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MULTIDIMENSIONAL STABLE DRIVEN MCKEAN-VLASOV SDES WITH

DISTRIBUTIONAL INTERACTION KERNEL: A REGULARIZATION BY NOISE

PERSPECTIVE

P.-E. CHAUDRU DE RAYNAL, J.-F. JABIR, AND S. MENOZZI

Abstract. We are interested in establishing weak and strong well-posedness for McKean -Vlasov SDEs
with additive stable noise and a convolution type non-linear drift with singular interaction kernel in the
framework of Lebesgue-Besov spaces. In particular, we characterize quantitatively how the non-linearity
allows to go beyond the thresholds obtained for linear SDEs with singular interaction kernels. We prove
that the thresholds deriving from the scaling of the noise can be achieved and that the corresponding
SDE can be understood in the classical sense. We also specifically characterize in function of the stability
index of the driving noise and the parameters of the drift when the dichotomy between weak and strong
uniqueness occurs.

1. Introduction and main result.

1.1. Framework. Fix a finite time horizon T > 0 and a starting time t ∈ [0, T ). Let s ∈ (t, T ] and
consider the, possibly formal, McKean-Vlasov Stochastic Differential Equation (SDE)

Xt,µ
s = ξ +

∫ s

t

∫

b(v, Xt,µ
v − y)µt,µ

v (dy)dv + (Ws − Wt), ξ ∼ µ ∈ P(Rd), (1.1)

with P(Rd) the set of probability measures on Rd, where the driving noise (Ws)s≥t is a symmetric α-
stable process with α ∈ (1, 2] (including thus the pure jump and the Brownian cases) and (µt,µ

s )s∈[t,T ]

denotes the (time) marginal laws of (Xt,µ
s )s∈[t,T ]. We aim at proving well-posedness (in a weak or strong

sense) for the above equation for distributional interaction kernels b. Namely, we want to consider a
Lebesgue-Besov framework assuming that:

b ∈ Lr((t, T ], Bβ
p,q(Rd,Rd)) =: Lr(Bβ

p,q), β ∈ (−1, 0], p, q, r ∈ [1, +∞]. (A)

Briefly, when p = q = +∞, and for any non integer β > 0, Besov spaces coincide with Hölder spaces with
Bβ

∞,∞(Rd,Rd) = Cβ(Rd,Rd); when β ∈ (−1, 0), they correspond to a distribution space whose elements

can be seen as the generalized derivatives of functions belonging to Bβ+1
∞,∞(Rd,Rd) = Cβ+1(Rd,Rd). This

also somehow indicates that the Hölder modulus blows up at rate β. More generally, the parameters p
and q are related to the integrability of such a modulus. We refer to Section 2.6.4 of [57] or Section 2 for
a precise definition of Besov spaces.

In the setting (A), we are interested in deriving conditions relating the stable exponent α, the integrability
indexes r, p, q, the regularity index β and the dimension d of the system in order to have well-posedness
of the former equation in a weak or strong sense. In the following, the quantities α, r, p, q, β and d are
referred to as the parameters (of (1.1)).

The question of the well-posedness for irregular or singular non-degenerate1 McKean-Vlasov SDEs of the
above, or even more general, form is nowadays the subject of a vast and still increasing literature. Histor-
ically, McKean-Vlasov SDEs were introduced for the probabilistic interpretation of non-linear parabolic
PDEs arising as the mean-field limit of interacting particle systems, [46], [47]. At the time, H. P. McKean
addressed the specific cases of a Boltzmann type equation and the (viscous) Burgers equation, and since
then -particularly in the 80s’ and 90s’- McKean-Vlasov models have been applied to design and validate
particle methods in a variety of situations in statistical physics and in fluid dynamics.

Date: May 24, 2022.
1We can refer to the recent work [62] for McKean-Vlasov equations of kinetic type (see also [8] or [10])
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2 1 INTRODUCTION AND MAIN RESULT

McKean-Vlasov SDEs were notably investigated for the validation of particle approximation and simu-
lation of vortex particle methods for the two and three dimensional incompressible Navier-Stokes equa-
tions, and more recently the Keller-Segel equations. For a more detailed overview on the links between
McKean-Vlasov models, numerical particle methods and their application in statistical physics, popula-
tion dynamics, social science and other engineering fields, we refer the interested reader to the surveys
[7, 34] and the recent monographs [24, 14].

In the last decade, the theory of McKean-Vlasov SDEs has received a renewed and significant interest
with the emergence of mean field games and applications of the mean-field theory and McKean-Vlasov
SDEs in stochastic control problems - see [12] and the references therein. This new framework, coupled
with new advances on variational calculus on the space of probability measures (e.g. [1], [38], [11] and
[12]), puts the focus on well-posedness questions for McKean-Vlasov SDEs with coefficients having a
general dependency in the measure argument, see e.g. [19].

The present work is the first of a series of two. We will concentrate here on the regularization by noise
aspects associated with McKean-Vlasov SDEs of type (1.1) (i.e. for which the measure dependence arises
from an interaction kernel). The connections with specific models and their extension to the α-stable
setting will be thoroughly investigated in the companion paper [18].

A regularization by noise perspective. For standard SDEs, i.e. when the dynamics write (at least
formally in the case of a distributional drift):

Y t,µ
s = ξ +

∫ s

t

b(v, Y t,µ
v )dv + (Ws − Wt), ξ ∼ µ ∈ P(Rd), (1.2)

and thus when there is no spatial convolution between the drift and the law, a huge literature investigated
as well the smoothing effects of the noise. The underlying idea is that the presence of noise allows to
restore uniqueness in some sense when the corresponding differential equation without noise would be
ill-posed.

Such phenomena have for instance been studied since the seminal works of Zvonkin [64] - who established,
in the scalar case, strong well-posedness for (1.2) when the drift is only bounded and (Borel) measurable
- and then of Stroock and Varadhan [55] - who extended the result from a weak perspective, in the
multidimensional setting, allowing as well the noise to be multiplicative with a diffusion coefficient only
measurable in time and space and continuous in time. The strong uniqueness result of Zvonkin was then
extended to the multidimensional case by Veretennikov in [60] and later for Lr((t, T ], Lp(Rd,Rd)) drifts
satisfying a Serrin integrability condition by Krylov and Röckner in [42] (with recent investigation of the
critical case in [41], [52]). We can also refer to the monograph by Flandoli, [26], for a survey of related
topics or to the article [23] in which a vanishing viscosity restores a kind of uniqueness for a Peano type
ODE by - roughly speaking - selecting the maximal solutions of the ODE (see also (1.11) below).

Let us also mention that the case when b in (1.2) is a distribution has been investigated with a growing
interest. From the initial work of Bass and Chen [4], for a scalar SDE and a time homogeneous drift,
which was investigated through a Dirichlet form approach, there have been various works addressing the
well-posedness of (1.2) for time-dependent drifts2 through PDE analysis ([27], [63] for local generators,
[2], [20] for the strictly stable case) or rough-path techniques ([22], [40] for a Markovian setting or [13]
for a purely pathwise approach which also allows to address fractional dynamics). At this point, one has
to notice that the SDE (1.2) is only formal for distributional drifts. The associated weak well-posedness
is investigated through the martingale problem formulation, which possibly needs to be tailored, but in
any case requires in the Markovian setting to investigate the well-posedness of the underlying associated
PDE. Namely,

{

∂tu + b · Du + Lαu = −f on [0, T ) × Rd,
u(T, ·) = 0,

(1.3)

where Lα is the generator of the driving stable process W , D a generalized gradient operator, and f
belongs to a rich enough class of functions in order to characterize the law of the canonical process
associated with the martingale problem solution. Equation (1.3) is to be solved in a mild sense through

2in the time-independent case the problem can still be investigated through Dirichlet forms, [28]



1.1 Framework 3

a Duhamel type formulation. Namely we formally rewrite it as:

∀(t, x) ∈ [0, T ] × R
d, u(t, x) =

∫ T

t

dsP α
s−t[{f + b · Du}](s, x), (1.4)

where (P α
t )t≥0 is the semigroup generated by Lα.

The point is that this (mild) formulation already emphasizes the difficulties and allows to understand
the thresholds on the parameters arising for well-posedness in the aforementioned articles. Indeed, not
only is the representation (1.4) implicit (in the sense that u appears on both sides of the equality) but
for a distributional drift, it is delicate to give a meaning to the term P α

s−t[b · Du]. This can somehow be
done from the Bony paraproduct rule. Namely b · Du can be well-defined, as a distribution, provided the
sum of the regularities of each term is positive. Assume now and for a while that b is time independent
and belongs to Bβ

∞,∞(Rd,Rd), β ∈ (−1, 0) (or that b = DB with B ∈ Bβ+1
∞,∞(Rd,R)). Suppose as well

that the former product makes sense as a distribution. It can then only be expected to lie in the same
space than b, i.e. in Bβ

∞,∞(Rd,Rd). Thus, for any (smoother) class of functions to which f belongs to,
the above mild representation suggests, from a heuristic parabolic bootstrap argument, that the best one
can expect is that u ∈ Cβ+α(Rd,R) with β + α > 13. Thus Du is expected to belong to Cβ+α−1(Rd,R)
with β + α − 1 > 0. From the previous rule, for the product to be well defined, one should have:

β + (β + α − 1) > 0 ⇐⇒ β >
1 − α

2
. (1.5)

This is precisely the threshold that appears in [27], [2], [20] in the corresponding setting. Let us specify
that in [22], [40] the authors manage to go below this threshold adding some structure to the drift, i.e.
assuming that this latter can be enhanced into a rough path structure. In that case the threshold can
decrease to (2 − 2α)/3.

Even when having at hand the martingale solution, specifying rigorous integral dynamics - for an ade-
quate notion of solution - for the formal SDE (1.2) is not easy when the drift is a distribution. Under the
previously described conditions, it turns out that the integrated drift has to be understood as a Dirichlet
process and it seems that the most accurate description of the singular dynamics, which reconstructs
the drift as a Young integral with respect to a time-space convolution of the drift and the density of the
driving noise, is provided in [22] in the Brownian case and [20] for the stable Young regime.

Regularization by noise for McKean-Vlasov SDE. In its simplest setting, notably for Brownian
driven diffusions, the (strong) well-posedness of McKean-Vlasov SDEs is fulfilled whenever the coefficients
are Lipschitz continuous in Rd × Pℓ(R

d), ℓ ∈ [1, +∞) and Pℓ(R
d) standing for the set of probability

measures which admit a moment of order ℓ and is equipped with the topology induced by the Wasserstein
metric:

Wℓ(µ, ν) =
(

inf
X∼µ,Y ∼ν

E[|X − Y |ℓ]
)1/ℓ

.

The distance Wℓ appears to be quite natural when dealing with McKean-Vlasov equations with Lipschitz
properties, especially because it can be expressed in term of the corresponding Lℓ distance. Indeed, on
the one hand, this relation allows to implement the Picard-Lindelhöf fixed point procedure to establish
well-posedness results, in a rather similar way than for classical SDEs. On the other hand, it allows to
ensure the well-posedness of the associated Mean-Field particle system, viewed as a high dimensional
SDE. We refer to e.g. [47], [56], [48] and [12], Section 5.7.4, for further details.

It nevertheless appears that, in the non-degenerate case, the usual Lipschitz property w.r.t. the Wasser-
stein metric can be weakened to a Lipschitz property w.r.t. the total variation distance defined, for any
µ, ν ∈ P(Rd), as dTV(µ, ν) = supA∈B(Rd) |µ(A) − ν(A)|. This goes back to the work of Shiga and Tanaka

[54] for a particular type of measure dependence and then to Jourdain [35] in a rather general frame-
work - in both works, the diffusion matrix is not allowed to be measure dependent. We used above the
word “weakened” to refer to the fact that, for any probability measures µ, ν with full support on some

compact subset K of Rd one has, e.g. Wℓ(µ, ν) ≤ diam(K)d
1/ℓ
TV(µ, ν), and a large class of solutions of

non-degenerate SDEs lives with high probability in compact subsets of the considered space. Hence, the
non-degeneracy of the noise allows to consider this stronger topology. This particular smoothing effect of

3Observe that since β ∈ (−1, 0) this means in particular that α > 1. Singular drifts can be handled in the so-called
sub-critical stable regime.



4 1 INTRODUCTION AND MAIN RESULT

the finite dimensional noise w.r.t. the infinite dimensional measure variable is highlighted in e.g. Section
2 in [19]. Using this quite tricky regularization phenomenon, the authors succeeded therein to derive a
rather general well-posedness theory for Brownian driven McKean-Vlasov SDEs whose drift and diffusion
coefficients may be Lipschitz w.r.t. stronger topologies than the usual Wasserstein metric. In this regard,
we also refer the reader to [17] where the first author extended Zvonkin’s technique to McKean-Vlasov
SDEs. To conclude this (partial) survey of the literature, let us finally point out the alternative method-
ology, highlighted in Mishura and Veretennikov [50], to quantify pathwise dT V distance through a change
of probability measures. While initially designed to handle weak uniqueness results for Borel measurable
kernels with linear growth in the space argument, this methodology has been extended to different situ-
ations, from non smooth drifts in both the spatial and measure arguments ([39]) to measure-dependent
diffusion coefficients ([51]). The use of change of probability measures remains nonetheless quite specific
to Brownian driven equations and does not transpose to the general pure jump stable setting.

While often limited to the Brownian case, well-posedness results for non-degenerate stable (and pure
jumps) driven McKean-Vlasov SDEs were addressed in [30] (see also [36] for more general jumps processes
with suitable moments and [48] - and subsequent references - for the more specific case of the Boltzmann
equation). In [30], the authors show that one can again consider stronger topologies for the regularity
of the coefficients w.r.t. the measure variable and still preserve the well-posedness of the system. Let us
mention as well that the approach adopted therein allows to reach the super-critical case (α < 1).

We now briefly specify part of the results obtained in [19] and [30]. Therein, by stronger topologies,
the authors roughly mean that the coefficients are Hölder (or even bounded measurable) in space and
Lipschitz continuous w.r.t. the chosen distance on the space of probability measures. For two given
probability measures, this latter is defined as the supremum of their difference integrated against normal-
ized functions whose regularity is linked to the spatial one of the coefficients. Namely, measurable and
bounded (for the drift coefficient in [19]) and Hölder continuous for the others. Again, the regularity as-
sumed on the coefficients imposes, in turn, the class of test functions against which probability measures
have to be tested when investigating the well-posedness of the system. From the fixed point perspective
of those works, this homogeneity (between the metrics) seems rather natural. Indeed, the underlying
linear problems precisely enjoy some stability on the indicated function space (Schauder type estimates).

