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Abstract

We propose a fine analysis of second order optimality conditions for the optimal control
of semi-linear parabolic equations with respect to the initial condition. More precisely, we
investigate the following problem: maximise with respect to y ∈ L∞((0;T )× Ω) the cost func-
tional J(y) =

˜
(0;T )×Ω

j1(t, x, u) +
´

Ω
j2(x, u(T, ·)) where ∂tu −∆u = f(t, x, u) + y , u(0, ·) =

u0 with some classical boundary conditions, under constraints of the form −κ0 ≤ y ≤
κ1 a.e. ,

´
Ω
y(t, ·) = V0. This class of problems arises in several application fields. A chal-

lenging feature of these problems is the study of the so-called abnormal set {−κ0 < y∗ < κ1}
where y∗ is an optimiser. This set is in general non-empty and it is important (for instance
for numerical applications) to understand the behaviour of y∗ in this set: which values can
y∗ take? In this paper, we introduce a Laplace-type method to provide some answers to this
question. This Laplace type method is of independent interest.

Keywords: Reaction-diffusion equation, semi-linear parabolic equation, optimal control, second
order optimality conditions, shape optimisation, two-scale expansions.
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1 Introduction and main result

1.1 Scope and objective of the article

An ubiquitous query in PDE constrained optimisation is the optimisation of a linear source term
in parabolic models. While several works [7, 19, 20, 21] tackle the delicate issue of analysing second
(and first) order optimality conditions under a wide class of constraints and penalisations, these
works often fail to offer conclusive information in the context of L∞ − L1 constrained control
problems. These type of constraints arise naturally in the context of population dynamics [15],
and the recent activity in the analysis of these optimal control problems, whether it be in the
elliptic [17] or in the parabolic setting [1, 11], has underlined the intrinsic mathematical challenges
of these queries. While previous works are discussed in section 1.5 let us mention here that, in the
present paper, we consider a general optimisation problem for heterogeneous semi-linear parabolic
equations.

The main difficulty in this endeavour is that the optimality conditions typically involve the
use of an adjoint state, defined as the solution of a (backward) parabolic equation on the entire
space-time domain. However, it is often desirable to obtain a pointwise (in time and in space)
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information, so that localising the optimality conditions is a worthy but intricate endeavour. The
method we propose here leads to such a localisation of these optimality conditions, and provides
unexpected results.

Besides being relevant for the numerical approximation of such optimal control problems [16],
our results shed a new light on the qualitative properties of solutions of linear optimal control of
semi-linear models. Furthermore, in exploiting these optimality conditions, we develop a Laplace-
type method that deals with the limit behaviour of solutions to linear parabolic equations when the
initial condition is a sum of highly oscillating frequencies, and yields a concentration-type result.
This contribution is related to two-scale asymptotic expansions. What is notable here is that we
prove a result that does not assume a scale separation, unlike what is usually done in this context
[3].

1.2 State equation

Throughout the paper, Ω ⊂ IRd is a bounded open set with a C 2 boundary. We choose a boundary
condition operator B that is of the following form:

B : u 7→

{
u (Dirichlet case)
∂u
∂ν (Neumann case).

We work with a non-linearity f = f(t, x, u) that satisfie{
f is C 3 on [0;T ]× Ω× IR

∃M > 0 ,∀u ≥M ,∀(t, x) ∈ [0;T ]× Ω , f(t, x, u) ≤ 0 , f(t, x,−u) ≥ 0.
(Hf )

For any initial condition u0 ∈ L∞(Ω) and any source term y ∈ L1(0, T ;L1(Ω)) ∩ L∞((0;T )× Ω),
we define uy as the solution of

∂tuy −∆uy = f(t, x, uy) + y in (0;T )× Ω ,

Buy = 0 on (0;T )× ∂Ω ,

uy(0, ·) = u0 in Ω,

(1.1)

where T > 0 is a fixed time horizon. By the standard theory for non-linear parabolic equations
[14], for any initial condition u0 ∈ L∞(Ω) and any source y ∈ L1(0, T ;L1(Ω)) ∩ L∞((0;T )× Ω),
there exists a unique solution uy to (1.1).

Our goal is to optimise a fairly general class of criteria with respect to the source term y. It
should be noted that (Hf ) is a loose enough set of technical assumptions to cover classical reaction
terms of the form f(t, x, u) = u(m(t, x)− u) where m is a smooth function, which corresponds to
monostable models, or f(t, x, u) = u(u− θ(t, x))(1− u), which models the Allee effect.

1.3 Setting of the optimal control problem

Cost functional We fix two cost functions j1 = j1(t, x, u) , j2 = j2(x, u) and define

J : L∞((0;T )× Ω) 3 y 7→
¨

(0;T )×Ω

j1 (t, x, uy(t, x)) dxdt+

ˆ
Ω

j2 (x, uy(T, x)) dx.

This is the functional that is to be optimised, and we thus need to define the class of admissible
controls we work with. As is often the case in applications [16], we enforce two constraints, an L∞

one and an L1 one. In other words we consider three constants 0 ≤ κ0 , κ1 and V0 ∈ (0; 1), and we
define the class of admissible controls as

Y :=
{
y ∈ L1(0, T ;L1(Ω)) ,−κ0 ≤ y ≤ κ1 almost everywhere in (0;T )× Ω

and, for almost every t ∈ (0;T ),

 
Ω

y(t, ·) = V0

}
. (Adm)
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The symbol
ffl

denotes the mean value of a function:
ffl

Ω
f = 1

Vol(Ω)

´
Ω
f .

The optimisation problem under consideration is:

max
y∈Y

J(y) (P)

Regularity assumptions We work under the following assumptions on the cost functions j1 , j2:

j1, j2 are C 2 in [0;T ]× Ω× IR. (Hreg)

Natural examples in the field of population dynamics would be f = f(u) = u(u−θ)(1−u) (bistable
nonlinearity), j1 = 0 and j2 = u, which corresponds to optimising a proportion of sane mosquitoes
within a global population [4, 16]. Also note that the regularity assumptions on j1 , j2 are far
from minimal, and could be relaxed to being measurable in x only. For the sake of readability, we
describe our results under the stronger assumption (Hreg).

Optimality conditions for (P) Let us describe the optimality conditions and adjoint state for
(P); we have the following lemma, easily obtained from adapting [18, Lemma 3]:

Lemma 1. Under the assumptions (Hf )-(Hreg), the control-to-state map T : Y 3 y 7→ uy is twice
Gateaux-differentiable at y. For any y ∈ Y, for any perturbation h ∈ L∞((0;T )× Ω), the first
order Gateaux-derivative of the functional J at y in the direction h is given by

J̇(y)[h] =

¨
(0;T )×Ω

py(t, x)h(t, x)dxdt (1.2)

where py is the solution of the backwards equation
∂tpy + ∆py = −∂uj1(t, x, uy)− ∂uf(t, x, uy)py in (0;T )× Ω ,

Bpy = 0 on (0;T )× ∂Ω ,

py(T, ·) = ∂j2
∂u (x, uy) on ∂Ω.

(1.3)

Similarly, the second order Gateaux-derivative of the functional J at y in the direction (h, h) is
given by

J̈(y)[h, h] =

¨
(0;T )×Ω

u̇2
y

(
py
∂2f

∂u2
(t, x, uy) +

∂2j1
∂u2

(t, x, uy)

)
dtdx+

ˆ
Ω

u̇2
y(T, x)

∂2j2
∂u2

(x, uy)dx,

(1.4)
where u̇y is the unique solution of the linearised system

∂tu̇y −∆u̇y = h+ ∂uf(t, x, uy)u̇y in (0;T )× Ω ,

Bu̇y = 0 on (0;T )× ∂Ω ,

u̇y(0, ·) = 0 in Ω.

