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Optimality conditions for the linear optimal control of

non-linear equations via a Laplace type method and

two-scales like expansions

Idriss Mazari, Grégoire Nadin

June 21, 2022

Abstract

We propose a fine analysis of second order optimality conditions for the optimal control of
semi-linear parabolic equations with respect to the initial condition. More precisely, we inves-
tigate the following problem: maximise with respect to u0 ∈ L∞(Ω) or y ∈ L∞((0;T )× Ω) the
cost functional J(u0, y) =

˜
(0;T )×Ω

j1(t, x, u) +
´

Ω
j2(x, u(T, ·)) where ∂tu−∆u = f(t, x, u) +

y , u(0, ·) = u0 with some classical boundary conditions, under constraints of the form −κ0 ≤
u0 , y ≤ κ1 a.e. ,

´
Ω
u0 =

´
Ω
y(t, ·) = V0. This class of problems arises in several application

fields. A challenging feature of these problems is the study of the so-called abnormal sets
{−κ0 < u∗0 < κ1} , {−κ0 < y∗ < κ1} where u∗0 , y

∗ are optimisers. These sets are in general
non-empty and it is important (for instance for numerical applications) to understand the
behaviour of u∗0 , y

∗ in this set: which values can u∗0 , y
∗ take? In this paper, we introduce a

Laplace-type method to provide some answers to this question. This Laplace type method is
of independent interest.

Keywords: Reaction-diffusion equation, semi-linear parabolic equation, optimal control, second
order optimality conditions, shape optimisation, two-scale expansions.
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1 Introduction and main result

1.1 Scope and objective of the article

An ubiquitous query in PDE constrained optimisation is that of optimisation with respect to the
initial condition or with respect to the source term in parabolic models. While several works [7, 21,
22, 23] tackle the delicate issue of analysing second (and first) order optimality conditions under
a wide class of constraints and penalisations, these works often fail to offer conclusive information
in the context of L∞ −L1 constrained control problems. These type of constraints arise naturally
in the context of population dynamics [16], and the recent activity in the analysis of these optimal
control problems, whether it be in the elliptic [18] or in the parabolic setting [1, 10], has underlined
the underlying mathematical challenges. While previous works are discussed in section 1.6 let us
mention here that, in the present paper, motivated by such applications in the optimal control
of population dynamics, we consider a general optimisation problem for heterogeneous semi-linear
parabolic equations.
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The main difficulty in this endeavour is that the optimality conditions typically involve the
use of an adjoint state, defined as the solution of a (backward) parabolic equation on the entire
space-time domain so that localising the optimality conditions is quite challenging. The method
we propose here allows to localise these optimality conditions in time and in space and to provide
unexpected results.

Besides being relevant for the numerical approximation of such optimal control problems [17],
our results shed a new light on the qualitative properties of solutions of linear optimal control
problems. Furthermore, in exploiting these optimality conditions, we develop a Laplace-type method
that deals with the limit behaviour of solutions to linear parabolic equations when the initial
condition is a sum of highly oscillating frequencies. Our result is related to two-scale asymptotic
expansions. What is notable here is that we prove a result that does not assume a scale separation,
unlike what is usually done in this context [3].

1.2 State equation

We begin by describing the state equation under consideration.

State equation Throughout the paper, Ω ⊂ IRd is a bounded open set with a C 2 boundary. We
choose a boundary condition operator B as follows

B : u 7→

{
u (Dirichlet case)
∂u
∂ν (Neumann case).

We work with a non-linearity f = f(t, x, u) that satisfies for the time being (additional assumptions
related to its higher derivatives are detailed below){

For any compact K ⊂ IR,f, ∂uf, are bounded over [0, T ]× Ω× IR,

∃M > 0 ,∀u ≥M ,∀(t, x) ∈ (0;T )× Ω , f(t, x, u) ≤ 0 , f(t, x,−u) ≥ 0.
(Hexist

f )

For any initial condition u0 ∈ L∞(Ω) and any source term y ∈ L1(0, T ;L1(Ω)) ∩ L∞((0;T )× Ω)
we define uu0,y as the solution of

∂tuu0,y −∆uu0,y = f(t, x, uu0,y) + y in (0;T )× Ω ,

Buu0,y = 0 on (0;T )× ∂Ω ,

uu0,y(0, ·) = u0 in Ω,

(1.1)

where T > 0 is a fixed time horizon. By the standard theory of non-linear parabolic equations [15],
for any initial condition u0 ∈ L∞(Ω) and any source y ∈ L1(0, T ;L1(Ω)) ∩ L∞((0;T )× Ω), there
exists a unique solution uu0 to (1.1). More regularity properties of the solution uu0,y are given in
Lemma 12.

Our goal is to optimise a fairly general class of criteria with respect to u0 and y. For the sake
of readability we distinguish these two types of optimisation.

1.3 First optimal control problem: optimisation w.r.t to the initial con-
dition

1.3.1 Context

Here, we study the optimisation with respect to u0 and we assume that y ≡ 0 in (1.1). For
notational convenience we write uu0,y≡0 = uu0

.
We fix two cost functions j1 = j1(t, x, u) , j2 = j2(x, u) and define

J : L∞(Ω) 3 u0 7→
¨

(0;T )×Ω

j1 (t, x, uu0
(t, x)) dxdt+

ˆ
Ω

j2 (x, uu0
(T, x)) dx.
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We need to define the class of admissible controls we work with. As is often the case in applications,
we enforce two constraints, an L∞ one and an L1 one. In other words we fix three constants
0 ≤ κ0 < κ1 and V0 ∈ (0; 1), and we define the class of admissible controls as

A :=

{
u0 ∈ L∞(Ω) : −κ0 ≤ u0 ≤ κ1 almost everywhere ,

 
Ω

u0 = V0

}
. (Adm)

The optimisation problem under scrutiny throughout this article is

max
u0∈A

J(u0) (P)

We used a max instead of sup; indeed, under mild assumptions (typically, the continuity of f, j1 , j2
in u) the existence of an optimal initial datum u∗0 is immediate. It should be noted that working
in the class A is justified in the context of mathematical biology by modelling considerations,
but also from the theoretical point of view, as A corresponds to the natural relaxation of the set
{κ11E − κ01Ec , E ⊂ Ω ,Vol(E) = V0+κ0

κ0+κ1
Vol(Ω)} in the L∞ − ∗ topology.

Optimality conditions for (P) The main contribution of this article is the analysis of the
optimality conditions of (P). We first need to describe these optimality conditions (we explain in
section 1.6 prior works and why they fail, in the present case, to give satisfactory answers).The
first (and second) order Gateaux-differentiability of the functional J hinges on that of the map
u0 7→ uu0 . Similar to [19, Lemma 3.2], we have the following lemma.

Lemma 1. The map S : A 3 u0 7→ uu0
is twice Gateaux-differentiable at u0. For any u0 ∈ A,

for any perturbation h ∈ L∞(Ω), the first order Gateaux-derivative of the functional J at u0 in the
direction h is given by

J̇(u0)[h] =

¨
(0;T )×Ω

u̇u0

∂j1
∂u

(t, x, uu0) +

ˆ
Ω

u̇u0

∂j2
∂u

(x, uu0(T, ·)) =

ˆ
Ω

pu0(0, x)h(x)dx (1.2)

where pu0
is the solution of

∂tpu0 + ∆pu0 = −∂j1∂u (t, x, uu0)− ∂uf(t, x, uu0)pu0 in (0;T )× Ω ,

Bpu0
= 0 on (0;T )× ∂Ω ,

pu0
(T, ·) = ∂j2

∂u (x, uu0
) in Ω.

(1.3)

Similarly, the second order Gateaux-derivative of the functional J at u0 in the direction (h, h) is
given by

J̈(u0)[h, h] =

¨
(0;T )×Ω

(
u̇2
u0
pu0

∂2f

∂u2
(t, x, uu0) + u̇2

u0

∂2j1
∂u2

(t, x, uu0)

)
+

ˆ
Ω

u̇2
u0

(T, x)
∂2j2
∂u2

(x, uu0), (1.4)

where u̇u0
is the unique solution of

∂tu̇u0 −∆u̇u0 = ∂uf(t, x, uu0)u̇u0 in (0;T )× Ω ,

Bu̇u0 = 0 on (0;T )× ∂Ω ,

u̇u0
(0, ·) = h in Ω.

(1.5)

The solution pu0
of (1.3) is called the adjoint of (P); it encodes the first order optimality

conditions for (P), as shown by the following result, adapted from [19, Theorem 2.1]:
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Proposition 2. Let u∗0 be a solution of (P). Then there exists c ∈ IR such that
u∗0(x) = κ1 if pu0

(0, x) > c,

u∗0(x) = −κ0 if pu0
(0, x) < c,

{pu0
(0, ·) = c} ⊂ {−κ0 < u∗0 < κ1}.

where pu0 is defined by (1.3).