McKean-Vlasov SDE with distributional interaction kernel. One of the main objective in the
current work is to take full advantage of the non-degeneracy of the noise and of the particular structure
of the measure dependence (allowing, in some sense, to regularize the drift through the convolution with
the law of the solution - provided the law itself is smooth enough) in order to obtain a well-posedness
result for a rather large class of interaction kernels, possibly larger than the one considered in the classical
measure-independent case described above. As it will be heuristically discussed below, it seems to us that
such a class is, almost, the largest that could be considered in the current setting.

In order to emphasize some of the particularities of the model, let us again consider for a while that
β ∈ (−1, 0] and that the interaction kernel is time-homogeneous, i.e. b ∈ Bβ

∞,∞(Rd,Rd).

Regularity with respect to the measure argument and associated metric. Let us first formally define the
measure indexed drift

Bν(x) :=

∫

b(x − y)ν(dy), ν ∈ P(Rd),

associated with the non-linear drift of equation (1.1).

Let us point out that this definition is formal in the sense that, since b is singular, it is intuitively clear
that some additional properties are needed on the probability measure ν for the quantity to be well
defined. A rather natural way to define an appropriate setting is to proceed through duality.

If we restrict to probability measures with density, i.e. ν(dy) = ν(y)dy, the integral
∫

dy b(x − y)ν(y)

makes sense as soon as ν ∈ B−β
1,1 (Rd,R) from the inequality:

|Bν(x)| = |

∫

dy b(x − y)ν(y)| ≤ |b|Bβ
∞,∞(Rd,Rd)|ν|B−β

1,1 (Rd,R), (1.6)

see e.g. [44] for a thorough presentation of duality results between Besov spaces. Namely, the regularity
of the density of the measure is needed to compensate the singularity of the kernel b to define the
corresponding drift Bν . As a consequence, this latter is then defined pointwise.
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The previous considerations naturally induce a metric on the probability measures whose densities belong

to B−β
1,1 (Rd,R) for which the corresponding measure indexed drift is Lipschitz (in its measure argument).

Namely, for all x ∈ Rd,

|Bν(x) − Bν′(x)| = |

∫

dy b(x − y)(ν − ν′)(y)| ≤ |b|Bβ
∞,∞(Rd,Rd)|ν − ν′|B−β

1,1 (Rd,R). (1.7)

In view of the previous discussion on the specific features of the regularization by noise for McKean-
Vlasov SDEs, this thus suggests to look for (weak) solutions whose marginal laws live for almost every

time in the space B−β
1,1 (Rd,R).

Attainable thresholds (in term of irregularity of the interaction kernel). Here, instead of considering
the backward Kolmogorov PDE associated with (1.2), we rather investigate the (forward) non-linear
Fokker-Planck equation. We are thus led to consider mild solutions of this latter of the form

∀(s, y) ∈ [t, T ] × R
d, ρ(s, y) = pα

s−t ⋆ µ(y) +

∫ s

t

dvP α
s−v[{div[(Bρ) · ρ]}](v, y), (1.8)

where ρ(s, ·) denotes the density function of µ
t,µ
s , ⋆ the convolution product along the space variable, pα

stands for the density of the driving process in (1.1) and, again, P α for the corresponding semi-group.
In comparison with (1.4), we do not need to define the product b · Du anymore, but only Bρ · ρ and
prove somehow that the divergence of this term will be mapped onto a suitable function space by the
stable semi-group P α - precisely, the space where ρ is supposed to belong to, for almost every time.

According to the previous discussion, this space should be B−β
1,1 (Rd,R). Let us now present some formal

calculations, proved below, to understand which thresholds are likely to be attainable. Recall that the

space B−β
1,1 (Rd,R) can be described as the set of integrable maps having an integrable Hölder modulus. It

will be established in Lemma 7 below, through integration by parts together with Young like convolution
inequalities in Besov spaces, that

|P α
s−v{div(Bρ(v, ·) ·ρ(v, ·))}|B−β

1,1
≤ |Bρ(v, ·)|L∞ |ρ(v, ·)|L1 |∇pα(s−v, ·)|B−β

1,1
≤

C|b|Bβ
∞,∞

|ρ(v, ·)|B−β
1,1

(s − v)
1
α

− β
α

, (1.9)

using (1.7) and the fact that we are considering probability measures to derive the last inequality. Thus,

provided we can somehow control the B−β
1,1 -norm of the solution in time, we can hope to derive well-

posedness of (1.8) for

β > 1 − α, (1.10)

which gives an integrable time singularity in (1.9) and clearly improves the threshold (1.5) for the linear
case. Observe for instance that in the Brownian setting α = 2, (1.5) gives β > −1/2 whereas the above
condition reads β > −1. This mainly comes from the specific structure of dependence of the non-linear
drift w.r.t. the law argument. Indeed, in order to define the product Bρ · ρ, the interaction kernel in the
non-linear drift has already been regularized through the convolution operator and has been mapped, as
suggested in (1.7), to L∞(Rd,Rd) for almost every time. While rather naive, this observation is crucial
in our analysis and allows to bypass the thresholds obtained in the linear case. In fact, even in the non-
linear case, it is not clear that general dependence w.r.t. the law argument would allow to bypass such
thresholds. Let us also mention that working with probability densities plays a crucial role as well here.
Indeed, the control in L1(Rd,R) norm of ρ(r, ·) in (1.9) allows to “remove” the non-linearity and thus the
quadratic dependence in ρ in the right hand side of (1.8). This specific feature will yield well-posedness,
for the indicated non-linear threshold, for any positive time T > 0. Such phenomenon is referred to as
dequadrification in the following.

Remark 1.

(i) On the associated metric and space in which the solution belongs to. For whom are familiar with
the smoothing effect of linear SDEs (as briefly described above), it would seem reasonable, in view
of (1.8), to look for the law of the process in the space of probability measures whose regularity
is precisely given according to the usual parabolic bootstrap associated with the non-degenerate
noise. Namely, as the interaction kernel b belongs to Bβ

∞,∞(Rd,Rd), the corresponding space

for probability measures would be Bβ+α
1,1 (Rd,R), similarly to the linear case. Note that, in the

singular setting, the regularity associated with the parabolic bootstrap, i.e. β + α, is greater
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or equal than the minimal regularity, i.e. −β, needed to define properly the drift (see (1.6)).
Namely,

(β + α) − (−β) = 2β + α >
(1.10)

2 − 2α + α = 2 − α,

meaning that, except in the Brownian case (α = 2), the regularity of the weak solution should
be better than the one obtained in this work. However, we were not able to prove such a
result for any positive time T > 0, but only in small time. We feel that this restriction comes
from the particular smoothing effect of the McKean-Vlasov SDEs previously described and the
dequadrification approach, which allows to handle any initial measure but not to benefit from a
potential smoothness of this latter to iterate the analysis (this feature will be one of the cores of
[18] as briefly mentioned below).

(ii) On the thresholds. Let us point out that the threshold (1.10) actually corresponds to the one
deriving from the scaling analysis in the linear case. Indeed consider the following scalar perturbed
Peano dynamics: for ǫ > 0,

dxǫ
s = sgn(xǫ

s)|xǫ
s|β ds + ǫdWs, xǫ

0 = 0. (1.11)

It is clear that for ǫ = 0 the maximal solutions of (1.11) write : x0
s = +cβs1/(1−β). Heuristically,

considering ǫ > 0 allows to restore uniqueness as far as the noise dominates the maximal solution
in short time. In terms of scales, recalling that the typical scale of Ws is s1/α, this writes

s
1
α > s

1
1−β ⇐⇒

1

α
<

1

1 − β
⇐⇒ β > 1 − α,

recalling that s is small for the first equivalence. Well-posedness of (1.11) under the condition
(1.10) was precisely proved in a particular Brownian scalar setting by Gradinaru and Offret in
[32]. We eventually emphasize that the above scaling argument can be made rigorous for a broad
class of equations for which the scaling properties of the noise and the drift lead to some positive
thresholds - in the sense that it allows to build counter-examples to weak uniqueness, see e.g.
[16, 18, 45].

The main difficulty of course is to make the above arguments rigorous. This is what we will actually
do considering the Fokker-Planck equation associated with the McKean-Vlasov SDE (1.1). We will not
proceed through a fixed point procedure but prove that, starting from a mollified version of the drift
coefficient, we can actually control the quantities we highlighted before, uniformly in the mollification
parameter under a suitable condition relating the parameters, Assumption (C0) below, which is consistent
with the previous discussion and enlarges the framework. The well-posedness of (1.1) is then drawn from
a stability argument.

We conclude this introduction emphasizing that for physics related models, e.g. the Burgers equation
considered from the origin of McKean-Vlasov SDEs, one should expect that the case β = −1, α = 2 could
be handled. This is not the case here because we wanted to focus on a generic approach working viewless
of the regularity of the initial law. The critical cases (which saturate the previous inequalities for the
thresholds) will be addressed through different tools, somehow more connected with usual arguments in
non-linear analysis, in the companion paper [18]. The strategy therein will allow to take advantage of
a smoother initial condition or some specific structural conditions on the drift (e.g. free divergence for
fluid related problems) to go beyond the discussed thresholds.

Organization of the paper. Our main results are stated in the next section, and their proofs are
developed in Section 3. Our strategy, presented in Section 1.3, consists first in establishing the existence
of a solution to (1.1) in terms of a non-linear martingale problem, through a mollification of the drift
coefficient and stability arguments. This approach allows to derive the weak well-posedness of a solution
to (1.1) directly from the construction of its marginal laws seen as solution to the non-linear Fokker-
Planck equation (1.8) related to (1.1) and a weak uniqueness criterion à la Krylov-Röckner. Strong
well-posedness is next derived from a classical pathwise uniqueness result, see Krylov-Röckner [42] for
the Brownian case and Xie-Zhang [61] for the pure jump case.

We present in Section 2 the useful properties of Besov spaces that will be used in our analysis.

The framework of Besov interaction kernels allows to revisit the martingale approach to well-posedness
for McKean-Vlasov models in a quite systematic way starting from some (seemingly) sharp global density
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estimates, valid for any initial law µ. Section 3.1 is dedicated to this step, and Section 3.2 to the derivation
of the well-posedness results (in a weak and/or strong sense). Some technical results are presented in the
Appendix.

1.2. Main results. From now on, in the pure jump case α ∈ (1, 2), we assume that the driving process
W in (1.1) satisfies the following condition:

Assumption (UE). The Lévy measure ν of W is given by the decomposition ν(dz) = w(dξ)/ρ1+αI{ρ>0}dρ

where w is a symmetric measure on the unit sphere Sd−1 which satisfies the uniform non-degeneracy con-
dition:

κ−1|λ|α ≤

∫

Sd−1

|ξ · λ| w(dξ) ≤ κ|λ|α, for all λ ∈ R
d ,

for some κ ≥ 1. In particular, since we here consider an additive noise, its Lévy measure can actually
have a singular spherical part (cylindrical processes are allowed).

Theorem 1. Fix T > 0 and t ∈ [0, T ). Let b in (1.1) belong to Lr((t, T ], Bβ
p,q(Rd,Rd)) and let the

parameters satisfy the condition

β > 1 − α +
d

p
+

α

r
. (C0)

Then, for any initial law µ ∈ P(Rd), the McKean-Vlasov SDE (1.1) admits a weak solution s.t. its
marginal laws (µt,µ

r )r∈(0,T ] have a density for almost any time, i.e. for almost all r ∈ (t, T ], µ
t,µ
r (dy) =

ρt,µ(r, y)dy, which satisfies:
∫ T

t

ds|ρt,µ(s, ·)|r̄
B−β

p′,q′

< +∞,

for any r̄ ∈
[

r′, (−β/α + d/(αp))−1
)

where p−1 + (p′)−1 = q−1 + (q′)−1 = r−1 + (r′)−1 = 1. Moreover,
the solution is unique among all the weak solutions that satisfy the above properties.

The above well-posedness result moreover holds in a strong sense if the driving process is rotationally
invariant and the parameters satisfy the following more stringent (when α 6= 2) condition:

β > 2 −
3

2
α +

d

p
+

α

r
. (C0S)

Remark 2 (About the strong uniqueness). In the above theorem we assume for strong uniqueness that
W is rotationally invariant. This is of course the case for α = 2 but it actually means that in the pure
jump case we restrict the noise to the isotropic stable process for W . This is mainly due to the fact that
to establish the result, we apply a uniqueness criterion due to Xie and Zhang, see [61], where a driving
isotropic process is considered in order to deal more easily with a multiplicative noise and related heat
kernel estimates. While clearly restrictive, we actually believe that in the current additive framework, the
PDE analysis of the indicated reference could be adapted and that the strong uniqueness result should
hold under the condition (C0S) for any symmetric stable driving process satisfying Assumption (UE)
(including e.g. symmetric cylindrical processes).

Observe finally that for α = 2 the conditions (C0) and (C0S) for weak and strong uniqueness coincide.

1.3. Strategy of proof. As explained before, the construction of a weak solution to (1.1) proceeds
hereafter from a regularization procedure and a stability argument. When doing so, we will use the
following approximation result whose proof, which relies on the preliminaries set in Section 2, is postponed
to the Appendix.

Proposition 2 (Smooth approximation of the drift and associated convergence properties). Let b ∈
Lr((t, T ], Bβ

p,q) and β ∈ (−1, 0], 1 ≤ p, q ≤ ∞. There exists a sequence of time-space smooth bounded
functions (bε)ε>0 s.t.

|b − bε|
Lr̄((t,T ],Bβ̃

p,q)
−→
ε→0

0, ∀β̃ < β,

with r̄ = r if r < +∞ and for any r̄ < +∞ if r = +∞. Moreover, there exists `c ≥ 1, sup
ε>0

|bε|Lr̄((t,T ],Bβ
p,q) ≤

`c|b|Lr̄((t,T ],Bβ
p,q).
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From the specific convolution structure of the non-linear drift, we now introduce, for any measure ν on
Rd for which this is meaningful, the notation:

Bν(s, ·) := b(s, ·) ⋆ ν(·)=

∫

Rd

b(s, · − y) ν(dy).

We now write similarly, for all ε > 0

Bε
ν(s, ·) := bε(s, ·) ⋆ ν(·), (1.12)

which is well defined for any ν ∈ P(Rd), regardless of the Besov space where b belongs to, since bε is
smooth and bounded. This allows to introduce in turn the following mollified version of (1.1):

Xε,t,ξ
s = ξ +

∫ s

t

Bε
µ

ε,t,µ
v

(r, Xε,t,ξ
v )dv + Ws − Wt, µ

ε,t,µ
s (s, ·) = Law(Xε,t,ξ

s ), s ∈ (t, T ], (1.13)

which is strongly (and thus weakly) well-posed for any ε > 0, see Frikha, Konakov and Menozzi [30] for
α ∈ (1, 2) or Sznitman [56] in the Brownian case. We emphasize that, due to weak uniqueness, µ

ε,t,µ
s (s, ·)

only depends on the law µ of the random initial condition ξ.