(1.5)

The solution py of (1.3) is called the adjoint of (P). It encodes the first order optimality
conditions for (P), as shown by the following result, adapted from [18, Theorem 2.1]:

Proposition 2. Let y∗ be a solution of (P). Then there exists a measurable function c : [0;T ]→ IR
such that, for almost every t ∈ [0;T ],

y∗(t, x) = κ1 if py∗(t, x) > c(t),

y∗(t, x) = −κ0 if py∗(t, x) < c(t),

{py∗(t, ·) = c(t)} ⊂ {−κ0 < y∗(t, ·) < κ1}.

where py∗ is the unique solution of (1.3) with y = y∗.
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While already containing several extremely valuable information about the values of the optimal
control, the first-order optimality conditions given in Proposition 2 can prove complicated to
handle, both from a theoretical and analytical point of view. Indeed, if we consider the second-order
optimality conditions, it appear that if f , j1 , j2 are convex, then the map J itself is convex, so that
all optimiser are of “bang-bang” type: they are extreme points y∗ of the admissible class Y, which,
as easily checked, write −κ01E + κ11E for some measurable subset E of Ω. How to go beyond
such convexity assumptions? Indeed, in many applications [4] f is neither convex, nor concave. In
this situation, difficulties arise: while bang-bang controls are generically expected to occur if the
control problem is bilinear [17] rather than linear, there is no way to prohibit a priori the existence
of an abnormal zone {−κ0 < y∗ < κ1} where the optimisers do not saturate the constraint. Is
it possible to give finer properties of uy∗ on this abnormal set? Essentially, it can be proved

that this optimality conditions entail the existence of a function f̃ such that, for any optimiser
y∗, we have, on {−κ0 < y∗ < κ1}, an equation of the form −∂tpy = ∂uf(t, x, uy)c(t) + ∂uj1(u).
This is easily adapted from the analysis of [18, Section 5-Numerical Algorithm]. Thus if we define
W = W (t, x, u) = ∂uf(t, x, uy)py+∂uj1(t, x, uy) the equation to be solved is of the form Z = `(t, x)
for some function `. However when Z is neither concave nor convex in u, this equation can have
multiple roots. As was observed in [16, 18] when optimising with respect to the initial condition,
this is problematic when dealing with numerical approximations of the problem: which root should
we choose? A good way to lift the ambiguity in the choice of the root is to use second-order
optimality conditions. Of course, the main difficulty with the way J̈ is written in Lemma 1 is
that the expression is distributed over (0;T )× Ω while we would need a localised information,
at any (or almost every) t. If we assume for the sake of simplicity that j2 = 0 and if we set
W := ∂uf(t, x, uy)py + ∂uj1(t, x, u), we have

J̈(y∗)[h, h] =

¨
(0;T )×Ω

u̇2
y∗(∂uW ) ≤ 0

for any h. Can we deduce that at an optimiser y∗, when solving the equation W = `, we must
choose a root that satisfies ∂uW ≤ 0? This can prove to be very challenging, but the answer is
positive, and it is the purpose of Theorem I; we underline that this is a natural question in the
context of optimal control of semilinear equations from the theoretical point of view, as well as
from the numerical one. Before we present our result, let us give some more details about the
numerical approximation of (P).

Another related query is: can we localise (in time) the bang-bang property? In other words, is
it true that if, at some t0 > 0, both f(t, x, ·) and j1(t, x, ·) are convex, then any optimal control y∗

satisfies that y∗(t0, ·) is a bang-bang function? Our result also provides an answer to this question.

1.3.1 Main results about second order optimality conditions

We assume that the non-linearity f and the cost functions j1 , j2 satisfy (Hreg). Our main result
is the following:

Theorem I. Assume f , j1 , j2 satisfy (Hf )-(Hreg). Let y∗ be a maximiser of J over Y. Let
ω := {−κ0 < y∗ < κ1} be the so-called abnormal set, and assume that Vol(ω) > 0. Then

Zy∗ ≤ 0 a.e. in ω

where for any y ∈ Y:

Zy(t, x) := py
∂2f

∂u2
(t, x, uy) +

∂2j1
∂u2

(t, x, uy).

Remark 3. Enforcing the constraint
ffl

Ω
y(t, ·) = V0 rather than a constraint of the type

ffl
Ω
y(t, ·) =

V0(t), or
˜

(0;T )×Ω
y = V0 is immaterial to our analysis, and the conclusions of Theorem I can

immediately be adapted to these case.
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The following corollary immediately follows from Theorem I but is somehow unexpected, and
exemplifies the intricate behaviour of optimal control problems:

Corollary 4. Assume j2(x, ·) is increasing in u for any x. Let y∗ be a solution of (P). For any
t ∈ (0;T ) such that f(t, x, ·) and j1(t, x·) are convex in u, with either one of them strictly convex
in u, y∗(t, ·) is bang-bang.

In other words, the bang-bang property is fully localised in time.

1.4 A Laplace-type method

To prove Theorem I, we rely on a new technique, which we dub a Laplace-type method. This is
a combination of the technique we developed with Toledo in [16], which relied on Laplace-type
arguments for a simple perturbation of the initial datum which is only well-fitted on interior points
of the so-called abnormal set {−κ0 < y∗ < κ1}, and of the technique developed by the authors
and Privat in [17] in another framework, in order to construct suitable perturbations regardless of
any regularity assumption on the abnormal set. Note that [16] works in one-dimension only, and
that it is intricate to extend the method to higher dimensions.

Statement of the result We consider the sequence of eigenvalues {λk,B}k∈IN, associated with
eigenfunctions {ϕk,B}k∈IN of the Laplace operator:

−∆ϕk,B = λk,Bϕk,B in Ω ,

Bϕk,B = 0 on ∂Ω ,´
Ω
ϕ2
k,B = 1.

(1.6)

We order the eigenvalues in increasing order:

0 ≤ λ1,B ≤ λ2,B ≤ · · · ≤ λk,B →
k→∞

∞.

We are now in position to state our main technical result.

Theorem II. Let q ∈ L∞((0;T )× Ω) be a fixed potential and let ω ⊂ Ω be a closed subset of Ω
with positive measure. We assume that for any r ∈ [1; +∞) there holds

∂tq −∆q ,∇q ∈ Lr(0, T ;Lr(Ω)). (Hq)

Additionally, if B is of Neumann type, we assume that Bq = 0. We consider a sequence (hK)K∈IN ∈
L2(Ω)IN such that, for any K ∈ IN, hK writes

hK :=

∞∑
k=K

aK,kϕk,B,

where the sequence (aK,k)k∈IN satisfies

∞∑
k=K

a2
K,k = 1,

and such that
supp(hK) ⊂ ω in the sense that hK1ω = hK .

Define vK as the solution of the heat equation
∂vK
∂t −∆vK = qvK in (0;T )× Ω ,

BvK = 0 on (0;T )× ∂Ω,

vK(0, ·) = hK in Ω.
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Consider the unit ball X of the space of Radon measures on [0;T ]×Ω. Finally, define a sequence
of probability measures {νK}K∈IN ∈ XIN by

∀K ∈ IN , νK :=
v2
K˜

(0;T )×Ω
v2
K

.

Then any closure point ν∞ ∈ X of the sequence {νK}K∈IN ∈ XIN satisfies

supp(ν∞) ⊂ {t = 0} × ω ,
¨

(0;T )×Ω

ν∞ = 1 , ν∞ ≥ 0 in the sense of measures.