However, this is not a fully satisfactory characterisation of optimisers. Essentially, it can
be proved that this optimality conditions entail the existence of a function f̃ such that, for
any optimiser u∗0, we have, on {−κ0 < u∗0 < κ1}, an equation of the form ∂uf(0, x, uu∗0 ) =

f̃(pu0
(0, x) , ∂tpu0

(0, x)), see [19]. However when f is neither concave nor convex in u, this equa-
tion can have multiple roots. As was observed in [17, 19] this is problematic when dealing with
numerical approximations of the problem. For this reason it is necessary to exploit second order
optimality conditions. Of course, the main difficulty with the expression of J̈ given in Lemma 1 is
that the expression is distributed over (0;T )× Ω while we would need a localised information, at
t = 0. This is the purpose of Theorem I.

1.3.2 Main results about second order optimality conditions

Regularity assumptions As we hinted at earlier, obtaining our result requires more regularity
on f , j1 , j2. We assume that the nonlinearity f and the cost functions j1, j2 satisfy

for any compact K ⊂ IR, f, j1, ∂uf, ∂uj1, ∂uuf, ∂tuf,∇∂uf,∆∂uf, ∂uuuf, j2 , ∂uj2 , ∂2
uuj2

are bounded over [0, T ]× Ω×K,
∂2f
∂u2 , ∂uuj1 ∈ C 0([0;T ];L1

loc(Ω× IR)),

∃M > 0 ,∀u ≥M ,∀(t, x) ∈ (0;T )× Ω , f(t, x, u) ≤ 0 , f(t, x,−u) ≥ 0.

(Hreg)
Typical examples of functions satisfying these regularity assumptions are functions f , j1 , j2 tak-
ing the form h(t, x)g(u) with h ∈ L∞(Ω) and g ∈ C 3(IR). Natural examples in the field of
population dynamics would be f = f(u) = u(u − θ)(1 − u) (bistable nonlinearity), j1 = 0 and
j2 = j2(x, u) = 1ω(x)u, which corresponds to optimising a proportion of sane mosquitoes within a
global population [4, 17].

Our main result Our main result is the following:

Theorem I. Let u∗0 be a maximiser of J over A. Let ω := {−κ0 < u∗0 < κ1} and assume that
Vol(ω) > 0. Then

Wu∗0
(0, ·) ≤ 0 a.e. in ω

where for any u0 ∈ A:

Wu0(t, x) := pu0

∂2f

∂u2
(t, x, uu0) +

∂2j1
∂u2

(t, x, uu0).

Comments on Theorem I This result is a much stronger version of [17, Theorem 1], where
this property was derived on the interior of the set {−κ0 < u∗0 < κ1}, in the one-dimensional
case for j1 ≡ 0 and j2 ≡ u. In [17] this characterisation is then used to considerably speed-
up the running time of numerical simulations. However, as is often the case in optimal control
theory, there is no guarantee that {−κ0 < u∗0 < κ1} actually has a non-empty interior: it might
a priori be a very irregular set such as Cantor set for example. In this paper, we prove that
Wu∗0

(0, ·) ≤ 0 holds almost everywhere without such strong topological assumption on the abnormal
set ω := {−κ0 < u∗0 < κ1}. Furthermore, our present result holds in any dimension.

The following corollary immediately follows from Theorem I:
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Corollary 3. If j1(0, x, ·) and f(0, x, ·) are convex in u for all x ∈ Ω, with either ∂2f
∂u2 (0, x, u) > 0

or ∂2j1
∂u2 (0, x, u) > 0 for all (x, u) ∈ Ω × IR, then any maximiser u∗0 of J over A is bang-bang, in

the sense that u∗0(x) ∈ {−κ0, κ1} for almost every x ∈ Ω.

Another interesting consequence of Theorem I is that the changes of concavity in f over the
course of time does not matter in the following sense: assume ∂uj1 , ∂uj2 ≥ 0 (and non-identically
zero) so that by the strong maximum principle applied to (1.3) we obtain pu0

> 0. Assume that
f = f(t, x, u) is chosen so that f(0, x, ·) is convex in u and such that there exists ε > 0 satisfying
that for any t ≥ ε f(t, x, ·) is concave. Then any solution u∗0 of the optimisation problem is bang-
bang, in the sense that {−κ0 < u∗0 < 1} has zero Lebesgue measure. This property is not at all
obvious from the distributed expression of J̈ .

Finally, observe that Theorem I gives an explicit description of the competition between the
concavity/convexity of the non-linearity of the equation, and that of the cost function j1.

1.4 Second optimal control problem: optimisation w.r.t the source term

1.4.1 Context

Here, we study the optimisation with respect to the source term y and we assume that u0 ≡ 0 in
(1.1). For notational convenience we write uu0,y≡0 = uy.

We fix once again two cost functions j1 = j1(t, x, u) , j2 = j2(x, u) and define the functional to
optimise

K : L∞((0;T )× Ω) 3 y 7→
¨

(0;T )×Ω

j1 (t, x, uy(t, x)) dxdt+

ˆ
Ω

j2 (x, uy(T, x)) dx.

Similar to (Adm) our class of admissible controls is defined as

Y :=
{
y ∈ L1(0, T ;L1(Ω)) ,−κ0 ≤ y ≤ κ1 almost everywhere in (0;T )× Ω

and for almost every t ∈ (0;T )

 
Ω

y(t, ·) = V0

}
. (Adm′)

The second optimisation problem reads

max
y∈Y

K(y) (P′)

Here again the existence of an optimiser y∗ relies on very weak continuity assumptions on f, j1 , j2.

Optimality conditions for (P′) Let us describe the optimality conditions and adjoint state for
(P′); we have the following lemma:

Lemma 4. The map T : Y 3 y 7→ uy is twice Gateaux-differentiable at y. For any y ∈ Y, for any
perturbation h ∈ L∞((0;T )× Ω), the first order Gateaux-derivative of the functional K at y in the
direction h is given by

K̇(y)[h] =

¨
(0;T )×Ω

qy(t, x)h(t, x)dxdt (1.6)

where qy is the solution
∂tqy + ∆qy = −∂j1∂u (t, x, uy)− ∂uf(t, x, uy)qy in (0;T )× Ω ,

Bqy = 0 on (0;T )× ∂Ω ,

qy(T, ·) = ∂j2
∂u (x, uy) on ∂Ω.

(1.7)
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Similarly, the second order Gateaux-derivative of the functional K at y in the direction (h, h) is
given by

K̈(y)[h, h] =

¨
(0;T )×Ω

(
u̇2
yqy

∂2f

∂u2
(t, x, uy) + u̇2

y

∂2j1
∂u2

(t, x, uy)

)
+

ˆ
Ω

u̇2
y(T, x)

∂2j2
∂u2

(x, uy), (1.8)

where u̇y is the unique solution of
∂tu̇y −∆u̇y = h+ ∂uf(t, x, uy)u̇y in (0;T )× Ω ,

Bu̇y = 0 on (0;T )× ∂Ω ,

u̇y(0, ·) = 0 in Ω.

(1.9)

The solution qy of (1.7) is called the adjoint of (P′); Proposition 5 is easily adapted to yield
the following result:

Proposition 5. Let y∗ be a solution of (P′). Then there exists c ∈ IR such that
y∗(x) = κ1 if qy(0, x) > c,

y∗(x) = −κ0 if qy(0, x) < c,

{qy(0, ·) = c} ⊂ {−κ0 < y∗ < κ1}.

where qy is the unique solution of (1.7).

The same difficulties described when discussing (P) arise when trying to characterise in a finer
way these optimality conditions for (P′) when the non-linearity is neither convex nor concave, or
changes convexity throughout time.

1.4.2 Main results about second order optimality conditions

We assume that the non-linearity f and the cost functions j1 , j2 satisfy (Hreg). Our main result
is the following:

Theorem II. Let y∗ be a maximiser of K over F . Let ω := {−κ0 < y∗ < κ1} and assume that
Vol(ω) > 0. Then

Zy∗ ≤ 0 a.e. in ω

where for any y ∈ F :

Zy(t, x) := qy
∂2f

∂u2
(t, x, uy) +

∂2j1
∂u2

(t, x, uy).

Do note that in Theorem II the abnormal set ω is a subdomain of (0;T )× Ω.

Comments on Theorem II We will use the tools developed when proving Theorem I to prove
Theorem II, essentially proving that we can choose perturbations that boil the problem down to
the context of Theorem I. We insist upon the fact that this is not immediate.

The following corollary immediately follows from Theorem I but is somehow unexpected:

Corollary 6. Assume j2(x, u) = u , j1 ≡ 0. Let y∗ be a solution of (P′). For any t ∈ (0;T ) such
that f(t, x, ·) is strictly convex in u, y∗(t, ·) is bang-bang.

