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Introduction

This study is a partial replication of Geerts, Chersi, Stachenfeld and Burgess (2020) [1]
that presented a reliability-based arbitration mechanism between an associative-learning
strategy and a place-based navigation strategy. This model was proposed to mimic the
behavior of rats in a series of spatial navigation tasks that had been reported in previous
experimental articles.

The associative-learning strategy is implemented using a classical Q-learning algorithm
which is fed with visual input in an egocentric frame of reference. The place-based
strategy on the other hand works in an allocentric fashion and is implemented using
the Successor-Representation initially proposed by Peter Dayan (1993) [2].

Here we present replications of model simulations in the first task addressed by Geerts
and colleagues [1], i.e, the Pearce, Roberts and Good (1998) experiment [3]. This task is
a variant of the Morris water-maze task [4]. In this experiment, the behavior of a group
of hippocampally-lesioned animals is compared with that of a control group while they
have to find a hidden platform immerged under opaque water. The platform location
is indicated by a nearby visual landmark, while the position of the platform is regu-
larly moved across multiple trials and sessions, to force the animals to constantly adapt
(Fig. 1.A).

Geerts and colleagues provided a python implementation of their model and of the sim-
ulated task, accessible on ModelDB [5]. Nevertheless, we were not able to reproduce
their results without modifications to the original code and model parameters. Further-
more, while inspecting the provided modules, we found several discrepancies with the
original experimental protocol (Fig. 1.B).

In summary, although we partly reuse the original code of Geerts et al. (2020) [1], we
argue that the present work should be considered as a replication rather than as a repro-
duction (see the ReScience FAQ for a discussion on the meaning of both of these terms)
due to the numerous changes brought to both the navigation strategy models and to the
simulated experimental protocol.
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Figure 1. A: Original design of the water maze. Possible positions of the platforms represented as
white circles, while their associated landmarks are represented as black circles. From Pearce et
al., (1998) B: Geerts et al. (2020)’s version of the maze. Platforms and landmarks represented in
purple on the same states, though there is actually half a state (5cm) that separate them. Eligible
starting states in green. C: Our version of the maze. Platforms in red, landmarks in blue, starting
states in green.

Methods

Pearce, Roberts and Good (1998) experimental protocol

In this experiment, rats were released in a circular tank (pool) filled with opaque water
(Fig. 1.A). They had 120 seconds to swim and find an immersed platform on which they
could rest for 30 seconds, before being subjected to a new trial of the experiment. Ani-
mals that did not find the platform after 120 seconds were lifted from the water by the
experimenter and placed back on the platform for 30 seconds.

A spherical black landmark was placed, distant from a fixed offset of 20 centimeters
to the north of the platform. This helped the animal roughly localize the area were
the platform was located, while not enabling rats to simply use a cue-guided strategy
because of the distance between the landmark and the platform. This was meant as a
means to make rats use a combination of a cue-guided (associative learning) strategy
and a place-based strategy relying on hippocampus-based mapping of the environment
thanks to the distal landmarks placed around the pool. The pool, platform and landmark
were respectively of a 2m, 10cm and 13cm diameter.

Two groups of rats were tested: a control group and a hippocampal-lesioned group. Each
animal was subjected to eleven sessions of four trials each. At each new session, the
platform and the landmark were moved to a new location inside the maze, both always
conserving their relative positioning (Fig. 1.A).

In their original article, Pearce, Roberts and Good [3] measured at each trial the total
time it took for the rats to find and climb on the hidden platform from the moment
they were released in the water at one of the four possible starting points (illustrated in
Fig. 1.C). The authors results can be summarized into three main behavioral properties
illustrated by the learning curves: (1) Only control rats were able to significantly learn
within a session of four trials, thus indicating that an intact hippocampus is required to
adapt to a change in goal location within such a short amount of time. (2) At the first
trial of each session, the escape time was smaller for the hippocampal-lesioned group
than for the control group; further analyses (not shown here) suggested that an intact
hippocampus makes animals lose time at the previous platform location, which was
later confirmed by previous computational modeling work applied to this task [6]. (3)
The learning curves of both groups at both Trial 1 and Trial 4 progressively converged
to the same escape latency at Session 11 (Fig. 2.A).
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Figure 2. Mean escape-time across sessions. A Experimental results from Pearce. B Results pub-
lished in Geert et al. (2020)’s article, continuous lines represent performances on the first trial of
each session, doted lines represent the last trial. Blue lines indicate control group performances,
whereas orange is linked with the hippocampally-lesioned group. C Our reproduction of Geerts
et al. (2020)’s results after optimizing model parameters in their version of the simulated task il-
lustrated in Fig. 1.B. Processing time for 100 agents: 4h07min. D Our replication of Geerts et al.
(2020)’s results after optimizing model parameters in the adapted version of the simulated task
illustrated in Fig. 1.C. Processing time for 100 agents: 21 minutes.
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Topological discrepancies with Geerts, Chersi, Stachenfeld and Burgess (2020)'s pro-
vided code

Geerts et al. (2020)’s computational version of the water-maze consists of an hexagonal
environment composed of 271 discrete states (see Figure 1.B). Transitions from one state
to its neighbors are possible along six directions: North, North-East, South-East, South,
South-West and North-West.