In this last equality, supp(ν∞) ⊂ {t = 0} × ω should be understood as follows: for any ϕ ∈
C 0([0;T ]× Ω) such that supp(ϕ) ⊂ ({t = 0} × ω)

c
, 〈ν∞, ϕ〉 = 0 where 〈·, ·〉 stands for the duality

bracket on C 0([0;T ]× Ω).

Regarding our terminology In this paragraph we justify the terminology of the title of this
paper. First of all, we claim that Theorem II is an extension of the standard two-scales expansion
technique for parabolic equations. Namely, consider, as done in [16], the solution wK of the
equation {

∂twK − ∂xxwK = qwK in (0;T )× T ,
wK(0, x) = θ(x) sin(Kx) in T,

(1.7)

where T is the one-dimensional torus and θ is a smooth bump function in T. In [16] it is proved
that

wK ∼
K→∞

θ(x) sin(Kx)e−K
2t

in the L2((0;T )× T) sense. Consequently, using the fact that

sin(Kx)2 ⇀
K→∞

1

2

and the Laplace method, this implies that, for any smooth test function φ,¨
(0;T )×Ω

w2
Kφ ∼

K→∞

1

2K2

ˆ
T
θ(x)2φ(0, x)2dx.

In other words, in the limit K →∞, we only see (up to a proper rescaling) the support of the initial
condition. In higher dimensional situations, Theorem II establishes the same kind of qualitative
behaviours, but we highlight here several non-trivial difficulties. First and foremost, it is not true in
general that ϕ2

K,B ⇀
K→∞

1
2 , since in many domains we may have a so-called localisation phenomenon

[12]. Second, this type of expansion only holds under strong regularity assumptions on the function
θ. In particular, this result assumes, in a sense, that we are considering highly oscillating initial
conditions, with a regular support (for instance, that has non-empty interior). When considering
applications to the optimal control of reaction-diffusion equations, it is extremely difficult (and, in
general, a completely open question) to obtain this type of regularity.

Regarding the first difficulty, as a byproduct of the proof of Lemma 7 below, we obtain that

vK ∼
K→∞

∞∑
k=K

aK,kϕk,Be
−tλk,B .

This is not yet enough to conclude as to the support in space of the limit ν∞ as this would only
yield, for any smooth function φ,

〈v2
K , φ〉 ∼

K→∞

∞∑
k,k′=K

aK,kaK,k′

λk,B + λk′,B

ˆ
Ω

φ(0, ·)ϕk,Bϕk′,B,

and it is then unclear from this expression to derive a meaningful information about the support
of ν∞.
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1.5 Bibliographical references

We investigated a related optimisation problems in an earlier paper with Toledo [16]. More pre-
cisely, we were, rather than optimising with respect to the internal control y, trying to optimise
a criterion with respect to the initial condition u0, under the constraints 0 ≤ u0 ≤ 1 ,

´
Ω
u0 = V0.

The results of [16] were set in the case d = 1 with periodic boundary conditions; several types of
non-linearities were considered. First, the case where f only depended on u and was convex, with
κ0 = 0, κ1 = 1, f(0) = f(1) = 0, j1 ≡ 0 and j2(x, u) ≡ u. We have proved that in that case
u∗0 ≡ 1(0,V0) is a global maximiser of J . Apart from this example, it is not true in general that
the optimal initial conditions are bang-bang. Indeed, if f is concave in u, then the second author
and Toledo proved [18] that the constant function u∗0 ≡ V0 ∈ (0, 1) is a global maximiser. Thus
optimal controls are not always bang-bang. Similar results where derived when j2(x, u) ≡ −(1−u)2

in [11] and it is fairly straightforward to see that for internal linear control problems, optimisers
can also fail to be bang-bang. This emphasised the need for understanding the behaviour of the
maximiser u∗0 on the abnormal set {−κ0 < u∗0 < κ1}. Thus, the second case covered in [16] made
no convexity assumptions on f . We proved with Toledo that in the one-dimensional case, for any
interior point x of {−κ0 < u∗0 < κ1}, one has f ′′

(
u∗0(x)

)
≤ 0. From there on, it is natural to both

consider the case of internal controls, as is the case here, to go beyond the case of open abnormal
sets and to higher dimensional situations. Two ways are available: the first one is to establish a
priori regularity for the abnormal set. However, the question of regularity of optimal controls is
a difficult one, and we can not rule out that the interior of the abnormal set {−κ0 < u∗0 < κ1} is
empty. Regularity issues in the study of optimal control problem is a major challenge, and, so far,
most available results deal with the case of energetic functional in bilinear optimisation [9]. The
other one, which we take here, is to introduce a new type of methods to handle the case of merely
measurable abnormal set.

So we want to derive a result that holds almost everywhere on {−κ0 < y∗ < κ1}, and not only
on its interior. One of the reasons such information are important is the numerical approximation
of these L∞ − L1-constrained optimal control problems, a standard and powerful algorithm is
the thresholding scheme, akin to a gradient ascent method. Roughly speaking, it is expected that
optimisers u∗0 can be described using the level-sets of the so-called ”adjoint state”. When optimisers
y∗ are bang-bang, it is expected that this scheme can be defined and used with the knowledge of
first order optimality conditions only. That an optimiser y∗ is not bang-bang essentially amounts
to saying that the adjoint state py∗ has a level-set of positive measure, which leads to using second-
order optimality conditions in the definition of this scheme. Thus, having tractable information
about the behaviour of optimisers y∗ in the set {−κ0 < y∗ < κ1} is essential in implementing a cost-
efficient algorithm. Finally, let us mention the recent [1], in which the same problem is discussed
from another qualitative point of view: the authors study the influence of adding advection terms
to the main equation on the value of the functional to optimise.

In order to further characterise y∗ on the abnormal set {−κ0 < y∗ < κ1}, one needs to extract
information from the first and second order optimality conditions. Let us now explain why we
could not use earlier results on optimal control for parabolic equations and what our contribution
to this field of research is. There is a vast literature on this topic, and we will only focus here
on earlier works that are close to the problem we consider here, that is, second order optimality
conditions for a control on the initial datum. For a general introduction to the optimal control of
partial differential equations we refer to the book [22].

First order optimality conditions for semi-linear parabolic equations, essentially encoded in the
Pontryagin maximum principle, have been established in a very general framework in [20]. In this
paper, three types of controls are considered: one acts on the initial datum, one acts as a source
term in (0, T ) × Ω, as in the present article, and one acts on the boundary (0, T ) × ∂Ω. A major
difference with the present paper is that L1 constraints are not covered by their framework. Here,
we consider a simpler problem, since our control only acts as a source term. The reason for this is
that we want to isolate the phenomenon we exhibit.
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Sufficient second order conditions guaranteeing local optimality have been discussed in a variety
of situation when the control acts on (0, T )×Ω and/or on the boundary (0, T )×Ω (see [7, 19, 21]).
Let us also mention a wide literature on second order conditions for optimal control of semi-linear
elliptic equations (see for example [6]). The general approach of these papers is to derive the
necessary second order optimality condition J̈ [u0] ≤ 0, and to provide sufficient conditions in order
to characterise a local maximiser. A Hamiltonian H = H(t, x, u, p) is often derived from the first
order conditions (see [20]), and the second order necessary optimality conditions are described in
terms of the hessian of the hamiltonian. It is unclear how to penalise the time localised constraintffl

Ω
y(t, ·) = V0. It seems extremely challenging to extract any information from second order

optimality conditions using these earlier approaches in that case. More generally, we believe that
these earlier works are not well-fitted to L1 constraints. In the present, we push further the second
order optimality conditions using a Laplace-type method that allows to concentrate the relevant
information at any fixed t. We do not investigate sufficient conditions and leave it for a future
work.

