) and semantic dependency parsing (SDP) are known to exhibit high interdependence of decisions. For instance in DP, when parsing a question answering machine, choosing machine as root is linguistically coherent with the machine She went back and spoke to the desk clerk. [START_REF] Oepen | SemEval 2015 task 18: Broad-coverage semantic dependency parsing[END_REF]. Bottom: French Deep syntactic graph as defined by [START_REF] Candito | Deep syntax annotation of the sequoia French treebank[END_REF].

→ answering → question analysis only, whereas (wrongly) choosing question as root is syntactically coherent with the question → answering → machine analysis.

In DP though, the interdependence between arcs is partially solved by the tree constraint: choosing one head for a given token amounts to ruling out all other heads. This structural interdependence is absent in SDP. Complex structural, lexical and semantic factors control whether a given dependent should be attached to zero, one or several heads.

Several approaches exist in the literature to capture interdependence of arcs in SDP, which often derive from proposals made for DP. One is to use a higher-order graph-based parser. [START_REF] Wang | Second-order semantic dependency parsing with endto-end neural networks[END_REF] achieve state-of-the-art results (without pretrained LM) on the English part of the SemEval2015-Task18 data, by using second-order factors to score the graphs, yet at the cost of a O(n 3) complexity.

Another main approach is to use sequential decisions, and hence take advantage of previous decisions by encoding the previously predicted arcs. This is the case in the transition-based parser of [START_REF] Fernández | Transition-based semantic dependency parsing with pointer networks[END_REF], or in the system of [START_REF] Kurita | Multi-task semantic dependency parsing with policy gradient for learning easy-first strategies[END_REF], which selects a new head for certain tokens at each iteration, using reinforcement learning to order this selection of heads. Both models have a O(n2) complexity (when used without cycle detection), and in both cases, sequential decisions benefit from the encoding of previously predicted arcs, yet at the cost of error propagation. For that reason, [START_REF] Bernard | Multiple tasks integration: Tagging, syntactic and semantic parsing as a single task[END_REF] propose a system close to that of [START_REF] Kurita | Multi-task semantic dependency parsing with policy gradient for learning easy-first strategies[END_REF], yet allowing the system to overwrite previous decisions and hopefully correct itself.

On the contrary, the biaffine system of Dozat and Manning (2018) (hereafter DM18) performs a simultaneous scoring of all candidate arcs, decides to predict an arc independently of the other ones. This results in a highly parallelizable O(n 2) inference, with surprisingly high performance albeit below second-order parsing.

As for most NLP tasks, SDP performance increases when integrating transformer-based contextual representations when encoding input tokens. On the English dataset from the SemEval 2015 Task 18 [START_REF] Oepen | SemEval 2015 task 18: Broad-coverage semantic dependency parsing[END_REF], [START_REF] Fernández | Transition-based semantic dependency parsing with pointer networks[END_REF] (hereafter FG20) report a +0.7 and +2.0 increase for the in-domain (ID) and out-of-domain (OOD) test sets respectively. 1 In this work, we retain the simple O(n 2) biaffine architecture of DM18, and we investigate how simple auxiliary tasks can introduce some interdependence between arc decisions, in a multi-task learning setting [START_REF] Caruana | Multitask learning[END_REF]. We show modest but statistically significant improvements on the three English datasets of the widely used SemEval2015-Task18 data [START_REF] Oepen | SemEval 2015 task 18: Broad-coverage semantic dependency parsing[END_REF]. We also test another appealing property of the biaffine architecture, which is the absence of formal constraints on the output graphs. Experiments on French deep syntactic graphs [START_REF] Ribeyre | Semi-Automatic Deep Syntactic Annotations of the French Treebank[END_REF], which are highly cyclic, also demonstrate the effectiveness of our auxiliary tasks for SDP.

