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ABSTRACT:

The phenomena liable for acoustic damping in
thermo-acoustic instabilities in liquid rocket engines
are investigated. Modelings to account for the noz-
zle impedance, in compact hypothesis, and for the
visco-thermal losses at walls are derived accord-
ing to the Galerkin framework, where pressure vari-
ations are decomposed over the acoustic eigen-
modes. Models are implemented in a low order tool
and compared successfully to analytic and numer-
ical predictions. The turbulent/acoustic interaction,
responsible for acoustic absorption at the jets, is re-
viewed, and an in-progress strategy is presented.

1. INTRODUCTION

High frequency combustion instabilities represent
one of the main challenging phenomena to predict
when designing a new liquid rocket engine, and this
since the beginning of the space era [1] [2]. It arises
from the coupling between the flames’ unsteady
heat release, the combustion chamber’s acoustics,
and the injection dynamics, leading to tremendous
pressure oscillations in some configurations. It in-
volves mainly transverse acoustic waves, submit-
ting the flames to transverse oscillating velocity so-
licitations and the injection units to oscillating mass
flow rate. Thus, the prediction of these instabilities
is crucial for the safety and nominal running of the

engine. However, the global comprehension of the
coupling involved still requires substantial analysis
of the mechanisms at stake, and consequently the
qualification of an engine demands long and expen-
sive real-size tests [3] on dedicated test benches.
Progress in numerical simulation permits a more re-
fined physics analysis but can still not faithfully re-
produce all the relevant couplings and mechanisms.

Low order methodologies have been actively de-
veloped throughout recent years to evaluate the
level of instability without requiring massive tests
or computations. The numerical cost reduction is
achieved by simplifying the physics modeled. In col-
laboration with CNES and ArianeGroup, EM2C lab-
oratory is developing the StaHF (Stability High Fre-
quency) [4] code based on a modal expansion of
the pressure fluctuations over the acoustics eigen-
modes [5]. This approach requires models to trans-
late the interactions and behaviors responsible for
the evolution of the instabilities. In particular, it is
crucial to account for the combustion response to
acoustic perturbations and the damping of acous-
tic waves. From previous work, [1] [4], combus-
tion models have been developed and implemented
on low order codes. However, only a little scat-
tered information is available about the acoustic
losses within the engine, and no substantial nu-
merical/experimental studies specifically applied to
rocket engines with corresponding physical analysis
and modeling are available.

Consequently, three mechanisms of acoustic
damping are reviewed; nozzle losses, viscous and
thermal losses at walls, and turbulence/acoustic
interaction. Specific attention about each phe-
nomenon is given in the corresponding section.
First, §2 presents some generalities about thermo-
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acoustic instabilities. Then, §3 outlines the method-
ology chosen for the development of the StaHF low
order tool. The mechanisms of damping are an-
alyzed and modeled in §4, §5 and §6. Finally, §7
draws a conclusion and some perspective for future
work.

2. THERMO-ACOUSTIC INSTABILITIES AND
DAMPING GENERALITIES

In the most straightforward linear formulation, the
study of the thermo-acoustic stability of a system
amounts to the study of the evolution of pressure os-
cillations p′ of pulsation ω in the form of a harmonic
oscillator

p′(x, t) = p0(x)e
−σpt cos(Ωt), Eq.1

with Ω =
√

ω2 − σ2
p. The stability is thus linked

to the sign of the coefficient σp. If σp > 0, p′ de-
creases, and the system is deemed stable, the os-
cillations are damped. Otherwise, p′ increases and
the system is unstable. The challenge is to deter-
mine the sign of σp from the physical phenomena
involved. One can decompose the coefficient as [5]

σp =
∑
i

σphenomena,i Eq.2

with a coefficient of damping, or growth depend-
ing on the sign, must be evaluated for each contri-
bution and for a specific acoustic frequency. Clas-
sifying the contributions as either producing or de-
stroying acoustic energy, the growth of the instabili-
ties depends on the competition between these two
groups, which varies with the acoustic frequencies
of interest. In an energetic form, the problem is tra-
ditionally written as [6]

∂Ea

∂t
+

∫
V

∇.(p′u′)dV = Ra +D, Eq.3

with
Ea =

∫
V

1

2

p′2

ρ̄c̄
+

1

2
ρ̄|u′|2dV Eq.4

the acoustic energy, ρ̄ the mean density, c̄ the
mean sound speed and u′ the acoustic velocity os-
cillations,

∫
V
∇.p′u′dV =

∫
S
p′u′.ndS is the acoustic

flux at the boundaries,

Ra =

∫
V

γ − 1

γp̄
p′q̇′dV Eq.5

the Rayleigh term being the flame response, rep-
resentative of the coupling between the acoustic
perturbation and the combustion, with γ the specific
heat ratio, p̄ the mean pressure and q̇′ the unsteady
heat release. D is the dissipated acoustic power. It
comes

σp =
D −

∫
S
p′u′.ndS +Ra

2Ea
. Eq.6

The previous formulation remains restrictive be-
cause the flame does not always act as an excitation

source according to its response time [7], and other
phenomena can be responsible for the production of
acoustic energy.

Another point to mention is the link with acous-
tic frequencies. The determination of σ and Ω is
equivalent to accessing the modifications of the real
and imaginary frequencies of the acoustic modes
induced by these phenomena, as explained in [5].
The frequency of the mth mode can be decomposed
as

fm = fRe
m + δfRe

m + jfIm
m , Eq.7

with fRe
m the modal frequency of the normal

mode, without source term or boundary conditions
(BC), δfRe

m the deviation from the initial frequency
due to combustion, BC, and other phenomena, and
fIm
m the imaginary part, initially null but rising due to

source terms and BC. So

p′(x, t) = p0(x)Re

(
e−jωmt

)
= p0(x)e

2πfIm
m t cos(2π(fRe

m + δfRe
m )t).