2 Proof of Theorem II

We begin with the proof of Theorem II, as Theorem I is a corollary of it.

2.1 Steps of the proof

The proof is divided up in several steps. As each can be technical and sometimes long, we summarise
them here:

• First we give some basic preliminary results related to parabolic regularity and the Laplace
method. We refer to Propositions 5 and 6.

• Second, we prove an estimate of the L2-norm of vK under the form

¨
(0;T )×Ω

v2
K ≥ c0

∞∑
k=K

a2
K,k

λk,B
.

We refer to Lemma 7 below.

• Third, we prove that supp(ν∞) ⊂ {t = 0} × Ω, see Lemma 9.

• Finally, we prove that supp(ν∞) ⊂ [0;T ]× ω, thereby concluding the proof.

2.2 Step 1: Preliminaries on the parabolic regularity and the Laplace
method

A preliminary parabolic regularity result We recall the following parabolic regularity result:

Proposition 5. Let q , g ∈ L∞((0;T )× Ω). For any θ0 ∈ L∞(Ω), the solution θ of
∂tθ −∆θ − qθ = g in (0;T )× Ω ,

Bθ = 0 on (0;T )× ∂Ω ,

θ(0, ·) = θ0

(2.1)

satisfies

sup
t∈[0;T ]

‖θ(t, ·)‖L2(Ω) ≤ C

(ˆ T

0

‖g(t, ·)‖L2(Ω)dt+ ‖θ0‖L2(Ω)

)
where the constant C only depends on ‖q‖L∞((0;T )×Ω), Vol(Ω) and T .
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As this result is instrumental in deriving our estimates we prove it here.

Proof of Proposition 5. Multiplying (3.9) by θ and integrating by parts in time we obtain

d

dt

ˆ
Ω

θ(t, ·)2

2
+

ˆ
Ω

|∇θ|2 − ‖q‖L∞((0;T )×Ω)

ˆ
Ω

θ2 ≤
ˆ

Ω

gθ ≤ ‖g(t, ·)‖L2(Ω)‖θ(t, ·)‖L2(Ω)

whence
d

dt
(‖θ(t, ·)‖L2(Ω))− ‖q‖L∞((0;T )×Ω)‖θ(t, ·)‖L2(Ω) ≤ ‖g(t, ·)‖L2(Ω).

It suffices to apply the Grönwall lemma to conclude.

Background on the Laplace method We recall here the following result:

Proposition 6. For any m ∈ IN,

ˆ T

0

tme−ktdt ∼k→∞
Cm
km+1

.

Proof of Proposition 6. Integrating by parts m-times we have

ˆ T

0

tme−ktdt =
m!

km+1
(1− e−kT )

whence the conclusion.

2.3 Step 2: Asymptotic of the L2 norm of the solution

The goal of this paragraph is to prove the following result:

Lemma 7. There exists a constant c0 > 0 such that

∀K ∈ IN ,

¨
(0;T )×Ω

v2
K ≥ c0

∞∑
k=K

a2
K,k

λk,B
.

Proof of Lemma 7. Let us introduce, for any k ∈ IN, the function

w0,K(t, x) :=

∞∑
k=K

aK,kϕk,Be
−λk,Bt.

This function solves
(∂t −∆)w0,K = 0.

It is expected that there should hold
vK ≈ w0,K (2.2)

in a certain sense. In order to formalise (2.2) we first compute explicitly

¨
(0;T )×Ω

w2
0,K =

∞∑
k=K

a2
K,k

2λk,B
(1− e−2Tλk,B) ≥ 1

4

∞∑
k=K

a2
K,k

λk,B
(2.3)

whenever K is large enough to ensure that 1 − e−2TλK,B ≥ 1
2 . To control the distance between

w0,K and vK , consider the remainder term

T0,K := vK − w0,K .

9



It is clear that T0,K satisfies

∂tT0,K −∆T0,K − qT0,K = qw0,K .

But this is not yet enough. Indeed, if we were to apply Proposition 5 directly, we would need to

estimate
´ T

0
‖qw0,K‖L2(Ω) but we can a priori only bound it as

ˆ T

0

‖qw0,K‖L2(Ω) ≤ ‖q‖L∞((0;T )×Ω)

(∑
k=K

a2
K,k

λk,B

) 1
2

,

that is, by a term of order ‖w0,K‖L2((0;T )×Ω), which is not strong enough. We thus have to take
more care when handling this. For this reason, introduce the function

z0,K : (0;T )× Ω 3 (t, x) 7→ tq(t, x)w0,K(t, x)

and define
R0,K := vK − w0,K − z0,K .

As z0,K satisfies

∂tz0,K −∆z0,K = qw0,K + (∂tq −∆q)(tw0,K)− 2t〈∇q,∇w0,k〉

we obtain

∂tR0,K −∆R0,K − qR0,K = qz0,K︸ ︷︷ ︸
=:V0,K

− (∂tq −∆q)(tw0,K)︸ ︷︷ ︸
=:V1,K

+2 t〈∇q,∇w0,k〉︸ ︷︷ ︸
=:V2,K

.

Moreover, notice that there holds
Bz0,K = 0

which in turn implies
BR0,K = 0.

Finally, we have
R0,K(0, ·) = 0 in Ω

by construction. From Proposition 5 there holds, for some constant C > 0 independent of K,

sup
t∈[0;T ]

‖R0,K(t, ·)‖L2(Ω) ≤ C

(ˆ T

0

‖V0,K(t, ·)‖L2(Ω)dt+

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt

+

ˆ T

0

‖V2,K(t, ·)‖L2(Ω)dt

)
.

Now observe thatˆ T

0

‖V0,K(t, ·)‖L2(Ω)dt =

ˆ T

0

t‖q(t, ·)w0,K(t, ·)‖L2(Ω)dt

≤ ‖q‖L∞((0;T )×Ω)

ˆ T

0

t‖w0,K(t, ·)‖L2(Ω)dt

≤ ‖q‖L∞((0;T )×Ω)

(¨
(0;T )×Ω

t2w2
0,K

) 1
2

≤ ‖q‖L∞

√√√√ ∞∑
k=K

a2
K,k

ˆ T

0

t2e−2tλk,Bdt

≤ M

λK,B

√√√√ ∞∑
k=K

a2
K,k

λk,B
.
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In the last step, we applied Proposition 6 with m = 3. We have thus proved

ˆ T

0

‖V0,K(t, ·)‖L2(Ω)dt ≤
C

λK,B

√√√√∑
k=K

a2
K,k

λk,B
. (2.4)

Similarly, we can estimate
´ T

0
‖V1,K(t, ·)‖L2(Ω)dt. Define Q := ∂tq −∆q. Then there holds

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt =

ˆ T

0

‖Q(t, ·)tw0,K(t, ·)‖L2(Ω)dt

≤ C
ˆ T

0

t‖Q(t, ·)‖Lr0 (Ω)‖w0,K(t, ·)‖Lp0 (Ω)

from the Hölder inequality with 1/r0 + 1/p0 = 1/2

≤ C

√ˆ T

0

‖Q(t, ·)‖2Lr0 (Ω)

√ˆ T

0

t2‖w0,K‖2Lp0 (Ω)

from the Cauchy-Schwarz inequality.