Let us now prove that the marginal laws of the unique weak solution of this regularized McKean-Vlasov
SDE are absolutely continuous w.r.t. the Lebesgue measure. Consider the associated decoupled flow,
that is the linear SDE parametrized by the flow of measure (µε,t,µ

s )s∈[t,T ] which writes

X̃ε,t,x,µ
s = x +

∫ s

t

Bε
µ

ε,t,µ
v

(v, X̃ε,t,x,µ
v )dv + Ws − Wt, x ∈ R

d. (1.14)

Again, for every ε > 0, this linear SDE admits a unique weak solution. We denote its marginal laws
by (µ̃ε,t,x,µ

s )s∈[t,T ]. Note importantly that, as µ
ε,t,µ and µ̃

ε,t,x,µ are uniquely determined, the following

key relation holds: for all A in B([t, T ]) ⊗ B(Rd), µ
ε,t,µ(A) =

( ∫ T

t dr
∫ ∫

I(r,y)∈Aµ̃
ε,t,x,µ
r (dy)µ(dx)

)

. It
is now worth noticing that in the mollified setting the drift in equation (1.14) is smooth in the time and
space variables and bounded. Indeed, for all y ∈ R

d

|Bε
µ

ε,t,µ
r

(r, y)| ≤ |bε|∞

∫

Rd

µ
ε,t,µ
r (dz) = |bε|∞,

and the controls for the derivatives could be derived similarly differentiating bε. This is what allows to
derive from Friedman [29] for α = 2 and Bichteller et al. [5] in the pure jump case that the SDE admits
for any s ∈ (t, T ] a smooth density (we could also refer to [49] in the rotationally invariant case). Thus,
the law µ̃

ε,t,x,µ
r is absolutely continuous w.r.t. the Lebesgue measure with density ρ̃

ε
t,x,µ(r, ·). Hence,

there exists ρ
ε
t,µ such that:

∀A ∈ B([t, T ]) ⊗ B(Rd), µ
ε,t,µ(A) =

∫

A

∫

Rd

ρ̃
ε
t,x,µ(v, y)µ(dx)dvdy =:

∫

A

ρ
ε
t,µ(v, y)dvdy, (1.15)

i.e. µ
ε,t,µ is absolutely continuous as well. We emphasize that the relation (1.15) holds for any α ∈ (1, 2].

We now state a result, which will be at the starting point of our analysis and whose proof is postponed
to Appendix B for the sake of simplicity.

Lemma 3 (Duhamel representation for the time marginal laws of the process with mollified interaction
kernel). The following Duhamel representation holds for the solution of equation (1.13). For each ε > 0,
ρ

ε
t,µ satisfies for all s ∈ (t, T ] and all y ∈ Rd:

ρ
ε
t,µ(s, y) = pα

s−t ⋆ µ(y)−

∫ s

t

dv
[

{Bε
ρ

ε
t,µ

(v, ·)ρε
t,µ(v, ·)} ⋆ ∇pα

s−v

]

(y), (1.16)

where pα stands for the density of the driving process W, and with a slight abuse of notation w.r.t. (1.12),
Bε

ρ
ε
t,µ

(v, ·) = [bε(v, ·) ⋆ ρ
ε
t,µ(v, ·)].

We will actually prove (see Lemma 7) that there exists a constant C ≥ 0, s.t. for any ε > 0, and p, q, r, β
satisfying condition (C0) (see Theorem 1):

|ρε
t,µ|

Lr′
(

(t,T ],B−β

p′,q′

) ≤ C(T − t)θ, θ > 0.
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It is furthermore clear that for any ε > 0, ρ
ε
t,µ solves, in the distributional sense, the equation:

{

∂sρ
ε
t,µ(s, y) + div(Bε

ρ
ε
t,µ

(s, y)ρε
t,µ(s, y)) − Lα

ρ
ε
t,µ(s, y) = 0,

ρ
ε
t,µ(t, ·) = µ,

or equivalently, for all ϕ ∈ C∞
0

(

(−T, T ) × Rd
)

(up to a possible symmetrization for s < t and with

C∞
0

(

(−T, T ) ×Rd
)

standing for the the set of real valued infinitely differentiable functions with compact

support in (−T, T ) × Rd),

−

∫

ϕ(t, y)µ(dy) −

∫ T

t

ds

∫

Rd

dy (Bεk

ρ
εk
t,µ

(s, y)ρεk

t,µ(s, y)) · ∇ϕ(s, y)

+

∫ T

t

ds

∫

Rd

dyρ
εk

t,µ(s, y)(−∂s + (Lα)∗)ϕ(s, y) = 0, (1.17)

where (Lα)∗ stands for the adjoint of Lα . The driving process W being symmetric, then (Lα)∗ = Lα.

Provided that ρ
ε
t,µ admits a limit ρt,µ in some appropriate function space (see Lemma 8 below) - which

precisely allows to take the limit in the Duhamel formulation (1.16) - we derive that the limit satisfies
(Lemma 9)

ρt,µ(s, y) = pα
s−t ⋆ µ(y)−

∫ s

t

dv
[

{ρt,µ(v, ·)Bρt,µ
(v, ·)} ⋆ ∇pα

s−v

]

(y), (1.18)

i.e. is a mild solution to the non-linear Fokker-Planck equation related to (1.1). By extension ρt,µ(s, y) dy
also provides a distributional solution to the non-linear Fokker-Planck equation related to (1.1):

−

∫

ϕ(t, y)µ(dy) −

∫ T

t

ds

∫

Rd

dy (Bρt,µ
(s, y)ρt,µ(s, y)) · ∇ϕ(s, y)

+

∫ T

t

ds

∫

Rd

dyρt,µ(s, y)(−∂s + (Lα)∗)ϕ(s, y) = 0, ϕ ∈ C∞
0

(

(−T, T ) × R
d
)

.

(1.19)

This provides a sufficient (and necessary) basis to construct a solution to (1.1) identifying it as the limit of
the martingale problem related with (1.13). More precisely, from the solution to (1.13), one can consider
for each ε > 0 the probability measure Pε on the space Ωα (where Ωα stands for the space of càdlàg
functions D([t, T ];Rd) if α ∈ (1, 2) and the space of continuous functions C([t, T ];Rd) otherwise) such
that, for x(s), t ≤ s ≤ T , the canonical process on Ωα, and for Pε

t (s, dx) := Pε
t (x(s) ∈ dx) the family

of probability measures induced by x(s), we have: the initial measure Pε
t (t, ·) is equal to µ and for all

function φ twice continuously differentiable on Rd, with bounded derivatives at all order, the process

φ(x(s)) − φ(x(t)) −

∫ s

t

{

BPε
t
(v, x(v)) · ∇φ(x(v)) + Lα(φ(x(v)))

}

dv, t ≤ s ≤ T,

is a martingale. Provided, again, that for any ε > 0 the marginal distributions Pε
t (s, dx) = ρ

ε
t,µ(s, x) dx

lie in a appropriate space to ensure that (Pε
t )ε>0 is compact in P(Ωα) any corresponding limit along

a converging subsequence defines naturally a solution to the (non-linear) martingale problem related to
(1.1). From the well-posedness of the limit Fokker-Planck equation one eventually derives uniqueness
results for the marginal laws giving in turn the uniqueness of the martingale solution associated with
(1.1).

Also, the regularity properties of the time-marginals of the limit non-linear Fokker-Planck equation,
(inherited from Lemma 7 below), allow to regularize the distributional interaction kernel so that the
non-linear drift Bρt,µ

is actually a function living in some Lebesgue space (in time and space). This

permits to give a meaning to the dynamics in (1.1) by connecting martingale and weak solutions through
classical arguments. All these properties are gathered in Propositions 12 and 13.

Furthermore, when slightly reinforcing (C0) to (C0S), we are able to obtain better estimates (namely
in suitable Lebesgue-Besov space - with positive regularity index for the latter) on the non-linear drift
Bρt,µ

which allows to derive, in turn, a strong well-posedness result by viewing the McKean-Vlasov SDEs

as a linear SDE parametrized by the unique weak solution and applying results of [42] in the Brownian
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case and, as highlighted previously, [61] in the pure jump one for rotationally invariant processes (see
Proposition 15 below).

1.4. Notations. For any real ℓ ∈ [1, ∞], we denote by ℓ′ its conjugate i.e. ℓ′ is such that 1/ℓ+1/ℓ′ = 1.

When there are no ambiguities, we will often omit to mention the spatial argument when specifying a
function space, i.e. we write Lℓ(Rd) = Lℓ.

We will use below the notation C for a generic constant that might change from line to line but only
depends on known parameters appearing in (C0).

2. Besov spaces and associated tools.

2.1. Reminders on Besov spaces. We recall that the space Bγ
ℓ,m(Rd,Rk), k ∈ {1, d}, ℓ, m, γ ∈ R is

usually defined through the dyadic Littlewood-Paley decomposition (see e.g. [44] or [3]). Namely, it
consists in the elements of S′(Rd,Rk) (where S(Rd,Rk) stands for the Schwartz space) such that the
quantity

|f |Bγ

ℓ,m
,LP := |F−1(φF(f))|Lℓ +















(

∑

j∈N

2γjm|F−1(φjF(f))|mLℓ

)
1

m for 1 ≤ m < ∞,

sup
j∈N

(

2γj|F−1(φjF(f))|Lℓ

)

if m = ∞,

is finite where φ ∈ C∞
0 (Rd,R) s.t. φ(0) 6= 0, φj(y) = 2jφ(2jy) and F , F−1 respectively denote the Fourier

and inverse Fourier transform. This quantity also defines a norm for which Bγ
ℓ,m(Rd,Rk) is a Banach

space - see e.g. Triebel [57], Theorem 2.3.3., p. 48. Instead of the Littlewood-Paley decomposition
inducing the norm | · |Bγ

ℓ,m
,LP, we will from now on use the so-called thermic characterization of Besov

spaces which involves an underlying heat kernel. The thermic characterization is presented in Section
2.6.4 of [57] for the Gaussian and Cauchy heat kernel (corresponding respectively to α = 2 and α = 1).
However, one can also derive (from Theorem 1 in Section 2.5.1 of the same reference) that f ∈ Bγ

ℓ,m if
and only if the quantity below is finite:

|f |Hγ

ℓ,m
,α̃ :=|F−1(φF(f))|Lℓ +



















(
∫ 1

0

dv

v
v(n−γ/α̃)m|∂n

v p̃α̃(v, ·) ∗ f |mLℓ

)

1
m

for 1 ≤ m < ∞,

sup
v∈(0,1]

{

v(n−γ/α̃)|∂n
v p̃α̃(v, ·) ∗ f |Lℓ

}

for m = ∞,

=:|F−1(φF(f))|Lℓ + T γ,α̃
ℓ,m (f). (2.1)

The choice of the parameter α̃ ∈ [1, 2] is for free, n being any non-negative integer (strictly) greater than
γ/α̃, the function φ is as above, and p̃α̃(v, ·) denoting the density function at time v of the d-dimensional
isotropic α̃-stable process. From now on, we will set α̃ = α, i.e. we take for the thermic characterization
the same stability index as the driving noise.

The current choice of the thermic kernel is rather natural in our framework. Since we will establish a
priori estimates on Duhamel type representations which involve the density pα of the stable driving noise
(see again (1.18) and (1.16)), the previous thermic characterization allows to benefit from stability and
scaling properties in the associated convolutions. This characterization of Besov spaces was already used
in [20] for similar reasons. The quantity in (2.1) also induces a norm, equivalent to | · |Bγ

ℓ,m
,LP, and for

the remaining of the paper we will denote for f ∈ Bγ
ℓ,m:

|f |Bγ

ℓ,m
:= |f |Hγ

ℓ,m
,α.

We will refer to the contribution T γ,α
ℓ,m (f) =: T γ

ℓ,m(f) in (2.1) as the thermic part of the norm.

2.2. Properties of Besov spaces. We recall here some key technical results on Besov spaces and
their embeddings.
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(i) Continuous embedding. With Lebesgue spaces ([53, Prop. 2.1]):

∀1 ≤ ℓ ≤ ∞, B0
ℓ,1 →֒ Lℓ →֒ B0

ℓ,∞. (E1)

Between Besov spaces (see (1.1) in [59] and Proposition 2.2 in [53]):

Bs0
p0,q0

→֒ Bs1
p1,q1

for p0, p1, q0, q1 ∈ [1, ∞], q0 ≤ q1, p0 ≤ p1 such that s0 − d/p0 ≥ s1 − d/p1. (E2)

We refer to Sections 4.1 and 4.2 in [53] for additional embeddings.
(ii) Young (or convolution) inequality. Let γ ∈ R, ℓ and m in [1, +∞]. Then for any δ ∈ R,

ℓ1, ℓ2 ∈ [1, ∞] such that 1+ℓ−1 = ℓ−1
1 +ℓ−2

2 and m1, m2 ∈ (0, ∞] such that m−1
1 ≥ (m−1 − m−1

2 )∨0

|f ⋆ g|Bγ

ℓ,m
≤ cY|f |Bγ−δ

ℓ1,m1

|g|Bδ
ℓ2,m2

, (Y)

for cY > 0 a universal constant depending only on d. The initial proof of this inequality can be
found in [9, Theorem 3], see also [43] for recent convolution inequalities for Besov and Triebel-
Lizorkin spaces.

(iii) Besov norm of heat kernel (see [20, Lemma 11]). There exists cHK := C(α, l, m, γ, d) > 0 s.t. for
all multi-index a ∈ N

d with |a| ≤ 1, and 0 < v < s < ∞:
∣

∣∂apα
s−v

∣

∣

Bγ

ℓ,m

≤
cHK

(s − v)
γ
α

+ d
α

(1− 1
ℓ

)+
|a|
α

. (HK)

(iv) Duality inequality (see e.g. [44, Proposition 3.6]). For ℓ, m ∈ [1, ∞], γ ∈ R and (f, g) ∈ Bγ
ℓ,m ×

B−γ
ℓ′,m′ , it holds:

|

∫

Rd

f(y)g(y)dy| ≤ |f |Bγ

ℓ,m
|g|B−γ

ℓ′,m′
. (D)

2.3. A convolution Lemma in Besov spaces. As an immediate consequence of the above technical
results, we have the following Lemma.

Lemma 4. Let f, g1, g2 be in B
γf

ℓf ,mf
, B

−γf

ℓg1 ,mg1
, Lℓg2 respectively where γf is in [−1, 0], ℓf , ℓg1 , ℓg2 in

[1, ∞] and mf , mg1 in [1, ∞].