Eq.8

It highlights the link between the imaginary modal
frequency and the growth/damping rate, and the
modification of the real frequency by the various
phenomena present. From a design stage perspec-
tive, it is also essential to access the correct values
of mode frequencies at which instabilities are likely
to occur.

One of the main difficulties in treating instabilities
is the numerous phenomena and couplings present
within the engine. Also, the transposition of stud-
ies on academic experimental benches to real size
engines are not straightforwards, frequencies are
much higher, the combustion more powerful, and
where test benches have from one to a few dozen
injectors, real size engines can be teamed to hun-
dreds of injection units. Let us come back to the
physical behavior within the engine. Three large
families of fluctuation modes evolve in a gas [8], see
Fig.1 and interact with each other, mainly in specific
areas; the acoustic modes with disturbances propa-
gating at the speed of sound, the vorticity modes,
as the vortex from turbulence near the injection,
and the entropy modes that are hot spot generated
mainly in the flames region. As soon as an average
flow is considered, the last two are present, con-
vecting the perturbations. Most studies only con-
sider the evolution of the acoustic modes, but some
coupling models exist, such as [9] where the hot
spots convected towards the nozzle exit are trans-
formed into acoustic perturbations injected back into
the domain. One of the great difficulties of the low
order appears to model as well as possible the in-
volved mechanisms, thus including as many as pos-
sible relevant couplings that need to be carefully
identified while maintaining a clear and numerically-
light framework. The main regions responsible for
coupling and acoustic generation/destruction are; 1)
the flames and injection area, 2) the nozzle with
high Mach flow, 3) the walls, and 4) the injection
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units. Fig.1 represents in a non-exhaustive and sim-
plified way the main phenomena of interest. How-
ever, most of them are out of the scope of the
present study. Flame and excitation models have al-
ready been developed [1] [4] [10], but few analyses
and models concerning the acoustic damping allow
an adequate prediction of the level of instabilities.
Mainly, the following mechanisms are reviewed [11]

1. the losses at the nozzle region;

2. the visco-thermal losses at walls;

3. the losses from the acoustic/turbulence interac-
tion at the jets location.

Before looking in detail at these different points,
the low order framework used to predict the pres-
sure variations is presented, guiding our modeling
efforts.

3. LOW ORDER FRAMEWORK

3.1. The low order approach

The low order approach simplifies the conserva-
tion equations, applied in general on mesh coarser
than for more classical numerical computations as
Large Eddy Simulations (LES), in only keeping in
the calculation the physical variables and the phe-
nomena of interest regarding the case study. Con-
sequently, the numerical resources needed to per-
form the analysis are reduced as well as the com-
putation time, allowing to quickly estimate the sta-
bility of the configuration of interest for varying geo-
metrical parameters and operative conditions. With-
out this tool, the LES computations would require
disproportionate numerical resources or numerous,
long and costly real-size tests on dedicated engines.
With a simplified physical representation, the low or-
der approach enables investigating various cases
for a reasonable financial and numerical cost.

Several methods have been developed so far for
the study of combustion instabilities; as the use of
Riemann invariant [12] through acoustic networks,
but often limited to longitudinal waves; the Galerkin
expansion, by expanding the acoustic perturbations
over the acoustic modes [5] recently extended to the
state-space approach [13]; the coupled Riemann-
Galerkin hybrid approach; or the resolution of the
Helmholtz equation using finite elements as in [14].

3.2. Galerkin expansion

The code developed the EM2C laboratory, StaHF
[4], is based on the Galerkin expansion, introduced
first by [15] and extensively developed by [5]. This
method consists in decomposing the acoustic pres-
sure oscillations on the base formed by the acoustic
normal eigenmodes of the engine. Temporal and
spatial contributions are then isolated. Also it al-
lows to work on complex geometries with longitudi-
nal, transverse and coupled modes. Thus, the pres-
sure oscillations are written as

p′(x, t) =
∞∑

n=1

ηn(t)Ψn(x), Eq.9

where Ψn are the acoustic eigenmodes, and ηn
are the temporal evolution of each mode. The par-
ticularity of this expansion is to consider the modal
base as orthogonal. This condition is met when the
modes are computed without source terms and with
homogeneous boundary conditions (BC), so that of
Neumann where ∇Ψn(xs).n = 0 on the boundary,
with xs located on the boundary, or Dirichlet where
Ψn(xs) = 0 on the boundary, or mixed type, with
Neumann BC on some parts and Dirichlet BC on
others. For simple configurations, the base (Ψn)n≥1

can be determined analytically, but for more com-
plex geometries, the use of a Helmholtz solver is
necessary, as AVSP from Cerfacs [14]. As a conse-
quence of the orthogonality, the norm is∫

V

ΨnΨmdV = Λnδnm with Λn =

∫
V

Ψ2
ndV, Eq.10

which represents the main aspect of the modal
expansion. To establish the differential equation that
translate the behavior of (ηn)n≥1, and so of p′, a
first order linearization is applied to the conservation
equations of mass Eq.11, momentum Eq.12, energy
Eq.13 and the perfect gas equation of state Eq.14
that are

∂ρ

∂t
+∇.ρu = 0, Eq.11

ρ

(
∂u
∂t

+ u.∇u
)

= −∇p, Eq.12

ρT

(
∂s

∂t
+ u.∇s

)
= q̇, Eq.13

p = ργes/cv , Eq.14

with ρ the density, u = (u1, u2, u3) the velocity
vector, p the pressure, T the temperature, s the en-
tropy of the flow, q̇ the heat release per unit vol-
ume, γ the specific heat ratio and cv the specific
heat of the mixture at constant volume. Each quan-
tity F(x, t) is decomposed into a mean component
F̄(x) and a fluctuating component F ′(x, t). Then,
using a zero Mach hypothesis that state that ū is of
first order, the pressure differential equation Eq.15
is obtained:

∂2p′(x, t)
∂t2

− γp̄∇.(
1

ρ̄
∇p′(x, t)) = (γ − 1)

∂q̇′

∂t
Eq.15

Then, the expansion Eq.9 is used, with the modes
verifying the Helmholtz equation Eq.16 with homo-
geneous BC, with ωm = 2πfm the mode pulsation
and fm its frequency;

γp̄∇.

