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Abstract 

Because of its importance in academic achievement, 
especially in mathematics, training cognitive flexibility at 
school is a major issue. The present research investigates the 
effectiveness of a school-based intervention to improve 
proportion arithmetic problem solving. The study was 
conducted with 5th graders of 10 classes from 5 high-priority 
education schools in the Paris region. Students of the control 
and experimental groups took part in 8 learning sessions 
about proportion problem solving. The experimental group’s 
training focused on comparing and flexibly categorizing the 
problems in the hopes to help students achieve a deeper 
understanding of proportion problems. Results show that 
training flexible categorization allowed the experimental 
group to progress more than the control group, in both 
categorization and solving tasks. The educational implications 
of our results are discussed. 

Keywords: cognitive flexibility; school-based intervention; 
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Introduction 

 

Can a school intervention based on flexible categorization 

successfully target the expression of cognitive flexibility in 

arithmetic problem solving? By making it possible to adapt 

to a constantly changing environment, to discover creative 

solutions, to transfer knowledge from one situation to 

another, to infer the meanings of new words, or more 

generally to switch from one behavior to another depending 

on the environmental constraints, cognitive flexibility is 

considered a hallmark of human cognition (e.g., Deák, 

2003; Ionescu, 2012, 2017). While there is no unified 

definition in the literature, it is widely accepted that 

flexibility plays a key role in the development of thinking, 

language, reasoning, and knowledge acquisition (e.g., Blaye 

& Bonthoux, 2001; Clément, 2009, 2022; Deák, 2003; 

Sloutsky & Fisher, 2008). Cognitive flexibility is often 

conceived of as the ability to cleverly change behavior in an 

appropriate manner depending on what a situation requires. 

However, upon closer scrutiny, this general definition of 

flexibility appears almost indistinguishable from a broad 

definition of intelligence. To overcome this limitation, 

cognitive scientists have striven to describe the specific 

cognitive processes underlying the flexible expression of 

our behavior and thoughts in terms of cognitive processes.  

In a canonical sense, cognitive flexibility (also called set 

shifting, see Diamond, 2016) is described in the literature as 

an executive function consisting in the ability to shift 

attention from one stimulus, rule, or task to another (e.g., 

Diamond, 2013; Lehto et al., 2003; Miyake et al., 2000; 

Meiran, Chorev, & Sapir, 2000; Monsell, 2003). However, 

it appears that in complex activities such as problem 

solving, cognitive flexibility also entails the ability to 

flexibly consider the same problem from different 

perspectives, to flexibly categorize it at different levels of 

abstraction. In the following sections, we present the 

empirical studies that investigate these two fundamental 

processes (i.e., attentional shifting and flexible 

categorization).  

Attentional shifting  

Since the pioneer work of Miyake et al. (2000), cognitive 

flexibility, inhibition, and working memory are considered 

as the three core functions of executive control. In this 

approach, flexibility is often described as a set shifting (for a 

developmental approach, see for example Davidson et al., 

2006). In that sense, the cognitive processes underlying set 

shifting are mainly related to attentional flexibility (Ionescu, 

2017). In the following, we will refer to this process as 

attentional flexibility.  

In a large body of research, attentional flexibility has been 

operationalized within the well-known task-switching 

paradigm (see Monsell, 2003). A series of tasks have been 

designed according to this paradigm, among which the 

widely used rule-based switching tasks. These consist in 

presenting multidimensional stimuli that first need to be 

categorized according to a specific dimension (e.g., size) 



 

before changing the rule and switching to another dimension 

(e.g., number of items). The Wisconsin test (Heaton et al., 

1993) for adolescents and adults, or the Dimensional 

Change Card Sort (DCCS) for preschoolers (Frye, Zelazo, 

& Palfai, 1995; Zelazo, 2006) are some of the most typical 

examples of rule-based switching tasks. For instance, in the 

standard DCCS, children have to sort bi-dimensional cards 

(fish and boats that are either red or blue) according to a 

first rule (e.g., color) and then, according to a second rule 

(e.g., shape). 