In other words, the bang-bang property is fully localised in time.
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1.5 A Laplace-type method

To prove Theorem I and Theorem II, we rely on a new technique, which we dub a Laplace-type
method. This is a combination of the technique we developed with Toledo in [17], which relied on
Laplace-type arguments for a simple perturbation of the initial datum which is only well-fitted on
interior points of the abnormal set {−κ0 < u∗0(x) < κ1}, and of the technique developed by the
authors and Privat in [18] in another framework, in order to construct well-fitted perturbations
regardless of any regularity assumption on the abnormal set.

Statement of the result For any function h ∈ L2(Ω) we denote its support by supp(h); it is a
closed set. We adopt the same notation for the support of a distribution. We consider the sequence
of eigenvalues {λk,B}k∈IN, associated with eigenfunctions {ϕk,B}k∈IN of the Laplace operator:

−∆ϕk,B = λk,Bϕk,B in Ω ,

Bϕk,B = 0 on ∂Ω ,´
Ω
ϕ2
k,B = 1.

(1.10)

It satisfies
0 ≤ λ1,B ≤ λ2,B ≤ · · · ≤ λk,B →

k→∞
∞.

We are now in position to state our main technical result.

Theorem III. Let q ∈ L∞((0;T )× Ω) be a fixed potential and let ω ⊂ Ω be a closed subset of Ω
with positive measure. We assume that for any r ∈ [1; +∞) there holds

∂tq −∆q ,∇q ∈ Lr(0, T ;Lr(Ω)). (Hq)

Additionally, if B is of Neumann type, we assume that Bq = 0. We consider a sequence (hK)K∈IN ∈
L2(Ω)IN such that, for any K ∈ IN, hK writes

hK :=

∞∑
k=K

aK,kϕk,B,

where the sequence (aK,k)k∈IN satisfies

∞∑
k=K

a2
K,k = 1,

and such that
supp(hK) ⊂ ω.

Define vK as the solution of the heat equation
∂vK
∂t −∆vK = qvK in (0;T )× Ω ,

BvK = 0 on (0;T )× ∂Ω,

vK(0, ·) = hK in Ω.

Consider the unit ball X of the dual of the space C 0([0;T ];L1(Ω)). Finally, define a sequence of
probability measures (νK)K∈IN ∈ XIN by

∀K ∈ IN , νK :=
v2
K˜

(0;T )×Ω
v2
K

.

Then any closure point ν∞ of the sequence (νK)K∈IN ∈ XIN satisfies

supp(ν∞) ⊂ {t = 0} × ω ,
¨

(0;T )×Ω

ν∞ = 1 , ν∞ ≥ 0 in the sense of measures.
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In this last equality, supp(ν∞) ⊂ {t = 0} × ω should be understood as follows: for any ϕ ∈
C 0([0;T ];L1(Ω)) such that supp(ϕ) ⊂ ({t = 0} × ω)

c
, 〈ν∞, ϕ〉 = 0 where 〈·, ·〉 stands for the duality

bracket on C 0([0;T ];L1(Ω)).

Regarding our terminology In this paragraph we justify the terminology of the title of this
paper. First of all, we claim that Theorem III is an extension of the standard two-scales expansion
technique for parabolic equations. Namely, consider, as done in [17], the solution wK of the
equation {

∂twK − ∂xxwK = qwK in (0;T )× T ,
wK(0, x) = θ(x) sin(Kx) in T,

(1.11)

where T is the one-dimensional torus and θ is a smooth bump function in T. In [17] it is proved
that

wK ∼
K→∞

θ(x) sin(Kx)e−K
2t

in the L2((0;T )× T) sense. Consequently, using the fact that

sin(Kx)2 ⇀
K→∞

1

2

and the Laplace method, this implies that, for any smooth test function φ,

¨
(0;T )×Ω

w2
Kφ ∼

K→∞

1

2K2

ˆ
T
θ(x)2φ(0, x)2dx.

In other words, in the limit K →∞, we only see (up to a proper rescaling) the support of the initial
condition. In higher dimensional situations, Theorem III establishes the same kind of qualitative
behaviours, but we highlight here several non-trivial difficulties. First and foremost, it is not true
that ϕ2

K,B ⇀
K→∞

1
2 , since in many domains we may have a so-called localisation phenomenon [12].

Second, this type of expansion only holds under strong regularity assumptions on the function
θ. In particular, this result assumes, in a sense, that we are considering highly oscillating initial
conditions, with a regular support (for instance, that has non-empty interior). When considering
applications to the optimal control of reaction-diffusion equations, it is extremely difficult (and, in
general, a completely open question) to obtain this type of regularity.

Regarding the first difficulty, as a byproduct of the proof of Lemma 9 below, we obtain that

vK ∼
K→∞

∞∑
k=K

aK,kϕk,Be
−tλk,B .

This is not yet enough to conclude as to the support in space of the limit ν∞ as this would only
yield, for any smooth function φ,

〈v2
K , φ〉 ∼

K→∞

∞∑
k,k′=K

aK,kaK,k′

λk,B + λk′,B

ˆ
Ω

φ(0, ·)ϕk,Bϕk′,B,

and it is then unclear from this expression to derive a meaningful information about the support
of ν∞.

1.6 Bibliographical references

We investigated the optimisation problems (P) in an earlier paper with Toledo [17] the case where
d = 1, Ω = (0, 1), f only depends on u and is convex, with κ0 = 0, κ1 = 1, f(0) = f(1) = 0,
j1 ≡ 0 and j2(x, u) ≡ u. We have proved that in that case u∗0 ≡ 1(0,V0) is a global maximiser
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of J . Apart from this example, it is not true in general that the maximisers are bang-bang.
Indeed, if f is concave in u, then it was proved in [19] that the constant function u∗0 ≡ V0 ∈ (0, 1)
is a global maximiser. Similar results where derived when j2(x, u) ≡ −(1 − u)2 in [10]. This
emphasises the need for understanding the behaviour of the maximiser u∗0 on the abnormal set
{−κ0 < u∗0 < κ1}. We have proved with Toledo in the simple framework of [17] that for any
interior point x of {−κ0 < u∗0 < κ1}, one has f ′′

(
u∗0(x)

)
≤ 0. The question of regularity of

optimal controls is a difficult one, and we can not rule out that the interior of the abnormal set
{−κ0 < u∗0 < κ1} is empty. The aim of the present paper is to generalise this result to a more
general framework, and to derive a result that holds almost everywhere on {−κ0 < u∗0 < κ1},
and not only on its interior. One of the reasons such information are important is the numerical
approximation of these L∞ − L1-constrained optimal control problems, a standard and powerful
algorithm is the thresholding scheme, akin to a gradient ascent method. Roughly speaking, it is
expected that optimisers u∗0 can be described using the level-sets of the so-called ”adjoint state”.
When optimisers u∗0 are bang-bang, it is expected that this scheme can be defined and used with
the knowledge of first order optimality conditions only. That an optimiser u∗0 is not bang-bang
essentially amounts to saying that the adjoint state has a level-set of positive measure, which
leads to using second-order optimality conditions in the definition of this scheme. Thus, having
tractable information about the behaviour of optimisers u∗0 in the set {−κ0 < u∗0 < κ1} is essential
in implementing a cost-efficient algorithm. Finally, let us mention the recent [1], in which the same
problem is discussed from another qualitative point of view: the authors study the influence of
adding advection terms to the main equation on the value of the functional to optimise.

In order to further characterise u∗0 on the abnormal set {−κ0 < u∗0 < κ1}, one needs to extract
information from the first and second order optimality conditions. Let us now explain why we
could not use earlier results on optimal control for parabolic equations and what our contribution
to this field of research is. There is a vast literature on this topic, and we will only focus here
on earlier works that are close to the problem we consider here, that is, second order optimality
conditions for a control on the initial datum.

First order optimality conditions, in other words Pontryagin maximum principle, for semi-linear
parabolic equations have been established in a very general framework in [22]. In this paper, three
types of controls are considered: one acts on the initial datum, as in the present article, one acts
as a source term in (0, T )×Ω, and one acts on the boundary (0, T )× ∂Ω. Another difference with
the present paper is that L1 constraints are not covered by their framework. Here, we consider a
much simpler problem, since our control only acts on the initial datum. The reason for this is that
we want to isolate the phenomenon we exhibit.