1 Using the biaffine DM18 architecture, [START_REF] He | Establishing strong baselines for the new decade: Sequence tagging, syntactic and semantic parsing with BERT[END_REF] report a +2 and +3 point increase in ID and OOD. Yet, these results are not comparable: the authors have used a different pre-processing, which adds orphan dependencies from the root to orphan tokens, resulting in an easier task (p.c. with the authors and https://github.com/emorynlp/bert-2019/is sues/1).

The baseline biafine graph parser

We reuse the computation of the arc and label scores of the DM18 model, which we modernized by using contextual representations: input sequence w 1:n is passed into a pretrained language model. We represent a word-token w i by concatening the contextual vector of its first subword 2 h (bert) i and a word embedding e (word) i

.

v i = h (bert) i ⊕ e (word) i (1)
For some of the experiments, we also concatenate a lemma and a POS embedding.

v i = h (bert) i ⊕ e (word) i ⊕ e (lemma) i ⊕ e (POS) i (2)
The sequence of word-tokens representations is passed into several biLSTM layers:

r 1:n = biLSTM(v 1:n).
The recurrent representation r i is then specialized according to two binary features: head versus dependent, and arc versus label score:

h (arc-head) i = MLP (arc-head) (r i) h (lab-head) i = MLP (lab-head) (r i) h (arc-dep) i = MLP (arc-dep) (r i) h (lab-dep) i = MLP (lab-dep) (r i) (3)
We use a simplified biaffine transformation for arc scores, and a per-label one for label scores:

s (arc) i→j = h (arc-dep) j U (arc) h (arc-head)⊤ i + b (arc) s (l) i→j = h (lab-dep) j U (l) h (lab-head)⊤ i + b (l)
(4) For each position pair i, j, a binary cross-entropy loss is used for the existence of arc i → j, and a cross-entropy loss is used for the labels of gold arcs. At inference time, any candidate arc with positive score s (arc) i→j is predicted, and receives the label with maximum score for this arc.

Auxiliary tasks targeting sets of arcs

Preliminary experiments on English semantic dependency graphs [START_REF] Oepen | SemEval 2015 task 18: Broad-coverage semantic dependency parsing[END_REF] and on French deep syntactic graphs [START_REF] Candito | Deep syntax annotation of the sequoia French treebank[END_REF] have shown us that the biaffine graph parser gives good results, but with inconsistencies that are clearly related to the locality of decisions. In particular, a quick error analysis revealed incompatible Here is a good rule of thumb : ... arc combinations. More precisely, we noticed impossible sets of labels for the set of heads of a given dependent. For example in the DM part of the SemEval2015-Task18 dataset, tokens are sometimes attached with a mwe label (for a component of a multi-word expression) and attached to another head with a non-mwe label, as shown for the rule token in Figure 2. This incorrect situation actually never happens in the training set, but this impossibility is not captured by the model. In the predicted French deep syntactic graphs, we noticed punctuation tokens wrongly attached to two different heads with the specific punct dependency label.

A second observation is a tendency in some of the datasets to predict disconnected tokens (i.e. with no incoming nor outgoing arcs) too frequently. More generally, when counting the number of predicted heads for each token in the predicted graphs, the accuracy is about 95% in the English datasets, and below 92% for the French one.

Auxiliary tasks

Hence the idea of using auxiliary tasks taking into account all the heads (resp. dependents) of a given token. More precisely, we experiment multi-task learning on the two target tasks (tasks A and L for arc and label prediction), plus the following auxiliary tasks, which predict for each token w j :

• tasks H and D: the number of governors and number of dependents. For instance in top Figure 1, spoke has two governors (went and to) and one dependent (She);

• the labels of the incoming arcs, either as:

task S: the concatenated string of the incoming arcs labels, in alpha-betic order (e.g. for the spoke token, AND_C+ARG1) task B: or the "bag of labels" (BOL) sparse vector, whose components are the numbers of incoming arcs to w j bearing each label. For the spoke token, this would give a 1 for the AND_C label component and 1 for the ARG1 label, and zeros for all other labels.