We now choose p0 > 2 such that
W 1,2(Ω) ↪→ Lp0(Ω)

and fix the corresponding exponent r0. Then, up to a constant C > 0 we have

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt ≤ C

√ˆ T

0

‖Q(t, ·)‖2Lr0 (Ω)

√ˆ T

0

t2‖w0,K‖2Lp0 (Ω)

≤ C

√ˆ T

0

‖Q(t, ·)‖2Lr0 (Ω)

√ˆ T

0

t2‖∇w0,K‖2L2(Ω).

Now observe that by the Jensen inequality we have, up to a constant still denoted C for notational
convenience

ˆ T

0

‖Q(t, ·)‖2Lr0 (Ω)dt ≤ C

(¨
(0;T )×Ω

|Q|2r0
) 1
r0

= C‖Q‖4L2r0 (0,T ;L2r0 ) = Cr0 <∞. (2.5)

In the last inequality we used Assumption (Hq). All in all, up to a multiplicative constant once
again denoted by C, we have obtained

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt ≤ C

√ˆ T

0

t2‖∇w0,K‖2L2(Ω)dt

= C

√√√√ ∞∑
k=K

λk,Ba2
K,k

ˆ T

0

t2e−2tλk,Bdt

≤ C√
λK,B

√√√√∑
k=K

a2
K,k

λk,B

We have thus obtained

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt ≤
C√
λK,B

√√√√∑
k=K

a2
K,k

λk,B
. (2.6)
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Let us finally estimate V2,K . Define Q1 := ∇q. We need to estimate

ˆ T

0

t‖〈Q1,∇w0,k〉‖L2(Ω)dt. (2.7)

Applying the same Hölder and Cauchy-Schwarz inequalities as above, we have

ˆ T

0

t‖〈Q1,∇w0,k〉‖L2(Ω)dt ≤
ˆ T

0

t‖Q1(t, ·)‖Lr0 (Ω)‖∇w0,K(t, ·)‖Lp0 (Ω)dt

≤ C

√ˆ T

0

t2‖∇w0,K(t, ·)‖2Lp0 (Ω)

where 1/r0 + 1/p0 = 1/2. It remains to estimate the quantity

ˆ T

0

t2‖∇w0,K(t, ·)‖2Lp0 (Ω)dt

for some p′ > 2. However, by the fractional Sobolev embedding [2, Theorem 7.57] (see also [8,
Theorem 3.4, Lemma 4.11]) H1+γ ↪→W 1,p0(Ω), for some γ ∈]0; 1[ and p0 > 2, we have

‖∇w0,k(t, ·)‖2Lp0 (Ω) ≤ ‖w0,k(t, ·)‖2H1+γ(Ω) =

∞∑
k=K

a2
K,kλ

1+γ
k,B e

−tλk,B

so that the last term can be estimated as

ˆ T

0

t2
∞∑
k=K

a2
K,kλ

1+γ
k,B e

−tλk,Bdt ∼K→∞
∞∑
k=K

a2
K,k

λ2−γ
k,B

whence we obtain

ˆ T

0

t‖〈∇Q1,∇w0,k〉‖L2(Ω)dt =

ˆ T

0

‖V2,K(t, ·)‖L2(Ω)dt ≤
C

λ
1−γ
2

K,B

√√√√ ∞∑
k=K

a2
K,k

λk,B
(2.8)

Remark 8. It should be noted that the only property of the potential Q1 = ∇q we used to prove
(2.8) was that q satisfies (Hq).

Summing estimates (2.4)-(2.6)-(2.8) we get that for some constant C and some β > 0 there
holds

sup
t∈[0;T ]

‖R0,K(t, ·)‖L2(Ω) ≤
C

λβK,B

√√√√ ∞∑
k=K

a2
K,k

λk,B
. (2.9)

Furthermore, remembering that z0,K = tq(t, ·)w0,K we have

¨
(0;T )×Ω

z2
0,K ≤ ‖q‖L∞((0;T )×Ω)

¨
(0;T )×Ω

t2w2
0,Kdtdx (2.10)

= ‖q‖L∞((0;T )×Ω)

∞∑
k=K

ˆ T

0

t2a2
K,ke

−2tλK,kdt (2.11)

= 2‖q‖L∞((0;T )×Ω)

∞∑
k=K

a2
K,k

λ3
K,k

(2.12)

= o
K→∞

(
‖w0,K‖2L2((0;T )×Ω)

)
. (2.13)
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We turn back to the function vK . Developing the square root we obtain

¨
(0;T )×Ω

v2
K =

¨
(0;T )×Ω

w2
0,K +

¨
(0;T )×Ω

(R0,K + z0,K)2 + 2

¨
(0;T )×Ω

w0,K(R0,K + z0,K)

From (2.9)-(2.10) and the algebraic inequality |a+ b|2 ≤ 2(a2 + b2) we deduce

¨
(0;T )×Ω

(R0,K + z0,K)2 ≤ 2

(¨
(0;T )×Ω

R2
0,K +

¨
(0;T )×Ω

z2
0,K

)
= o
K→∞

(
‖w0,K‖2L2((0;T )×Ω)

)
.

Similarly, by the Hölder inequality,

¨
(0;T )×Ω

w0,K(R0,K + z0,K) = o
K→∞

(
‖w0,K‖2L2((0;T )×Ω)

)
.

Thus ¨
(0;T )×Ω

v2
K =

¨
(0;T )×Ω

w2
0,K + o

K→∞

(
‖w0,K‖2L2((0;T )×Ω)

)
.

As ¨
(0;T )×Ω

w2
0,K ∼K→∞

∞∑
k=K

a2
K,k

λk,B

the proof is finished.

2.4 Step 3: Controlling the support in time

The goal of this paragraph is the following lemma:

Lemma 9. For any closure point ν∞ of the sequence {νK}K∈IN (defined in the statement of
Theorem II) there holds

supp(ν∞) ⊂ {t = 0} × Ω. (2.14)

As we shall see, this is an almost straightforward consequence of the computations carried out
in the proof of Lemma 7.

Proof of Lemma 9. From Lemma 7 we know that for some constant c0 > 0 we have

¨
(0;T )×Ω

v2
K ≥ c0

∞∑
k=K

a2
K,k

λk,B
.

To prove (2.14) it suffices to prove that, for any ε > 0,

¨
(ε;T )×Ω

v2
K = o

K→∞

( ∞∑
k=K

a2
K,k

λk,B

)
.

Using the same notations as in the proof of Lemma 7 we have

¨
(ε;T )×Ω

v2
K =

¨
(ε;T )×Ω

(vK − w0,K − z0,K)2 (=: I1,K)

+ 2

¨
(ε;T )×Ω

(v0,K − w0,K − z0,K)(w0,K + z0,K) (=: I2,K)

+

¨
(ε;T )×Ω

(w0,K + z0,K)2 (=: I3,K).
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As in the proof of Lemma 7 we have

I1,K , I2,K = o
K→∞

( ∞∑
k=K

a2
K,k

λk,B

)
.

It remains to estimate I3,K . However, up to a multiplicative constant C we have

I3,K =

¨
(ε,T )×Ω

(w0,K + z0,K)2

≤ C

(¨
(ε;T )×Ω

w2
0,K +

¨
(ε;T )×Ω

z2
0,K

)

≤ C

(¨
(ε;T )×Ω

w2
0,K +

¨
(0;T )×Ω

z2
0,K

)

≤ C

(¨
(ε;T )×Ω

w2
0,K + o

K→∞
(‖w0,K‖2L2((0;T )×Ω))

)
from (2.10)

Moreover, for a constant C

¨
(ε;T )×Ω

w2
0,K =

∞∑
k=K

a2
K,k

ˆ T

ε

e−tλkdt

≤ Ce−ελK,B
∑
k=K

a2
K,k

λk,B

= o
K→∞

(
‖w0,K‖2L2((0;T )×Ω))

)
so that

I3,K = o
K→∞

(
‖w0,K‖2L2((0;T )×Ω)

)
.