Sufficient second order conditions guaranteeing local optimality are discussed when the control
acts on (0, T ) × Ω and/or on the boundary (0, T ) × Ω (see [7, 21, 23]). Let us also mention a
wide literature on second order conditions for optimal control of semi-linear elliptic equations (see
for example [6]). The general approach of these papers is to derive the necessary second order
optimality condition J̈ [u0] ≤ 0, and to provide sufficient conditions in order to characterise a local
maximiser. A Hamiltonian H = H(t, x, u, p) is often derived from the first order conditions (see
[22]) such that, if u∗0 is a maximising initial datum for example, then H

(
0, x, u∗0(x), p(0, x)

)
=

maxu0∈AH
(
0, x, u0(x), p(0, x)

)
where p is the adjoint state of the equation. The second order

necessary optimality conditions then read ∂uuH
(
0, x, u∗0(x), p(0, x)

)
≤ 0 for all x ∈ Ω on the

abnormal set, that is, for all x such that ∂uH
(
0, x, u∗0(x), p(0, x)

)
= 0. A way to include L1

constraints on the initial datum in order to compare this earlier framework to the present one is
to consider a penalised cost function

G(u0) := J(u0)− c
ˆ

Ω

u0

over the wider class of admissible controls

B := {u0 ∈ L∞(Ω) : −κ0 ≤ u0 ≤ κ1 almost everywhere} .
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In that case, deriving the Hamiltonian F from [22], one gets ∂uuH ≡ 0. Hence, it is hopeless to
extract any information from second order optimality conditions using these earlier approaches in
that case. More generally, we believe that these earlier works are not well-fitted to L1 constraints.
In the present, we push further the second order optimality conditions using a Laplace-type method
that allows to concentrate the relevant information at t = 0. We do not investigate sufficient
conditions and leave it for a future work.

2 Proof of Theorem III

We begin with the proof of Theorem III, as Theorem I is a corollary of it.

2.1 Steps of the proof

The proof is divided up in several steps. As each can be technical and sometimes long, we summarise
them here:

• First we give some basic preliminary results related to parabolic regularity and the Laplace
method. We refer to Propositions 7 and 8.

• Second, we prove an estimate of the L2-norm of vK under the form
¨

(0;T )×Ω

v2
K ≥ c0

∞∑
k=K

a2
K,k

λk,B
.

We refer to Lemma 9 below.

• Third, we prove that supp(ν∞) ⊂ {t = 0} × Ω, see Lemma 10.

• Finally, we prove that supp(ν∞) ⊂ (0;T )× Ω, thereby concluding the proof.

2.2 Step 1: Preliminaries on the parabolic regularity and the Laplace
method

A preliminary parabolic regularity result We recall the following parabolic regularity result:

Proposition 7. Let q , g ∈ L∞((0;T )× Ω). For any θ0 ∈ L∞(Ω), the solution θ of
∂tθ −∆θ − qθ = g in (0;T )× Ω ,

Bθ = 0 on (0;T )× ∂Ω ,

θ(0, ·) = θ0

(2.1)

satisfies

sup
t∈[0;T ]

‖θ‖L2(Ω) ≤ C

(ˆ T

0

‖g(t, ·)‖L2(Ω)dt+ ‖θ0‖L2(Ω)

)
where the constant C only depends on ‖q‖L∞((0;T )×Ω) and T .

As this result is instrumental in deriving our estimates we prove it here.

Proof of Proposition 7. Multiplying (4.7) by θ and integrating by parts in time we obtain

d

dt

ˆ
Ω

θ(t, ·)2

2
+

ˆ
Ω

|∇θ|2 − ‖q‖L∞((0;T )×Ω)

ˆ
Ω

θ2 ≤
ˆ

Ω

gθ ≤ ‖g(t, ·)‖L2(Ω)‖θ(t, ·)‖L2(Ω)

whence
d

dt
(‖θ(t, ·)‖L2(Ω))− ‖q‖L∞((0;T )×Ω)‖θ(t, ·)‖L2(Ω) ≤ ‖g(t, ·)‖L2(Ω).

It suffices to apply the Gronwall lemma to conclude.
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Background on the Laplace method We recall here the following result:

Proposition 8. For any m ∈ IN,

ˆ T

0

tme−ktdt ∼k→∞
Cm
km+1

.

Proof of Proposition 8. Integrating by parts (m+ 1)-times we have

ˆ T

0

tme−kt =
m!

km+1
(1− e−kT )

whence the conclusion.

2.3 Step 2: Asymptotic of the L2 norm of the solution

The goal of this paragraph is to prove the following result:

Lemma 9. There exists a constant c0 > 0 such that

∀K ∈ IN ,

¨
(0;T )×Ω

v2
K ≥ c0

∞∑
k=K

a2
K,k

λk,B
.

Proof of Lemma 9. Let us introduce, for any k ∈ IN, the function

w0,K(t, x) :=

∞∑
k=K

aK,kϕk,Be
−λk,Bt.

It is expected that there should hold
vK ≈ w0,K

in a certain sense. In order to establish this approximation we first compute:

¨
(0;T )×Ω

w2
0,K =

∞∑
k=K

a2
K,k

2λk,B
(1− e−2Tλk,B) ≥ 1

4

∞∑
k=K

a2
K,k

λk,B
(2.2)

whenever 1−e−2TλK,B ≥ 1
2 . To control the distance between w0,K and vK , consider the remainder

term
T0,K := vK − w0,K .

It is clear that T0,K satisfies

∂tT0,K −∆T0,K − qT0,K = qw0,K .

But this is not yet enough. Indeed, if we were to apply Proposition 7 directly, we would need to

estimate
´ T

0
‖qw0,K‖L2(Ω) but we could a priori only bound it as

ˆ T

0

‖qw0,K‖L2(Ω) ≤ ‖q‖L∞((0;T )×Ω)

(∑
k=K

a2
K,k

λk,B

) 1
2

,

that is, by a term of order ‖w0,K‖L2((0;T )×Ω), which is not strong enough. We thus have to take
more care when handling this. For this reason, introduce the function

z0,K : (0;T )× Ω 3 (t, x) 7→ tq(t, x)w0,K(t, x)

11



and define
R0,K := vK − w0,K − z0,K .

As z0,K satisfies

∂tz0,K −∆z0,K = qw0,K + (∂tq −∆q)(tw0,K)− 2t〈∇q,∇w0,k〉

we obtain

∂tR0,K −∆R0,K − qR0,K = qz0,K︸ ︷︷ ︸
=:V0,K

− (∂tq −∆q)(tw0,K)︸ ︷︷ ︸
=:V1,K

+2 t〈∇q,∇w0,k〉︸ ︷︷ ︸
=:V2,K

.

Moreover, notice that there holds
Bz0,K = 0

which in turn implies
BR0,K = 0.

Finally, we have
R0,K(0, ·) = 0 in Ω

by construction. From Proposition 7 there holds, for some constant C > 0 independent of K,

sup
t∈[0;T ]

‖R0,K(t, ·)‖L2(Ω) ≤ C

(ˆ T

0

‖V0,K(t, ·)‖L2(Ω)dt+

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt

+

ˆ T

0

‖V2,K(t, ·)‖L2(Ω)dt

)
.

Now observe that

ˆ T

0

‖V0,K(t, ·)‖L2(Ω)dt =

ˆ T

0

t‖q(t, ·)w0,K(t, ·)‖L2(Ω)dt

≤ ‖q‖L∞((0;T )×Ω)

ˆ T

0

t‖w0,K(t, ·)‖L2(Ω)dt

≤ ‖q‖L∞((0;T )×Ω)

(¨
(0;T )×Ω

t2w2
0,K

) 1
2

≤ ‖q‖L∞

√√√√ ∞∑
k=K

a2
K,k

ˆ T

0

t2e−2tλk,Bdt

≤ M

λK,B

√√√√ ∞∑
k=K

a2
K,k

λk,B
.

In the last step, we applied Proposition 8 with m = 3. We have thus proved

ˆ T

0

‖V0,K(t, ·)‖L2(Ω)dt ≤
C

λK,B

√√√√∑
k=K

a2
K,k

λk,B
. (2.3)
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Similarly, we can estimate
´ T

0
‖V1,K(t, ·)‖L2(Ω)dt. Define Q := ∂tq −∆q. Then there holds

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt =

ˆ T

0

‖Q(t, ·)tw0,K(t, ·)‖L2(Ω)dt

≤ C
ˆ T

0

t‖Q(t, ·)‖Lr0 (Ω)‖w0,K(t, ·)‖Lp0 (Ω)

from the Hölder inequality with 1/r0 + 1/p0 = 1/2

≤ C

√ˆ T

0

‖Q(t, ·)‖2Lr0 (Ω)

√ˆ T

0

t2‖w0,K‖2Lp0 (Ω)

from the Cauchy-Schwarz inequality.

We now choose p0 > 2 such that
W 1,2(Ω) ↪→ Lp0(Ω)

and fix the corresponding exponent r0. Then, up to a constant C > 0 we have

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt ≤ C

√ˆ T

0

‖Q(t, ·)‖2Lr0 (Ω)

√ˆ T

0

t2‖w0,K‖2Lp0 (Ω)

≤ C

√ˆ T

0

‖Q(t, ·)‖2Lr0 (Ω)

√ˆ T

0

t2‖∇w0,K‖2L2(Ω).

Now observe that by the Jensen inequality we have, up to a constant still denoted C for notational
convenience

ˆ T

0

‖Q(t, ·)‖2Lr0 (Ω)dt ≤ C

(¨
(0;T )×Ω

|Q|2r0
) 1
r0

= C‖Q‖4L2r0 (0,T ;L2r0 ) = Cr0 <∞.