(
1

ρ̄
∇Ψm

)
+ ω2

mΨm = 0. Eq.16

By considering a finite number of mode N ,
Eq.15∗Ψm and Eq.16∗p′ gives
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Figure 1: Non-exhaustive schematic representation of some of the mechanisms involved in high frequency
combustion instabilities within rocket engines. Mainly, the perturbations source is the flame coupling producing
energy via the Ra term. The acoustics is damped at the nozzle location ∇.(p′u′), near the walls Dwall and by
interaction with the jets’ turbulence Dturb.

∂2p′

∂t2
Ψm + ω2

mΨmp′ + γp̄∇.

(
1

ρ̄
∇Ψm

)
p′

− γp̄∇.

(
1

ρ̄
∇p′

)
Ψm = (γ − 1)

∂q̇′

∂t
Ψm.

Eq.17

Then an integration of Eq.17 over the volume V of
the domain and the use of the projection Eq.9 give:

N∑
n=1

η̈n(t)

∫
V

ΨnΨmdV + ω2
m

N∑
n=1

ηn(t)

∫
V

ΨnΨmdV

+

∫
V

γp̄

(
p′∇.

(
1

ρ̄
∇Ψm

)
−Ψm∇.

(
1

ρ̄
∇p′

))
dV

= (γ − 1)

∫
V

∂q̇′

∂t
ΨmdV,

Eq.18

and using the orthogonality property and the
Green identity, Eq.19 is obtained for each mode m;

η̈m(t) + ω2
mηm(t) +

1

Λm

∫
S

c̄2p′∇Ψm.n

− c̄2Ψm∇p′.ndS =
γ − 1

Λm

∫
V

∂q̇′

∂t
ΨmdV.

Eq.19

At this point, it can be noted that the surface inte-
gration term corresponds to the BC and in the ener-
getic formulation Eq.15, to the term ∇.(p′u′). It will
be further discussed and simplified, noted hereafter
as Sm

BC . Thus,

η̈m(t) + ω2
mηm(t) =

γ − 1

Λm

∫
V

∂q̇′

∂t
ΨmdV + Sm

BC .

Eq.20

3.3. Modal amplitude differential equation

On Eq.20, the first term of the right-hand side cor-
responds to a source term translating the effect of
the combustion under an acoustic solicitation. It re-
quires a formulation of q̇′, the more common being

the sensitive time lag model [1], that supposes the
heat release as proportional to the pressure varia-
tion, through the interaction index n, but delayed of
a time lag τ ;

q̇′(x, t) = n
q̄

ū
u′(x, t− τ). Eq.21

Other models have been developed later on [4].
More generally, the concept of the Galerkin ap-
proach is to develop, as source term, models to
account for the combustion, the acoustic damping,
some experimental excitation devices, etc, so that
Eq.20 writes as

η̈m(t) + ω2
mηm(t) = Sm

comb + Sm
damp + Sm

exc. Eq.22

The source terms can be developed based on
experimental or numerical considerations through
transfer functions for instance. Or, as it will be seen
later on, by deriving the present framework including
extra terms in the conservation equations, imposing
specific conditions for the boundary term in Eq.19 or
via energetic considerations (cf §3.4).

3.4. Notes

A few remarks;
1) The mean flow has not been assumed to be

zero, but of Mach order 1, so there is no ū term ex-
plicitly in the presented framework. However, the
influence of the mean flow exiting the engine can be
accounted through an impedance BC, see §4. The
consideration of the high Mach number in the frame-
work is not treated here and will be added later,
M = ū/c̄ being of the order of 0.3 in rocket engines.

2) No further discussion will be made on the flame
influence and modeling.

3) A parallel can be made with the remarks and
formulations of §2. As a general and simplified for-
mulation, the source terms, reduced to a driving and
damping component can be written as
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Sm
driv = −2σm

driv η̇m(t) + ∆ωm
drivηm(t)

Sm
damp = −2σm

dampη̇m(t) + ∆ωm
dampηm(t),

Eq.23

so that

η̈m(t) + 2(σm
damp + σm

driv)η̇m(t)

+ (ω2
m −∆ωm

damp −∆ωm
driv)ηm(t) = 0

Eq.24

The phenomenon modeled hereafter can usually
be seen as responsible of growth/damping and of
frequency shift. In some cases, it is easier to de-
velop a model for the energetic term of Eq.15, then
the growth/damping coefficients are found using

σm
damp =

D

2Ea
and σm

driv =
Ra

2Ea
. Eq.25

4. NOZZLE ACOUSTIC LOSSES

This section focuses on applying to our framework
an impedance to account for the acoustic losses at
the domain boundaries, corresponding to the ∇.p′u′

term of Eq.15 and Sm
BC term of Eq.20. In a rocket

engine application, this can be used to model the
influence of the nozzle, which is a high Mach re-
gion, and therefore where the calculation of modes
becomes uncertain because of low Mach hypothe-
sis in Helmholtz solvers.