Summarising, we have obtained

¨
(ε;T )×Ω

v2
K = o

K→∞
(‖w0,K‖2L2((0;T )×Ω)) = o

K→∞

(
‖vK‖2L2((0;T )×Ω)

)
.

Thus, for any test function φ ∈ C 0
c ([ε;T ]× Ω), (the limit is taken along a subsequence)

〈ν∞, φ〉 = lim
K→∞

¨
(0;T )×Ω

νKφ

= lim
K→∞

¨
(ε;T )×Ω

νKφ

≤ ‖φ‖L∞((0;T )×Ω) lim
K→∞

˜
(ε;T )×Ω

v2
K˜

(0;T )×Ω
v2
K

= 0.

The conclusion follows.

2.5 Step 4: Controlling the support in space

The goal of this paragraph is the following result:
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Lemma 10. For any closure point ν∞ of the sequence {νK}K∈IN (defined in the statement of
Theorem II) there holds

supp(ν∞) ⊂ [0;T ]× ω. (2.15)

Proof of Lemma 10. To prove (2.15) it suffices to prove the following: for any open set F ⊂ Ω such
that dist(F , ω) > 0 (remember that ω is closed), for any φ ∈ C 0([0;T ] × Ω) such that for any t
φ(t, ·) ∈ C 0

c (F ), there holds
〈ν∞, φ〉 = 0.

Here ν∞ is a closure point of the sequence {νK}K∈IN. Hence, fix an open set F ⊂ Ω such that

dist(F , ω) > 0. We consider a smooth function θ ∈ C∞c (Ω) such that

θhK = hK .

This amounts to requiring that supp(hK) ⊂ {θ = 1}. Furthermore, we require that

θ ≡ 0 in F .

We now look for a two-scale like asymptotic expansion of the solution vK in terms of θ. Introduce
(with the notations of Lemma 7)

η0,K,θ := θ(x)

∞∑
k=K

aK,kϕk,Be
−tλk,B = θ(x)w0,K(t, x)

and
R0,K,θ := vK − η0,K,θ.

The function R0,K,θ satisfies

∂tR0,K,θ −∆R0,K,θ − qR0,K,θ = 2〈∇θ,∇w0,K〉+ (∆θ)w0,K + qη0,K,θ.

Define
G := ∆θ + qθ.

The equation on R0,K,θ rewrites

∂tR0,K,θ −∆R0,K,θ = 2〈∇θ,∇w0,K〉+Gw0,K .

We can hence split R0,K,θ as
R0,K,θ = r1,K,θ + 2r2,K,θ

where 
∂tr1,K,θ −∆r1,K,θ = Gw0,K in (0;T )× Ω ,

∂tr2,K,θ −∆r2,K,θ = 〈∇θ,∇w0,K〉 in (0;T )× Ω ,

Brj,K,θ = 0 on (0;T )× ∂Ω , (j = 1, 2),

rj,K,θ(0, ·) = 0 in Ω , (j = 1, 2).

We estimate r1,K,θ and r2,K,θ separately.

Estimate on r1,K,θ Introducing
z1,K,θ := tGw0,K

we show, exactly as in the proof of Lemma 7, that

sup
t∈[0;T ]

‖r1,K,θ(t, ·)− z1,K,θ(t, ·)‖L2(Ω) = o
K→∞

( ∞∑
k=K

a2
K,k

λk,B

)
.
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Indeed, it suffices to observe that with the assumptions on q, and as θ ∈ C∞c (Ω), G also satisfies
Assumption (Hq). Furthermore, for any t ∈ [0;T ],

‖z1,K,θ(t, ·)‖L2((0;T )×Ω) ≤ ‖G‖L∞(Ω)

√√√√ ∞∑
k=K

a2
K,k

ˆ T

0

t2e−2tλk,B

= o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

Thus,

‖r1,K,θ‖L2((0;T )×Ω) = o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

Estimate on r2,K,θ Let us first reason heuristically. Formally, we should have

r2,K,θ ≈ t〈∇θ,∇w0,K〉 =

〈
∇θ, t

∞∑
k=K

aK,k∇ϕke−tλk,B
〉

=: r̃2,K,θ.

Let us first estimate r̃2,K,θ. We have, up to a multiplicative constant C,

ˆ T

0

‖r̃2,K,θ‖L2(Ω)dt ≤ C

(∑
k=K

a2
K,kλk,B

ˆ T

0

t2e−2tλk,Bdt

)1/2

≤ C

( ∞∑
k=K

a2
K,k

λ2
K,k

) 1
2

= o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

Consider now
rK := r2,K,θ − r̃2,K,θ

The function rK satisfies

∂trK −∆rK − qrK = qr̃2,K,θ + 〈∇∆θ, t∇w0,K〉︸ ︷︷ ︸
=:JK

+ 2t
(
∇2θ �∇2w0,K

)︸ ︷︷ ︸
=:IK

where � denotes the Hadamard product of matrices. Adapting the computation that led to
estimating r̃2,K,θ we see that the solution β1,K of

∂tβ1,K −∆β1,K − qβ1,K = JK

satisfies

‖β1,K‖L2((0;T )×Ω) = o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 . (2.16)

Thus the only term that should be estimated is the solution r̃K of

∂tr̃K −∆r̃K − qr̃K = t
(
∇2θ �∇2w0,K

)
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We introduce two last auxiliary functions, namely,

r̃3,K,θ :=
t2

2

(
∇2θ �∇2w0,K

)
, T̃K := r̃K − r̃3,K,θ.

On the one hand we have

∂tT̃K −∆T̃K − qT̃K = qr̃3,K,θ +
t2

2
∇2∆θ �∇2w0,K + t2∇∇2θ �∇2∇w0,K .

On the other hand, up to a multiplicative constant C,

ˆ T

0

t2‖∇2θ �∇2w0,K‖L2(Ω)dt ≤ C
ˆ T

0

t2‖θ‖C 2(Ω)‖∇2w0,K(t, ·)‖L2(Ω)dt

≤ C
ˆ T

0

t2‖∆w0,K(t, ·)‖L2(Ω)dt by elliptic regularity

≤ C

(ˆ T

0

t4
∞∑
k=K

a2
K,kλ

2
k,Be

−2tλk,B

) 1
2

≤ C

( ∞∑
k=K

a2
K,k

λ3
k,B

) 1
2

= o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

Finally, up to a multiplicative constant, we have

ˆ T

0

t2‖∇∇2θ �∇2∇w0,K(t, ·)‖L2(Ω)dt ≤ C
ˆ T

0

t2‖∆∇w0,K(t, ·)‖2L2(Ω)dt by elliptic regularity

≤ C

(ˆ T

0

∑
a2
K,kt

4λ3
k,Be

−2tλk,Bdt

)1/2

≤ C

( ∞∑
k=K

a2
K,k

λ2
k,B

) 1
2

= o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

We can hence conclude that

‖r2,K,θ‖L2((0;T )×Ω) = o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 (2.17)

and, thus, that

‖vK − η0,K,θ‖L2((0;T )×Ω) = o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 . (2.18)

Recall now from Lemma 7 that

¨
(0;T )×Ω

v2
K ≥ c0

∞∑
k=K

a2
K,k

λk,B
.
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Now let us turn back to the set F , and take any φ ∈ C 0([0;T ] × Ω) such that for any t φ(t, ·) ∈
C 0
c (F ). As νK , ν∞ ≥ 0, we may take φ ≥ 0. Fix a closure point ν∞ of the sequence {νK}K∈IN.