Here we used Assumption (Hq). All in all, up to a multiplicative constant (once again denoted C)
we have obtained

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt ≤ C

√ˆ T

0

t2‖∇w0,K‖2L2(Ω).

= C

√√√√ ∞∑
k=K

λk,Ba2
K,k

ˆ T

0

t2e−2tλk,Bdt

≤ C√
λK,B

√√√√∑
k=K

a2
K,k

λk,B

We have thus obtained

ˆ T

0

‖V1,K(t, ·)‖L2(Ω)dt ≤
C√
λK,B

√√√√∑
k=K

a2
K,k

λk,B
. (2.4)

Let us finally estimate V2,K . Define Q1 := ∇q. We need to estimate

ˆ T

0

t‖〈Q1,∇w0,k〉‖L2(Ω)dt.
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Applying the same Hölder and Cauchy-Schwarz inequalities as above, we haveˆ T

0

t‖〈Q1,∇w0,k〉‖L2(Ω)dt ≤
ˆ T

0

t‖Q1(t, ·)‖Lr0 (Ω)‖∇w0,K(t, ·)‖Lp0 (Ω)dt

≤ C

√ˆ T

0

t2‖∇w0,K(t, ·)‖2Lp0 (Ω)

where 1/r0 + 1/p0 = 1/2. We are thus left with estimate
ˆ T

0

t2‖∇w0,K‖2Lp0 (Ω)dt

for some p′ > 2. However, by the fractional Sobolev embedding [2, Theorem 7.57] (see also [8,
Theorem 3.4, Lemma 4.11]) H1+γ ↪→W 1,p0(Ω), for some γ ∈]0; 1[ and p0 > 2, we have

‖∇w0,k(t, ·)‖2Lp0 (Ω) ≤ ‖w0,k(t, ·)‖2H1+γ(Ω) =

∞∑
k=K

a2
K,kλ

1+γ
k,B e

−tλk,B

so that the last term can be estimated asˆ T

0

t2
∞∑
k=K

a2
K,kλ

1+γ
k,B e

−tλk,B =

∞∑
k=K

a2
K,k

λ2−γ
k,B

whence we obtain ˆ T

0

‖V2,K(t, ·)‖L2(Ω)dt ≤
C

λ
1−γ
2

K,B

√√√√ ∞∑
k=K

a2
K,k

λk,B
(2.5)

Summing estimates (2.3)-(2.4)-(2.5) we get that for some constant C and some β > 0 there holds

sup
t∈[0;T ]

‖R0,K(t, ·)‖L2(Ω) ≤
C

λβK,B

√√√√ ∞∑
k=K

a2
K,k

λk,B
. (2.6)

We now turn back to the function vK . Developing the square root we obtain¨
(0;T )×Ω

v2
K =

¨
(0;T )×Ω

R2
0,K +

¨
(0;T )×Ω

(R0,K − vK)2

=

¨
(0;T )×Ω

R2
0,K +

¨
(0;T )×Ω

(w0,K + z0,K)
2

= o
K→∞

( ∞∑
k=K

a2
K,k

λk,B

)
from (2.6)

+

¨
(0;T )×Ω

w2
0,K + 2

¨
(0;T )×Ω

w0,Kz0,K +

¨
(0;T )×Ω

z2
0,K .

Observe that from (2.2) we have
¨

(0;T )×Ω

w2
0,K ∼

K→∞

∞∑
k=K

a2
K,k

λK,k
.

Remembering that z0,K = tq(t, ·)w0,K we have˜
(0;T )×Ω

z2
0,K ≤ ‖q‖L∞((0;T )×Ω)

˜
(0;T )×Ω

t2w2
0,K

= ‖q‖L∞((0;T )×Ω)

∑∞
k=K

´ T
0
t2a2

K,ke
−2tλK,kdt

= 2‖q‖L∞((0;T )×Ω)

∑∞
k=K

a2K,k
λ3
K,k

= o
K→∞

(
‖w0,K‖2L2((0;T )×Ω)

)
.

(2.7)
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As ¨
(0;T )×Ω

w0,Kz0,K ≤ ‖w0,K‖L2((0;T )×Ω)‖z0,K‖L2((0;T )×Ω)

we can conclude that

˜
(0;T )×Ω

v2
K = o

K→∞

(∑∞
k=K

a2K,k
λk,B

)
+
˜

(0;T )×Ω
w2

0,K + 2
˜

(0;T )×Ω
w0,Kz0,K +

˜
(0;T )×Ω

z2
0,K

∼
K→∞

˜
(0;T )×Ω

w2
0,K ∼

K→∞

∑∞
k=K

a2K,k
λK,k

.

(2.8)

The proof is finished.

2.4 Step 3: Controlling the support in time

The goal of this paragraph is the following lemma:

Lemma 10. For any closure point ν∞ of the sequence (νK)K∈IN (defined in the statement of
TheoremIII) there holds

supp(ν∞) ⊂ {t = 0} × Ω. (2.9)

As we shall see, this is an almost straightforward consequence of the computations carried out
in the proof of Lemma 9.

Proof of Lemma 10. From Lemma 9 we know that for some constant c0 > 0 we have

¨
(0;T )×Ω

v2
K ≥ c0

∞∑
k=K

a2
K,k

λk,B
.

To prove (2.9) it suffices to prove that, for any ε > 0,

¨
(ε;T )×Ω

v2
K = o

K→∞

( ∞∑
k=K

a2
K,k

λk,B

)
.

Using the same notations as in the proof of Lemma 9 we have

¨
(ε;T )×Ω

v2
K =

¨
(ε;T )×Ω

(vK − w0,K − z0,K)2 (=: I1,K)

+ 2

¨
(ε;T )×Ω

(v0,K − w0,K − z0,K)(w0,K + z0,K) (=: I2,K)

+

¨
(ε;T )×Ω

(w0,K + z0,K)2 (=: I3,K).

As in the proof of Lemma 9 we have

I1,K , I2,K = o
K→∞

( ∞∑
k=K

a2
K,k

λk,B

)
.

It remains to estimate I3,K . However, up to a multiplicative constant C that also depends on
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‖q‖L∞((0;T )×Ω)

I3,K =

¨
(ε,T )×Ω

(w0,K + z0,K)2

≤ C

(¨
(ε;T )×Ω

w2
0,K +

¨
(ε;T )×Ω

z2
0,K

)

≤ C

(¨
(ε;T )×Ω

w2
0,K +

¨
(0;T )×Ω

z2
0,K

)

≤ C

(¨
(ε;T )×Ω

w2
0,K + o

K→∞
(‖w0,K‖2L2((0;T )×Ω))

)
from (2.7)

Moreover, for a constant C

¨
(ε;T )×Ω

w2
0,K =

∞∑
k=K

a2
k

ˆ T

ε

e−tλkdt

≤ Ce−ελK,B
∑
k=K

a2
K,k

λk,B

= o
K→∞

(
‖w0,K‖2L2((0;T )×Ω))

)
so that

I3,K = o
K→∞

(
‖w0,K‖2L2((0;T )×Ω)

)
.

Summarising, we have obtained

¨
(ε;T )×Ω

v2
K = o

K→∞
(‖w0,K‖2L2((0;T )×Ω)) = o

K→∞

(
‖vK‖2L2((0;T )×Ω)

)
.

Thus we obtain, for any test function φ ∈ C∞((0; ε)×Ω), (the limit is taken along a subsequence)

〈ν∞, φ〉 = lim
K→∞

¨
(0;T )×Ω

νKφ

= lim
K→∞

¨
(ε;T )×Ω

νKφ

≤ ‖φ‖L∞((0;T )×Ω) lim
K→∞

˜
(ε;T )×Ω

v2
K˜

(0;T )×Ω
v2
K

= 0.

The conclusion follows.

2.5 Step 4: Controlling the support in space

The goal of this paragraph is the following result:

Lemma 11. For any closure point ν∞ of the sequence (νK)K∈IN (defined in the statement of
Theorem III) there holds

supp(ν∞) ⊂ (0;T )× ω. (2.10)
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Proof of Lemma 11. To prove (2.10) it suffices to prove the following: for any open set F ⊂ Ω such
that dist(F , ω) > 0 (remember that ω is closed), for any φ ∈ C∞c ((0;T )× F ), there holds

〈ν∞, φ〉 = 0.

Here ν∞ is a closure point of the sequence (νK)K∈IN. Hence, fix an open set F ⊂ Ω such that
dist(F , ω) > 0. We consider a smooth function θ ∈ C∞c (Ω) such that

θhK = hK .

This amounts to requiring that supp(hK) ⊂ {θ = 1}. Furthermore, we require that

θ ≡ 0 in F .

We now look for a two-scale like asymptotic expansion of the solution vK in terms of θ. Introduce
(with the notations of Lemma 9)

η0,K,θ := θ(x)
∞∑
k=K

aK,kϕk,Be
−tλk,B = θ(x)w0,K(t, x)

and
R0,K,θ := vK − η0,K,θ.

