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Abstract—This brief proposes a new low power, low latency
and low cost reconfigurable architecture for software defined
radio. Due to their flexibility and reconfigurability, software
defined radios are now massively used as wideband transceivers,
channel sounders or network gateways. However, they often
struggle to meet the desired requirements in terms of energy
consumption and throughput. In this brief, we present a new
architecture capable of tackling these challenges, by combining
an off-the-shelf generic radio component with a low power
microcontroller associated to a Fourier transform coprocessor.
To prove the benefit of our approach, after describing the key
assets of the architecture, we derive a complete physical layer
dedicated to audio broadcast applications. This chain is capable
of streaming High Definition audio stream in real time with low
power (437mW) and very low latency (854 us). We show that
our processing chain can be flawlessly run on our architecture
paving the way for larger adoption of a new generation of low
power low latency software defined radio architectures.

Index Terms—Software Defined Radio, microcontroller, audio
processing, low power, low latency

I. INTRODUCTION

Since the first definition of Software Defined Radio (SDR)
done by Mitola [1] thirty years ago, many studies carried in
various domains show the benefits and the numerous chal-
lenges this topic has to tackle. The initial purpose was quite
simple: shift as many parts as possible into digital domain and
limit the Radio Frequency (RF) analog parts to the antenna
and the analog-to-digital converters. If nowadays the myth of
a pure digital architecture fizzled out, the adoption of the SDR
has been massive and the scope of its use has largely grown.

Many SDR architectures have been proposed: some based
on General Purpose Processors (GPP), Digital Signal Pro-
cessors (DSP) or on specific hardware such as Field Pro-
grammable Gate Arrays (FPGA) [2]. More recently, the ad-
vances in hardware integration and efficient software method-
ologies [3] allow the emergence of embedded SDR architec-
tures based on System on Chip (SoC) that combines hardware
and software computational resources. This paves the way for
high performance SDR applications such as wideband channel
sounding, reconfigurable cellular base stations, etc.

SDR are highly appealing for low power scenarios, es-
pecially for Internet Of Things (IoT) deployment. Indeed,
the low cost and the reconfigurability of these devices are
key assets for volume deployment, easy maintenance and
extensive reuse. However, as SDR are wideband receivers, use
generic components and are often piloted by greedy processing

units, it seems illusional to use them as end-devices. Hence,
most of SDR integrations for IoT scenarios have used the
flexible radios on the gateway side where energy constraints
are greatly alleviated [4]. Standalone embedded SDRs are
based on SoC [5], [6] or custom multiprocessor architectures
based on Network On Chips (NoC) [7]. If it allows portability
and flexibility, it also leads to energy consumption several
orders of magnitude higher than the requirements for IoT
end-devices [8]. On the other side, there are also very cheap
SDR such as RTL-SDR [9], but these devices have limited
bandwidth, limited targetable carrier frequencies, and require
processing to be done on an external computing unit.

We strongly believe that the recent advances in very low
power hardware architectures, with limited but efficient em-
bedded computational resources, will change the game. Some
preliminary works have tended to prove that SDR can be used
as low cost end-device. TinySDR [10] is based on a low power
FPGA and is dedicated to low power wide area transmissions.
Marmote is an FPGA based SDR [11] focuses on protocol
study. The SDR presented in [12] addresses satellite commu-
nications and embeds an FPGA. These proposals are promising
but however fail in two key aspects: i) the reconfigurability is
limited as processing is only done through hardware descrip-
tion (e.g. FPGA) instead of a software approach ii) and the
cost is not sufficiently reduced and dominated by the FGPA.
Very recently, a similar architecture based on microcontroller
has been proposed for LORA communications [13]. The
computational complexity of this architecture is however very
limited and can only address low datarate applications.