4.1. Acoustic impedance of the nozzle

The acoustic impedance is defined as

Ẑ(xs, ω) =
p̂(xs)

p̄c̄û(xs).n
, Eq.26

with the n the normal vector at the outlet and xs

the position along the outlet plane. The symbol .̂ de-
notes a complex quantity. The impedance is linked
to a reflection coefficient R̂, ratio between the re-
flected acoustic pressure amplitude and the incident
acoustic wave as

R̂ =
Ẑ − 1

Ẑ + 1
. Eq.27

Compact nozzle For a compact nozzle, meaning
the acoustic wavelengths are large compared to the
nozzle dimensions, the impedance is a real number
and independent of the acoustic frequency. Z is a
function of the Mach number M1 at the nozzle inlet,
proposed by [9], for a supersonic nozzle (Mt = 1 at
the throat). The reflection coefficient is

Rsup =
1− 1

2 (γ − 1)M1

1 + 1
2 (γ − 1)M1

, Eq.28

giving,

Z =
2

(γ − 1)M1
. Eq.29

For a subsonic nozzle, where the flow does not
become supersonic,

Rsub =
M2 −M1

1−M1

1 +M1

M1 +M2

1− 1
2 (γ − 1)M1M2

1 + 1
2 (γ − 1)M1M2

,

Eq.30
with M2 the Mach number at the nozzle outlet.

Fig.2 shows the dependance of Z with M1, for both
subsonic and supersonic nozzles. For low Mach
numbers M1 < 0.3, the impedance is large Z > 20
(γ = 1.4) for the supersonic configuration and small
Z < 0.1 for the subsonic one. Thus, in the com-
pact hypothesis, for a chocked nozzle (supersonic),
the nozzle behave acoustically as a solid wall, val-
idating the mode computation using a Neumann
BC u′(xs).n. On the contrary, a subsonic nozzle
would require to compute the normal modes using a
Dirichlet condition p′(xs) = 0.

γ = 1.2
γ = 1.7
γ = 1.4

0 0.1 0.2 0.5 0 0.1 0.2 0.3 0.40.40.3

M2= 0.05
M2= 0.1
M2= 0.2

supersonic subsonic
M1 M1

101

10-1

10-2

10-3

100

102

103

Z

Figure 2: Representative impedance of a super-
sonic (left) and subsonic (right) nozzle, with respect
to the inlet Mach number, from [9]

Non-compact nozzle The case of a non-compact
nozzle is more complex to treat because it is neces-
sary to account for the geometry of the nozzle and
that the impedance becomes a complex value and
depend on the acoustic frequency. First, [16] de-
veloped a 3D admittance nozzle theory for constant
longitudinal amplitude oscillations, extended by [17]
to account for amplitude variations. Then, [9] pro-
posed an acoustic and entropic impedance using
a linearly varying velocity in the nozzle. Later, [18]
and [19] conceived a robust numerical methodology
based on the Magnus expansion, then extended by
[20] to be applied to transverse waves. Fig.3 shows
the real and imaginary part of the nozzle reflection
coefficient with respect to the acoustic frequency for
longitudinal perturbations, for an arbitrary combus-
tor with nozzle geometry. Similar profiles are found
in the given references. It shows that R evolves
from a high value Re(R) ≈ 1, corresponding to the
value found using the compact nozzle hypothesis,
to values close to Re(R) ≈ 0. Also Im(R) under-
goes important evolution. In other references, for
specific nozzle geometry and velocity profile, the re-
flection coefficient becomes negative in some fre-
quency ranges. Thus the nozzle acts acoustically
closer to a chocked nozzle (as u′(xs).n = 0) for cer-
tain frequencies and for other frequencies, closer to
an open exit p′(xs) = 0. The longitudinal waves are
highly damped and the BC influences the modes’
shape.

It underlines one of the main limitations of
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Figure 3: Real (left) and imaginary (right) part of
the reflection coefficient, compute with the NOZZLE
tool [18] of AVSP, for an arbitrary nozzle geometry
with a chocked nozzle. f is the frequency, L the
nozzle length and c the sound speed.

the Galerkin approach; limited to modes where
u′(xs).n = 0 or p′(xs) = 0 conditions have been
imposed at the exit when computing the mode to
ensure the orthogonality property. However, the
impedance BC would require modes computed us-
ing both conditions for some applications, depend-
ing on the frequency. A solution has been re-
cently proposed to overcome this issue using a
state-space approach and a dual base decomposi-
tion [13].

In the case of a rocket engine, it has been shown
that the nozzle losses are high and preponderant
for the longitudinal modes, but of secondary im-
portance for transverse and coupled modes [21],
which are the principal modes of interest in high-
frequency instabilities, and that the compact nozzle
model of [9] can be applied to transverse modes
[22]. The damping is then to be dominated by the
phenomena near the plate injection as the turbu-
lence/acoustic interaction (see §6). The hypothesis
of a compact nozzle is thus retained and the influ-
ence of the modal shape modification is neglected
for the proposed modeling.

4.2. Low order Z model

The hereafter model is restricted to Ẑ as a real num-
ber, following the compact hypothesis, but is also
valid for a complex impedance, not shown here for
clarity. The modeling is based on the approach sug-
gested in [5] [23] [24].

|Z| > 1 For |Z| > 1, the modal shape is close to
the shape computed using a ∇Ψm.n = 0 condition
on the boundary of interest. The base used in the
low order framework is thus verifying ∇Ψm.n(xs) =
0 and the modes are still orthogonal. To account for
the impedance, the condition ∇p′.n = −f(Z) has
to be imposed as BC. The corresponding term of
Eq.20 is, supposing c̄ uniform on the boundary sur-
face,

Sm
BC = − c̄2

Λm

∫
S

f(Z)ΨmdS. Eq.31

The relation

∇p′.n = −jωρ̄u′.n Eq.32

is obtained from Eq.12, giving with the impedance
formulation,

f(Z) =
jω

c̄Z
p′. Eq.33

Thus the source term becomes

Sm
BC = − c̄

ΛmZ

∫
S

jωp′ΨmdS

= − c̄

ΛmZ

N∑
n=1

η̇n

∫
S

ΨnΨmdS.