Developmental research reports two robust results 

regarding attentional shifting. First, factor analyses with 

children show that attentional shifting emerges later than 

inhibition and working memory (e.g., Carroll, Blakey, & 

FitzGibbon, 2016). Second, before 3 years old, children 

present a perseverative behavior when asked to perform 

rule-based switching tasks: after sorting the stimulus 

according to one dimension (e.g., shape), they experience 

considerable difficulty sorting it according to another 

dimension (e.g., color) (e.g., Deák & Wiseheart, 2015; Holt 

& Deák, 2015; Legare et al., 2018; Zelazo, 2006).  

Although the task switching paradigm is well suited to 

assess attentional flexibility, its ability to assess other 

components of flexibility is limited for at least two reasons. 

First, in several situations involving flexibility, such as, for 

instance, problem solving, there is no imposed rule change 

and one needs to spontaneously adopt a new perspective 

without any outside prompt. Second, most of the time, 

achieving the goal requires to flexibly re-interpret (re-

represent) the situation, which goes beyond a mere switch of 

attention. Thus, representational flexibility relies both on the 

attentional processes required to take into account 

environmental cues (for instance, noticing when the strategy 

used is not optimal), and on the ability to flexibly categorize 

the problem by re-interpreting the situation it depicts.  

Flexible categorization in problem solving 

The idea that a solver’s ability to adequately categorize a 

problem is related to their ability to find its solution is 

perfectly exemplified by the seminal work of Chi, Feltovich, 

and Glaser (1981) on the nature of expertise. In their study, 

they asked both novices and experts to sort a set of physics 

problems into as many categories as they liked. Their results 

showed that while novices tend to categorize problems 

based on their surface features (e.g., sorting together all the 

problems mentioning a spring), experts base their categories 

on deeper abstract principles (e.g., putting together 

problems that can be solved by applying the Law of 

Conservation of Energy). The process by which one may 

ignore the surface features of a problem and flexibly adopt a 

new point of view to find its solution is a notoriously 

difficult endeavor.  

In fact, an increasing amount of literature has shown that 

disregarding the initial interpretation of a problem and 

flexibly categorizing it according to a more abstract 

perspective is a key step in solving counter-intuitive 

problems (Brissiaud & Sander, 2010; Ragni, Kola, & 

Johnson-Laird, 2018). Notably, interferences between one’s 

experience and knowledge about the world and one’s 

reasoning have been shown to greatly impact solving 

performance (e.g., Bassok, Wu, & Olseth, 1995; Bassok, 

Chase, & Martin, 1998; Cosmides & Tooby, 1992; Gros, 

Thibaut, & Sander, 2021). For instance, it has been 

demonstrated that differences of difficulty between 

isomorphic problems (problems sharing the same solution) 

may be explained by the influence of prior knowledge on 

the way the situation is interpreted. When prior knowledge 

leads participants to initially think that an action is not 

possible, they will take a longer time to get around this self-

imposed limit and they will make more mistakes while 

doing so (Clément & Richard, 1997). In a similar fashion, 

getting rid of the common misconception that a subtraction 

necessarily describes the removal of a part from the whole is 

an arduous task (Brissiaud & Sander, 2010). Adopting the 

more accurate conception according to which a subtraction 

describes the distance between two numerical values 

requires a form of conceptual flexibility relying on flexible 

categorization of the very concept of subtraction (Hofstadter 

& Sander, 2013). 

In sum, in problem solving, it has been demonstrated that 

semantic recoding and re-categorization of the situation are 

the core cognitive processes underlying flexible responses 

(e.g., Clément, 2009, 2022; Clerc & Clément, 2016; Gamo, 

Sander, & Richard, 2010; Gros & Gvozdic, 2022; Gros, 

Thibaut, & Sander, 2020; Scheibling-Sève, Pasquinelli, & 

Sander, 2020; Scheibling-Sève, Sander, & Pasquinelli, 

2017). In fact, finding the solution to a problem usually 

means looking at the problem from different perspectives. 

By adopting a new, usually more abstract point of view on 

the situation, one may be able to identify the deep structure 

of the problem and, in doing so, find a previously hidden 

path to the solution (Clément, 2009; Gros et al., 2020).  

