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1 Vibrational density of states computed from the
VACF

We develop the demonstration of the expression of the vibra-
tional density of states (VDOS). We also provide details on how
to compute the VDOS from the velocity autocorrelation function
(VACF) in classical MD simulations. The demonstration is based
on Dickey and Paskin1 but taking into account the mass, and
using the equipartition theorem to address the case of different
masses.

Let us consider the steady state motion of atoms as the super-
position of 3N harmonic oscillators of pulsation ωi:

u j(t) = ∑
i

A j
i cos(ωit +φ

j
i )⇒ v j(t) = ∑

i
A j

i ωi sin(ωit +φ
j

i ) (1)

The mass weighted VACF is defined as the average of m jv j(t +
t0).v j(t0) over all initial time and all atoms:

VACF(t) =
1
N

N

∑
j=1

lim
T→∞

1
T

∫ T

0
m jv j(t + t0).v j(t0)dt0 (2)

For simplicity, we use the notation: VACF(t) =〈
m jv j(t + t0).v j(t0)

〉
t0, j

.

Introducing the superposition of harmonic oscillators, we have:

VACF(t) =

〈
∑

i
m j(A

j
i ωi)

2 sin(ωi(t + t0)+φ
j

i ).sin(ωit0 +φ
j

i )

〉
t0, j
(3)

The vibrational modes are orthogonal (see Dove2 for this point),
which explains why no term with A j

i Ak
i ( j ̸= k) appears.
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Averaging over all initial times leads to

VACF(t) = ∑
i

m j⟨(A j
i ωi)

2⟩ j

2
cos(ωit) (4)

According to the equipartion theorem, the average kinetic en-
ergy of an harmonic oscillator is kT/2 :〈

m j(A
j
i ωi)

2

2

〉
j

=
kT
2

(5)

therefore

VACF(t) =
kT
2 ∑

i
cos(ωit) (6)

Considering the normalized VACF, we have:

γ(t) =

〈
m jv j(t + t0).v j(t0)

〉
t0, j〈

m jv j(t0).v j(t0)
〉

t0, j
=

kT
2 ∑i cos(ωit)

3N kT
2

=
1

3N ∑
i

cos(ωit)

(7)
Introducing the vibrational density of states as:

∑
i

cos(ωit) =
∫ +∞

−∞

ρ(ω)cos(ωt)dω (8)

or

γ(t) =
∫ +∞

−∞

ρ(ω)

3N
cos(ωt)dω =

∫ +∞

−∞

g(ω)cos(ωt)dω = ℜ[F ( f )]

(9)
The normalized mass weighted VACF γ(t) is the real part of the

Fourrier transform of the normalized VDOS g(ω) =
ρ(ω)
3N :

γ(t) =
∫ +∞

−∞

g(ω)
eiωt + e−iωt

2
dω =

∫ +∞

−∞

g(ω)+g(−ω)

2
eiωtdω

(10)
that is

γ(t) = 2πF−1
(

g(ω)+g(−ω)

2

)
(11)

Therefore, γ(t)
2π

is the inverse Fourrier transform of the

symetrized VDOS f (ω)+ f (−ω)
2 . Inverting the expression above, we
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get:
g(ω)+g(−ω)

2
=

∫ +∞

−∞

γ(t)
2π

e−iωtdt (12)

Since the VDOS contains only positive pulsations, we limit our-
selves to ω > 0 and g(−ω) = 0, so that:

g(ω) =
1
π

∫ +∞

−∞

γ(t)e−iωtdt (13)

Since the VACF is reversible in time (Newton’s law is re-
versible), γ(t) = γ(−t) so that it guarantees the result is real:

g(ω) =
1
π

∫ +∞

0
γ(t)(eiωt + e−iωt)dt =

2
π

∫ +∞

0
γ(t)cos(ωt)dt (14)

2 Hybrid GCMC-NVT simulations
Hybrid GCMC-NVT simulations are performed to obtained config-
urations with the water content corresponding to equilibrium at
300 K and RH of 100%.

These simulations are perfomed to sample the Grand canonical
ensemble (µVT) for water while keeping the number of atoms in
the solid layers and Na or Ca counterions constant. The GCMC
stage enables the exchange of water molecules with an infinite
reservoir at imposed chemical potential and temperature. We
adopt a chemical potential corresponding to an RH of 100% (i.e.
the water pressure Pw to be imposed is the liquid-vapor coexis-
tence pressure, which is 0.01004 atm for SPC/E water at 300 K3).
The NVT stage enable us to gain in computational efficiency by
better sampling the phase space. Counterions are time integrated
during the NVT run, while particles in the solid are not. Water
molecules are constrained with SHAKE algorithm.