For any ℓ, ℓh and m, mh in [1, ∞] satisfying

(ℓf)−1 + (ℓg1 )−1 + (ℓg2 )−1 + (ℓh)−1 = 2 + ℓ−1, mh ≤ m, m−1
g1

≥ (1 − m−1
f ) ∨ 0, (2.2)

and any γ ≥ 0 s.t. h ∈ Bγ
ℓh,mh

, denoting C := f ⋆ g1, there exists ccv ≥ 1 such that
∣

∣(C g2) ⋆ h
∣

∣

Bγ

ℓ,m

≤ ccv|f |
B

γf

ℓf ,mf

|g1|
B

−γf

ℓg1 ,mg1

|g2|Lℓg2

∣

∣h
∣

∣

Bγ

ℓh,mh

. (2.3)

Before proving the above result we point out that it will be crucial in the analysis of the non-linear
drift term in the Duhamel formulations (1.16) (with mollified coefficients) and (1.18) (the related limit
equation) in order to obtain a priori estimates. Roughly speaking, in the proof of Lemma 7, we will
apply the above lemma with C = Bε

ρ
ε
t,µ

(v, ·) - corresponding to the case f = bε(v, ·), g1 = ρ
ε
t,µ(v, ·) -,

g2 = ρ
ε
t,µ(v, ·) and h = ∇pα

s−v in the mollified setting and with the same entries without the superscripts
in ε in the limit one.

Proof. Apply first the Young inequality (Y) to obtain
∣

∣(C g2) ⋆ h
∣

∣

Bγ

ℓ,m

≤ cY

∣

∣C g2

∣

∣

B0
ℓπ,∞

∣

∣h
∣

∣

Bγ

ℓh,mh

,

for any 1 + ℓ−1 = (ℓπ)−1 + (ℓh)−1 and m ≥ mh. Note now that, applying first the continuous embedding
(E1), then the Hölder inequality and next the continuous embedding (E1) again gives

∣

∣C g2

∣

∣

B0
ℓπ ,∞

≤ C
∣

∣C g2

∣

∣

Lℓπ
≤ C

∣

∣C
∣

∣

LℓC
|g2|Lℓg2 ≤ C

∣

∣C
∣

∣

B0
ℓC ,1

|g2|Lℓg2 ,

for any (ℓC )−1 + (ℓg2 )−1 = (ℓπ)−1. Combining this last integrability condition with the previous one
arising from the convolution inequality yields

1 + ℓ−1 =(ℓC )−1 + (ℓg2 )−1 + (ℓh)−1. (2.4)

Moreover, applying one more time the Young inequality (Y) gives
∣

∣C
∣

∣

B0
ℓC ,1

=
∣

∣f ⋆ g1

∣

∣

B0
ℓC ,1

≤ cY|g1|
B

−γf

ℓg1 ,mg1

|f |
B

γf

ℓf ,mf

, (2.5)
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with (ℓg1 )−1 + (ℓf )−1 = 1 + (ℓC )−1 and any m−1
g1

≥ (1 − m−1
f ) ∨ 0. Bringing together the above estimates

yields
∣

∣(C g2) ⋆ h
∣

∣

Bγ

ℓ,m

≤ ccv|f |
B

γf

ℓf ,mf

|g1|
B

−γf

ℓg1 ,mg1

|g2|Lℓg2

∣

∣h
∣

∣

Bγ

ℓh,mh

,

for any

(ℓf)−1 + (ℓg1 )−1 + (ℓg2 )−1 + (ℓh)−1 = 2 + ℓ−1, mh ≤ m, m−1
g1

≥ (1 − m−1
f ) ∨ 0,

in view of (2.4). �

2.4. On the embedding of P(Rd) into Besov spaces. We give here the following Lemma which

specifies how the set of probability measures on Rd can be embedded in an intersection of Besov spaces.

Lemma 5. P(Rd) is a subset of ∩ℓ≥1B
−d/ℓ′

ℓ,∞ and ∩ℓ≥1B
−d/ℓ′−ǫ
ℓ,m , for ǫ > 0, m ∈ [1, ∞) and ℓ ∈ [1, ∞].

Proof. Let ν be an arbitrary probability measure on Rd. For any ℓ in [1, ∞), φ ∈ C∞
0 (Rd,R), φ(0) 6= 0

(as in Section 2.1),

|F−1(φF(ν))|Lℓ =|F−1(φ)⋆ν|Lℓ =

(
∫

Rd

dx |F−1(φ)⋆ν(x)|ℓ
)

1
ℓ

=

(
∫

Rd

dx

∣

∣

∣

∣

∫

Rd

F−1(φ)(x − y)ν(dy)
∣

∣

∣

ℓ
)

1
ℓ

≤

(
∫

Rd

dx

∫

Rd

∣

∣

∣
F−1(φ)(x − y)

∣

∣

∣

ℓ

ν(dy)

)
1
ℓ

= |F−1(φ)|Lℓ < +∞,

using classical convexity inequalities and the Fubini theorem as well as the fact that, since φ ∈ C∞
0 ,

F−1(φ) ∈ S for the last inequality. If now ℓ = ∞, one readily gets:

|F−1(φF(ν))|L∞ = |F−1(φ)⋆ν|L∞ ≤ |F−1(φ)|L∞ < +∞.

Let now consider γ ≤ 0 and, with the terminology of Section 2.1, the thermic part T γ
ℓ,m(ν) of |ν|Bγ

ℓ,m
.

For this choice, from (2.1), we can take n = 0 and write then - similarly to the previous computations
(replacing actually F−1(φ) by p̃α(v, ·)) and according to (HK) and (E1) - for any ℓ ∈ [1, +∞],

T γ
ℓ,∞(ν) := sup

v∈(0,1]

v− γ
α |p̃α(v, ·)⋆ν|Lℓ ≤ sup

v∈(0,1]

v− γ
α |p̃α(v, ·)|Lℓ ≤ C sup

v∈(0,1]

v
1
α

[−γ− d
ℓ′ ] < +∞,

whenever 0≤ − γ − d/ℓ′ ⇐⇒ γ≤ − d/ℓ′. On the other hand, for m ∈ [1, +∞), T γ
ℓ,∞(ν) < +∞ whenever

−γ − d/ℓ′ > 0. This gives the claim. �

2.5. Some useful weighted spaces. In the following we will also frequently use weighted Lebesgue
spaces in the time variable with arguments valued in Besov spaces. Namely, for γ ∈ R+, ℓ, m, r ∈ [1, ∞]
we introduce, for 0 ≤ t < S ≤ T , the Bochner space:

Lr
w((t, S], Bγ

ℓ,m) :=

{

f : s ∈ [t, S] 7→ f(s, ·) ∈ Bγ
ℓ,m measurable and s.t.

∫ S

t

ds (S − s)− r
α |f(s, ·)|rBγ

ℓ,m
< ∞

}

,

(2.6)
equipped with its natural norm:

|f |Lr
w((t,S],Bγ

ℓ,m
) :=

(

∫ S

t

ds (S − s)− r
α |f(s, ·)|rBγ

ℓ,m

)
1
r

.

This space turns out to be a Banach space for the chosen weight s ∈ [t, S) 7→ (S − s)−r/α as well as for a
rather large class of weights (see e.g. [33, Chapter 1]). It can be pointed out that the above weight depends
strongly on the right hand limit of the time interval. The choice of making this dependency implicit in
the notation of the norm | · |Lr

w((t,S],Bγ

ℓ,m
) is performed in order to lighten forthcoming computations.
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3. Proof of Theorem 1.

In the whole section, we might assume for some results that the time-horizon T > 0 is small enough,
i.e. smaller than some positive time depending only on the parameters α, β, p, q, r, d. This is somehow
required to derive the a priori estimates (see Lemma 7) needed to obtain well-posedness of the non-
linear Fokker-Planck equation. This leads to an a priori restriction of the time interval [t, T ] which is
nevertheless just provisional: as a priori estimates will require nothing else on the initial condition but
being a probability measure, and will depend smoothly on the time interval size, they can then be iterated
up to an arbitrary time-horizon T .

3.1. The corresponding non-linear Fokker-Planck equation. We here prove the following Propo-
sition which roughly states that for any initial condition being a probability measure, the non-linear
Fokker-Planck equation admits a unique solution in a suitable Lebesgue-Besov space, for a certain range
of parameters. More specifically, the range of the parameters allows to quantify: on the one hand, how
much the Besov norm of the solution is integrable; on the other hand, how much the local regularity of
the Besov norm can be improved in term of the gap Γ in (C0):

Γ := β −
(

1 − α +
d

p
+

α

r

)

> 0. (G)

Proposition 6. Assume that the parameters are such that (C0) holds. Then, for any (t, µ) in [0, T ] ×
P(Rd), the non-linear Fokker-Planck equation (1.19) admits a solution which is unique among all the

distributional solutions lying in Lr(B−β+ϑΓ
p′,q′ ) where

r ∈

[

r′,

(

1

α

(

−β + ϑΓ +
d

p

))−1
)

, ∀ϑ ∈ [0, 1). (3.1)

Moreover, for all s ∈ [t, T ], ρt,µ(s, ·) belongs to P(Rd). Eventually, for a.e. s in (t, T ], ρt,µ(s, ·) is
absolutely continuous w.r.t. the Lebesgue measure and satisfies the Duhamel representation (1.18).

The preliminary step to prove the previous well-posedness result for the non-linear Fokker-Planck equation
consists in establishing suitable a priori estimates, in the corresponding function space, for the mollified
equation (1.16). This is the point of the next Lemma in which we use what we call a dequadrification
approach (see eq. (3.7) below and explanations there). We then proceed with a Lemma that gives that
for any decreasing sequence (εk)k going to 0, (ρεk

t,µ)k is a Cauchy sequence in some appropriate function
space (Lemma 8 below). We then conclude that the limit of the previous convergent sequence solves
the non-linear Fokker Planck equation (1.19) (Lemma 9) in a distributional sense. We eventually prove,
through a rigorous derivation of the Duhamel formulation (1.18), that this solution is unique among all
the solutions lying in the corresponding function space (Lemma 10). This procedure completes the proof
of Proposition 6.

In the following, it is always assumed that the parameters are such that (C0) holds.

Lemma 7. For any (t, µ) in [0, T ] × P(Rd), for any ϑ ∈ [0, 1), any r̄ satisfying (3.1) there exist C :=
C(d, α, r, β, p, ϑ) > 0 and θ := θ(d, α, β, p, ϑ) > 0 such that it holds

∀ε > 0,

∫ T

t

ds|ρε
t,µ(s, ·)|r

B−β+ϑΓ

p′,q′

≤ C(T − t)θ,

and for any t < S < T with the notations of (2.6), for ř′ ∈

[

r′,

(

1
α

(

−β + ϑΓ + d
p + 1

)

)−1
)

:

∀ε > 0, |ρε
t,µ|

Lř′
w

(

(t,S],B−β+ϑΓ

p′,q′

) ≤ C(S − t)
δ̌

ř′ , (3.2)

for some δ̌ := δ̌(ř′) > 0.
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Proof of Lemma 7. For the mollified equation, from the Duhamel representation (1.16), we have for any
ℓ, m ∈ [1, ∞],

|ρε
t,µ(s, ·)|B−β+ϑΓ

ℓ,m

≤ |pα
s−t ⋆ µ|B−β+ϑΓ

ℓ,m

+

∫ s

t

dv

∣

∣

∣

∣

[

{Bε
ρ

ε
t,µ

(v, ·)ρε
t,µ(v, ·)} ⋆ ∇pα

s−v

]

(·)

∣

∣

∣

∣

B−β+ϑΓ
ℓ,m

. (3.3)

At this point, the strategy consists in handling the term
∣

∣

∣

∣

[

{Bε
ρ

ε
t,µ

(v, ·)ρε
t,µ(v, ·)} ⋆ ∇pα

s−v

]

(·)

∣

∣

∣

∣

B−β+ϑΓ
ℓ,m

, (3.4)

by applying Lemma 4 with C = Bε
ρ

ε
t,µ

(v, ·) (so that f = bε(v, ·), g1 = g2 = ρ
ε
t,µ(v, ·)) and h = ∇pα

s−v.

This gives,
∣

∣(Bε
ρ

ε
t,µ

(v, ·)ρε
t,µ(v, ·)) ⋆ ∇pα

s−v

∣

∣

B−β+ϑΓ
ℓ,m

≤ ccv|bε(v, ·)|
B

γf

ℓf ,mf

|ρε
t,µ(v, ·)|

B
−γf

ℓg1 ,mg1

|ρε
t,µ(v, ·)|Lℓg2

∣

∣∇pα
s−v

∣

∣

B−β+ϑΓ
ℓh,mh

.

provided

(ℓf )−1 + (ℓg1 )−1 + (ℓg2 )−1 + (ℓh)−1 = 2 + ℓ−1, mh ≤ m, m−1
g1

≥ (1 − m−1
f ) ∨ 0. (3.5)

A way to get rid of the somehow quadratic dependence in ρ
ε
t,µ in the above term consists in choosing

ℓg2 = 1 to exploit that we are actually dealing with probability densities: |ρε
t,µ(v, ·)|L1 = 1. Since we also

want some compatibility between the Besov norm with which we will estimate ρ
ε
t,µ(s, ·) in the left hand

side of (3.3) and the one associated with the same quantity ρ
ε
t,µ(v, ·) in the right hand side of the same

equation, this also imposes ℓg1 = ℓ, mg1 = m. In particular, these choices therefore yield from (3.5) that

ℓ−1
f + ℓ−1

h = 1. Since ℓf = p, corresponding to the initial integrability index of the singular kernel bε, this

yields ℓh = p′ recalling p−1 + (p′)−1 = 1. This will contribute to the time-singularity associated with the
Besov norm of the gradient of the stable heat kernel, see (HK).

The other parameters in (3.5) also naturally follow from the considered assumptions at hand. Namely,
since the interaction kernel f = bε(v, ·) lies in the Besov space Bβ

p,q uniformly in ε > 0, this suggests to

choose γf = β. Then, from the condition (3.5), we get mg1 = m, m−1 ≥ (1 − m−1
f ) ∨ 0. Since mf = q

(assumption on bε), m = q′ = mg1 is a natural choice. Let us now fix mh so that m ≥ mh. This again
yields the natural choice mh = 1, which gives the lowest singularity exponent for the stable heat kernel
(see (HK)). When doing so, we thus obtain

|ρε
t,µ(s, ·)|B−β+ϑΓ

ℓ,q′
≤ |pα

s−t ⋆ µ|Bγ

ℓ,q′
+ ccv

∫ s

t

dv|bε(v, ·)|Bβ
p,q

|ρε
t,µ(v, ·)|B−β

ℓ,q′

∣

∣∇pα
s−v

∣

∣

B−β+ϑΓ

p′,1

. (3.6)

The only parameter that remains to be fixed is the integrability index ℓ. A natural choice is given by ℓ = p′

(this can indeed be seen from the proof of Lemma 4 where the relations (ℓπ)−1 + (ℓh)−1 = 1 + ℓ−1 and
(ℓC )−1 +(ℓg2)−1 = (ℓπ)−1 naturally yields to ℓπ = 1, ℓC = ∞, which gives in turn that ℓ = ℓh = ℓg1 = p′).
Eventually, to ensure the compatibility between the Besov norms on ρ

ε
t,µ appearing in the above right

and left hand sides, we use the embedding (E2) which ensures that B−β+ϑΓ
p′,q′ →֒ B−β

p′,q′ , as ϑΓ ≥ 0. We
end up with the following estimate:

|ρε
t,µ(s, ·)|B−β+ϑΓ

p′,q′
≤ |pα

s−t ⋆ µ|B−β+ϑΓ

p′,q′
+ ccvC

∫ s

t

dv|bε(v, ·)|Bβ
p,q

|ρε
t,µ(v, ·)|B−β+ϑΓ

p′,q′

∣

∣∇pα
s−v

∣

∣

B−β+ϑΓ

p′,1

,

i.e. we applied Lemma 4, with ℓ = p′, m = q′, γ = −β+ϑΓ, ℓf = p, mf = q, γf = β, ℓg2 = 1, ℓg1 = p′, mg2 =
q′, ℓh = p′, mh = 1, on the second term in the right hand side of (3.3) and used eventually (E2).