Flexibility and academic achievement 

Whether it be scientific research in education, psychology, 

or didactics, a growing body of evidence points towards 

executive functions (i.e., inhibition, working memory, and 

set shifting) as crucial contributors to school achievements 

(e.g., Agostino, Johnson, & Pascual-Leone, 2010; Monette, 

Bigras, & Guay, 2011; St Clair-Thompson & Gathercole, 

2006; Stad et al., 2018; Yeniad et al., 2013). For instance, 

after controlling for inhibition, working memory, planning, 

and fluid intelligence, Magalhães et al. (2020) found that 

cognitive flexibility accounts for a significant amount of 

variance in literacy and mathematics outcomes across 

Grades 2, 4, and 6.  

More specifically, regarding math-achievement, in a 

recent study Hästö et al. (2019) demonstrated that cognitive 

flexibility predicts students’ performance on finals, notably 

in mathematics. Cognitive flexibility has been argued to be 

a major contributor to math-performance, since, when one 

way of solving a mathematical problem isn’t working, 

students need to switch between different strategies, and re-

interpret the situation (Gros, Sander, & Thibaut, 2019; Gros, 



 

et al., 2020; Sander & Richard, 2005; Vicente, Orrantia, & 

Verschaffel, 2007).   

Considered as determinant factors in school achievement, 

a body of research focused on interventions for improving 

executive functions (e.g., Blakey & Carroll, 2015; Diamond 

& Ling, 2016; Mennetrey & Angeard, 2018). Surprisingly, 

very few studies have been conducted on cognitive 

flexibility as the ability to consider the problems from 

different perspectives. In fact, most studies are often 

devoted to training working memory, inhibitory control, or 

attentional shifting, and to evaluate the effectiveness of such 

training in different areas of daily life (e.g., Diamond, 2013; 

Diamond & Ling, 2016). To date, only a limited number of 

studies have targeted the stimulation of flexibility as it 

manifests itself in complex cognitive activities, such as 

problem solving. Therefore, the present study focuses on the 

representational flexibility involved in proportional math 

problem solving. 

The present study 

Because of the crucial role of flexibility in school 

achievement, fostering it in the classroom is a major 

educational question. The aim of the present study is to 

promote flexible categorization in mathematics with 5th 

graders, and more particularly in arithmetic proportion word 

problems. In order to encourage students to identify, beyond 

their superficial similarities or dissimilarities, the abstract 

and deep structure of problems, we conceived an 

educational intervention based on comparison between 

proportion arithmetic word problems. In fact, in the 

analogical transfer literature, it is well established that 

comparing two analogous problems (sharing the same 

solution path) leads to a more abstract representation of 

which category the problems belong to (Catrambone & 

Holyoak, 1989; George & Wiley, 2018; Holyoak, 2005; 

Loewenstein, Thompson, & Gentner, 1999). In the same 

way, fostering students to compare two strategies to find the 

solution to the same problem allows them to flexibly re-

interpret the problem in such a way that they encode the 

problem in a higher degree of abstraction (Brissiaud, 1994; 

Gamo et al., 2010; Scheibling-Sève, Sander, & Pasquinelli, 

2017).  

In accordance with these works, we postulate that 

encouraging children to compare problems and to identify 

their superficial and deep similarities will encourage them to 

perceive the abstract mathematical structure underlying 

proportion arithmetic word problems. This should help 

promote flexibility in the way students perceive, categorize, 

and solve the problems.   

Hypotheses 

We therefore hypothesized that the trained group 

(experimental group) would present a higher progression 

than the control group, both on categorization and resolution 

tasks. More precisely, at the post-test, the trained group 

should more frequently spontaneously categorize the 

problems according to their structural similarities rather than 

to their superficial resemblance, compared to the control 

group (Hypothesis 1). Second, the experimental group 

should display better post-test solving performance than the 

control group (Hypothesis 2).  

Method 

Participants 

The experiment was conducted with 10 classes of 5th 

graders belonging to five elementary schools located in 

high-priority education networks in the Paris region. A total 

of 147 5
th

 graders took part in the study (mean age = 11.4 

years; SD = 0.45). The experimental group included 77 

students (40 girls). The control group included 70 students 

(39 girls). The 5 classes of each group were drawn from the 

same high-priority education network, thus indicating 

comparable socioeconomic status and overall diversity. 