The function R0,K,θ satisfies

∂tR0,K,θ −∆R0,K,θ − qR0,K,θ = 2〈∇θ,∇w0,K〉+ (∆θ)w0,K + qη0,K,θ.

Define
G := ∆θ + qθ.

The equation on R0,K,θ rewrites

∂tR0,K,θ −∆R0,K,θ = 2〈∇θ,∇w0,K〉+Gw0,K .

We can hence split R0,K,θ as
R0,K,θ = r1,K,θ + 2r2,K,θ

where 
∂tr1,K,θ −∆r1,K,θ = Gw0,K in (0;T )× Ω ,

∂tr2,K,θ −∆r2,K,θ = 〈∇θ,∇w0,K〉 in (0;T )× Ω ,

Brj,K,θ = 0 on (0;T )× ∂Ω , (j = 1, 2),

rj,K,θ(0, ·) = 0 in Ω , (j = 1, 2).

We estimate r1,K,θ and r2,K,θ separately.

Estimate on r1,K,θ Introducing
z1,K,θ := tGw0,K

we show, exactly as in the proof of Lemma 9, that

sup
t∈[0;T ]

‖r1,K,θ(t, ·)− z1,K,θ(t, ·)‖L2(Ω) = o
K→∞

( ∞∑
k=K

a2
K,k

λk,B

)
.

17



Indeed, it suffices to observe that with the assumptions on q, and as θ ∈ C∞c (Ω), G also satisfies
Assumption (Hq). Furthermore, for any t ∈ [0;T ],

‖z1,K,θ(t, ·)‖L2((0;T )×Ω) ≤ ‖G‖L∞(Ω)

√√√√ ∞∑
k=K

a2
K,k

ˆ T

0

t2e−2tλk,B

= o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

Thus,

‖r1,K,θ‖L2((0;T )×Ω) = o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

Estimate on r2,K,θ Let us first reason heuristically. Formally, we should have

r2,K,θ ≈ t〈∇θ,∇w0,K〉 =

〈
∇θ, t

∞∑
k=K

aK,k∇ϕke−tλk,B
〉

=: r̃2,K,θ.

Let us first estimate r̃2,K,θ. We have, up to a multiplicative constant C,

ˆ T

0

‖r̃2,K,θ‖L2(Ω)dt ≤ C

(∑
k=K

a2
K,kλk,B

ˆ T

0

t2e−2tλk,Bdt

)1/2

≤ C

( ∞∑
k=K

a2
K,k

λ2
K,k

) 1
2

= o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

Consider now
rK := r2,K,θ − r̃2,K,θ

The function rK satisfies

∂trK −∆rK − qrK = qr̃2,K,θ + 〈∇∆θ, t∇w0,K〉︸ ︷︷ ︸
=:JK

+ 2t
(
∇2θ �∇2w0,K

)︸ ︷︷ ︸
=:IK

where � denotes the Hadamard product of matrices. Adapting the computation that led to
estimating r̃2,K,θ we see that the solution β1,K of

∂tβ1,K −∆β1,K − qβ1,K = JK

satisfies

‖β1,K‖L2((0;T )×Ω) = o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 . (2.11)

Thus the only term that should be estimated is the solution r̃K of

∂tr̃K −∆r̃K − qr̃K = t
(
∇2θ �∇2w0,K

)
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We introduce two last auxiliary functions, namely,

r̃3,K,θ :=
t2

2

(
∇2θ �∇2w0,K

)
, T̃K := r̃K − r̃3,K,θ.

On the one hand we have

∂tT̃K −∆T̃K − qT̃K = qr̃3,K,θ +
t2

2
∇2∆θ �∇2w0,K + t2∇∇2θ �∇2∇w0,K .

On the other hand, up to a multiplicative constant C,

ˆ T

0

t2‖∇2θ �∇2w0,K‖L2(Ω)dt ≤ C
ˆ T

0

t2‖θ‖C 2(Ω)‖∇2w0,K(t, ·)‖L2(Ω)dt

≤ C
ˆ T

0

t2‖∆w0,K(t, ·)‖L2(Ω)dt by elliptic regularity

≤ C

(ˆ T

0

t4
∞∑
k=K

a2
K,kλ

2
k,Be

−2tλk,B

) 1
2

≤ C

( ∞∑
k=K

a2
K,k

λ3
k,B

) 1
2

= o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

Finally, up to a multiplicative constant, we have

ˆ T

0

t2‖∇∇2θ �∇2∇w0,K(t, ·)‖L2(Ω)dt ≤ C
ˆ T

0

t2‖∆∇w0,K(t, ·)‖2L2(Ω)dt by elliptic regularity

≤ C

(ˆ T

0

∑
a2
K,kt

4λ3
k,Be

−2tλk,Bdt

)1/2

≤ C

( ∞∑
k=K

a2
K,k

λ2
k,B

) 1
2

= o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 .

We can hence conclude that

‖r2,K,θ‖L2((0;T )×Ω) = o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 (2.12)

and, thus, that

‖vK − η0,K,θ‖L2((0;T )×Ω) = o
K→∞

√√√√ ∞∑
k=K

a2
K,k

λk,B

 . (2.13)

Recall now from Lemma 9 that

¨
(0;T )×Ω

v2
K ≥ c0

∞∑
k=K

a2
K,k

λk,B
.
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Now let us turn back to the set F , and take any φ ∈ C∞c ((0;T ) × F ). Fix a closure point ν∞ of
the sequence (νK)K∈IN. Then

〈ν∞, φ〉 = lim
K→∞

〈νK , φ〉

= lim
K→∞

˜
(0;T )×Ω

v2
Kφ˜

(0;T )×Ω
v2
K

= lim
K→∞

˜
(0;T )×Ω

η2
0,K,θφ+

˜
(0;T )×Ω

(vK − η0,K,θ)
2φ+ 2

˜
(0;T )×Ω

η0,K,θ(vK − η0,K,θ)˜
(0;T )×Ω

v2
K

.

As η0,K,θ = θw0,K ≡ 0 on F by the definition of θ, and as φ is supported in F ,

¨
(0;T )×Ω

η2
0,K,θφ = 0.

Thus

〈ν∞, φ〉 = lim
K→∞

˜
(0;T )×Ω

η2
0,K,θφ+

˜
(0;T )×Ω

(vK − η0,K,θ)
2φ+ 2

˜
(0;T )×Ω

η0,K,θ(vK − η0,K,θ)˜
(0;T )×Ω

v2
K

= lim
K→∞

˜
(0;T )×Ω

(vK − η0,K,θ)
2φ+ 2

˜
(0;T )×Ω

η0,K,θ(vK − η0,K,θ)˜
(0;T )×Ω

v2
K

≤ ‖φ‖L∞((0;T )×Ω) lim
K→∞

‖vK − η0,K,θ‖2L2((0;T )×Ω) + ‖η0,K,θ‖L2(Ω)‖vK − η0,K,θ‖L2(Ω)˜
(0;T )×Ω

v2
K

By definition of η0,K,θ,

‖η0,K,θ‖L2((0;T )×Ω) ≤ ‖θ‖L∞(Ω)‖w0,K‖L2((0;T )×Ω) ≤ C‖vK‖L2((0;T )×Ω)

for a constant C. In the last inequality we used Lemma 9. Combined with Estimate (2.13) this
gives

〈ν∞, φ〉 ≤ ‖φ‖L∞((0;T )×Ω) lim
K→∞

‖vK − η0,K,θ‖2L2((0;T )×Ω) + ‖η0,K,θ‖L2(Ω)‖vK − η0,K,θ‖L2(Ω)˜
(0;T )×Ω

v2
K

= 0,

whence the conclusion.

3 Proof of Theorem I

3.1 Preliminary analysis of the maximisation problem

We first prove Lemma 1, which deals with the first and second order derivatives of J .

Proof of Lemma 1. We just briefly sketch the proof, the detailed arguments being the same as in
[19, Lemma 3.2]. The first Gateaux-derivative of u̇u0

at u0 in the direction h is the unique solution
of 

∂tu̇u0
−∆u̇u0

= ∂f
∂u (t, x, uu0

)u̇u0
in (0;T )× Ω ,

Bu̇u0
= 0 on (0;T )× ∂Ω ,

u̇u0
(0, ·) = h in Ω.
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It easily follows that the first order Gateaux-derivative of the functional J at u0 in the direction h
is given by

J̇(u0)[h] =

¨
(0;T )×Ω

u̇u0

∂j1
∂u

(t, x, uu0
) +

ˆ
Ω

u̇u0

∂j2
∂u

(x, uu0
(T, ·)). (3.1)

Multiplying (1.5) by pu0
and integrating by parts in time and space yields¨

(0;T )×Ω

u̇u0

∂j1
∂u

(t, x, uu0) +

ˆ
Ω

u̇u0(T, ·)∂j2
∂u

(x, uu0(T, ·)) =

¨
(0;T )×Ω

h(x)p(0, x)dx.