This is the reason we introduce LOLA SDR for Low pOwer
Low lAtency reconfigurable Software Defined Radio. Lever-
aging generic radio components and efficient low power mi-
crocontroller (MCU)), this architecture is capable of addressing
low power and low latency while being able to run flawlessly
in real time a complex audio broadcast processing chain that
follows High Definition (HD audio) requirements. The core
contribution of the brief is the proposal of the architecture
and how the different blocks are mapped together. The second
contribution of the brief is related to the physical layer chain
and how we fit the processing chain with the architecture. The
final contribution is a show-off where we demonstrate that our
platform can run flawlessly our application in real time, with
a very low latency and with a reduced computational power.

The brief is divided into four main parts. In Section II,
we introduce the proposed SDR architecture and its key



components and justify why it is suitable for low power
flexible applications. In Section III, we describe the proposed
processing chain dedicated to audio broadcast and justify the
technical choices and parameters. Section IV assesses the
key performance indicators that are the latency, the power
consumption and demonstrate the viability of our approach
through trials and a comparison with a Zynq based imple-
mentation. Section V eventually draws some conclusions.

II. PROPOSED ARCHITECTURE
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Fig. 1. LOLA SDR architecture

The proposed architecture for the LOLA SDR is depicted
on Figure 1 and is composed of several modules described
hereafter:

o An agile front-end receiver (depicted in red) is used
for transmitting and receiving signals. The stages are
composed of wideband configurable analog to digital
converters (and digital to analog converters), band-filters,
power amplifiers and antennas. Depending on the target
applications, large tunable RF boards or specific front-
ends can be chosen. For the former, it will increase
the flexibility and the agility (more targetable frequency
bands) at the price of increased cost, energy consumption
and slight degradation of the noise figure. For the latter,
the specialization of the SDR will be enhanced, leading
to potential better noise figure, reduced cost and reduced
energy consumption which is interesting for some IoT
scenarios where only a few bands can be targeted.

o A microcontroller unit (MCU), depicted in green is the
core processing unit of the LOLA SDR. This is a strong
difference with classical processing units proposed in the
literature and we strongly believe that using MCU offers
several advantages to address low power efficient SDR.
Some modern MCU have two cores that can be used
as independent processing units. Besides, their energy
consumption is magnitude lower than the one of GPP
and the numerous interfaces can be used to map external
devices, peripherals or coprocessors. Finally, their clock
speed is on the same order of magnitude as the one
required by modern SDR applications.

o The specific coprocessor is depicted in blue. Some mod-
ern MCU are built with specific hardware components
such as encryption engines or Fast Fourier Transform
(FFT). Using an MCU with coprocessors offers two key

TABLE I
DEFINED PARAMETERS, VALUE AND ASSOCIATED TYPE. CS STANDS FOR
COMPLEX SYMBOLS

Definition Name Value
Audio sampling frequency F, 96 kHz
Audio word size Na 24 bits
Number of audio words per packet Ng 10

Hamming FEC input size H; 4 bits
Hamming FEC output size H, 7 bits
Bits per symbol n 2

FFT size NFFT 512 CS
CP size Ncp 36 CS

advantages: the operations are performed with high effi-
ciency and the MCU can perform other tasks during the
coprocessor use. In our LOLA show-off (see Section V)
we have used an MCU with an FFT coprocessor which
greatly alleviates the receiver timing constraints. This is
also a strong novelty of our architecture.

e The RAM (in purple) is located in the MCU. The Direct
Memory Access (DMA) used in LOLA architecture aims
to ease the sample acquisition by the radio front end that
can be then processed by the MCU or its coprocessors.

o A small FPGA is depicted in orange and has two objec-
tives: the first is to provide glue logic for the different
components and interfaces. Depending on the size of the
FPGA, some coprocessors can also be synthesized on the
FPGA and mapped on the MCU. In our example, we have
used a tiny FPGA on which we have synthesized three
small blocks of channel coding (see Section III). The use
of FPGA is a key enabler to specialize our architecture
through specific hardware description. The use of a small
FPGA still ensures low cost and low energy consumption.

o Additional analog and digital audio connectivity with
I2S interface is also present. A USB link is also used
for programming purposes, and to obtain performance
feedback (see Section IV).