Thus, using (HK) and applying the L1 : Lr − Lr′

- Hölder inequality in time, we obtain:

|ρε
t,µ(s, ·)|B−β+ϑΓ

p′,q′
≤ |pα

s−t ⋆ µ|B−β+ϑΓ

p′,q′
+ C|bε|Lr(Bβ

p,q)

(
∫ s

t

dv

(s − v)(
−β+ϑΓ

α
+ d

α
1
p

+ 1
α )r′

|ρε
t,µ(v, ·)|r

′

B−β+ϑΓ

p′,q′

)
1

r′

,(3.7)

which actually gives an integrable singularity in time as soon as

(

−β + ϑΓ

α
+

d

α

1

p
+

1

α

)

r′ < 1 ⇐⇒ β − ϑΓ >
d

p
+ 1 +

α

r
− α ⇐⇒ (1 − ϑ)Γ > 0.
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Note that this condition is indeed fulfilled from (C0) and (G) for any ϑ ∈ [0, 1). Write now from the
Young inequality (Y) and (HK):

|pα
s−t ⋆ µ|B−β+ϑΓ

p′,q′
≤ cY|pα

s−t|B−β+ϑΓ

p′,q′
|µ|B0

1,∞
≤

C

(s − t)

(

−β+ϑΓ
α

+ d
αp

) , (3.8)

using as well Lemma 5, which precisely gives that any µ ∈ P(Rd) ∈ B0
1,∞, for the last inequality. The

above controls precisely allow to specify the range for the parameter r̄ for which we will be able to

estimate the Lr̄(Bβ
p′,q′) norm of the density. Namely, one gets:

|pα
s−t ⋆ µ|r̄

B−β+ϑΓ

p′,q′

≤
C

(s − t)

(

−β+ϑΓ
α

+ d
αp

)

r̄
, (3.9)

which gives an integrable singularity in time provided the integrability condition (3.1) holds for r̄.

Taking now both sides of (3.7) to the exponent r̄, we then get from usual convexity inequalities and
integrating then in s ∈ [t, T ] that,

∫ T

t

ds|ρε
t,µ(s, ·)|r̄

B−β+ϑΓ

p′,q′

(3.10)

≤ 2r̄−1

∫ T

t

ds

{

|pα
s−t ⋆ µ|r̄

B−β+ϑΓ

p′,q′

+ C|bε|r̄
Lr(Bβ

p,q)

(
∫ s

t

dv

(s − v)(
−β+ϑΓ

α
+ d

pα
+ 1

α )r′
|ρε

t,µ(v, ·)|r
′

B−β+ϑΓ

p′,q′

)
r
r′

}

.

Since we are considering compact time intervals, we can assume w.l.o.g. that r̄ > r′ so that the Hölder

inequality L1 : Lr/r′

− L(1−r′/r)−1

applies and combined with a splitting of the (r′)th power of the time
singularity as r′(r′/r) + r′(1 − r′/r), it yields to

∫ T

t

ds|ρε
t,µ(s, ·)|r̄

B−β+ϑΓ

p′,q′

≤ 2r̄−1

{

∫ T

t

ds|pα
s−t ⋆ µ|r̄

B−β+ϑΓ

p′,q′

+C|bε|r̄
Lr(Bβ

p,q)

∫ T

t

ds

∫ s

t

dv

(s − v)(
−β+ϑΓ

α
+ d

pα
+ 1

α )r′
|ρε

t,µ(v, ·)|r̄
B−β+ϑΓ

p′,q′

(
∫ s

t

dv

(s − v)(
−β+ϑΓ

α
+ d

pα
+ 1

α )r′

)
r̄
r′ −1

}

.

Therefore, setting

δ := 1 −
(−β + ϑΓ

α
+

d

pα
+

1

α

)

r′ > 0, (3.11)

from conditions (C0) and (G), using then the Fubini theorem, one gets:

∫ T

t

ds|ρε
t,µ(s, ·)|r̄

B−β+ϑΓ

p′,q′

≤2r̄−1

{

∫ T

t

ds|pα
s−t ⋆ µ|r̄

B−β+ϑΓ

p′,q′

+ C(T − t)δ( r̄
r′ −1)|bε|r

Lr(Bβ
p,q)

∫ T

t

dv|ρε
t,µ(v, ·)|r

B−β+ϑΓ

p′,q′

∫ T

v

ds

(s − v)(
−β+ϑΓ

α
+ d

pα
+ 1

α )r′

}

≤2r̄−1

{

∫ T

t

ds|pα
s−t ⋆ µ|r̄

B−β+ϑΓ

p′,q′

+ C(T − t)δ r̄
r′ |bε|r

Lr(Bβ
p,q)

∫ T

t

dv|ρε
t,µ(v, ·)|r

B−β+ϑΓ

p′,q′

}

.

(3.12)

Recalling now (3.9) and (3.1), as well as the uniform control of bǫ given in Proposition 2, we get that
there exists θ > 0 s.t. for T small enough:

(
∫ T

t

ds|ρε
t,µ(s, ·)|r̄

B−β+ϑΓ

p′,q′

)
1
r̄

≤ C(T − t)θ.

Let us turn to the proof of (3.2). Restart from (3.7) taking both sides to the exponent ř′. Apply a

convexity inequality to distribute the exponent on all the terms of the r.h.s., multiply by (S − s)− ř′

α for
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t < S ≤ T and integrate the resulting expression on (t, S], we obtain:
∫ S

t

ds

(S − s)
ř′

α

|ρε
t,µ(s, ·)|ř

′

B−β+ϑΓ

p′,q′

≤ Cř′

{
∫ S

t

ds

(S − s)
ř′

α

|pα
s−t ⋆ µ|ř

′

B−β+ϑΓ

p′,q′

+|bǫ|ř
′

Lř(Bβ
p,q)

∫ S

t

ds

(S − s)
ř′

α

∫ s

t

dv

(s − v)(
−β+ϑΓ

α
+ d

pα
+ 1

α )ř′
|ρε

t,µ(v, ·)|ř
′

B−β+ϑΓ

p′,q′

}

≤ Cř′

{
∫ S

t

ds

(S − s)
ř′

α

1

(s − t)( −β+ϑΓ
α

+ d
αp

)ř′

+|bǫ|ř
′

Lr(Bβ
p,q)

∫ S

t

dv|ρε
t,µ(v, ·)|ř

′

B−β+ϑΓ

p′,q′

∫ S

v

ds

(S − s)
ř′

α (s − v)(
−β+ϑΓ

α
+ d

pα
+ 1

α )ř′

}

,

using the Fubini theorem and (3.8) to derive the last inequality. Since
(

−β + ϑΓ

α
+

d

α

1

p
+

1

α

)

ř′ < 1 ⇐⇒ β − ϑΓ >
d

p
+ 1 +

α

ř
− α ⇐⇒ (1 − ϑ)Γ > α(

1

ř
−

1

r
),

it is clear that for a fixed ϑ ∈ [0, 1), ř can be taken large enough in order to have an integrable singularity
in the previous expression. Namely,

ř ∈

(

( (1 − ϑ)Γ

α
+

1

r

)−1

, r

]

=⇒ δ̌ := 1 −

(

−β + ϑΓ

α
+

d

α

1

p
+

1

α

)

ř′ > 0. (3.13)

From (3.13) we get that:
∫ S

t

ds

(S − s)
ř′

α

|ρε
t,µ(s, ·)|ř

′

B−β+ϑΓ

p′,q′

≤ C(S − t)δ̌ + C|bε|ř
′

Lr(Bβ
p,q)

∫ S

t

dv

(S − v)
ř′

α
−δ̌

|ρε
t,µ(v, ·)|ř

′

B−β+ϑΓ

p′,q′

≤ C(S − t)δ̌ + C|bε|ř
′

Lr(Bβ
p,q)

(S − t)δ̌

∫ S

t

dv

(S − v)
ř′

α

|ρε
t,µ(v, ·)|ř

′

B−β+ϑΓ

p′,q′

≤ 2C(S − t)δ̌,

as soon as S − t is small enough to have C|b|ř
′

Lr(Bβ
p,q)

(S − t)δ̌ ≤ 1/2 (⇒ C|bε|ř
′

Lr(Bβ
p,q)

(S − t)δ̌ ≤ 1/2) for

the last but one inequality. Identifying the norm | · |Lř′
w ((t,S],B−β+ϑΓ

p′,q′ ) on the left-hand side, this gives (3.2)

and concludes the proof of the Lemma. �

Lemma 8 (Stability Lemma). For any initial condition (t, µ) in [0, T ] × P(Rd), for any decreasing

sequence (εk)k≥1 s.t. εk → 0,
(

ρ
εk

t,µ

)

k≥1
is a Cauchy sequence in Lr̄(B−β+ϑΓ

p′,q′ )∩L∞
(

(t, T ], L1
)

, for any ϑ ∈

(0, 1) with r̄ as in (3.1) and Γ as in (G). In particular, there exists ρt,µ in Lr̄(B−β+ϑΓ
p′,q′ ) ∩ L∞

(

(t, T ], L1
)

such that
|ρεk

t,µ − ρt,µ|Lr̄(B−β+ϑΓ

p′,q′ ) + sup
s∈(t,T ]

|(ρεk

t,µ − ρt,µ)(s, ·)|L1 −→
k

0. (3.14)

Proof. Fix k, j ∈ N meant to be large. Assume w.l.o.g. that k ≥ j. From (1.16), for any m ∈ {k, j}, ρ
εm

t

solves:

ρ
εm

t,µ(s, y) = pα
s−t ⋆ µ(y) −

∫ s

t

dv
[

{Bεm

ρ
εm
t,µ

(v, ·)ρεm

t,µ(v, ·)} ⋆ ∇pα
s−v

]

(y),

where we recall that, from Lemma 7, ρ
εm

t,µ ∈ Lr̄(B−β+ϑΓ
p′,q′ ) with r̄ as in (3.1). We have

ρ
εk
t,µ(s, y) − ρ

εj

t,µ(s, y) = −

∫ s

t

dv
[

{Bεk

ρ
εk
t,µ

(v, ·)ρεk
t,µ(v, ·) − B

εj

ρ
εj
t,µ

(v, ·)ρ
εj

t,µ(v, ·)} ⋆ ∇pα
s−v

]

(y).

To show that |ρεk

t,µ − ρ
εj

t,µ|Lr̄(B−β+ϑΓ

p′,q′ ) is small, we will proceed somehow similarly to the proof of Lemma

7. The convolution inequalities used therein (see e.g. Lemma 4 yielding to (3.7)) then naturally lead to
estimate the L1 norm of the difference (ρεk

t,µ − ρ
εj

t,µ)(v, ·) for v ∈ [t, s], s ∈ [t, T ]. We will use the same
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approach to upper-bound this latter quantity in terms of the appropriate spatial Besov norm. To this
end, we need to state an estimate for the difference with generic parameters for the Besov spaces, in order

to be able to get controls on both the B−β+ϑΓ
p′,q′ and the L1 spatial norms (through the embeddings (E1)

for the latter) of the difference. Write for any γ ≥ 0, ℓ, m ≥ 1:

|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|Bγ

ℓ,m
≤

∫ s

t

dv
∣

∣

∣
{Bεk

ρ
εk
t,µ

(v, ·)ρεk

t,µ(v, ·) − Bεk

ρ
εk
t,µ

(v, ·)ρ
εj

t,µ(v, ·)} ⋆ ∇pα
s−v

∣

∣

∣

Bγ

ℓ,m

+

∫ s

t

dv
∣

∣

∣
{Bεk

ρ
εk
t,µ

(v, ·)ρ
εj

t,µ(v, ·) − Bεk

ρ
εj
t,µ

(v, ·)ρ
εj

t,µ(v, ·)} ⋆ ∇pα
s−v

∣

∣

∣

Bγ

ℓ,m

+

∫ s

t

dv
∣

∣

∣
{Bεk

ρ
εj
t,µ

(v, ·)ρ
εj

t,µ(v, ·) − B
εj

ρ
εj
t,µ

(v, ·)ρ
εj

t,µ(v, ·)} ⋆ ∇pα
s−v

∣

∣

∣

Bγ

ℓ,m

=:

∫ s

t

dv
[

∆1
γ,ℓ,m(t, v) + ∆2

γ,ℓ,m(t, v) + ∆3
γ,ℓ,m(t, v)

]

. (3.15)

Similarly to the proof of Lemma 7, applying Lemma 4 successively (and respectively) to the maps f =
bεk(v, ·) (resp. f = bεk(v, ·), f = (bεk − bεj )(v, ·)), g1 = ρ

εk
t,µ(v, ·) (resp. g1 = (ρεk

t,µ − ρ
εj

t,µ)(v, ·), g1 =

ρ
εj

t,µ(v, ·)) and g2 = (ρεk

t,µ − ρ
εj

t,µ)(v, ·) (resp. g2 = ρ
εj

t,µ(v, ·)) and h = ∇pα
s−v with γ = −β + ϑΓ, ℓ = p′,

m = q′; γf = β (and γf = β − ϑΓ for ∆3
γ,ℓ,m), ℓf = p and mf = q; ℓg1 = p′, mg1 = q′, ℓg2 = 1 and ℓh = ℓ;

mh = 1 (see also (3.7)), we derive that:

∆1
−β+ϑΓ,p′,q′(t, v) ≤ C|bεk(v, ·)|Bβ

p,q
|ρεk

t,µ(v, ·)|B−β

p′,q′
|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|L1

∣

∣∇pα
s−v

∣

∣

B−β+ϑΓ

p′,1

,

∆2
−β+ϑΓ,p′,q′(t, v) ≤ C|bεk(v, ·)|Bβ

p,q
|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|B−β

p′,q′
|ρεk

t,µ(v, ·)|L1

∣

∣∇pα
s−v

∣

∣

B−β+ϑΓ

p′,1

,

∆3
−β+ϑΓ,p′,q′(t, v) ≤ C|(bεk − bεj )(v, ·)|Bβ−ϑΓ

p,q
|ρ

εj

t,µ(v, ·)|B−β+ϑΓ

p′,q′
|ρεk

t,µ(v, ·)|L1

∣

∣∇pα
s−v

∣

∣

B−β+ϑΓ

p′,1

.