We thus conclude that

J̇(u0)[h] =

ˆ
Ω

h(x)p(0, x)dx.

Similarly, the second order Gateaux-derivative of üu0
at u0 in the direction (h, h) is the unique

solution of 
∂tüu0 −∆üu0 = ∂f

∂u (t, x, uu0)üu0 + ∂2f
∂u2 (t, x, uu0)u̇2

u0
in (0;T )× Ω ,

Büu0
= 0 on (0;T )× ∂Ω ,

üu0
(0, ·) = 0 in Ω.

(3.2)

Hence, the second order Gateaux-derivative of the functional J at u0 in the direction (h, h) is given
by

J̈(u0)[h, h] =

¨
(0;T )×Ω

üu0

∂j1
∂u

(t, x, uu0
) +

ˆ
Ω

üu0

∂j2
∂u

(x, uu0
(T, ·))

+

¨
(0;T )×Ω

u̇2
u0

∂2j1
∂u2

(t, x, uu0
) +

ˆ
T
u̇2
u0

∂2j2
∂u2

(x, uu0
). (3.3)

Multiplying (3.2) by pu0
and integrating by parts in time and space yields

¨
(0;T )×Ω

üu0

∂j1
∂u

(t, x, uu0
) +

ˆ
Ω

üu0

∂j2
∂u

(x, uu0
(T, ·)) =

¨
(0;T )×Ω

u̇2
u0
pu0

∂2f

∂u2
(t, x, uu0

)

We eventually get:

J̈(u0)[h, h] =

¨
(0;T )×Ω

(
u̇2
u0
pu0

∂2f

∂u2
(t, x, uu0

) + u̇2
u0

∂2j1
∂u2

(t, x, uu0
)

)
+

ˆ
Ω

u̇2
u0

(T, x)
∂2j2
∂u2

(x, uu0
).

3.2 Regularity of the solution uu0

We begin with a regularity result:

Lemma 12. Assume f satisfies (Hexist
f ). For any u0 ∈ L∞(Ω), the solution uu0 of (1.1) satisfies

∀p ∈ [1; +∞) , uu0
∈ Lp(0, T ;W 1,p(Ω)).

Proof of Lemma 12. The assumption on f simply allows to write (by the maximum principle) that
for any u0 ∈ L∞(Ω) we have

−M ≤ uu0
≤M

for some large M , so that the term f = f(t, x, uu0
) can be treated as an L∞ source term. Define

V := f(t, x, uu0
) ∈ L∞((0;T )× Ω) and consider the solution v of

∂tv −∆v = V in (0;T )× Ω ,

Bv = 0 on (0;T )× ∂Ω ,

v(0, ·) = 0 in Ω.
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By the maximal parabolic regularity ([11] or [13, Chapter IV, Section 3, pages 289-290] ) we know
that v ∈ Lp(0, T ;W 2,p(Ω)). Then, define w as the solution of

∂tw −∆w = 0 in (0;T )× Ω ,

Bw = 0 on (0;T )× ∂Ω ,

w(0, ·) = u0 in Ω.

Here standard parabolic estimates imply that w ∈ Lp(0, T ;W 1,p(Ω)). As uu0 = w+v the conclusion
follows. In the case of Dirichlet boundary conditions we can write the solution as

w(t, ·) = e−t∆u0

where e−t∆ is the heat-semigroup in Ω. From [20, Proposition 48.7] we know that, for any t ∈ [0;T ],

‖∇e−t∆u0‖L∞(Ω) ≤ C(1 + t−
1
2 )‖u0‖L∞ .

As t 7→ 1 + t−
1
2 is integrable we have w ∈ Lp(0, T ;W 1,p(Ω)) for any p ∈ [1; +∞). Since u = v+w,

the conclusion follows. For Neumann boundary conditions, it suffices to observe that up to a local
flattening of the boundary and to a symmetrisation with respect to each of the axis, we can can
get rid of the influence of boundary conditions and thus obtain the desired regularity.

Corollary 13. Let q(t, x) := ∂uf
(
t, x, uu0

(t, x)
)
. Then (Hq) holds:

∂tq −∆q ,∇q ∈ Lr(0, T ;Lr(Ω)).

If B is of Neumann type then Bq = 0.

Proof. We know that uu0 ∈ Lr(0, T ;W 1,r(Ω)) for all r <∞ by Lemma 12. Now, we note that

∇q = ∂xuf +∇uu0
∂uuf,

which is in Lr(0, T ;Lr(Ω)) since ∂uuf and ∂xuf are bounded by hypothesis (Hreg). Similarly,

∂tq −∆q = ∂utf −∆∂uf − 2∇∂uf · ∇uu0 +
(
∂tuu0 −∆uu0

)
∂uuf − ∂uuuf |∇uu0 |2

= ∂utf −∆∂uf − 2∇∂uf · ∇uu0 + f∂uuf − ∂uuuf |∇uu0 |2,

which is again in Lr(0, T ;Lr(Ω)) for all r < ∞ since f , ∂uuf , ∂tuf , ∇∂uf , ∆∂uf and ∂uuuf are
bounded by (Hreg), and uu0

∈ Lr(0, T ;W 1,r(Ω)) for all r < ∞. If B is of Neumann type then
∂νq = ∂νu∂

2
uuf(t, x, u) = 0. This concludes the proof.

3.3 Conclusion of the proof

Proof of Theorem I. We argue by contradiction. Assume that the set

ω := {−κ0 < u∗0 < κ1} ∩ {Wuu0
> δ}

has positive measure for some δ > 0. Using the inner regularity of the Lebesgue measure we can
find a closed subset ωδ of ω such that

Vol(ωδ) > 0 , ωδ ⊂ ω , ωδ is closed.

From the arguments of [18, Proof of Theorem 1] we know that, for any K ∈ IN, we may choose hK
supported in ωδ such that hK writes

hK =
∑
k≥K

aK,kϕk,B ,

∞∑
k=K

a2
K,k = 1.
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As u∗0 maximises J over A, we have

∀K ∈ IN ,

¨
(0;T )×Ω

Wu0 u̇
2
K,u∗0

+

ˆ
Ω

∂2
uuj2|uu0 u̇

2
K,u∗0

= J̈(u∗0)[hK , hK ] ≤ 0, (3.4)

where uK,u∗0 is the derivative of u0 7→ uu0
at u∗0 in the direction hK . Set now

νK :=
u̇2
K,u∗0˜

(0;T )×Ω
u̇2
K,u∗0

and choose ν∞ to be a closure point (in C 0([0;T ];L1(Ω))′) of (νK)K∈IN. AsWuu0
∈ C 0([0;T ];L1(Ω))

from standard parabolic regularity, dividing (3.4) by
˜

(0;T )×Ω
u̇2
K,u∗0

and passing to the limit, we

obtain
〈ν∞,Wuu0

〉 ≤ 0.

As ν∞ is supported in {t = 0} × ωδ from Theorem III, as Wuu0
≥ δ on ωδ and as ν∞ ≥ 0 we have

δ = δ〈ν∞,1[0;T ]×Ω〉 ≤ 〈ν∞,Wuu0
〉 ≤ 0,

a contradiction. This concludes the proof.

4 Proof of Theorem II

The strategy of the proof is to reduce ourselves to the setting of the proof of Theorem I. To explain
why, we need to give a few words about the optimality conditions for (P′) and the admissible
perturbations.

First of all, we argue once again by contradiction and we take δ > 0 such that

ω∗ := {−κ0 < y∗ < κ1} ∩ {Zy∗ ≥ δ}

has positive measure. As in the proof of Theorem I we know that, for any admissible perturbation
h at y∗ supported in ω∗, we have K̇(y∗)[h] = 0. To reach a contradiction, we need to construct an
admissible perturbation h supported in ω∗ such that K̈(y∗)[h, h] > 0.

The main difficulty lies in the structure of the cone of admissible perturbations. This cone,
which we denote T (y) at y ∈ F is defined [9] as follows: h ∈ L1(0, T ;L1(Ω)) ∩ L∞((0;T )× Ω) is
admissible at y if and only if for any sequence {εk}k∈IN that converges to 0, there exists a sequence
{hk}k∈IN ∈ L1(0, T ;L1(Ω))∩L∞((0;T )× Ω) such that hk →

k→∞
h in L2(0, T ;L2(Ω)) and such that

for any k ∈ IN y + εkhk ∈ F . Ideally, we would choose a perturbation h of the form

h = δt=t0h0(x) (4.1)

where t0 ∈ (0;T ), for any function h0 with zero mean value and supported in the slice ({t =
t0} × Ω) ∩ ω. Indeed, if the perturbation h is of the form (4.1) the associated v̇y solves

∂tv̇ −∆v̇ = ∂uf(t, x, uy)v̇ in (t0;T ) ,

Bv = 0 on (t0;T )× ∂Ω ,

v̇(t = t0, ·) ≡ h0 in Ω ,

(4.2)

extended by 0 in (0; t0)× Ω and, provided u̇y ∈ L2(0, T ;L2(Ω)), we would like to say that in that
case ¨

(0;T )×Ω

Zyu̇
2
y ≤ 0.