The proposed architecture is built to have a promising trade-
off between simplicity and low cost of the modules with still
computational capacity illustrated by the double core MCU
and the coprocessors. We detail in the next section an audio
broadcast processing chain that uses this architecture and
which is capable of meeting the HD audio requirements.

III. AUDIO BROADCAST PROCESSING CHAIN
A. Physical layer properties and parameters

The processing chain is built in order to ensure low power,
low latency and high resilience of the audio processing
stack. The proposed physical layer starts with an HD audio
stream and uses Orthogonal Frequency Division Multiplexing
(OFDM) as it allows to perform the channel equalization in
frequency domain.

The proposed chain depends on several parameters that can
be split into two categories: the defined parameters (see Table
I) and the obtained parameters. For the former, the choice
is either technological (for instance based on audio stack) or
practical (implementation tricks). For the latter, the values are
derived from the defined parameters:
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Fig. 2. Proposed receiver chain. CS stands for complex symbols

o The audio rate is 2.304 Mbits/s and is the product of the
audio frequency and audio word size (F, X ng)

« The packet encapsulation aims to append a Cyclic Redun-
dancy Check (CRC) to ensure the validity at the receiver
side of a group of N, = 10 audio words. The audio
packet size is 240 bits (ng X Ng)

o The CRC size is computed to have the output of the CRC
as a power of 2 (for efficient memory store). The desired
output size is 2(1+10g:(Naxna)1)) the next closest power
of 2 based on the audio packet size. It leads to a CRC
size of 256 — n, X N, = 16. A generator polynomial
0x8005 is used.

e The output size of the CRC encoder is thus 256 bits
(2(1+ogy(na xNa) )y

o We apply a Hamming (7, 4) encoder to protect the audio
data. The output of the encoder is then interleaved to
enhance error resistance against burst of errors that can
typically happen in case of a strong fading channel.
The output size of the Hamming encoder is defined as
2(1+[logz(na xNa)])) 5 % = 448 = N,. The rate of
the output of the Forward Error Correcting (FEC) is
=F, X % = 4.3008 MBits/s.

o The number of payload subcarriers is % = 224. The
number of allocated subcarriers (payload + pilots) is set
to have 65% of the spectral allocation (similar ratio as
it is done in Long Term Evolution [14]), leading to a
total number of 336. Based on this the number of pilot
subcarriers is 336 —224 = 112. In practice, to be sure that
the last subcarrier on the upper corner is a pilot one (and
to ease the channel interpolation) one pilot is added at the
corner. We thus have 113 pilots and 337 total allocated
subcarriers.

o The binary encoded data is then modulated with a
Quadrature Phase Shift Keying (QPSK) modulator that
is then mapped in the frequency domain. The rate of
the output of the QPSK mapper (complex samples) is
F, x 222 = 2.1504 MS/s.

e We apply an IFFT on this buffer using the coprocessor.
The input rate of the IFFT is equal to F}, x rf\i i‘ﬁa) =
4.915 MS/s. It means that an IFFT should be done for
each 240 bits of data, so every “eXNe — 104.16 ps.

o To ensure channel circularity, we insert a Cyclic Prefix
(CP) of a duration of 6.9us. The output rate of the
transmitter is then calculated as F, =F, X % =
5.2608 MS/s

The processing blocks have been carefully chosen as they
offer appealing trade-off between obtained performance (that
match the desired indicators) and their relative simplicity: the

OFDM waveform uses the coprocessor while the FEC and the
CRC can be easily implemented on the FPGA. The choice
of QPSK, albeit offering a low spectral efficiency, allows
implementation tricks on the MCU side that strongly alleviate
the timing constraints and ensures strong noise resistance.

B. Receiver side

To receive and decode the audio stream, the processing is
done in two steps: i) an initialization phase with fine time/fre-
quency synchronization and then ii) the decoding phase where
the audio stream is decoded in real time with low latency.