Thus, (HK) together with (E2) (which notably gives: B−β+ϑΓ
p′,q′ →֒ B−β

p′,q′ ) and (3.15) for the above choice
of the parameters γ, ℓ, m, give

|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|B−β+ϑΓ

p′,q′
(3.16)

≤ C

∫ s

t

dv

(s − v)
−β+ϑΓ+1

α
+ d

αp

{

|bεk (v, ·)|Bβ
p,q

|ρεk
t,µ(v, ·)|B−β+ϑΓ

p′,q′
|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|L1

+|bεk (v, ·)|Bβ
p,q

|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|B−β+ϑΓ

p′,q′
+ |(bεk − bεj )(v, ·)|Bβ−ϑΓ

p,q
|ρ

εj

t,µ(v, ·)|B−β+ϑΓ

p′,q′

}

.

To estimate the L1 norm of the above difference, come back to (3.15), take now γ = 0, ℓ = m = 1
and apply Lemma 4 with the following choice of parameters : γf = β, ℓf = p and mf = q; ℓg1 = p′,
mg1 = q′, ℓg2 = 1, and ℓh = ℓ= 1, mh = 1. Use then the embedding (E1) and (HK) to obtain from the

L1 : Lr − Lr′

and L1 : Lř − Lř′

-Hölder inequalities that, for all s ∈ (t, T ],
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|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|L1 ≤
(E1)

C |ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|B0
1,1

≤ C

∫ s

t

dv|∇pα
s−v|B0

1,1

{

|bεk(v, ·)|Bβ
p,q

|ρεk

t,µ(v, ·)|B−β+ϑΓ

p′,q′
|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|L1

+|bεk(v, ·)|Bβ
p,q

|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|B−β+ϑΓ

p′,q′

+|(bεk − bεj )(v, ·)|Bβ−ϑΓ
p,q

|ρ
εj

t,µ(v, ·)|B−β+ϑΓ

p′,q′

}

≤
(HK)

C

(

∫ s

t

dv

(s − v)
r′

α

|ρεk

t,µ(v, ·)|r
′

B−β+ϑΓ

p′,q′

)
1
r′

|bεk |Lr(Bβ
p,q) sup

v∈(t,s]

{

|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|L1

}

+C|bεk |Lr(Bβ
p,q)

(

∫ s

t

dv

(s − v)
r′

α

|(ρεk
t,µ − ρ

εj

t,µ)(v, ·)|r
′

B−β+ϑΓ

p′,q′

)
1

r′

+C|(bεk − bεj )|Lř(Bβ−ϑΓ
p,q )

(

∫ s

t

dv

(s − v)
ř′

α

|ρ
εj

t,µ(v, ·)|r
′

B−β+ϑΓ

p′,q′

)
1

ř′

,

with ř = r if r < +∞ and any finite ř large enough if r = +∞, i.e. the conjugate exponent ř′ belongs
to the interval indicated after (3.2). We insist that this additional step is needed when r = +∞ to use
Proposition 2 which gives the convergence of the mollified interaction kernel.

Taking the supremum in s on (t, S] for some S ≤ T on both sides and recalling the notation (2.6), we
obtain for r

′ ∈ {r′, ř′},

sup
s∈(t,S]

{

|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|L1

}

≤ C sup
s∈(t,S]

|ρεk

t,µ|
Lr′

w

(

(t,s],B−β+ϑΓ

p′,q′

)|bεk |Lr(Bβ
p,q) sup

s∈(t,S]

{

|(ρεk

t,µ − ρ
εj

t,µ)(s, ·)|L1

}

+C|bεk |Lr(Bβ
p,q) sup

s∈(t,S]

|(ρεk

t,µ − ρ
εj

t,µ)|
Lr′

w

(

(t,s],B−β+ϑΓ

p′,q′

)

+C|(bεk − bεj )|Lř(Bβ−ϑΓ
p,q ) sup

s∈(t,S]

|ρεj |
Lř′

w

(

(t,s],B−β+ϑΓ

p′,q′

).

Thus, from (3.2) for T such that |b|Lr(Bβ
p,q)(T − t)δ/r′

< `c
−1, δ = δ̌(r′) and Proposition 2, we obtain

sup
s∈(t,S]

{

|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|L1

}

≤ C|bεk |Lr(Bβ
p,q) sup

s∈(t,S]

|(ρεk

t,µ − ρ
εj

t,µ)|
Lr′

w

(

(t,s],B−β+ϑΓ

p′,q′

)

+C(S − t)
δ̌
ř′ |(bεk − bεj )|Lř(Bβ−ϑΓ

p,q ). (3.17)

The above control provides the estimate for the running norm s 7→ supv∈(t,s]

{

|ρεk

t,µ(v, ·) − ρ
εj

t,µ(v, ·)|L1 ,

which plugged into (3.16) yields

|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|B−β+ϑΓ

p′,q′

≤ C

{

|bεk |Lr(Bβ
p,q) sup

v∈(t,s]

|(ρεk

t,µ − ρ
εj

t,µ)|
Lr′

w

(

(t,v],B−β+ϑΓ

p′,q′

) + (s − t)
δ̌
ř′ |(bεk − bεj )|Lř(Bβ−ϑΓ

p,q )

}

×

∫ s

t

dv

(s − v)
−β+ϑΓ+1

α
+ d

αp

{

|bεk(v, ·)|Bβ
p,q

|ρεk

t,µ(v, ·)|B−β+ϑΓ

p′,q′

}

+C

∫ s

t

dv

(s − v)
−β+ϑΓ+1

α
+ d

αp

{

|bεk (v, ·)|Bβ
p,q

|(ρεk
t,µ − ρ

εj

t,µ)(v, ·)|B−β+ϑΓ

p′,q′

+|(bεk − bεj )(v, ·)|Bβ−ϑΓ
p,q

|ρ
εj

t,µ(v, ·)|B−β+ϑΓ

p′,q′

}

. (3.18)

At this stage, we can proceed similarly as in the proof of Lemma 7, leaving the component factored by
|(bεk − bεj )|Lř(Bβ−ϑΓ

p,q ) as a source term. Use first the L1 : Lr − Lr′

-Hölder inequality for the first two

terms in the above integrals and the L1 : Lř − Lř′

for the last integral term. Multiply then both sides by



3.1 The corresponding non-linear Fokker-Planck equation 19

(S − s)−1/α for some s < S ≤ T . Take next the (r′)th power, use consequently a convexity inequality in
the resulting expression and finally integrate the whole on (t, S]. We eventually obtain

∫ S

t

ds

(S − s)
r′

α

|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|r
′

B−β+ϑΓ

p′,q′

≤ C

{

|bεk |r
′

Lr(Bβ
p,q)

sup
v∈(t,S]

|(ρεk
t,µ − ρ

εj

t,µ)|r
′

Lr′
w

(

(t,v],B−β+ϑΓ

p′,q′

) + (S − t)
δ̌r′

ř′ |(bεk − bεj )|r
′

Lř(Bβ−ϑΓ
p,q )

}

×

∫ S

t

ds

(S − s)
r′

α

∫ s

t

dv

(s − v)r′
(

−β+ϑΓ+1
α

+ d
αp

)

{

|ρεk

t,µ(v, ·)|r
′

B−β+ϑΓ

p′,q′

|bεk |r
′

Lr(Bβ
p,q)

}

+C

∫ S

t

ds

(S − s)
r′

α

[

∫ s

t

dv

(s − v)r′
(

−β+ϑΓ+1
α

+ d
αp

) |bεk |r
′

Lr(Bβ
p,q)

|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|r
′

B−β+ϑΓ

p′,q′

+|(bεk − bεj )|r
′

Lř(Bβ−ϑΓ
p,q )

{
∫ s

t

dv

(s − v)ř′
(

−β+ϑΓ+1
α

+ d
αp

) |ρ
εj

t,µ(v, ·)|ř
′

B−β+ϑΓ

p′,q′

}
r′

ř′

]

.

From the Fubini theorem and using again the L1 : Lř−Lř′

inequality for the last contribution if r′ = 1 < ř′

( ⇔ r = ∞, ř < +∞), we now derive:

∫ S

t

ds

(S − s)
r′

α

|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|r
′

B−β+ϑΓ

p′,q′

≤ C

{

|bεk |r
′

Lr(Bβ
p,q)

sup
v∈(t,S]

|(ρεk

t,µ − ρ
εj

t,µ)|r
′

Lr′
w

(

(t,v],B−β+ϑΓ

p′,q′

) + (S − t)
δ̌r′

ř′ |(bεk − bεj )|r
′

Lř(Bβ−ϑΓ
p,q )

}

×

∫ S

t

dv

∫ S

v

ds

(S − s)
r′

α (s − v)r′
(

−β+ϑΓ+1
α

+ d
αp

)

{

|ρεk
t,µ(v, ·)|r

′

B−β+ϑΓ

p′,q′

|bεk |r
′

Lr(Bβ
p,q)

}

+C

[

∫ S

t

dv

∫ S

v

ds

(S − s)
r′

α (s − v)r′
(

−β+ϑΓ+1
α

+ d
αp

) |bεk |r
′

Lr(Bβ
p,q)

|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|r
′

B−β+ϑΓ

p′,q′

+|(bεk − bεj )|r
′

Lř(Bβ−ϑΓ
p,q )

(S − t)
Ir=∞

ř

∫ S

t

dv

∫ S

v

ds

(S − s)
ř′

α (s − v)ř′
(

−β+ϑΓ+1
α

+ d
αp

) |ρ
εj

t,µ(v, ·)|ř
′

B−β+ϑΓ

p′,q′

]

≤ C

{

|bεk |r
′

Lr(Bβ
p,q)

sup
v∈(t,S]

|(ρεk

t,µ − ρ
εj

t,µ)|r
′

Lr′
w

(

(t,v],B−β+ϑΓ

p′,q′

) + (S − t)
δ̌r′

ř′ |(bεk − bεj )|r
′

Lř(Bβ−ϑΓ
p,q )

}

×

∫ S

t

dv

(S − v)
r′

α
+r′
(

−β+ϑΓ+1
α

+ d
αp

)

−1

{

|ρεk

t,µ(v, ·)|r
′

B−β+ϑΓ

p′,q′

|bεk |r
′

Lr(Bβ
p,q)

}

+C

[

∫ S

t

dv

(S − v)
r′

α
+r′
(

−β+ϑΓ+1
α

+ d
αp

)

−1
|bεk |r

′

Lr(Bβ
p,q)

|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|r
′

B−β+ϑΓ

p′,q′

+|(bεk − bεj )|r
′

Lř(Bβ−ϑΓ
p,q )

(S − t)
Ir=∞

ř

∫ S

t

dv

(S − v)
ř′

α
+ř′
(

−β+ϑΓ+1
α

+ d
αp

)

−1
|ρ

εj

t,µ(v, ·)|ř
′

B−β+ϑΓ

p′,q′

]

≤ C

{

|bεk |r
′

Lr(Bβ
p,q)

sup
v∈(t,T ]

|(ρεk
t,µ − ρ

εj

t,µ)|r
′

Lr′
w

(

(t,v],B−β+ϑΓ

p′,q′

) + (S − t)
δ̌r′

ř′ |(bεk − bεj )|r
′

Lř(Bβ−ϑΓ
p,q )

}

(S − t)2δ|bεk |r
′

Lr(Bβ
p,q)

+

{

|bεk |r
′

Lr(Bβ
p,q)

sup
v∈(t,T ]

|(ρεk
t,µ − ρ

εj

t,µ)|r
′

Lr′
w

(

(t,v],B−β+ϑΓ

p′,q′

)(S − t)δ + |(bεk − bεj )|r
′

Lř(Bβ−ϑΓ
p,q )

(S − t)2δ̌+ Ir=∞
ř

}

,

where, for the last inequality, we use the uniform controls on bε and ρ
ε
t,µ given by Proposition 2 and (3.2)

in Lemma 7, and the fact that, from (3.11) and (3.13):

−δ = r′

(

−β + ϑΓ + 1

α
+

d

αp

)

− 1 ≤ 0, −δ̌ = ř′

(

−β + ϑΓ + 1

α
+

d

αp

)

− 1 ≤ 0
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(the contribution 1/ř in the last power only arises when r = ∞). Taking now the supremum over

S ∈ (t, T ], we recover on the left-hand side above the quantity supv∈(t,T ] |(ρεk

t,µ − ρ
εj

t,µ)|r
′

Lr′
w

(

(t,v],B−β+ϑΓ

p′,q′

)

and for T > t ≥ 0 small enough, we deduce that there exists C ≥ 1 s.t.

sup
v∈(t,T ]

|(ρεk

t,µ − ρ
εj

t,µ)|r
′

Lr′
w

(

(t,v],B−β+ϑΓ

p′,q′

) ≤ C|(bεk − bεj )|r
′

Lř(Bβ−ϑΓ
p,q )

. (3.19)

As |ρεk

t,µ −ρ
εj

t,µ|r
′

Lr′
(

(t,T ],B−β+ϑΓ

p′,q′

) ≤ supv∈(t,T ] |(ρεk

t,µ−ρ
εj

t,µ)|r
′

Lr′
w

(

(t,v],B−β+ϑΓ

p′,q′

) and Lr′(

(t, T ], B−β+ϑΓ
p′,q′

)

is com-

plete we have, from Proposition 2, that the convergence of (ρεk

t,µ)k≥1 holds in Lr′(

(t, T ], B−β+ϑΓ
p′,q′

)

in a

strong sense. The strong convergence in L∞(L1) follows from (3.17), again Proposition 2 and (3.19). The
proof of (3.14) is thus complete for r̄ = r′.

Let us now discuss how we can improve the integrability exponent r̄ for the convergence to prove (3.14)
in full generality. Restarting from (3.18), write first for r̄ satisfying (3.1),

∫ T

t

|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|r̄
B−β+ϑΓ

p′,q′

ds

≤ C

{

|bεk |r̄
Lr(Bβ

p,q)
sup

v∈(t,T ]

|(ρεk
t,µ − ρ

εj

t,µ)|r̄
Lr′

w

(

(t,v],B−β+ϑΓ

p′,q′

) + (T − t)
δ̌r̄
ř′ |(bεk − bεj )|r̄

Lř(Bβ
p,q)

}

×|bεk |r̄
Lr(Bβ

p,q)

∫ T

t

ds
(

∫ s

t

dv

(s − v)r′( −β+ϑΓ+1
α

+ d
αp

)
|ρεk

t,µ(v, ·)|r
′

B−β+ϑΓ

p′,q′

)
r̄

r′

+C|bεk |r̄
Lr(Bβ

p,q)

∫ T

t

ds
(

∫ s

t

dv

(s − v)r′( −β+ϑΓ+1
α

+ d
αp

)
|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|r
′

B−β+ϑΓ

p′,q′

)
r̄
r′

+C|(bεk − bεj )|r̄
Lř(Bβ−ϑΓ

p,q )

∫ T

t

ds
(

∫ s

t

dv

(s − v)ř′( −β+ϑΓ+1
α

+ d
αp

)
|ρ

εj

t,µ(v, ·)|ř
′

B−β+ϑΓ

p′,q′

)
r̄
ř′

.