A first topological discrepancy with the original experiment is that in the latter the
landmark-platform distance is of a constant 20cm. In contrast, in Geerts et al. (2020)’s
code this distance is only of half a state, which roughly represents 5 centimeters relative
to the size of the maze. This is quite important as these 20 centimeters distance were
originally introduced by Pearce et al. (1998) to prevent a simple cue-guided learning
strategy to be sufficient to solve the task: such a strategy would not have been sufficient
for the animal to find the platform by chance when moving around the landmark. A
substantial distance between landmark and platform is thus important to hinder rats’
associative-learning performances, and thus to ensure that they would also rely on their
cognitive mapping abilities.

Secondly, in Geerts et al. (2020)’s version of the task, agents are released from any of the
states that are adjacent to the border of the pool, aslong as the distance from the release
point of the previous trial is sufficiently large. In contrast, in the original protocol agents
were released at each trial from a random combination of all the four cardinal states.
Finally, the platform’s positions provided in Geerts et al. (2020)’s source code were not
accurately enough replicating the original topology of the environment. Indeed, Pearce
and colleagues indicated that in the original protocol « the landmark and the platform
midpoint was always located at the middle of one of the eight radii that were oriented
toward the eight main points of the compass » (Pearce et al., 1998) [3]. In contrast, as
can be seen on Figure 1.B, Geerts and colleagues positioned the platform too close to the
edge of the pool. As a result, agents have a higher probability of reaching the platform
by chance when navigating along the pool border.

These three topological discrepancies have all been corrected in our new implementa-
tion. Our version of the maze can be visualized and compared to the others in Figure 1.C.

Non-topological discrepancies and limitations in the implementation of the naviga-
tion strategies

In Geerts et al. (2020)" code, the agents’ Successor-Representation module was instan-
tiated with non-random and non-zero weights. The weights were instantiated in such
a way that the SR encoded an optimal representation of the transition function, as if
agents had already wandered around across the water-maze in an initial latent learning
phase. Such a phase, however, is absent from the original protocol described in Pearce
et al. (1998)’s article. We corrected this by setting the initial values of all elements of the
SR’s matrix to 0.

Secondly, Geerts et al. (2020)’s protocol did not implement a mechanism simulating a
laboratory assistant picking up the rat and placing it on the platform after failure of the
rat to find it on its own. We thus implemented a mechanism which allows an agent in
this situation to actually experience a transition to the platform state.

Another important limitation of Geerts et al. (2020)’s simulated results, which prevents
them from perfectly reproducing rats’ behavior in Pearce et al. (1998) has to do with
the performance asymptote of the learning curves (Fig. 2.B). More precisely, the curves
in Figure 2.B converge to a mean espace time of about 100 iterations of the model (to
be compared with the <50 model iterations we reached after parameter optimization;
Fig. 2.D). This means that the final performance of the originally simulated agents was
not optimal, and that they followed detouring paths towards the platform, in contrast
to the rat behavior reported in Pearce et al. (1998).
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In addition, a more minor discrepancy of Geerts et al. (2020)’s simulations has to deal
with the agents’ limited visual perception. Their source code contains two consecutive
uncommented lines, one which limits agents’ ability to perceive the intra-maze land-
mark at distances higher than 180 cm, and the next line which limits it further to 60
cm. First, it is not clear which of the two limits was used in the simulations presented
in Geerts et al. (2020), since this parameter of their simulations is not discussed in the
paper. Nevertheless, given that the two lines are uncommented, it is likely that the simu-
lated rats’ perception was restricted to less than 60-cm distances. While it is known that
rats’ visual acuity is poor compared to humans [7], it is unlikely that in the original ex-
periment rats were not able to perceive the visual landmark above 60-cm distances. This
is important, as the agents’ distance from the landmark can go up to 150 cm in Pearce et
al. (1998)’s experiment. This 60-cm limit can thus make the associative-learning strat-
egy perform artificially poorly. In contrast, from the detailed description of the experi-
mental protocol of Pearce and colleagues [8], it is clear that the intramaze landmark is
visually salient for the rats, since it is painted in black while the pool’s walls are painted
in white. Moreover, the experimental results show that rats can also take into account
the extramaze visual cues (posters with salient colors on the wall of the 4mx3m exper-
imental room, and a computer screen), while these distal cues are located at least 30
cm away from the pool’s edge, and up to 1 m away. For these reasons, we increased the
visual field of the landmark neurons in the associative-learning module to 260cm.
Finally, there was in the code no trace of an implementation of the eligibility trace al-
gorithm, as claimed in the methods of the paper. We did not implement one in our
version.