The total of 5 million Monte Carlo moves were enough to equi-
librate all system studied according to the total energy and parti-
cle number variations. Then, a simulation comprising 10 million
Monte Carlo moves was used for production.

In these hybrid simulations, the effects of the deformation of
the solid lattice due to the thermal expansion or compression
should be minor since the thermal expansion and compressibil-
ity of fluids (confined fluids included) are expected to be much
larger than that of solids. The NVT simulation, with flexible solid
lattice, performed over the final configuration of GCMC returns
thermodynamic data that are in agreement with GCMC results.

3 Heat capacity

3.1 Semi-classical estimates

Figures 1 and 2 show the normalized velocity auto-correlation
function (VACF) ⟨v j(t).v j(0)⟩/⟨v j(0)2⟩ and the mass-weighted
VACF ⟨mv j(t).v j(0)⟩/⟨v j(0)2⟩ obtained from NVE simulations. The
figure shows that integration up to 10 picoseconds is enough to
capture the decay in the VACFs.

Figure 3 shows the vibrational density of states (VDOS) g(ω)

for a few selected cases. Frequencies up to 900 THz were con-
sidered in order to identify the range in which the VDOSs do not
vanish. Considering frequencies up to ω=100 THz is enough to
capture the VDOS of both Na- and Ca-Mmt for all basal spacings
considered.

Figure 4 shows the VDOS g(ω) for selected basal spacings for
both Na- and Ca-Mmt in the range of frequencies up to 100 THz.
These functions are integrated to obtain the semi-classical esti-
mates in this work. We also show the specific contribution of
water alone, and solid layers and counterions in (C)-(F).

3.2 Semi-classical estimates for bulk water
The normalized VACF, normalized mass-weighted VACF, and
VDOS used to compute the semi-classical estimates of the heat ca-
pacity of bulk water are shown in Figure 5. Using Green-Kubo for-
mula, (e.g.4), we check that the self-diffusion coefficient of water
obtained fro the VACF is consistent with the values reported in
previous studies. The VDOS shows remarkable good agreement
with the peak positions reported in ref.5.

3.3 (Classical) finite difference approach for the heat capac-
ity of confined flexible SPC/E water

Figure 6 shows the comparison between the results of classical
approaches using the fluctuation formula (Eq. 2) and finite dif-
ference (FD) approach. For the FD case, we use the definitions
in Eq. 1. NVT simulations are performed at five temperatures:
280 K, 290 K, 300 K, 310 K, and 320 K. The same configurations
equilibrated at 300 K, 1 atm, and RH of 100% for each basal spac-
ing from the GCMC simulations are used in all cases as the initial
configuration. For each basal spacing, a least-squares linear fit-
ting is performed accounting for the five couples of temperature
and internal energy, and Cv is obtained from the slope of that
fitted line.

4 Effect of the mixing of hydration states in the
heat capacity of clays

Regarding the effect of the mixing of hydration states under pres-
sure control, we compare in Figure 7 the results of heat capac-
ity (i) directly computed from MD (i.e. following the oscillatory
profiles in Figure 1) and (ii) with estimates assuming a mix of
hydration states in the unstable zones (i.e. following the stable
path at depicted by the dashed lines representing the convex hull
in Figure 2, we consider the metastable states, up to spinodal
decomposition, in compression). Both cases yield similar results
because of the almost linear evolution of the heat capacity with
the basal spacing, even for small basal spacing.

5 Elastic constants
The stiffness tensor is computed from a finite-difference approach
using the definition4:

C =Ci jkl =

[
∂σi j

∂εkl

]
T,εkl

(15)

The finite difference approach consists in slightly deforming
(within the elastic domain) the simulation box in each one of the
six axial and tangential directions followed by relaxation using
Nosé-Hoover thermostat and barostat. Both negative and pos-
itive deformation are considered for each direction in order to
avoid any asymmetric effect under loading.