We now conclude as in the proof of Lemma 7, through again an additional Hölder inequality and the
Fubini theorem (see the procedure between (3.10) and (3.12)). Namely,

∫ T

t

|ρεk

t,µ(s, ·) − ρ
εj

t,µ(s, ·)|r̄
B−β+ϑΓ

p′,q′

ds

≤ C

{

|bεk |r̄
Lr(Bβ

p,q)
sup

v∈(t,T ]

|(ρεk

t,µ − ρ
εj

t,µ)|r̄
Lr′

w

(

(t,v],B−β+ϑΓ

p′,q′

) + (T − t)
δ̌r̄
ř′ |(bεk − bεj )|r̄

Lř(Bβ
p,q)

}

×(T − t)δ r̄
r′ |bεk |r̄

Lr(Bβ
p,q)

∫ T

t

dv|ρεk

t,µ(v, ·)|r̄
B−β+ϑΓ

p′,q′

+C

{

(T − t)δ r̄
r′ |bεk |r̄

Lr(Bβ
p,q)

∫ T

t

dv|(ρεk

t,µ − ρ
εj

t,µ)(v, ·)|r̄
B−β+ϑΓ

p′,q′

+(T − t)δ̌ r̄
ř′ |(bεk − bεj )|r̄

Lř(Bβ−ϑΓ
p,q )

∫ T

t

dv|ρ
εj

t,µ(v, ·)|r̄
B−β+ϑΓ

p′,q′

}

,

assuming w.l.o.g. that since r̄ > r′, and if r = ∞, i.e. r′ < ř′ one can take r̄ > ř′ > r′ (recall that if
r < +∞, ř′ = r′). Hence, for T small enough and using again Lemma 7 (equation (3.2)) we obtain:

∫ T

t

|ρεk
t,µ(s, ·) − ρ

εj

t,µ(s, ·)|r̄
B−β+ϑΓ

p′,q′

ds

≤ C

{

|bεk |r̄
Lr(Bβ

p,q)
sup

v∈(t,T ]

|(ρεk

t,µ − ρ
εj

t,µ)|r̄
Lr′

w

(

(t,v],B−β+ϑΓ

p′,q′

) + (T − t)
δ̌r̄
ř′ |(bεk − bεj )|r̄

Lř(Bβ
p,q)

}

×(T − t)θ((T − t)δ r̄
r′ |bεk |r̄

Lr(Bβ
p,q)

+ 1)

≤ C(T − t)θ|(bεk − bεj )|r̄
Lř(Bβ−ϑΓ

p,q )
,

using (3.19) for the last inequality. Proposition 2 then gives the stated convergence. �
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Lemma 9. Let (t, µ) in [0, T ] × P(Rd) and let (εk)k≥1 be a decreasing sequence going to 0 and ρt,µ in

Lr̄(B−β+ϑΓ
p′,q′ ), with r̄ as in (3.1), ϑ ∈ [0, 1) and s.t. for all s ∈ [t, T ], ρt,µ(s, ·) ∈ P(Rd), be the limit point

of (ρεk

t,µ)k≥1 with ρ
εk

t,µ solving (1.16). Then ρt,µ satisfies the non-linear Fokker-Planck equation (1.19) (in
a distributional sense) and admits the Duhamel type representation (1.18).

Proof. We assume here w.l.o.g. and for simplicity that r < +∞. The case r = +∞ could be handled
reproducing the arguments below combined with the corresponding ones in the proof of the previous
lemma. Write from (1.17):

0 = −

∫

ϕ(t, y)µ(dy) −

∫ T

t

ds

∫

Rd

dy (Bρt,µ
(s, y)ρt,µ(s, y)) · ∇ϕ(s, y)

+

∫ T

t

ds

∫

Rd

dy ρt,µ(s, y)(−∂s + (Lα)∗)ϕ(s, y) + ∆
ρt,µ,ρ

εk
t,µ

(ϕ),

where:

∆
ρt,µ,ρ

εk
t,µ

(ϕ)

:=

∫ T

t

ds

∫

Rd

dy (ρεk

t,µ(s, y) − ρt,µ(s, y))(−∂s + (Lα)∗)ϕ(s, y)

−

∫ T

t

ds

∫

Rd

dy (Bεk

ρ
εk
t,µ

(s, y)ρεk
t,µ(s, y) − Bρt,µ

(s, y)ρt,µ(s, y)) · ∇ϕ(s, y) =: ∆1
ρt,µ,ρ

εk
t,µ

(ϕ) + ∆2
ρt,µ,ρ

εk
t,µ

(ϕ).

Since ϕ ∈ C∞
0

(

(−T, T ) ×Rd
)

it is clear that (∂s − (Lα)∗)ϕ ∈ Lr(Bβ
p,q) so that we readily get from (3.14)

that |∆1
ρt,µ,ρ

εk
t,µ

(ϕ)| −→
k

0.

For the second term ∆2
ρt,µ,ρ

εk
t,µ

(ϕ), write:

|∆2
ρt,µ,ρ

εk
t,µ

(ϕ)| ≤

∫ T

t

ds

∫

Rd

dy|(Bεk

ρ
εk
t,µ

(s, y)ρεk

t,µ(s, y) − Bρt,µ
(s, y)ρt,µ(s, y))||∇ϕ(s, ·)|L∞

≤ |∇ϕ|L∞(L∞)

∫ T

t

ds

{

∫

Rd

dy|Bεk

ρ
εk
t,µ

(s, ·) − B
ρ

εk
t,µ

(s, ·)|L∞ρ
εk

t,µ(s, y)

+

∫

Rd

dy|B
ρ

εk
t,µ

(s, ·) − Bρt,µ
(s, ·)|L∞ρ

εk

t,µ(s, y)

+

∫

Rd

dy|Bρt,µ
(s, ·)|L∞ |ρεk

t,µ(s, y) − ρt,µ(s, y)|

}

.

Recalling that ρ
εk

t,µ(s, ·) is a probability density and using as well the duality control (D) between Besov
spaces and the Hölder inequality in time, we derive that for any ϑ ∈ (0, 1):

|∆2
ρt,µ,ρ

εk
t,µ

(ϕ)| ≤ C
{

|b − bεk |Lr(Bβ−ϑΓ
p,q )|ρ

εk
t,µ|Lr′ (B−β+ϑΓ

p′,q′ ) + |b|Lr(Bβ
p,q)|ρ

εk
t,µ − ρt,µ|Lr′ (B−β

p′,q′ )

+|b|Lr(Bβ
p,q)|ρt,µ|Lr′ (B−β

p′,q′ )|ρ
εk

t,µ − ρt,µ|L∞(L1)

}

|∇ϕ|L∞(L∞).

Using Lemma 8 and Proposition 2 we conclude that |∆2
ρt,µ,ρ

εk
t,µ

(ϕ)| −→
k

0 so that ρt,µ satisfies (1.19) in a

distributional sense.

To establish the Duhamel representation (1.18) observe first that for any s ∈ (t, T ], ϕ ∈ C∞
0

(

(−T, T )×Rd
)

,

∫

Rd

dyρ
εk

t,µ(s, y)ϕ(s, y) −

∫

ϕ(t, y)µ(dy)−

∫ s

t

dv

∫

Rd

dy {Bεk

ρ
εk
t,µ

(v, y)ρεk

t,µ(v, y)} · ∇ϕ(v, y)

+

∫ s

t

dv

∫

Rd

dyρ
εk

t,µ(v, y)(∂s − (Lα)∗)ϕ(v, y) = 0. (3.20)
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Introducing

∆s
ρt,µ,ρ

εk
t,µ

(ϕ) :=

∫

Rd

dy(ρεk

t,µ − ρt,µ)(s, y)ϕ(s, y)

−

∫ s

t

dv

∫

Rd

dy {Bεk

ρ
εk
t,µ

(v, y)ρεk

t,µ(v, y) − Bρt,µ
(v, y)ρt,µ(v, y)} · ∇ϕ(v, y)

+

∫ s

t

dv

∫

Rd

dy(ρεk
t,µ(v, y) − ρt,µ(v, y))(−∂s + (Lα)∗)ϕ(v, y),

it can hence be deduced from the previous arguments that, along a suitable subsequence (εkm
)m≥1 (to

handle the first additional term through the converse of the Lebesgue theorem from the strong convergence
(3.14)), that ∆s

ρt,µ,ρ
εkm
t,µ

(ϕ) −→
m

0 for almost all s ∈ [t, T ]. Hence, from (3.20), for almost all s ∈ [t, T ],

∫

Rd

dyρt,µ(s, y)ϕ(s, y) −

∫

ϕ(t, y)µ(dy) −

∫ s

t

dv

∫

Rd

dy Bρt,µ
(v, y)ρt,µ(v, y)) · ∇ϕ(v, y)

+

∫ s

t

dv

∫

Rd

dy ρt,µ(v, y)(−∂s + (Lα)∗)ϕ(v, y) = 0. (3.21)

The representation (1.18) is then finally derived from (3.21) following mostly the arguments of the proof
of Lemma 3 (see Appendix B). The essential difference being that the Duhamel formulation (1.16) is
derived therein from a non-uniform estimate for |bε|L∞(L∞) which has to be replaced here by the control

of |b|Lr(Bβ
p,q). Taking φ(v, x) = pα

s−v ⋆ f(x) with f ∈ C∞
0

(

(−T, T ) × Rd
)

in (3.21) yields

∫

dyf(y)ρt,µ(s, y) =

∫

pα
s−t ⋆ f(y) µ(dy) +

∫ s

t

dv

∫

Rd

dy {Bρt,µ
(v, y)ρt,µ(v, y)} · ∇pα

s−v ⋆ f(y).

As ρt,µ ∈ Lr′

(B−β
p′,q′) and |ρt,µ(v, ·)|L1 = 1, applying successively (HK) and (Y), we get from the condition

(C0):
∫ s

t

dv

∫

dy

∫

dz|f(z)||∇pα
s−v(y − z)||Bρt,µ

(v, y)||ρt,µ(v, y)|

≤ |f |L∞ |b|Lr(Bβ
p,q)

(

∫ s

t

dv

(s − v)
r′

α

|ρt,µ(v, ·)|r
′

B−β

p′,q′

)
1

r′

≤ C|f |L∞ ,

using Lemmas 7 and 8 for the last inequality. Following the arguments of Lemma 3 the class of functions
f can thus be extended to any bounded measurable function. In turn, this extension gives (1.18). �

We complete this section with a uniqueness result for (1.18) in Lr(B−β+ϑΓ
p′,q′ ), with r̄ as in (3.1), ϑ ∈ [0, 1),

which, with the preceding lemma, yields to the well-posedness result stated in Proposition 6.

Lemma 10. For any (t, µ) in [0, T ] × P(Rd), the non-linear Fokker-Planck equation (1.19) admits a

unique solution (ρt,µ(s, ·))s∈[t,T ] in Lr(B−β+ϑΓ
p′,q′ ) with r̄ as in (3.1), ϑ ∈ [0, 1) and Γ given by (G), s.t.

for all s ∈ [t, T ], ρt,µ(s, ·) ∈ P(Rd).

Proof. Assume that ρ
(1)
t,µ and ρ

(2)
t,µ are two possible solutions of (1.19). From the last part of the proof

of Lemma 9, one can easily check that density functions solving (1.19), and which lie in Lr′

(B−β
p′,q′), also

satisfy the Duhamel formulation (1.18). Then, for a.e. t ≤ s ≤ T , y in Rd,

ρ
(1)
t,µ(s, y) − ρ

(2)
t,µ(s, y) = −

∫ s

t

dv
[

{B
ρ

(1)
t,µ

(v, ·)ρ
(1)
t,µ(v, ·) − B

ρ
(2)
t,µ

(v, ·)ρ
(2)
t,µ(v, ·)} ⋆ ∇pα

s−v

]

(y).

Reproducing the stability arguments of the proof of Lemma 8 (see in particular those leading to (3.16)),
one can check that

|ρ
(1)
t,µ(s, ·) − ρ

(2)
t,µ(s, ·)|B−β

p′,q′
≤ C

∫ s

t

dv

(s − v)
−β+1

α
+ d

αp

|b(v, ·)|Bβ
p,q

{

|ρ
(1)
t,µ(v, ·)|B−β

p′,q′
|ρ

(1)
t,µ(v, ·) − ρ

(2)
t,µ(v, ·)|L1

+ |ρ
(1)
t,µ(v, ·) − ρ

(2)
t,µ(v, ·)|B−β

p′,q′

}

.
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On the one hand, since ρ
(1)
t,µ satisfies (1.18), the analysis of Lemma 7 can be reproduced and the controls

stated therein remain valid with ρ
ε
t,µ replaced by ρ

(1)
t,µ. In particular:

(

∫ s

t

dv

(s − v)
r′

α

|ρ
(1)
t,µ(v, ·)|r

′

B−β

p′,q′

)

≤ C(s − t)θ.

On the other hand, the analysis of Lemma 8 can be reproduced to control the term |ρ
(1)
t,µ(v, ·)−ρ

(2)
t,µ(v, ·)|L1 .

In particular, similarly to (3.17), one gets,

sup
v∈(t,s]

{

|ρ
(1)
t,µ(v, ·) − ρ

(2)
t,µ(v, ·)|L1

}

≤ C|b|Lr(Bβ
p,q) sup

v∈(t,s]

|(ρ
(1)
t,µ − ρ

(2)
t,µ)|

Lr′
w

(

(t,v],B−β

p′,q′

),

and similarly to (3.19) one can show that it holds:

sup
v∈(t,T ]

|(ρ
(2)
t,µ − ρ

(1)
t,µ)|r

′

Lr′
w

(

(t,v],B−β

p′,q′

) = 0.

Hence, supv∈(t,s]

{

|ρ
(1)
t,µ(v, ·) − ρ

(2)
t,µ(v, ·)|L1

}

= 0 and

|ρ
(1)
t,µ(s, ·) − ρ

(2)
t,µ(s, ·)|B−β

p′,q′
≤ C

∫ s

t

dv

(s − v)
−β+1

α
+ d

αp

|b(v, ·)|Bβ
p,q

{

|ρ
(1)
t,µ(v, ·) − ρ

(2)
t,µ(v, ·)|B−β

p′,q′

}

≤ C|b|Lr(Bβ
p,q)

(
∫ s

t

dv

(s − v)( −β+1
α

+ d
αp

)r′
|ρ

(1)
t,µ(v, ·) − ρ

(2)
t,µ(v, ·)|r

′

B−β

p′,q′

)
1
r′

.