In other words, we wish to prove that optimality conditions extend to perturbations h that write
as (4.1), that is, as measures in time. If we can do this, then the proof of Theorem I applies and
yields the conclusion. Thus we only need to prove the following proposition:
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Proposition 14. For almost every t0 ∈ (0;T ) such that ω∗t0 := ({t = t0} × Ω) ∩ ω has positive
measure, for any h0 ∈ L2(Ω) supported in ω∗t0 , extended by zero outside of ω∗t0 and such that´

Ω
h0 = 0, letting v̇ be the solution of (4.2) there holds

¨
(0;T )×Ω

Zy∗ v̇
2 ≤ 0.

Conclusion of the proof of Theorem II using Proposition 14 Using Proposition 14, the
proof of Theorem II is identical to that of Theorem I: it suffices to construct highly oscillating
perturbations h0,k supported in ω∗t0 and to use the Laplace method, Theorem III to derive a
contradiction. Thus only Proposition 14 remains to be proved.

Proof of Proposition 14. Measure approximation of δt=t0h0

We know from [14, Theorem 8.19] that almost every t ∈ (0;T ) is an L1(Ω)-Lebesgue point of
1ω in the sense that

lim
ε→0

 t+ε

t−ε
‖1ω(s, ·)− 1ω(t, ·)‖L1(Ω)ds = 0. (4.3)

Let t0 be a Lebesgue point such that ω∗t0 has positive d-dimensional measure and let h0 ∈ L2(Ω).
By a standard approximation argument, it suffices to prove the proposition for h ∈ L∞(Ω).

Now set, for almost every s ∈ (0;T ), ω∗s := ({t = s} × Ω) ∩ ω∗ and define, for ε > 0,

hε :=
1

ε
1(t0−ε;t0+ε)×Ω1ω∗(t, x)

(
h0 −

 
ω∗t

h

)
(4.4)

Clearly hε is an admissible perturbation at y∗. Furthermore observe that in the sense of measures
we have

hε ⇀
ε→0

h0 in D′((0;T )× Ω). (4.5)

Indeed, for any test function Φ ∈ D((0;T )× Ω) which me way assume to satisfy ‖Φ‖L∞((0;T )×Ω) =
1, we have∣∣∣∣∣

¨
(0;T )×Ω

hεΦ−
ˆ

Ω

Φ(t0, ·)h0

∣∣∣∣∣ ≤
∣∣∣∣∣
¨

(0;T )×Ω

hεΦ(t0, ·)−
ˆ

Ω

h0Φ(t0, ·)

∣∣∣∣∣ (=: Iε1)

+

∣∣∣∣∣
¨

(0;T )×Ω

hε (Φ− Φ(t0, ·))

∣∣∣∣∣ (=: Iε2)

By continuity of Φ and as hε is (uniformly bounded) Radon measure with support in (t0 − ε; t0 +
ε)× Ω, we have Iε2 →

ε→0
0. For Iε1 , using ‖Φ‖L∞((0;T )×Ω) ≤ 1, we have the estimate

Iε1 ≤
 t+ε

t−ε

∣∣∣∣ˆ
Ω

hε − h0

∣∣∣∣
≤ ‖h0‖L∞(Ω)

 t0+ε

t0−ε
‖1ω∗ − 1ω∗t0 ‖L1(Ω) (=: Jε1 )

+

 t0+ε

t0−ε

∣∣∣∣∣
 
ω∗t

h0

∣∣∣∣∣ (=: Jε2 )

Jε1 converges to 0 as ε converges to zero as t0 was chosen as a Lebesgue point. Furthermore, using
the fact that

ffl
ω∗t0

h0 = 0, Jε2 can be estimated as

0 ≤ Jε2 ≤
 t0+ε

t0−ε

∣∣∣∣∣
 
ω∗t

h0 −
 
ω∗t0

h0

∣∣∣∣∣ ≤ ‖h0‖L∞(Ω)

 t0+ε

t0−ε
‖1ω∗ − 1ω∗t0 ‖L1(Ω)
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which also converges as t0 is a Lebesgue point.
As a consequence, we constructed a sequence of admissible perturbations that converges in the

sense of measures to δt=t0h0. To conclude the proof we need to guarantee the convergence of the
solutions of (1.9) to v̇y, the solution of (4.2).

Convergence of the solutions
For any ε > 0 we let u̇ε be the solution of (1.9) associated with hε, and v̇y be the solution of

(4.2) associated with h0. Let us show

‖u̇ε − v̇y‖L2(0,T ;L2(Ω)) →
ε→0

0. (4.6)

This suffices to show that ¨
(0;T )×Ω

Zy∗ v̇
2
y = lim

ε→0

¨
(0;T )×Ω

Zy∗ u̇
2
ε ≤ 0

and thus provides the conclusion of the proof. (4.6) follows from two ingredients: one is a general
result of Boccardo & Gallouët [5, Section IV, Theorem 4] that among other things guarantees
the well-posedness of the equations at hand, while the second takes advantage of the particular
structure of hε. Let us start with the following theorem:

Theorem. [5, Section IV, Theorem 4] LetM((0;T )× Ω) be the set of Radon measures on (0;T )× Ω.
Let f ∈M((0;T )× Ω). There exists a unique solution θf to{

∂θf
∂t −∆θf = f in (0;T )× Ω ,

θf (t = 0, ·) = 0 ,
(4.7)

that further satisfies the following regularity estimates:

1. ‖θf‖L∞(0,T ;L1(Ω)) ≤ c‖f‖M((0;T )×Ω) for some constant c = c(Ω),

2. for any q ∈
[
1; d+2

d+1

)
there exists a constant cq = cq(Ω, T ) such that

‖θf‖Lq(0,T ;W 1,q(Ω)) ≤ cq‖f‖M((0;T )×Ω),

3. for any q ∈
[
1; d+2

d+1

)
, the map f 7→ θf is continuous for the strong Lq(0, T ;W 1,q(Ω)) topology

on θ.

As we need to apply this regularity result to the solution of an equation with a (bounded)
potential we give a more suited statement, which is just a corollary of Theorem 4.

Lemma 15. Let W ∈ L∞((0;T )× Ω), f ∈M((0;T )× Ω). There exists a unique solution ηf to{
∂ηf
∂t −∆ηf −Wηf = f in (0;T )× Ω ,

ηf (t = 0, ·) = 0 ,
(4.8)

that further satisfies the following regularity estimates:

1. ‖ηf‖L∞(0,T ;L1(Ω)) ≤ c‖f‖M((0;T )×Ω) for some constant c = c(Ω, ‖W‖L∞((0;T )×Ω)),

2. for any q ∈
[
1; d+2

d+1

)
there exists a constant cq = cq(Ω, T, ‖W‖L∞((0;T )×Ω)) such that

‖ηf‖Lq(0,T ;W 1,q(Ω)) ≤ cq‖f‖M((0;T )×Ω),

3. for any q ∈
[
1; d+2

d+1

)
, the map f 7→ ηf is continuous for the strong Lq(0, T ;W 1,q(Ω)) topology

on u.
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Proof of Lemma 15. We let θf be the solution of (4.7) and we let z be the (unique) L2(0, T ;W 1,2
0 (Ω))

solution of 
∂z
∂t −∆z −Wz = Wθf in (0;T )× Ω ,

zf = 0 on (0, T )× ∂Ω ,

zf (t = 0, ·) = 0 in Ω.

(4.9)

Clearly z + θf is a solution of (4.8) and the Lq(0, T ;W 1,q(Ω)) estimates on z follow from the
estimates of Theorem 4 and from standard elliptic regularity. The conclusion follows.

Consequently, we can conclude that

u̇ε →
ε→0

v̇y in Lq(0, T ;W 1,q(Ω)) for any q <
d+ 2

d+ 1
. (4.10)

Let us now exploit the particular structure of hε. Noticing that

∀ε > 0 , ‖hε‖L2(0,T ;L2(Ω)) ≤
2‖h0‖L∞(Ω)

ε

ˆ T

0

1(t0−ε;t0+ε)(s)ds

≤ 2‖h0‖L∞(Ω).

Consequently, from standard parabolic estimates,

sup
ε→0
‖uε‖L2(0,T ;W 1,2(Ω)) ,

∥∥∥∥∂uε∂t
∥∥∥∥
L2(0,T ;W 1,2(Ω)

<∞

whence the Aubin-Lions lemma entails that uε has a strong L2(0, T ;L2(Ω)) closure point. From
(4.10) this closure point must be vy, which concludes the proof of (4.6).
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[6] E. Casas, J. C. de los Reyes, and F. Tröltzsch. Sufficient second-order optimality conditions for
semilinear control problems with pointwise state constraints. SIAM J. Optim., 19(2):616–643,
2008.
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