Eq.34

|Z| < 1 For |Z| < 1, the modal shape is close to
the shape computed using a Ψm = 0 BC. However
p′ is not assumed null on the boundary and the new
relation p′(xs) = −g(Z) is imposed. Similarly, the
source term is

Sm
BC =

c̄2

Λm

∫
S

g(Z)∇Ψm.ndS, Eq.35

and the g relation is now

g(Z) =
c̄Z

jω
∇p′.n. Eq.36

Consequently, it comes, using
∫
t
ηndt = − 1

ω2
n
η̇n,

Sm
BC = − c̄3Z

Λm

∫
S

1

jω
∇p′.n∇Ψm.ndS

=
c̄3Z

Λm

N∑
n=1

η̇n
ω2
n

∫
S

∇Ψn.n∇Ψm.ndS.

Eq.37

Z

Im
(f)

x102
x102
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0

0

0

-1
-1

1

1

-2-2 2

2

-4-10 10-5 5

-2

2

4

analytic

AVSP

model
mode 1 2

Figure 4: Comparison of the predicted imaginary
frequency on a 1D domain, for a real impedance
imposed on one side, from analytic, numerical and
model.

1D verification The previously obtained model is
applied to the one dimensional geometry of [14],
of length L = 0.4m and c̄ = 450ms−1, where the
impedance is applied on one side of the domain.
The imaginary frequencies predicted by the analytic
analysis, the AVSP solver [14] and the low order
model are compared Fig.4. The imaginary frequen-
cies arise from the impedance, well represented by
the model Eq.34 for instance, reduce to a 1 mode
equation
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η̈m +
c̄

ΛmZ

∫
S

Ψ2
mdS︸ ︷︷ ︸

2σm
BC=−4πfIm

m

η̇m + ω2
mηm = 0. Eq.38

For positive Z > 0, fIm
m is negative correspond-

ing to a positive σm
BC , meaning acoustic energy

exits through the nozzle, pressure oscillations are
damped. Also, fIm

m is independent of the mode
number and the model indicates that Z real does
not produce a frequency shift, other than the one
present in the pseudo-pulsation, results in agree-
ments with [14]. However, the model lacks of pre-
diction near the value |Z| = 1 for the interval 2 >
|Z| > 0.5. But this interval is satisfactory for trans-
verse acoustic wave in liquid rocket engines [21].

3D comparison The modeled source term is ap-
plied on a cylindrical geometry, representative of a
rocket engine, and corresponding to the BKD test
bench dimensions [25], for a sound speed of c̄ =
1300ms−1. The nozzle is truncated because it is a
high Mach region, and a real positive impedance
is applied at the location of the nozzle entrance.
Imaginary frequencies are computed with the solver
AVSP applying the impedance BC and converted
into a damping coefficient σm

BC for the first longitu-
dinal 1L and transverse 1T modes. Then, the 1L
and 1T modes have been computed using a homo-
geneous Neumann BC for the nozzle (for the case
|Z| > 1 is applied, designated as Neumann-like
mode) and for a homogeneous Dirichlet BC for the
nozzle (for the case |Z| < 1 is applied, designated
as Dirichlet-like mode). The low order impedance
model implemented in StaHF is applied for a wide
range of Z values and the resulting damping is com-
pared to the numerical (AVSP) solution Fig.5. The
values of impedance presented here do not corre-
spond to a specific engine loading point, but were
set to cover a wide range of values. There is a sat-
isfactory agreements between the low order predic-
tions and the Helmholtz solver results.

Modal coupling at the boundary The present
model benefits from the summation over each
modal amplitudes seeing in Eq.34 and Eq.37. It
signifies that the impedance influence over a spe-
cific mode is dependent on the temporal evolution
of the other modes, and the damping coefficient
σm
BC is time-dependent, having a more sophisticated

form than in Eq.38. According to this formulation,
there is a modal coupling at the boundary. Such
modeling allows reproducing physical wave behav-
ior, such as the propagation of a traveling wave in an
impedance tube, with reflection on one of the tube
sides, having a given impedance value. This exam-
ple is not represented here to remain succinct, but
without this modal coupling, the reflection would not
happen, and the wave would be constantly damped
through the propagation within the tube since σm

BC

is constant for each mode (as in Eq.38). The modal

10-3 10010-2 10-1 101 102 103

Z

10-1

100

101

102

103

Numerical - AVSP

Model - StaHF

1L Dirichlet-like
mode

1T Dirichlet-like
mode

1L Neumann-like
mode

1T Neumann-like
mode

-I
m

(f)

Figure 5: Comparison of the imaginary frequency
predicted from numerical analysis (AVSP) and from
the StaHF model, for both 1L and 1T modes in a
cylindrical geometry at dimension close to the BKD
test bench, where a real impedance is imposed at
the exit.

coupling also explains that the BC can be a source
of modal non-orthogonality because of interdepen-
dence [14].