Written consent to take part in the experiment was obtained 

from all the participants' parents. The experiment was 

conducted during regular school hours for both groups.  

Design 

To assess the effectiveness of our educational 

intervention, the experiment was designed in three phases; a 

pretest, followed by 8 learning sessions on multiplicative 

problems (the content of which differed between the 

experimental and control groups), and a post-test. The 

learning sessions were of identical duration and frequency 

between the two groups. The pre- and post-test were 

identical, the only difference consisting in a supplementary 

task at the end of the post-test, in which students were asked 

to create word problems corresponding to the four problem 

structures that had been taught (see Table 1).  

In an effort to maximize the ecological validity of the 

study, the training sessions in both groups were conducted 

by the classes’ regular teachers. Prior to the study, the 

teachers had been taught how to use the experiment’s 

educational materials to teach their classes. The first author 

was in charge of training the teachers, due to his background 

as an educational advisor specialized in teacher training. 

The teachers from the experimental group were introduced 

to the online platform that they would have to use to 

conduct the learning sessions. They were also given 

instructions to mainly focus training on a better 

understanding of the quaternary problems as defined by 

Vergnaud (1983). It should be noted that the teachers were 

completely blind to the hypotheses of our study, they did 

not know whether they were in the control or in the 

experimental group, and they had to follow the set timeline 

for each session. 

Materials 

Pre- and post-tests 

A series of 16 problems was constructed according to the 

four multiplicative structures defined by Vergnaud (1983) : 

multiplication (e.g., In 1 box there are 107 sweets. I have 

253 identical boxes. How many sweets do I have in total ?), 

first-type division (e.g., I have 1 box of sweets to share 



 

between 24 people. It contains 72 pieces. How many sweets 

will each person get?), second-type division (e.g., In 1 box I 

have 107 identical sweets. I have 749 sweets in total. How 

many boxes can I fill?), and direct proportion (e.g., I fill 2 

boxes with 30 sweets. I have 48 boxes.  How many sweets do 

I need to fill them?). Each of these four multiplicative 

structures was presented in four different contexts 

describing either sweets, flowers, notebooks, or photo 

albums (see Table 1). The length of the problems was 

controlled, each problem statement shared the same number 

of sentences and presented the three numerical values in the 

same order. In the categorization task, each problem was 

printed on a card, following Chi et al.’s (1981) experimental 

design. The participants were instructed to classify the 

problems as they saw fit, creating as many categories as 

they wished. Then, in the problem-solving task, students 

were presented with an 8-page booklet displaying 8 of these 

problems (one per page). Students were instructed to try to 

solve the problems. Problem order was randomized between 

participants.

 

 

Table 1: Sample problem statements belonging to the 4 relevant structures and presented in 4 different contexts 

 

Multiplication First type division Second type division Direct proportion 

In 1 box there are 107 

sweets. 

I have 253 identical boxes. 

How many sweets do I have 

in total ?  

I have 1 box of sweets to 

share between 24 people. 

It contains 72 pieces.  

How many sweets will each 

person get?  

In 1 box I have 107 identical 

sweets. 

I have 749 sweets in total. 

How many boxes can I fill?  

I fill 2 boxes with 30 sweets. 

I have 48 boxes. 

How many sweets do I need 

to fill them?  

I buy 1 bouquet of roses for 

each of my 3 children.  

The bouquet costs 17 euros. 

How much should I pay?  

I buy 1 bouquet of 120 

roses. 

I pay €276. 

How much does each rose 

cost?  

1 bouquet contains roses that 

cost €3 each. 

I pay €69. 

How many roses are there?  

I buy 3 roses in a shop.  

It costs me €12. 

How much do I have to pay 

if I want 98 roses?  

I have 1 photo album with 

13 pages.  

I can store 18 photos per 

page. 

How many photos can I 

store?  

I have 1 photo album.  

Across 21 identical pages, I 

have a total of 126 photos. 