Then

〈ν∞, φ〉 = lim
K→∞

〈νK , φ〉

= lim
K→∞

˜
(0;T )×Ω

v2
Kφ˜

(0;T )×Ω
v2
K

= lim
K→∞

˜
(0;T )×Ω

η2
0,K,θφ+

˜
(0;T )×Ω

(vK − η0,K,θ)
2φ+ 2

˜
(0;T )×Ω

η0,K,θ(vK − η0,K,θ)˜
(0;T )×Ω

v2
K

.

As η0,K,θ = θw0,K ≡ 0 on F by the definition of θ, and as φ is supported in F ,
¨

(0;T )×Ω

η2
0,K,θφ = 0.

Thus

〈ν∞, φ〉 = lim
K→∞

˜
(0;T )×Ω

η2
0,K,θφ+

˜
(0;T )×Ω

(vK − η0,K,θ)
2φ+ 2

˜
(0;T )×Ω

η0,K,θ(vK − η0,K,θ)˜
(0;T )×Ω

v2
K

= lim
K→∞

˜
(0;T )×Ω

(vK − η0,K,θ)
2φ+ 2

˜
(0;T )×Ω

η0,K,θ(vK − η0,K,θ)˜
(0;T )×Ω

v2
K

≤ ‖φ‖L∞((0;T )×Ω) lim
K→∞

‖vK − η0,K,θ‖2L2((0;T )×Ω) + ‖η0,K,θ‖L2(Ω)‖vK − η0,K,θ‖L2(Ω)˜
(0;T )×Ω

v2
K

By definition of η0,K,θ,

‖η0,K,θ‖L2((0;T )×Ω) ≤ ‖θ‖L∞(Ω)‖w0,K‖L2((0;T )×Ω) ≤ C‖vK‖L2((0;T )×Ω)

for a constant C. In the last inequality we used Lemma 7. Combined with Estimate (2.18) this
gives

〈ν∞, φ〉 ≤ ‖φ‖L∞((0;T )×Ω) lim
K→∞

‖vK − η0,K,θ‖2L2((0;T )×Ω) + ‖η0,K,θ‖L2(Ω)‖vK − η0,K,θ‖L2(Ω)˜
(0;T )×Ω

v2
K

= 0,

whence the conclusion.

3 Proof of Theorem I

The strategy of the proof is to reduce ourselves to the setting of Theorem II. In other words, we
need to explain why it is possible to use dirac (in time) type perturbations h, so that the equation
(1.5) on u̇y reduces to a Cauchy problem). To explain why such a construction is possible, we need
to give a few words about the optimality conditions for (P) and the admissible perturbations.

First of all, we argue once again by contradiction and we take δ > 0 such that

ω∗ := {−κ0 < y∗ < κ1} ∩ {Zy∗ ≥ δ}

has positive measure. By inner regularity of the Lebesgue measure we further assume

ω∗ is closed. (3.1)
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We know that, for any admissible perturbation h at y∗ supported in ω∗, we have J̇(y∗)[h] = 0. To
reach a contradiction, it suffices to construct an admissible perturbation h supported in ω∗ such
that J̈(y∗)[h, h] > 0.

The main difficulty lies in the structure of the cone of admissible perturbations. This cone,
which we denote T (y) at y ∈ F is defined [10] as follows: h ∈ L1(0, T ;L1(Ω)) ∩ L∞((0;T )× Ω) is
admissible at y if and only if for any sequence {εk}k∈IN that converges to 0, there exists a sequence
{hk}k∈IN ∈ L1(0, T ;L1(Ω))∩L∞((0;T )× Ω) such that hk →

k→∞
h in L2(0, T ;L2(Ω)) and such that

for any k ∈ IN y + εkhk ∈ F . Ideally, we would choose a perturbation h of the form

h = δt=t0h0(x) (3.2)

where t0 ∈ (0;T ), for any function h0 with zero mean value and supported in the slice ({t =
t0} × Ω) ∩ ω∗. Indeed, if the perturbation h is of the form (3.2) the associated u̇y∗ should solve

∂tu̇y∗ −∆u̇y∗ = ∂uf(t, x, uy∗)u̇y∗ in (t0;T ) ,

Bu̇y∗ = 0 on (t0;T )× ∂Ω ,

u̇y∗(t = t0, ·) ≡ h0 in Ω ,

(3.3)

extended by 0 in (0; t0)×Ω and, provided u̇y∗ ∈ L2(0, T ;L2(Ω)), we would like to say that in that
case, if y∗ is an optimiser, then ¨

(0;T )×Ω

Zy∗ u̇
2
y∗ ≤ 0.

In other words, we wish to prove that optimality conditions extend to perturbations h that write
as (3.2), that is, as measures in time. If we can do this, then we will be able to use Theorem II.
Thus we start by proving the following proposition (note that we denote the solutions of equations
of the type (3.3) by v̇, and retain the notation u̇ for the “standard” notion of Fréchet derivative):

Proposition 11. For almost every t0 ∈ (0;T ) such that ω∗t0 := ({t = t0} × Ω) ∩ ω has positive
measure, for any h0 ∈ L2(Ω) supported in ω∗t0 , extended by zero outside of ω∗t0 and such that´

Ω
h0 = 0, letting v̇ be the solution of (3.3) associated with h0, there holds

¨
(0;T )×Ω

Zy∗ v̇
2 ≤ 0.

Conclusion of the proof of Theorem I using Proposition 11 Let us show how the proof
of Theorem I follows from Proposition 11. Fix t0 such that Vol(ω∗t0) > 0. From the arguments of
[17, Proof of Theorem 1] we know that, for any K ∈ IN, we may choose hK supported in ω∗t0 such
that hK writes

hK =
∑
k≥K

aK,kϕk,B ,
∞∑
k=K

a2
K,k = 1 ,

ˆ
ω∗t0

hK = 0.

Define, for any K ∈ IN, v̇K,y∗ as the solution of (3.3) associated with hK . From Proposition 11,

∀K ∈ IN ,

¨
(0;T )×Ω

Zy∗ v̇
2
K,y∗ +

ˆ
Ω

∂2
uuj2|uy∗ v̇

2
K,y∗ = J̈(y∗)[hK , hK ] ≤ 0. (3.4)

Set now

νK :=
v̇2
K,y∗˜

(0;T )×Ω
v̇2
K,y∗

and choose ν∞ to be a closure point (in the sense of measures) of {νK}K∈IN. Observe that νK can

be considered as a measure in [t0;T ] × Ω as v̇K,y∗ ≡ 0 in [0; t0). As Zy∗ ∈ C 0([t0;T ] × Ω) from
standard parabolic regularity, dividing (3.4) by

˜
(0;T )×Ω

v̇2
K,y∗ and passing to the limit, we obtain

〈ν∞, Zy∗〉 ≤ 0.
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By parabolic regularity, ∂uf(t, x, uy∗) satisfies (Hq). We can hence apply Theorem II: ν∞ is
supported in {t = t0} × ω∗t0 . As Zy∗ ≥ δ on ω∗t0 and as ν∞ ≥ 0 we have

δ = δ〈ν∞,1[0;T ]×Ω〉 ≤ 〈ν∞, Zy∗〉 ≤ 0,

a contradiction. This concludes the proof.
Thus, only Proposition 11 remains to be proved.