5. VISCOUS AND THERMAL DISSIPATION AT
WALLS

5.1. Generalities

The viscous losses arise from a no-slip condition at
the wall interface. The acoustic velocity takes a cer-
tain profile in the acoustic viscous boundary layer δν
expressed as

u′(x, z, t) = ux(x)

[
e−

y
δν cos

(
ωt− y

δν

)
− cos(ωt)

]
,

Eq.39
with

δν =

√
2ν

ω
, Eq.40

ν being the kinematic viscosity, according to the
formalism shown in Fig.6. The velocity gradient
between the bulk region and the wall leads to a
shear stress, and consequently dissipation by fric-
tion. Thermal losses are due to the isothermal wall
condition, with acoustic oscillations considered as
adiabatic1. This adiabatic condition is verified when
λa, the acoustic wavelength, satisfies λa > 2πDth/c,
which is always true in a rocket engine, where Dth

is the thermal diffusivity. As for the acoustic ve-
locity, there is a temperature gradient between the
wall surface and the acoustic temperature oscilla-
tions outside the boundary layer. Thus an oscillating
heat flux appears, leading to thermal losses. The
acoustic thermal boundary layer δth is defined as

1Adiabatic acoustic is the classical characteristic of the acous-
tics. It means that the rate of acoustic change in the medium is
fast enough so that no heat exchange happens between within
the medium. For very high frequencies, the acoustic oscillations
are no longer adiabatic but isothermal.
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δth =

√
2Dth

ω
. Eq.41

acoustic viscous

acoustic velocity profileu'(x,y)

boundary layer

mean flow

x

y=n

viscous
sublayer

acoustic thermal
boundary layer

δνδturb
δth

Figure 6: Representation of the acoustic viscous
and thermal boundary layers, with the near-wall ve-
locity profile, along the viscous sublayer.

[26] first predicted the sound attenuation in a tube
of standing wave without mean flow with a simple
formulation. A wider modeling, applicable for any
geometries has been proposed by [27] based on the
formalism of Eq.6. The viscous σν and thermal σth

damping coefficients are expressed as

σν =

∫
S

〈
de
dt

〉
ν
dS

2Ea
and σth =

∫
S

〈
de
dt

〉
th
dS

2Ea
, Eq.42

V being the volume of the domain and S the sur-
face of hard walls. The energy derivatives are〈

de

dt

〉
ν

=
1

2
ρ̄u2

x

√
ων

2
Eq.43

and 〈
de

dt

〉
th

=
1

2
(γ − 1)

p′2

ρ̄c̄2

√
ωDth

2
. Eq.44

This formulation is adaptable for any geometry
and can be implemented in low order codes, but it
does not account for the effect of the mean flow and
turbulence near the walls. [28] extended the losses
formulation to the dissipation over an infinite plane,
considering the impact of the wall turbulent shear
flow for low Mach number. The complete formulation
is not presented here, but the result of the influence
of the near-wall turbulence in represented Fig.7. Π
is the damping per area unit taking into account the
turbulence, Π0 is the no-flow approximation, and v+
is the friction velocity. It can be seen that for large
values of ων/v2+, meaning when the turbulence is
weak and/or the acoustic frequency is large enough,
the influence of the turbulence on the sound dissi-
pation is negligible. It corresponds to a configura-
tion wherein Fig.6 the viscous sublayer is large com-
pared to the acoustic boundary layer δturb ≫ δν .
However, for high turbulent configurations, when the
boundary layers are similar to δturb ≈ δν , omitting
the turbulent shear flow impact can lead to underes-
timation of the damping of several factors.

without turbulence

10-4 10-3 10-2 10-1 100

1

2

4
6
8

10

Π/
Π 0

ων/v+2

high turbulence
low frequency

region

with turbulence

low turbulence
high frequency

region

Figure 7: damping rate per surface area with the in-
fluence of wall turbulence Π scaled by the damping
rate without considering turbulence Π0, with respect
to ων/v2+ measuring the acoustic/turbulence inten-
sity, from [28].

5.2. Low order formulation

A derivation of a model for viscous and thermal
effects is proposed, using the Galerkin expansion.
First, the viscous stress tensor τ is added on the
conservation equation Eq.12, and the derivation of
the acoustic equation, with the modal projection
gives

η̈m + ω2
mηm − 1

Λm

∫
S

c̄2Ψm∇p′.ndS =

− 1

Λm

∫
V

γp̄∇.

(
1

ρ̄
∇.τ ′

)
ΨmdV.

Eq.45

The boundary term is simplified using ∇Ψm.n = 0
but the second part of the term is kept to apply the
viscous BC condition at the wall ∇p′.n = (∇.τ ′).n.
After some calculations and expressing the tangen-
tial acoustic velocity at the wall, similarly as [5], it
comes

η̈m + ω2
mηm = − c̄2

Λm

√
ωmν

2

1

ω2
m

∫
S

(∇tΨm)2dS︸ ︷︷ ︸
damping term 2σm

ν

η̇m,

Eq.46
where ∇tΨm it the tangential gradient of the m

mode at the wall. Similarly, by keeping the thermal
term ∇.qf = −∇. (λ∇T ′) in Eq.12, it comes

η̈m+ω2
mηm = − 1

Λm

∫
V

(γ−1)
∂∇.qf

∂t
ΨmdV. Eq.47

Then using properties on the acoustic tempera-
ture gradient explained in [29], the source term due
to thermal losses at wall writes

η̈m + ω2
mηm = − 1

Λm
(γ − 1)

√
Dthωm

2

∫
S

Ψ2
mdS︸ ︷︷ ︸

damping term 2σm
th

η̇m

Eq.48

Application The models Eq.46 and Eq.48 are ap-
plied analytically and numerically on tube and box
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geometries, and compared to prediction of [27]. The
comparison shows satisfactory results with relative
errors of less than 10−2% for the computed damp-
ing rate. In particular, for all the presented model-
ing (StaHF, [26] and [27]), the damping coefficient
writes, for a tube of radius R and length L

σm =
1

R

√
ωmν

2
+
(γ − 1)

R

√
ωmDth

2
(1+

2R

L
). Eq.49

6. WORK IN PROGRESS: TURBU-
LENCE/ACOUSTIC INTERACTION

The last presented phenomenon identified as re-
sponsible for the damping of acoustic waves, ex-
cept the coupling with the combustion, is the interac-
tion between the transverse acoustic perturbations
and the turbulence near the injection plate, due to
the jets. When the turbulence flow at the injection
units’ outlet is submitted to transverse acoustic ve-
locity fluctuations, part of the acoustic energy is ab-
sorbed and redirected to turbulent energy [30]. De-
pending on the characteristics of the turbulence and
acoustics, sound waves impose stretching to vorti-
cies, transferring energy [31]. Besides absorption,
scattering and refraction of the incoming waves take
place. Part of the incident wave is redistributed to-
wards other acoustic frequencies and directions of
propagation [32] [33], as represented in Fig.8. The
scattering and reflection phenomena participate in
the modal coupling between the longitudinal and
transverse acoustics modes, following §2, but are
not of concern in the present study.

 to other directions
and frequencies

scattering and
refraction

potential
core

injection
unit

self-similar
zone

transverse incident
acoustic wave

ω

vorticies

weaker acoustic wave

Figure 8: Transverse acoustic wave through a tur-
bulent jet; some of the acoustics is absorbed by the
turbulence or scattered to other directions of propa-
gation and frequencies.