Technically, for each auxiliary task, a specific MLP is used to specialize the recurrent representation r j of each word-token w j . Tasks H and D are regression tasks, which use MLPs with a single output neuron and a squared error loss.3

nbh j = MLP (H) (r j) nbd j = MLP (D) (r j)
The S task is a classification task into categories corresponding to multi-sets of labels encountered in the training set. 4 For w j , the vector of scores of all the label multi-sets is s j = MLP (S) (r j), and cross-entropy loss is used at training.

For the B task, we use a MLP with final layer of size |L|: BOL j = MLP (B) (r j). The component for label l, BOL jl , is interpreted as 1+ log of the number of l-labeled incoming arcs to w j . The loss we use is the L2 distance between gold and predicted BOL vectors.

The two example inconsistencies cited above are indirectly captured by these auxiliary tasks. Firstly, in case of a token w j that is a component of a multi-word expression, the recurrent representation r j for this token will be optimized to lead to a single mwe incoming label for the S or B tasks, and a value 1 for the H task (cf. a single governor for w j). Hopefully, when used for the A and L tasks, r j will favor incoming arcs from close next tokens (cf. e.g. for the DM format, mwe components are attached to the right, and quite locally). The other mentioned problem of predicting disconnected tokens too frequently is captured by the H and D tasks. Predicting no incoming nor outgoing arc for a given token will only be coherent with H=0 and D=0 for this token. Hence, hopefully, predicting more than 0 for the H task for a token w j , will lead to higher scores for arcs pointing to w j .

Combining sublosses

At training time, for each batch, we seek to minimize a weighted sum of the losses for all the tasks, whether main or auxiliary. Manually tuning these weights is cumbersome and suboptimal. We use the notion of task uncertainty and the approximation proposed by [START_REF] Kendall | Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics[END_REF], who introduce a parameter σ t for each subtask t, to be interpreted as its "uncertainty". Noting T as the set of tasks, the overall loss for a batch is t∈T

1 σ 2 t L t + ln(σ t).
The parameters σ t are initialized to 1 and modified during the learning process. The first term of the sum ensures that the more uncertain the task, the less its loss will count, while the second term prevents arbitrarily augmenting the σ t values, thus reducing the loss weights.

Stack propagation

We test two multi-task learning configurations: first, simple parameter sharing up to the biLSTM layers (all specialization MLPs applied on the recurrent token representations). Second, we test the technique of "stack propagation", which Zhang and Weiss (2016) experimented for the POS tagging and parsing tasks. In our case, it amounts to using the dense layers of the auxiliary tasks MLPs to score the arcs and their labels.

For example, to use the H task in stack propagation mode, let hidden (H) j be the hidden layer of MLP (H) for the dependent j, and c (H) a coefficient hyperparameter. The computation of s (arc) i→j (cf. equation 4) is modified as follows:

sp (arc-dep) j = h (arc-dep) j ⊕ c (H) hidden (H) j s (arc) i→j = sp (arc-dep) j U (arc) h (arc-head)⊤ i + b (arc)
Similarly, to use task B in stack propagation mode, we modify the score of each label:

sp (lab-dep) j = h (lab-dep) j ⊕ c (B) hidden (B) j s (l) i→j = sp (lab-dep) j U (l) h (lab-head)⊤ i + b (l)
Note that it forces to perform the auxiliary tasks during inference, instead of at training time only.

Experiments and discussion

Datasets

We experiment on the three widely used English datasets of SemEval2015-Task18 [START_REF] Oepen | SemEval 2015 task 18: Broad-coverage semantic dependency parsing[END_REF] (DM, PAS and PSD), which are acyclic graphs mainly representing predicate-argument relations. We also experiment on French deep syntactic graphs [START_REF] Ribeyre | Semi-Automatic Deep Syntactic Annotations of the French Treebank[END_REF] (Appendix D). These capture most of argument sharings (e.g. raising, obligatory and arbitrary control, subject sharing in VP coordination) but are closer to surface syntax in the sense that labels remain syntactic, even though syntactic alternations are neutralized (e.g. passive by-phrases are labeled as subjects). Cycles may appear e.g. in relative clauses.5

Experimental protocol

We chose to investigate the impact of the auxiliary tasks on a high baseline, using pretrained contextual representations. We use our own implementation6 of the biaffine parser, the BERT base-uncased model for English, and FlauBERT base-cased for French. 7 We used two settings (see Appendix A for details):

• BERT tuned : the first setting is intended to use the contextual representations as only source of pre-trained parameters, and defines the v i vectors as in equation (1) (no lemma nor POS embeddings), with the word embeddings being randomly initialized, and the BERT embeddings being fine-tuned for the SDP task.