In agreement with previous works6, the in-plane elastic coeffi-
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Fig. 1 Normalized VACF of (A) Na- and (B) Ca-Mmt for selected basal spacings.
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Fig. 2 Normalized mass VACF ⟨mv j(t).v j(0)⟩/⟨v j(0)2⟩ of (A) Na- and (B) Ca-Mmt for selected basal spacings.
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Fig. 3 Range of frequencies of the VDOS of (A) Na- and (B)-Mmt for selected basal spacings.

cient C12 ≈C11/2; and the out-of-plane coefficient C13 ≈C33/2.

The bulk modulus K can be directly computed using the fluctu-

ation formula in an NσT simulation4:

1
K

=

〈
V 2〉

NσT −⟨V ⟩2
NσT

kTV
. (16)
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Fig. 4 VDOS of Na-Mmt (left) and Ca-Mmt (right) for selected basal spacings: (A) and (B) total VDOS, (C) and (D) water only; and (E) and (F)
solid layers and counterions only.

6 Coefficient of thermal expansion
The full tensor of coefficients of thermal expansion α is com-
puted using a fluctuation-dissipation approach in an isotension-
isothermal (NσT) simulation7–9:

α =
⟨Hε⟩NσT −⟨H⟩NσT ⟨ε⟩NσT

kT 2 . (17)

where ε = 1
2

[
h−T

0 hT hh−1
0 − I

]
is the second-order Lagrangian de-

formation tensor obtained from the h matrix at the reference
(subscript 0) and deformed states, I is the identity matrix, and
the superscript [⋆]T stands for the transpose operator.

Figure 9 shows the coefficients of thermal expansion as a func-
tion of the water content mw/mtotal of Na- and Ca-Mmt. The in-
plane coefficients αxx and αyy, dominated by the expansion of the
solid layers, do not show significant changes with respect to the

water content. The average values are:
For Na-Mmt:

• αxx = (0.98±0.18) ×10−5/K

• αyy = (1.39±0.25) ×10−5/K.

For Ca-Mmt:

• αxx = (0.89±0.31) ×10−5/K

• αyy = (1.28±0.55) ×10−5/K.

Therefore, in-plane coefficients can be fairly considered as inde-
pendent of the counterion type. This results is consistent with
previous works reporting in-plane coefficients of thermal expan-
sion independent on the hydration state and being α11 ≈ α22 =

1.0± 0.2 × 10−5/K6. The out-of-plane coefficient α33 is reported

4 | 1–8Journal Name, [year], [vol.],



C

A

B

Fig. 5 (A) normalized VACF, (B) normalized mass-weighted VACF, and
(C) VDOS of bulk water.

to be roughly three times the values of α11 or α22
6, since the be-

havior in that direction is governed by liquid water expansion.
Consistently, the coefficient of thermal expansion at the layer
scale were experimentally obtained for other phyllosilicates such
as muscovite (a mica) and are α11 = 0.83 × 10−5 K−1, α22 = 1.00
× 10−5 K−1, and α11 =2.13 × 10−5 K−1 10.

The out-of-plane coefficient αzz is computed using two ap-
proaches: (i) directly from the fluctuation of the deformations,
and (ii) indirectly using the fluctuation of the volume αv =
⟨HV ⟩NσT−⟨H⟩NσT ⟨V ⟩NσT

V0kT 2 and the values of of the in-plane coefficients:
αzz = αv −αxx −αyy. The latter is less prone to variability in the
simulations. Both estimates of αzz are fitted with a linear func-
tion. The expected increasing trend of α with the water content
is captured by the indirect method. Also, the indirect method
leads to a better coefficient of determination The αzz of Ca-Mmt
exhibits a more pronounced increase with the water content than
Na-Mmt.

7 Difference between heat capacity at constant
pressure and heat capacity at constant volume

Figure 10 shows the difference between the heat capacity at con-
stant pressure and the heat capacity at constant volume as a func-
tion of the water content mw/mtotal . The difference Cp −Cv is
computed using the full stiffness C and thermal expansion α ten-
sors and using the bulk modulus K and volumetric coefficient of
thermal expansion αv (via the expression4: Cp −Cv = Kα2T/ρ,
where the bulk modulus were obtained from a fluctuation for-

mula in NσT ensemble as discussed here in the Supporting Ma-
terial). The values Cp −Cv obtained are consistent with results
obtained for other phyllosilicates (e.g. circa 10 J/(kg.K) for cal-
cium silicate hydrates at equilibrium basal spacing12).
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Fig. 9 Coefficients of thermal expansion as a function of the water content mw/mtotal of Na- and Ca-Mmt: (A)-(D) in-plane coefficients αxx and αyy,
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