How many photos are there 

on each page?  

In 1 album, I put 14 photos 

per page. 

I have 392 photos. 

How many pages are 

required to store them?  

I organize my photos in 3 

albums. 

They can fit  147 photos in 

total. 

How many albums are 

required for 343 photos?  

In my school, 1 pupil 

receives 11 notebooks.  

I have 228 pupils. 

How many notebooks will I 

hand out?  

In my class 1 pupil receives 

4 notebooks. 

I hand out a total of 96 

notebooks. 

How many pupils do I 

have?  

For 1 row of tables, I hand 

out 13 notebooks. 

I have 91 notebooks.  

How many rows can I 

complete?  

For every 3 pupils, I hand 

out 24 notebooks.  

There are 336 pupils in the 

school.  

How many notebooks do I 

need in total?  

Learning sessions  

Learning sessions took place in 8 sessions over 4 weeks 

(two 55 minutes sessions each week). Teachers of the 

experimental group were given  direct online access to each 

lesson so they could display the educational materials onto 

the interactive whiteboard. This made it possible to ensure 

that the teachers could each teach the exact same lesson in 

their own way. Furthermore, we had printed out a sheet for 

each teacher reminding them of how to conduct the session. 

This was done so that the experiment was as close as 

possible to real-life conditions; the type of training and 

instructions that teachers received was similar to the 

guidelines they regularly receive following educational 

reforms. In the control group, the learning sessions followed 

the regular curriculum, using the teachers’ usual Math 

textbook (e.g., Charnay et al., 2017). These sessions were 

built around the proportionality table and the “rule of three”. 

In the experimental group, learning sessions were based on 

a general principle of comparison between analogous 

problems instead.  

The first 6 sessions were focused on the comparison of 

problems belonging to two multiplicative structures (i.e., 

first-type division/second-type division; multiplication/ 

direct proportion; multiplication/ first-type division; second-

type division/direct proportion; multiplication/second-type 

division; first-type division/ direct proportion). In the last 

two lessons, problems belonging to the four multiplicative 

structures were compared. An equivalent number of 

problems sharing or not the same surface similarities was 

shown in each lesson. The aim of the experimental 



 

intervention was to get the children to ignore the surface 

similarities between the problems and identify their deep 

structure.  

Results 

Categorization task 

As in Gros et al. (2021), we used similarity analysis to 

investigate the categories created by the participants. We 

coded the categories created by each participant at pre-test 

and post-test with a co-occurrence matrix describing how 

many times two problem statements were grouped together 

within the same category. We used these co-occurrence 

matrices to compute 2 proximity matrices for each group, 

describing the mean perceived similarity between each 

problem at pre-test and post-test. These matrices provide, 

for each pair of problem statements, a numerical estimation 

of the frequency at which the problems were sorted 

together. 

We calculated the mean proximity score of the 24 pairs of 

problems sharing the same structure (e.g., multiplication 

problem mentioning sweets with multiplication problem 

mentioning notebooks) for each group and each test. At pre-

test, the mean proximity score for problems sharing the 

same structure in the control group (m = 0.554, SD = 0.013) 

was not significantly different from that of the experimental 

group (m = 0.555, SD = 0.017): t(23) = 0.25, p = .805, 

paired t-test. On the other hand, at post-test, the mean 

proximity score for structural pairings was significantly 

higher in the experimental group (m = 0.601, SD = 0.018) 

than in the control group (m = 0.536, SD = 0.012)), as 

hypothesized (t(23) = 17.19, p < .0001, paired t-test). Thus, 

the data collected from students’ spontaneous categories 

supports Hypothesis 1: the experimental group was keener 

to create categories based on the problems’ structure than 

the control group, which relied more heavily on surface 

similarities in this task. 