The initialization step is computationally intensive as it
aims to finely synchronize the receiver in time and frequency
domains. This synchronization is done with a correlation be-
tween the received buffer in time domain and a pre-calculated
sequence. This sequence s,[n] is defined as the Inverse Fourier
Transform of the scattered pilots (set to 1) mapped in the
frequency domain.

2jTpxn
spln] = Y eNerr (1)

PES,

where S, denotes the indexes of pilot subcarriers. The
synchronisation index p is obtained from the maximum of
[a,s,[n], the correlation between the received sequence d[n]
and the pilot sequence s,[n]. The phase of this maximum gives
the Carrier Frequency Offset (CFO) § as depicted in Eq. 2.

<Fd,3p [ﬁb
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In a second step the CFO estimation 4 is used to tune the
receiver local oscillator. The low residual carrier frequency
offset is handled in the channel equalization step.

We depict the receiver blocks of the decoding part on Figure
2. Each color corresponds to a different computational domain
and follows the same pattern as Figure 1. The purpose of the
chain to be able to track the multipath channel variations and to
monitor the performance with the CRC check while efficiency
uses all the hardware and software resources. For each received
symbol, we will have to provide the audio packet (240 bits)
and one CRC flag. In purple are depicted the Direct Memory
Access (DMA) mechanics: the DMA takes sample from the
RF front-end and align the buffer with the estimated delay p.
As the time and frequency localization of the received symbols
may slightly vary, the second core of the microcontroller is
dedicated to time/frequency lock as depicted in dark green.
A correlation is computed on samples at the neighborhood
of the previously locked time synchronization index p. If a
mismatch is detected, a retro-action is done on the DMA to



TABLE II
COMPARISON BETWEEN LOLA SDR AND USRP E310
RF Board | Processing unit | Frequency (MHz) | Operating System | PER @-20dB | Rx Energy consumption
LOLA SDR | AD-9361 LPC55S69 150 MHz Bare metal 3.9e-3 437 mW
USRP E310 | AD-9361 Zynq 7010 866 MHz Yocto Linux 4e-3 325W
TABLE III
SUMMARY OF USED FPGA RESOURCES
Tx Resources | Tx % Rx Resources | Rx %
Registers 488/2352 21% 632/2352 27% el

Slices 413/1056 39% 513/1056 49% 3
LUTs 817/2112 39% 1011 /2112 48%

keep the received buffer perfectly synchronized. In blue is
depicted the OFDM demodulator on the FFT coprocessor. In
green, the main processing steps done on the first core of
the MCU. First, the data in frequency domain is separated
between zeros (dropped), pilots and data. The channel is
then estimated directly from the pilots (as their value in
frequency domain have been set to 1). The equalization and
the QPSK demodulation are performed in a joint manner: for
each payload subcarrier, the bits after decision are identical to
the most significant bits of the output of the complex channel
estimation ¢. It also allows us to pack the bits after decision
to reduce the memory footprint. The de-interleaver is done on
the FPGA as it only corresponds to flip in bits ordering. The
hamming74 decoder is also implemented on the FPGA as it
corresponds to simple xor operations, such as the CRC check,
implemented in a parallel approach [15]. These are depicted
in orange on Figure 2. The last step corresponds to the audio
rendering with I2S interface and the jack output.

IV. BENCHMARKS AND EXPERIMENTS
A. Board synthesis discussion

For our show-off, we have chosen to use a wideband
radio front-end, the AD9361 from Analog Devices as it has
a wide carrier frequency range. It also allows us to have
a very flexible (in both carrier and sampling frequencies)
and to be able to configure all the digital stages (automatic
gain control policy, digital filter coefficients, etc). We have
integrated a Lattice Semiconductor FPGA MachXO, a 26 dBm
power amplifier SES004L from Skyworks and a dual Cortex-
M33 microcontroller from NXP : the LPC55S69. This $4
MCU, to be compared to a $50 Zynq (see comparison in
Table II), integrates an FFT coprocessor.