• BERT froz +POS+lem: the second one is used to compare our results to previous work on the English SemEval2015-Task18 datasets: the BERT embeddings are frozen, additional POS and lemma embeddings are used (cf. v i definition as in equation (2)). The same pre-trained word and lemma embeddings as FG20 are used. Note this setting uses gold POS and lemmas and is not a realistic scenario.

For the BERT tuned mode, we tuned the hyperparameters on the French data, and applied the same configuration to the English datasets. After a few tests, we set a configuration (see Appendix A), and searched for the best combination of auxiliary tasks.

For each experiment, we report the labeled Fscore (LF), including root arcs, averaged over 9 runs.

Results on French deep syntactic graphs

Table 1 shows the results with and without various combinations of auxiliary tasks. We tested the impact of stack propagation using auxiliary tasks B+H. We observe a modest but statistically significant +.34 increment with weights c (B) =1 and c (H) =10. Considering that this makes the inference task more complex, we did not use it in later experiments on English. We then tested the B+H configuration on the English test sets. In Table 2, we observe that performance gains using B and H auxiliary tasks are systematic across datasets (DM, PAS, PSD) and across in-or out-of-domain test sets, which tends to show the robustness of our method. 10We can also measure the impact of the auxiliary tasks by evaluating how accurate the predicted graphs are, concerning the number of heads of tokens: on average on the English dev sets, the proportion of tokens receiving the right number of heads in the predicted graphs increases from 94.9 without auxiliary tasks to 95.5 with tasks B+H.

Results on English semantic graphs

Finally, we provide in Table 3 a comparison to FG20 results (thus using the BERT froz +POS+lem setting), which are the state-of-the-art for systems using a single source of contextual embeddings. While our results remain below, note that our auxiliary tasks can be used with their system, as well as with e.g. that of [START_REF] Wang | Automated concatenation of embeddings for structured prediction[END_REF], which achieve significant improvements with an automated concatenation of various contextual embedding models, reaching 91.7 for ID et 90.2 for OOD.

ID OOD FG20 BERT froz +POS+lem 90.7 88.8 Ours BERT froz +POS+lem, B+H 90.2 87.9 Ours BERT tuned , B+H 89.9 88.0

Table 3: Comparison to the state-of-the-art SDP parser using BERT, on English ID and OOD test sets, in BERT froz +POS+lem setting. FG20: [START_REF] Fernández | Transition-based semantic dependency parsing with pointer networks[END_REF].

Conclusion

When using a biaffine graph-based architecture for semantic dependency parsing (SDP), arcs are predicted independently from each other. Our contribution is a set of simple yet original auxiliary tasks that introduce some form of interdependence of arc decisions. We showed that training recurrent word-token representations both for the SDP task and for predicting the number of heads and the incoming labels of each word is systematically beneficial, when tested either on English or French, on semantic or on deep syntactic graphs, and on inor out-of-domain data.

A Training details

All experiments are run on a Nvidia GTX 1080 Ti GPU.

For all settings:

• lexical embedding size (e (word) i

) : 100

• lexical dropout : 0.4. At learning, the lexical embedding of a token is replaced with probability 0.4 by a special token *DROP*, whose embedding is learned.