Proof of Proposition 11. Measure approximation of δt=t0h0

We know from [13, Theorem 8.19] that almost every t ∈ (0;T ) is an L1(Ω)-Lebesgue point of
1ω in the sense that

lim
ε→0

 t+ε

t−ε
‖1ω(s, ·)− 1ω(t, ·)‖L1(Ω)ds = 0. (3.5)

Let t0 be a Lebesgue point such that ω∗t0 has positive d-dimensional measure and let h0 ∈ L2(Ω).
By a standard approximation argument, it suffices to prove the proposition for h0 ∈ L∞(Ω).

Now set, for almost every s ∈ (0;T ), ω∗s := ({t = s} × Ω) ∩ ω∗ and define, for ε > 0,

hε :=
1

ε
1(t0−ε;t0+ε)×Ω1ω∗(t, x)

(
h0 −

 
ω∗t

h0

)
(3.6)

Clearly hε is an admissible perturbation at y∗. Furthermore observe that in the sense of measures
we have

hε ⇀
ε→0

h0 (3.7)

Indeed, for any test function Φ ∈ C 0((0;T )× Ω) which me way assume to satisfy ‖Φ‖L∞((0;T )×Ω) =
1, we have∣∣∣∣∣

¨
(0;T )×Ω

hεΦ−
ˆ

Ω

h0Φ(t0, ·)

∣∣∣∣∣ ≤
∣∣∣∣∣
¨

(0;T )×Ω

hεΦ(t0, ·)−
ˆ

Ω

h0Φ(t0, ·)

∣∣∣∣∣ (=: Iε1)

+

∣∣∣∣∣
¨

(0;T )×Ω

hε (Φ− Φ(t0, ·))

∣∣∣∣∣ (=: Iε2)

By continuity of Φ and as hε is (uniformly bounded) Radon measure with support in (t0 − ε; t0 +
ε)× Ω, we have Iε2 →

ε→0
0. For Iε1 , using ‖Φ‖L∞((0;T )×Ω) ≤ 1, we have the estimate

Iε1 ≤
 t+ε

t−ε

∣∣∣∣ˆ
Ω

hε − h0

∣∣∣∣
≤ ‖h0‖L∞(Ω)

 t0+ε

t0−ε
‖1ω∗ − 1ω∗t0 ‖L1(Ω) (=: Jε1 )

+

 t0+ε

t0−ε

∣∣∣∣∣
 
ω∗t

h0

∣∣∣∣∣ (=: Jε2 )

Jε1 converges to 0 as ε converges to zero as t0 was chosen as a Lebesgue point. Furthermore, using
the fact that

ffl
ω∗t0

h0 = 0, Jε2 can be estimated as

0 ≤ Jε2 ≤
 t0+ε

t0−ε

∣∣∣∣∣
 
ω∗t

h0 −
 
ω∗t0

h0

∣∣∣∣∣ ≤ ‖h0‖L∞(Ω)

 t0+ε

t0−ε
‖1ω∗ − 1ω∗t0 ‖L1(Ω)

which also converges to 0 as t0 is a Lebesgue point.
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As a consequence, we constructed a sequence of admissible perturbations that converges in the
sense of measures to δt=t0h0. To conclude the proof we need to guarantee the convergence of the
solutions of (1.5) to v̇y, the solution of (3.3).

Convergence of the solutions
For any ε > 0 we let u̇ε be the solution of (1.5) associated with hε, and v̇y be the solution of

(3.3) associated with h0. Let us show

‖u̇ε − v̇y‖L2(0,T ;L2(Ω)) →
ε→0

0. (3.8)

This suffices to show that ¨
(0;T )×Ω

Zy∗ v̇
2
y = lim

ε→0

¨
(0;T )×Ω

Zy∗ u̇
2
ε ≤ 0

and thus provides the conclusion of the proof. (3.8) follows from two ingredients: one is a general
result of Boccardo & Gallouët [5, Section IV, Theorem 4] that among other things guarantees
the well-posedness of the equations at hand, while the second takes advantage of the particular
structure of hε. Let us start with the following theorem:

Theorem. [5, Section IV, Theorem 4] LetM((0;T )× Ω) be the set of Radon measures on (0;T )× Ω.
Let f ∈M((0;T )× Ω). There exists a unique solution θf to{

∂θf
∂t −∆θf = f in (0;T )× Ω ,

θf (t = 0, ·) = 0 ,
(3.9)

that further satisfies the following regularity estimates:

1. ‖θf‖L∞(0,T ;L1(Ω)) ≤ c‖f‖M((0;T )×Ω) for some constant c = c(Ω),

2. for any q ∈
[
1; d+2

d+1

)
there exists a constant cq = cq(Ω, T ) such that

‖θf‖Lq(0,T ;W 1,q(Ω)) ≤ cq‖f‖M((0;T )×Ω),

3. for any q ∈
[
1; d+2

d+1

)
, the map f 7→ θf is continuous for the strong Lq(0, T ;W 1,q(Ω)) topology

on θ.

As we need to apply this regularity result to the solution of an equation with a (bounded)
potential we give a more suitable statement, which is just a corollary of Theorem 3.

Lemma 12. Let W ∈ L∞((0;T )× Ω), f ∈M((0;T )× Ω). There exists a unique solution ηf to{
∂ηf
∂t −∆ηf −Wηf = f in (0;T )× Ω ,

ηf (t = 0, ·) = 0 ,
(3.10)

that further satisfies the following regularity estimates:

1. ‖ηf‖L∞(0,T ;L1(Ω)) ≤ c‖f‖M((0;T )×Ω) for some constant c = c(Ω, ‖W‖L∞((0;T )×Ω)),

2. for any q ∈
[
1; d+2

d+1

)
there exists a constant cq = cq(Ω, T, ‖W‖L∞((0;T )×Ω)) such that

‖ηf‖Lq(0,T ;W 1,q(Ω)) ≤ cq‖f‖M((0;T )×Ω),

3. for any q ∈
[
1; d+2

d+1

)
, the map f 7→ ηf is continuous for the strong Lq(0, T ;W 1,q(Ω)) topology

on u.
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Proof of Lemma 12. We let θf be the solution of (3.9) and we let z be the (unique) L2(0, T ;W 1,2
0 (Ω))

solution of 
∂z
∂t −∆z −Wz = Wθf in (0;T )× Ω ,

zf = 0 on (0, T )× ∂Ω ,

zf (t = 0, ·) = 0 in Ω.

(3.11)

Clearly z + θf is a solution of (3.10) and the Lq(0, T ;W 1,q(Ω)) estimates on z follow from the
estimates of Theorem 3 and from standard elliptic regularity. The conclusion follows.

Consequently, we can conclude that

u̇ε →
ε→0

v̇y in Lq(0, T ;W 1,q(Ω)) for any q <
d+ 2

d+ 1
. (3.12)

Let us now exploit the particular structure of hε. Noticing that

∀ε > 0 , ‖hε‖L2(0,T ;L2(Ω)) ≤
2‖h0‖L∞(Ω)

ε

ˆ T

0

1(t0−ε;t0+ε)(s)ds

≤ 2‖h0‖L∞(Ω).

Consequently, from standard parabolic estimates,

sup
ε→0
‖uε‖L2(0,T ;W 1,2(Ω)) ,

∥∥∥∥∂uε∂t
∥∥∥∥
L2(0,T ;W 1,2(Ω)

<∞

whence the Aubin-Lions lemma entails that uε has a strong L2(0, T ;L2(Ω)) closure point. From
(3.12) this closure point must be vy, which concludes the proof of (3.8).
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