Solving task 

To evaluate the progress of the control and experimental 

groups, we looked at the increase in performance (number 

of correctly solved problems) between the pre-test and the 

post-test (see Fig. 1). We removed from the progress 

analysis the participants who were unable to participate 

either to the pre-test or to the post-test. The analysis was 

performed on the remaining 110 students. Results showed 

that participants in the experimental group went from an 

average performance score of 33.73% at the pre-test to an 

average score of 58.13% at the post-test (t(62) =, p < .0001,  

paired t-test). The participants in the control group also 

progressed significantly, going from an average 

performance of 33.24% at pre-test to an average of 44.41% 

at post-test (t(46) =, p < .01, paired t-test). Crucially, the 

mean progress between pre and post-test was significantly 

higher in the experimental group (m = 24.40%) than in the 

control group (m = 11.17%), t(108) =, p < .01, independent 

t-test.  

These results support Hypothesis 2: while both groups 

achieved similar performance at pre-test, the experimental 

group benefited more from the 4-week training. In other 

words, students who followed the learning  sessions  based 

on comparison between analogous problems were more 

likely to find the solution to the proportion problems than 

students who followed the textbook-based training focusing 

on proportionality tables and “rule of three”. 

 

 
 

Fig 1. Students’ performance in the solving task, before 

and after the intervention, depending on the training group. 

Discussion 

This study evaluated the effectiveness of an educational 

intervention targeting the understanding and solving of 

proportion problems. The intervention based on 

comparisons between analogous proportion problems 

sharing or not surface similarities, proved successful in 

improving performance both in problem categorization 

(Hypothesis 1) and in problem solving (Hypothesis 2). As 

predicted, there was no significant difference between the 

two groups’ performance at pre-test, while students from the 

experimental group improved significantly more at post-test, 

both in their ability to categorize the problems based on 

their deep structure, and in their solving performance. In 

other words, participants in the experimental group 

developed a higher proficiency in proportion problem 

solving and they were able to flexibly categorize the 

problems using a representation with a higher degree of 

abstraction, moving away from the problems’ superficial 

features. 

These findings have important implications for 

pedagogical design. Indeed, while most French math 

textbooks teach about proportion problem solving by 

resorting to procedures (e.g., how to use a proportionality 

table) and rules (e.g., “the rule of three”), here the training 



 

focusing on problem comparison helped students achieve 

higher performances. Making comparisons helped them to 

see the structural commonalities between problems sharing 

the same solution principle and showed them which aspects 

of the problems were relevant and which could be 

disregarded. We believe that such an approach could be 

beneficial in other aspects of mathematical reasoning, as 

well as in other fields of knowledge. This comparison 

process makes it possible for students to learn to adopt a 

different point of view on the problems they encounter, 

flexibly categorizing the situation to identify the optimal 

way to broach and solve it. In this perspective, a sequence of 

comparisons between increasingly dissimilar problems 

sharing the same solution could result in a deeper 

understanding of the notions at hand, similarly to how 

concreteness fading (Fyfe, McNeil, Son, & Goldstone, 

2014) uses examples of increasing abstraction to promote 

transfer. 

Another promising direction for future research may lay in 

the study of the phenomenological components of the 

process by which students suddenly manage to flexibly 

recategorize a given problem. Indeed, recent developments 

in the insight literature have brought forth new venues to 

coin the subjective experience of learners going through 

“Aha!” moments (e.g., Creswell et al., 2016; Laukkonen & 

Tangen, 2018; Webb, Little, & Cropper, 2016). “Aha!” 

experiences are thought to play a crucial role in helping 

students overcome their difficulties in learning mathematics 

(Liljedahl, 2007), and they are said to improve learning and 

memorization in general (Kizilirmak, Galvao Gomes da 

Silva, Imamoglu, & Richardson-Klavehn, 2016). Thus, 

identifying which training conditions lead to these feelings 

of insight may bring converging evidence regarding the 

relevance of similar school interventions based on flexible 

categorization. 

Finally, this study highlights the importance of cognitive 

flexibility as a central lever of school learning, even outside 

of task-switching situations. As such, characterizing the 

different components of cognitive flexibility may be a key 

step in designing more effective school interventions. 

Indeed, while it may be argued that attentional flexibility 

has but a limited influence in class, the oft-forgotten 

representational flexibility appears to play a major part in 

the identification of problems’ deep structure. This 

component of cognitive flexibility relying on flexible 

categorization seems to be a strong contender for school 

interventions aiming at improving near and far transfer. 
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