Required re-optimization of model parameters

In order to first reproduce Geerts et al. (2020)’s simulation results [1] with the same vir-
tual maze that they used (depicted in Fig. 1.B), we executed the original script provided
by the authors. We were able to execute the code after correcting a few minor bugs. On
the other hand, the parameters presented in the article are different from those found
in the original source code of Geerts and colleagues. Thus it was not clear which exact
model parameters were used to produce Fig. 2.B (adapted from their article). We were
unable to replicate the authors learning curves with either parameter-sets, thus we used
manual tuning to find a suitable combination of parameter values.

Secondly, as we modified the simulated protocol to better match Pearce’s task (Fig. 1.C),
we had to perform a parameter optimization so as to try to fit and replicate the experi-
mental data (Fig. 2.A) Specifically, we ran a random grid-search on four of the model’s
parameters: SR learning rate, MF learning rate, value function discount rate and ex-
ploration inverse temperature. We generated 2000 random combinations of these four
parameters within bounded values. We then conducted a single agent simulation for
each set of parameters. The mean performances of local clusters of datapoints in the
four dimensional-space of parameters was computed and compared to the experimen-
tal data using the Mean-Squared-Error (MSE) method. The centroid of the cluster with
the lowest MSE was selected to produce the data published in this paper (Fig. 2.D).

Results

We were first able to reproduce Geerts and colleagues’ results using their original code
(see Fig. 2.C). Nevertheless, this required a new optimization of model parameters (Ta-
ble. 3), as neither those provided in the article nor in the code were able to match the
article’s figure (Fig. 2.B).
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Parameters ‘ Geerts article | Geerts code | Reproduction | Replication
Maze size (diameter) Unspecified 10 states 10 states 10 states
Number of agents Unspecified 100 100 100
Platform-landmark distance Unspecified 1 state 1 state 4 states
HPC module learning rate 0.07 0.1 0.07 0.074
DLS module learning rate 0.07 0.1 0.07 0.256
Arbitrator inverse temperature 5 5 16 50
SR Discount factor 0.95 0.99 0.95 0.82
DLS Discount factor 0.95 0.9 0.9 0.92
Reliability learning rate 0.03 0.03 0.03 0.03
Transition rate MF to SR Unspecified 0.01 0.01 0.01
Transition rate SR to MF Unspecified 0.1 0.1 0.1
Steepness of transition MF to SR 3.2 1. 3.2 3.2
Steepness of transition SR to MF 1.1 0.5 1.1 1.1
DLS lesion False True False False

We were also able to replicate the original results of Pearce et al. (1998) [3] using the
modified version of Geerts et al. (2020)’s protocol that we implemented (see Fig. 2.D),
and using the custom set of parameters found using our random grid-search algorithm
and producing the lowest MSE.(see Table 3).

An ANOVA on the individual mean escape time of the agents showed a significant ef-
fect of trial (p = 7.5e-23, F = 166.4) for the control group, whereas no significant effect
(p=0.22) of trial was found for the hippocampally-lesioned group, as was reported in
Pearce et al. (1998)’s paper. An ANOVA also showed a significant difference between
the two groups both at the first and fourth trial (p < 2.e-06, F > 24.6 for both). The differ-
ence in escape time between the first and last trials for the control group is smaller with
our implementation than with Geerts et al. (2020)’s one (compare Fig. 2.B and Fig.C to
Fig. 2.D in early sessions). This can be explained by the fact that in their original article,
Geerts et al. (2020)’s Successor-Representation matrix was instantiated with non-zero
weights which improved the performances of the place-based module and thus inter-
trial learning. Nevertheless, as we wrote in the methods above, this is less close to the
experimental protocol in Pearce et al. (1998) where rats did not experience any pretrain-
ing phase before the task.

Conclusion

We were able to quantitatively and qualitatively replicate the results of the first experi-
ment of Geert et al. (2020)’s article. Despite the small variations in escape time at each
session and trial, the behavior of the agents we eventually simulated after parameter re-
tuning and adaptation of the simulated protocol was similar to both Pearce et al. (1998)’s
experimental data and Geerts et al. (2020)’s simulated data. Thus, although the pub-
lished implementation of the simulated task was not perfectly faithful to the original
one, and although we were not able to exactly replicate Geerts et al. (2020)’s results with
it, our results confirm that the computational model presented in the original article
can be adapted and retuned to account for the addressed experimental results.
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