• biLSTM : 3 layers of size 2 * 600, with 0.33 dropout

• MLPs for aux. tasks: 1 hidden layer (300), output layer (300), dropout 0.25

• Batch size = 8

• Optimizer = Adam, β 1 = β 2 = 0.9

• Learning is stopped when all labeled Fscores decrease on the dev set. Note that beside the main FL score, tasks H and B give rise to their labeled Fscore, computed using the number of heads as predicted by task H (resp. B).

BERT tuned setting

• BERT and FlauBERT models : fine-tuned

• MLPs for arc and label score : 1 hidden layer (600), output layer (600), dropout 0.33

• Learning rate = 2 × 10 5

• Loss combination : learnt weights (cf. section 3.2)

BERT froz +POS+lem setting

• BERT model : frozen

• word and lemma embeddings (100), initialized with embeddings by [START_REF] Ma | Stackpointer networks for dependency parsing[END_REF], fine-tuned

• POS embeddings (100), randomly initialized

• MLP for arc score : 1 hidden layer (500), output layer (500), dropout 0.33

• MLP for label score : 1 hidden layer (100), output layer (100), dropout 0.33 11

• Learning rate = 5 × 10 4

• loss combination : plain sum of losses for each task

B Unsuccessful tests

Various tests were abandoned as unsuccessful in our preliminary tests:

• Using pre-trained lexical embeddings with tuned contextual embeddings had no impact on performance on average.

• Freezing BERT's and FlauBERT's parameters without using word and lemma embeddings significantly decreased performance (by about 2 FL points).

• Increasing the level of parameter sharing between tasks was not successful: instead of applying the MLPs of the auxiliary tasks on the recurrent representations r i , we tested applying them on the outputs of the specialization MLPs (i.e. on h (arc-head) i

for task D, on h (arc-dep) i for task H, on h (lab-dep) i for tasks B and S). While this tends to increase the number of epochs, it does not improve the performance.

C Significance testing

We use a Fisher-Pitman exact permutation test to estimate the significance of the differences in performance between two configurations (as done for example by [START_REF] Bernard | Multiple tasks integration: Tagging, syntactic and semantic parsing as a single task[END_REF]). More precisely, suppose we consider two samples of Fscores, for nA runs corresponding to configuration A, and nB runs for configuration B, with on average configuration B better than A. The null hypothesis is that the two samples follow the same distribution. The p-value corresponds to the probability that separating the set of Fscores into two samples A' and B' of size nA and nB gives a difference in mean at 11 Sizes of the MLPs for arc and label scores are defined here to replicate [START_REF] He | Establishing strong baselines for the new decade: Sequence tagging, syntactic and semantic parsing with BERT[END_REF] settings. We observed very marginal differences when keeping the sizes used in BERTtuned setting (600 for both MLPs). least as large as the observed difference. With the exact test, the p-value is calculated exactly, on all possible splits into A' and B' samples. [START_REF] Abeillé | Enriching a French treebank[END_REF]).

D French data statistics and full results

Train

The complete results on dev set for the French data is provided in

 sollicité. This him has accustomed to be very solicited.

Figure 1 :

 1 Figure1: Top: English Semantic graph in the DM format, as part of the SemEval2015-Task18 dataset[START_REF] Oepen | SemEval 2015 task 18: Broad-coverage semantic dependency parsing[END_REF]. Bottom: French Deep syntactic graph as defined by[START_REF] Candito | Deep syntax annotation of the sequoia French treebank[END_REF].

Figure 2 :

 2 Figure 2: Example of competition for the sequence rule of thumb. Above arcs: correct MWE analysis (rule and of attached to the last MWE component thumb, and thumb being the head of the sequence). Below arcs: incorrect compositional analysis, in which rule is the head, e.g. attached wrongly as ARG1 of good (in red).