The board use the proposed processing chain at a carrier
frequency of 5.5 GHz as it is a large licence free band with less
traffic. The power supply is provided by an external battery
of 37Wh. We depict on Table IV-A a summary of the FPGA
resources used in terms of number of registers, slices and Look
Up Table (LUT). It is shown that only a part of the FPGA is
used with half of the resources still available and with slightly
more resources used on the Rx side.

B. Measurements in controlled environment

We validated the technical choices by measurements in
an anechoic chamber as depicted in Figure 3. We put the

Receiver

Fig. 3. Setup for validation in the anechoic chamber

transmitter and the receiver at a distance of 3.8 meters. At the
transmitter side, we used a variable attenuator HMC624 from
Analog Devices. We consider three scenarios: Line Of Sight
(LOS) and two scenarios with a plate to have constructive
(Plate-1) and destructive (Plate-2) interference. We compute
on Figure 4, the Packet Error Rate versus the attenuation level.
It demonstrates the good performance of the reception stage
and also proves the capacity of our receiver to synchronize and
detect the OFDM symbol even at low signal-to-noise ratio.
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Fig. 4. Packet Error Rate versus attenuation for the three scenarios.
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C. Energy consumption and latency

We expose in Table IV the latency of the Tx and Rx stacks.
It shows that the complete latency is 854 us and is equally
shared between Tx and Rx. The latencies are function of the
audio word duration (10.4 us) and the audio packet duration
(104.1ps).

In table V, we derive the power consumption of the Rx
chain as most of the processing is done on the Rx side. The
consumption is split among the different processing parts. The
overall consumption of the LOLA SDR Rx part is 437 mW
which is magnitude lower than the Zynq based architecture.



TABLE IV
LATENCY EVALUATION

Tx part: 427 us
12S Input 10.41 us
From I2S to FPGA 104.1 pus
OFDM encoding 208.2 us
Transfer to radio 104.1 us
Rx part: 427 ps
Radio acquisition to DMA 104.1 us
OFDM decoding and FPGA transfer 208.2 us
Hamming decoding, CRC, audio extraction | 104.1 us
Audio stack 10.41 us
TABLE V
ENERGY CONSUMPTION OF THE DIFFERENT RX PARTS
Rx part Intensity | Voltage Power
Lattice FPGA 23mA 33V | 76.9mW
LPC MCU 35mA 1.8V 63 mW
Radio front-end (AD9361) 165 mA 1.8V 297 mW

D. Comparison with Zynq based implementation

In this part, we compare the performance obtained with
our board to an implementation done on a Zynq based SDR
architecture. We have implemented the same physical layer
chain as described in Section III on a USRP E310 from Ettus
Research [16]. This dual core Zynq architecture has the same
RF board as our LOLA board and the processing was run
on the custom Linux provided by Ettus. We depict on Table
IT some key performance indicators such as the energy con-
sumption, the obtained PER in the LOS case at —20dBm and
architecture properties. It shows that the decoding performance
is very similar but that we have damatically reduced the power
consumption by a factor 7.5.

V. CONCLUSION

In this brief we present the LOLA SDR, a new SDR archi-
tecture dedicated to low cost, low power and low latency appli-
cations. The proposed architecture leverages new generation of
low power microcontrollers that embed calculation capacities
as well as coprocessors. By incorporating such component on a
board with a generic wideband radio transceiver and low power
FPGA, a very flexible yet efficient SDR architecture can be
synthesized. We have demonstrated the benefit of our approach
by proposing a showcase of an audio broadcast application:
the complete processing chain is capable of continuously
handling a high definition audio stream in real time with a
very low latency and good decoding performance. The energy
consumption is of order of magnitude lower than state-of-the-
art SDR architectures with equivalent computational capacity.
It is also worth mentioning that the cost is also greatly
alleviated. LOLA architecture paves the way for an area of
flexible, efficient, low cost, low power SDR platform that can
be used in various applications.
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