Most studies do not consider the combustion pro-
cess in the study of this interaction. It simplifies the
analysis to characterize the acoustic environment of
the system by accounting for the turbulent flow. The
combustion has to be added a-posteriori after mas-
tering the turbulence/acoustic interaction in a cold-
flow environment. Moreover, the referred literature
focuses mainly on the absorption of sound gener-
ated from the turbulence to evaluate the noise emit-
ted within internal engines.

6.1. Term responsible for absorption

Following the approach of [30], a specific procedure
is applied to the conservation equations of Navier-
Stokes. First, each quantity is decomposed into a
mean, an acoustic and a turbulent contribution, as
suggested in [8]. The signal F(x, t) is expressed as

F(x, t) = F̄(x) + F ′(x, t) + F̃(x, t), Eq.50

F̄(x) being the mean component, F ′(x, t) the tur-
bulent component and F̃(x, t) the acoustic compo-
nent. The time average operator .̄ defines the mean
component and the phase average ⟨.⟩ the acoustic
one,

F ′ = ¯̃F = 0 and ⟨F⟩ = F̄ + F̃ . Eq.51

The velocity field is decomposed into the three
contributions; u = ū + u′ + ũ. The mean and tur-
bulent velocity fields are supposed divergence free,
∂ūi/∂xi = ∂u′

i/∂xi = 0 (with a summation index no-
tation), and the acoustic fields irrotational, ∇×ũ = 0.
The pressure and density fluctuations are supposed
to be mainly from acoustic origin, thus p = p̄+ p̃, and
ρ = ρ̄ + ρ̃, using the approximation ρ̄(1 + ρ̃/ρ̄) ≈ ρ̄.
The momentum conservation Eq.12 writes, keeping
the viscous stress term,

∂ui

∂t
+ uj

∂ui

∂xj
+

1

ρ

∂p

∂xi
=

1

ρ

∂τij
∂xj

, Eq.52

and applying time and phase average operators,
the equation for the temporal evolution of u′

i and ũi

are isolated, giving

∂u′
i

∂t
=− ūj

∂u′
i

∂xj
− u′

j

∂ūi

∂xj
− u′

j

∂ũi

∂xj
− ũj

∂u′
i

∂xj

+
∂

∂xj

(
⟨u′

iu
′
j⟩ − u′

iu
′
j

)
+

1

ρ̄

∂τ ′ij
∂xj

Eq.53

and

∂ũi

∂t
=− ūj

∂ũi

∂xj
− ũj

∂ūi

∂xj
− ∂

∂xj

(
⟨u′

iu
′
j⟩ − u′

iu
′
j

)
+

∂

∂xj

(
ũiũj − ũiũj

)
− ũi

∂ũj

∂xj
+ ũi

∂ũj

∂xj

− 1

ρ̄

∂p̃

∂xi
+

1

ρ̄

∂τ̃ij
∂xj

,

Eq.54

Then, by multiplying Eq.53 by u′
i, and Eq.54 by ũi,

phase averaging and time averaging, it comes the
conservation equations for the kinetic energy u′

iu
′
i

and for the velocity part of the acoustic energy ũiũi;

1

2

∂u′
iu

′
i

∂t
=− 1

2
ūj

∂u′
iu

′
i

∂xj
− u′

iu
′
j

∂ūi

∂xj
− 1

2

∂u′
iu

′
iu

′
j

∂xj

− ⟨u′
iu

′
j⟩
∂ũi

∂xj︸ ︷︷ ︸
term of interest

−1

2
ũj

∂⟨u′
iu

′
i⟩

∂xj
+

u′
i

ρ̄

∂τ ′ij
∂xj

Eq.55
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and

1

2

∂ũiũi

∂t
=− 1

2
ūj

∂ũiũi

∂xj
− ũiũj

∂ūi

∂xj
+

1

2
ũiũi

∂ũj

∂xj

−
∂ũi⟨u′

iu
′
j⟩

∂xj
+ ⟨u′

iu
′
j⟩
∂ũi

∂xj︸ ︷︷ ︸
term of interest

−1

2

∂ũiũiũj

∂xj

− ũi

ρ̄

∂p̃

∂xi
+

ũi

ρ̄

∂τ̃ij
∂xj

Eq.56

The term ⟨u′
iu

′
j⟩∂ũi/∂xj is identified as ”term of

interest” in both Eq.55 and Eq.56. It is the only
similar term in both equations, with a − sign for
the turbulent energy evolution and a + sign for the
acoustic energy, meaning it represents a transfer
of energy from the acoustic to the turbulence (or
the other way depending on the sign), due to the
acoustic/turbulence interaction. Consequently, stud-
ies have proposed formulations for this term, either
for a general application [33] or especially to predict
the enhancement of the acoustic absorption near
the walls [28] [34] retrieving the results of Fig.7.