Table 1 :

 1 8 While no auxiliary task provide a significative increase 9 , the combinations B+H and B+D+H+S bring a statistically significant +0.53 and +0.56 increase on average (see Appendix C for significance test). Results on French dev set, for various tasks combinations, with and without stack propagation (H: nb of heads, D: nb of dependents, B: bag of labels,

	Auxiliary	Stack	On 9 runs
	tasks	propagation	meanLF stdev
	∅	NA	86.79	0.19
	B+H	no	87.32 * * * 0.18
	D+H	no	86.61	0.71
	H+S	no	87.04	0.17
	B+D+H+S no	87.35 * * * 0.26
	B+H	c (B) =1 c (H) =1	87.49	0.06
	B+H	c (B) =1 c (H) =10 87.66 +++ 0.18

S: label multi-set). Col3-4: average LF, and standard deviation. * * * : significative diff. wrt first line. +++ : significative diff. wrt second line (p <0.001).

Table 2 :

 2 Average LF (on 9 runs), in BERT tuned setting, on English in-domain (ID) and out-of-domain (OOD) test sets, using either no auxiliary task (∅) or tasks B and H (B+H), without stack propagation. B+H results are statistically higher than ∅ for DM ID, DM OOD, PAS ID, PAS OOD (p <0.001) and PSD ID (p <0.01).

		Tasks DM PAS PSD Avg
	ID	∅ B+H 94.2 94.3 81.2 89.9 93.7 93.9 80.7 89.4
	OOD	∅ B+H 91.0 92.8 80.2 88.0 90.3 92.0 79.8 87.4

Table 4 :

 4 Statistics of the deep French syntactic graphs, built on the French treebank

Table 5 :

 5 Table 5, of which Table 1 is a truncated version. =1 c (H) =10 87.66 +++ 0.18 Full results on French dev set, for various tasks combinations, with and without stack propagation (H: nb of heads, D: nb of dependents, B: bag of labels, S: label multi-set). Col3-4: average LF, and standard deviation. * * * : significative difference wrt first line (p <0.001). +++ : significative difference wrt B+H without stack propagation (p <0.001).

	Auxiliary	Stack	On 9 runs
	tasks	propagation	meanLF stdev
	∅	NA	86.79	0.19
	H	no	86.82	0.54
	D	no	86.83	0.40
	S	no	86.98	0.30
	B	no	87.05	0.49
	B+H	no	87.32 * * * 0.18
	D+H	no	86.61	0.71
	H+S	no	87.04	0.17
	B+D+H+S no	87.35 * * * 0.26
	B+H	c (B) =1 c (H) =1	87.49	0.06
	B+H	c (B)		

[START_REF] He | Establishing strong baselines for the new decade: Sequence tagging, syntactic and semantic parsing with BERT[END_REF] report very slight improvements in OOD when using the average of all subwords, but an opposite trend in ID.

nbhj is interpreted as 1+ the log of the number of heads of wj, and same for nbdj, so as to penalize less errors in bigger numbers: e.g penalize more predicting one head instead of 0 than predicting 2 heads instead of 3.

The categories are label multi-sets because we neutralize the order of the heads when considering the incoming arcs. This limits the number of categories.

In these deep graphs, the root tokens (usually unique) are attached to a dummy root token in practise. Thus for this dataset, in all the above formulations, the sequence w1:n corresponds to a sentence of n -1 word-tokens, with a dummy root w1. For its contextual representation, we use the contextual vector of the beginning of sequence token.

6 https://github.com/mcandito/aux-task s-biaffine-graph-parser-

FindingsACL227 We used the HuggingFace library[START_REF] Wolf | Transformers: State-of-the-art natural language processing[END_REF].

Previous state-of-the art on this data is a non-neural system:[START_REF] Ribeyre | Accurate deep syntactic parsing of graphs: The case of French[END_REF] obtained LF=80.86, and went up to LF=84.91 thanks to features from constituency parses from the rich FrMG parser[START_REF] Villemonte | Convertir des dérivations TAG en dépendances[END_REF]. The biaffine architecture with contextual vectors, without auxiliary tasks, obtains a mean LF=86.79.

 9 See Appendix D for results with each auxiliary task.

The improvement tends to be higher for OOD, and for DM and PAS. One reason could be that the PSD graphs show less reentrancies, hence the number of heads is more predictable, and using a specific auxiliary task for it is less beneficial.