6.2. Model from literature

Some analyses have derived an analytic estimate of
the absorption of the sound generated aerodynam-
ically by a jet. At an arbitrary point in the jet, the
sound is emitted due to vortices, and propagates
through the jet’s turbulence, which absorbs part of
it. The objective was to provide the Lighthill the-
ory, which predicts the generation of noise by turbu-
lence, with the contribution of absorption. Consid-
ering isotropic homogeneous turbulence, [35] used
the viscoelastic property of the turbulence. Un-
der the effect of an acoustic disturbance, the tur-
bulence is stretched and then relaxes to return to
isotropy. Energy is given to the turbulence dur-
ing strain and dissipated by viscous effect. Thus,
the viscoelastic property implies that the turbulence,
and thus the Reynolds stress, has a memory of its
past state through a relaxation time. Based on the
local increase in sound velocity due to deformation
of the turbulence, [35] predicted a formulation for the
damping coefficient;

σturb ≃ ω

5

M2
rmsft

1 + f2
t

, Eq.57

with ω the acoustic pulsation, ft a reduced fre-
quency such that ft = Ωt/ω, with Ωt related to
the return to isotropy time, and Mrms = u2

i /c̄ the
root mean square (RMS) Mach number. Consider-
ing also a viscoelastic turbulence and manipulating
Eq.55 to evaluate the term ⟨u′

iu
′
j⟩∂ũi/∂xj , [33] ob-

tained the following estimation;

σturb ≃ 2.3
ϵ

c̄2
, Eq.58

equivalent to Eq.57 at high frequencies (ω ≫ Ωt),
using the hypothesis that Ωt ∼ ϵ/u2

i , and ϵ being

the turbulent dissipation rate. With a different ap-
proach, [31] used the Lighthill equation, splitting the
velocity field into an initial turbulent component and
a total contribution caused by the wave. The es-
timation made leads to, at high frequency and as
suggested by previous studies,

σturb ∼ ϵ

c̄2
. Eq.59

In this case, the absorption will not depend on
the acoustic frequency but the characteristics of the
turbulence. An estimation at low frequency is also
made, but it is necessary to determine what low
and high frequency mean regarding the combus-
tion instability application. Also, the objective is to
estimate this absorption coefficient for an imposed
acoustic solicitation, both in frequency and ampli-
tude. Therefore, an approach is needed to vary the
acoustics as a function of the resonant modes (in
connection with the Galerkin method), change the
turbulence as a function of the jet’s position, and
test the hypothesis of isotropic homogeneous tur-
bulence.

6.3. Ongoing study

The turbulence component of the velocity is gen-
erated using a spectral method of [36] for homo-
geneous isotropic turbulence, and the non-isotropic
character within the jet can be achieved using the
method of [37]. The generation procedure demands
knowing the specificity of the turbulence, including
turbulent kinetic energy k, dissipation rate ϵ, and the
(u′2 compared to v′2 and w′2) RMS values for the
anisotropy. The present work focuses on the qual-
ity of the turbulent velocity field generation and the
phase averaging of the velocity signal analytically.

6.4. Remarks

The same process of averaging can be applied to
obtain the mean flow evolution, as in §6.1. With-
out further details, the term ũiũj

∂ūi

∂xj
appears as a

source term in the mean flow equation, and is also
in Eq.56, with the opposite sign, translating an ex-
change of energy between the non-uniform mean
flow and the acoustics. An equivalent term is found
to link the mean flow with the turbulent level; u′

iu
′
j
∂ūi

∂xj

corresponding to the production of vorticity.

7. SUMMARY AND CONCLUSION

The three phenomena mainly responsible for acous-
tic damping in high-frequency combustion insta-
bilities are the nozzle losses, the thermo-viscous
losses at walls, and the turbulence/acoustic inter-
action at the jets. A fourth phenomenon not ad-
dressed here is the absorption of acoustics by the
injection plate and will be tackled in the future of
this work. For a compact nozzle applicable to trans-
verse waves, an impedance model has been pro-
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posed and allows to find analytic and numerical pre-
dictions. The visco-thermal losses are also modeled
and compared to the literature prediction but must
be reinforced by accounting for the near-wall turbu-
lence. Finally, a strategy is under development for
the analysis of jet absorption. Moreover, it will be
necessary to also evaluate the losses due to scat-
tering and refraction of the dominant acoustic mode
towards other frequencies. Applications and com-
parisons will be made later with LES in progress cal-
culations.

The presented low order framework can be aug-
mented by using conservation equations on the ve-
locity’s contributions (mean, turbulence, acoustic,
and entropy). It allows having an estimate of the
amount of vorticity and entropy produced at the level
of the jets and flames, absorbing part of the acous-
tics, being convected by the mean flow through the
combustion chamber, and interacting back with the
acoustics when reaching the nozzle.
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R. Kaess, and A. Nicole. Validation of Trans-
verse Instability Damping Computations for
Rocket Engines. Journal of Propulsion and
Power, 31(4):1148–1158, 2015.

[22] S.R. Stow, A.P. Dowling, and T.P. Hynes. Re-
flection of circumferential modes in a choked
nozzle. Journal of Fluid Mechanics, 467:215–
239, 2002.

[23] G. Ghirardo, F. Boudy, and M. R. Bothien.
Amplitude statistics prediction in thermoacous-
tics. Journal of Fluid Mechanics, 844:216–246,
2018.

[24] G. Bonciolini, A. Faure-Beaulieu,
C. Bourquard, and N. Noiray. Low order
modelling of thermoacoustic instabilities
and intermittency: Flame response delay
and nonlinearity. Combustion and Flame,
226:396–411, 2021.

[25] M. Schulze and T. Sattelmayer. Linear stabil-
ity assessment of a cryogenic rocket engine.
International Journal of Spray and Combustion
Dynamics, 9(4):277–298, 2017.

[26] G. Kirchhoff. Ueber den Einfluss der
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