Taking the r̄ exponent, integrating in time and using the Hölder inequality and the Fubini theorem yield
the statement. These arguments are similar to those at the end of the proof of Lemma 8.

�

3.2. From the Fokker-Planck equation to the martingale problem. To prove the weak well-
posedness part of Theorem 1, it remains to relate the non-linear Fokker-Planck equation to the non-linear
martingale problem.

We first establish the existence of a weak solution to (1.1) taking any limit point of a converging sub-
sequence of Pε, solution to the non-linear martingale problem related to the mollified McKean-Vlasov
SDE (1.13). The uniqueness of the solution will then be derived through an enhanced (to the stable pure
jump case) Krylov-Röckner like criterion. Both results preliminary rely on a uniform estimate for the
mollified non-linear drift Bε

ρ
ε
t,µ

involved in (1.13) which, collecting the estimates established in Section

3.1 reads as follows:

Lemma 11. Assume that (C0) holds. For any (t, µ) in [0, T ]×P(Rd), any ε > 0, the mollified non-linear

drift Bε
ρ

ε
t,µ

in (1.13) is in Lr0(B0
∞,1) for all r0 in

(

0,
(

1
r + 1

r

)−1
]

, for r satisfying (3.1) and the following

estimate holds:

∀t ≤ S ≤ T, |Bε
ρ

ε
t,µ

|Lr0 ((t,S],B0
∞,1) ≤ C(S − t)

1
r0

−

(

1
r

+ 1
r

)

|b|Lr(Bβ
p,q)|ρ

ε
t,µ|Lr((t,S],B−β

p′,q′ ). (3.22)

Proof. From the Young inequality (Y), one gets for all s ∈ (t, T ]:

|Bε
ρ

ε
t,µ

(s, ·)|B0
∞,1

≤ cY|bε(s, ·)|Bβ
p,q

|ρε
t,µ(s, ·)|B−β

p′,q′
.

Take now r0 as indicated, then r > r0 and use the Hölder inequality to derive:

|Bε
ρ

ε
t,µ

|Lr0 ((t,S],B0
∞,1) ≤ cY|bε|Lr(Bβ

p,q)

(

∫ T

t

ds|ρε
t,µ(s, ·)|

r0
r

r−r0

B−β

p′,q′

)
1

r0
− 1

r

.

Since r0 ∈
(

0,
(

1
r + 1

r

)−1]
, then r̄ ≥ rr0

r−r0
. If the equality holds the claim directly follows from Lemma 7.

If r̄ > rr0

r−r0
an additional Hölder inequality in time is needed. Indeed,

|Bε
ρ

ε
t,µ

|Lr0 ((t,S],B0
∞,1) ≤ cY|bε|Lr(Bβ

p,q)

(

∫ T

t

ds|ρε
t,µ(s, ·)|r̄

B−β

p′,q′

)
1
r̄

(T − t)
1

r0
−( 1

r
+ 1

r̄
).

�
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Existence results. We recall that a measure P (a probability measure on the canonical space Ωα) solves
the non-linear martingale problem related to (1.1) on [t, T ] if:

(i) P ◦ x(t)−1 = µ;
(ii) for a.a. s ∈ (t, T ], P ◦ x(s)−1 is absolutely continuous w.r.t. Lebesgue measure and its density

belongs to Lr′

((t, T ], B−β
p′,q′).

(iii) for all f in C1([t, T ], C2
0(Rd)), the process

{

f(s, x(s)) − f(t, x(t)) −

∫ s

t

(

∂vf(v, x(v)) + BP◦x(v)−1(v, x(v)) · ∇f(v, x(v)) + Lα(f)(v, x(v))
)

dv

}

t≤s≤T

,

(MPNL)
is a P martingale.

Remark 3. We point out that in our singular drift setting it is rather natural to require some smoothness
properties on the marginal laws of the canonical process of P. Those are precisely the ones which allow
to define properly almost everywhere the non-linear drift in (MPNL). Pay attention anyhow that even in
this setting BP◦x(v)−1(v, x(v)) is still potentially singular in time and we cannot directly appeal to well
known results to ensure well-posedness.

Also, we will in the following identify the marginal law and its density, i.e. if P(x(v) ∈ dx) :=
Pt,µ(v, dx) = ρt,µ(v, x)dx, then we denote BP◦x(v)−1(r, ·) = Bρt,µ

(v, ·).

Proposition 12. Under the assumption (C0), the solution to the non-linear martingale problem related
to (1.13) converges, in P(Ωα) equipped with its weak topology, to a solution to the non-linear martingale
problem related to (1.1).

Proof of Proposition 12. Let (Pε)ε>0 be the sequence of solutions to the non-linear martingale problem
related to (1.13).

Tightness. According to the Aldous tightness criterion (e.g. [6, Theorem 16.10]) if α < 2 or the Kol-
mogorov one if α = 2 [6, Theorem 7.3], and as neither the initial condition ξ nor the diffusion component
W are affected by the mollification, establishing the tightness of (Pε)ε>0 reduces to show the uniform
(w.r.t. ε) almost-sure continuity of s 7→

∫ s

t
Bε

ρ
ε
t,µ

(v, Xε,t,µ
v )dv. In view of (3.22) this property is immedi-

ately fulfilled.

Limit points. Let (Pεk )k be a converging subsequence and let P be its limit. In addition to the weak
convergence of (Pεk )k towards P, according to Lemma 8, the marginal distributions

(

Pεk

t,µ(s, dx) =

ρ
εk

t,µ(s, x) dx
)

k
converge strongly towards Pt,µ(s, dx) = ρt,µ(s, x) dx in Lr′

(B−β
p′,q′). This strong conver-

gence implies the convergence of (Bεk

ρ
εk
t,µ

)k towards Bρt,µ
in Lr0(L∞). Indeed, for r0 as in (3.22), and

proceeding as in the proof of Lemma 11:

|Bεk

ρ
εk
t,µ

− Bρt,µ
|Lr0 (L∞) ≤

(E1)
C|Bεk

ρ
εk
t,µ

− Bρt,µ
|Lr0 (B0

∞,1)

≤ C

(

|ρεk

t,µ|Lr̄(B−β+ϑΓ

p′,q′ )|b
εk − b|Lř(Bβ−ϑΓ

p,q ) + |b|Lr(Bβ
p,q)|ρ

εk

t,µ − ρt,µ|Lr̄(B−β

p′,q′ )

)

→
k

0,

where, as in the proof of Lemma 8, ř = r if r < +∞ and any finite ř large enough if r = +∞, i.e.
the conjugate exponent ř′ belongs to the interval indicated after (3.2). The previous convergence follows
from Proposition 2 and Lemmas 7 and 8.

This also yields, as a natural extension, the variational limit. For all Φ ∈ C∞
0 ((t, T ) × Rd,Rd),

lim
k→∞

∫ T

t

∫

Bεk

ρ
εk
t,µ

(s, x) · Φ(s, x) dx ds =

∫ T

t

∫

Bρt,µ
(s, x) · Φ(s, x) dx ds.

This last convergence is sufficient to ensure that (e.g. [25, Lemma 5.1]): for any 0 ≤ t1 ≤ · · · ≤ ti ≤ · · · ≤
tn ≤ t ≤ s ≤ T , Ψ1, · · · , Ψn continuous bounded, and for any φ of class C2

0 (Rd,R),

EPεk

[

Πn
i=1Ψi(x(ti))

∫ s

t

Bεk

ρ
εk
t,µ

(v, x(v)) · ∇φ(x(v)) dv

]

→kEP

[

Πn
i=1Ψi(x(ti))

∫ s

t

Bρ
t,µ

(v, x(v)) · ∇φ(x(v)) dv

]

.

This precisely gives that P is solution of the non-linear martingale problem related to (1.1). �
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Weak uniqueness results.

Proposition 13 (Uniqueness result). Under the assumption (C0), for any (t, µ) in [0, T ] × P(Rd) the
SDE (1.1) admits at most one weak solution s.t. its marginal laws

(

µ
t,µ
s (·)

)

s∈[t,T ]
have a density for a.e.

s in (t, T ], i.e. µ
t,µ
s (dx) = ρt,µ(s, x)dx and ρt,µ ∈ Lr̄(B−β

p′,q′) for any r̄ satisfying (3.1).

Proof. According to Proposition 6, any pair of solutions to the non-linear martingale problem related

to (1.1) whose (time) marginal distributions lie in Lr̄(B−β
p′,q′) have the same marginal distributions. The

non-linear drift Bρt,µ
(s, ·) is therefore, for a.e. s in [t, T ], given by b(s, ·) ⋆ ρt,µ(s, ·), ρt,µ being the unique

solution in Lr̄(B−β
p′,q′) of the non-linear Fokker-Planck equation (1.19).

As ρt,µ is in Lr̄(B−β
p′,q′), one can further check that, similarly to (3.22):

|Bρt,µ
|Lr0 ((t,T ),B0

∞,1) ≤ cY|b|Lr(Bβ
p,q)|ρt,µ|Lr0 (B−β

p′,q′ ) ≤ cY|b|Lr(Bβ
p,q)|ρt,µ|Lr̄(B−β

p′,q′ ), (3.23)

for any r0 and r̄ such that (r0)−1 = (r̄)−1 + (r)−1 and r′ ≤ r̄ < (−β/α + d/αp)−1. Thus, the drift

Bρt,µ
in (1.1) is well defined and all weak solutions to (1.1) whose density belongs to Lr̄(B−β

p′,q′) share the
same drift Bρt,µ

. Uniqueness of the non-linear martingale problem thus follows from uniqueness of the

solution P (a probability measure on the canonical space Ωα) to the (linear) martingale problem related
to (µ, Lα, F ), where F = Bρt,µ

, defined as:

(i) P ◦ x(t)−1 = µ;
(ii) for a.a. s ∈ (t, T ], P ◦ x(s)−1 is absolutely continuous w.r.t. Lebesgue measure;
(iii) for all f in C1([t, T ], C2

0(Rd)), the process
{

f(s, x(s)) − f(t, x(t)) −

∫ s

t

(

∂vf(v, x(v)) + F (v, x(v)) · ∇f(v, x(v)) + Lα(f)(v, x(v))
)

dv

}

t≤s≤T

, (MP)

is a P martingale.

The following Lemma gives sufficient condition for the solution to the (linear) martingale problem (MP)
to be unique.

Lemma 14. Assume that F is in L¯s(L∞) with 1 ≤ ¯s ≤ ∞ and
α

¯s

< α − 1. (3.24)

Then the (linear) martingale problem related to the triplet (µ, Lα, F ) admits at most one solution.

To conclude, it thus only remains to check wether the condition stated in the above Lemma is satisfied
by the non-linear drift F =Bρt,µ

. This latter is immediately implied by (3.23) as we have that (s, x) 7→

Bρt,µ
(s, x) is in Lr0(B0

∞,1) and, according to (E1), in Lr0(L∞). From condition (C0) and the definition of

Γ in (G), taking r̄ ∈

[

(

1
α (−β + d

p +ϑΓ)
)−1

,
(

1
α (−β + d

p )
)−1

)

, ϑ ∈ (0, 1), it hence holds that α/r0 < α−1

which gives the previous criterion with ¯s = r0. �

Remark 4.

• (On the formulation of the linear martingale problem (MP)). While the conditions (i) and (iii)
are rather classical (see e.g. [55], [25]), the condition (ii) is enforced in order to exhibit a short
demonstration for the uniqueness criterion stated in Lemma 14 below. This condition enables
notably to take advantage of the results obtained in [20].

• (On the Krylov-Röckner like criterion in Lemma (14)). The criterion (3.24) is a particular case of
a condition appearing in [20]. Namely, it was established in the quoted work a uniqueness result

for a modified form of the (linear) martingale problem associated with a drift Bρt,µ
in L¯s(Bβlin

ℓ,m)

with m ∈ [1, ∞] and

βlin ∈
(1

2

(

1 − α +
d

ℓ
+

α

¯s

)

, 0
)

.

The restriction βlin < 0 in this paper was essentially motivated to emphasize the distributional
setting. However, the arguments and techniques initially introduced in [20] can be adapted to
handle the case βlin = 0. This precisely allows to derive a weak uniqueness result for a "classical"
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martingale problem under the aforementioned Krylov-Röckner type criterion (3.24). This is the
purpose of Lemma 14.

Proof of Lemma 14. According to (E1), the statement of the lemma will follow if we prove it for a drift
F in L¯s((t, T ], B0

∞,1). Taking ǫ = 1 − γ > 0, meant to be very small, with

γ ∈

[

1

2

(

3 − α +
α

¯s

)

, 1

)

⇔ 1 − γ ∈

(

0,
1

2

(

α − 1 −
α

¯s

)

]

,

we further recover the initial setting of [20], i.e. from (E2) F ∈ L¯s((t, T ], B−ǫ
∞,1). (Importantly, it is

precisely the condition (3.24) which allows this lifting.) Next, from Theorem 2 in [20], it follows that for
any t < T0 < ∞ and any smooth bounded function h on [t, T0] × Rd, the backward PDE

{

∂su + F · Du + Lαu = −h on [t, T0) × R
d,

u(T0, ·) = 0,

admits a unique bounded (mild) solution in C0,1([0, T0] × Rd,R) for which Du ∈ C0
b ([0, T0], Bθ−1−ε′

∞,∞ ) for
θ := γ − 1 + α − α/¯s and for any ε′ > 0 , again meant to be small such that θ − 1 − ε′ > 0 (this can be
achieved from (3.24) which gives θ − 1 = (γ − 1) + α − α/¯s− 1 > 1 − γ = ε for ε small enough and taking
ε′ = ε). In particular u satisfies: for all ϕ in C∞

0 ((t, T0] × R
d),

∫ T0

t

ds

∫

dx
[

u(s, x)(∂s − Lα)(ϕ)(s, x) −
(

F (s, x) · Du(s, x)
)

ϕ(s, x) − h(s, x)ϕ(s, x)
]

= 0.

Note that, according to the control previously obtained in [20], and as F is here in L¯s((t, T ], B0
∞,1), the

first order term,
(

F · Du
)

ϕ, is well-defined. Introduce now {φn}n, a sequence of compactly supported

time-space mollifiers such that, for all n, φn(·) = n−dφ(n−1·) where φ is a symmetric, non-negative
function, equal to 1 on the unit ball of Rd+1 and s.t.

∫

ds
∫

dz φ(s, z) = 1. Setting un = φn ⊗ u - where,
borrowing the notation of [29], ⊗ stands for the time-space convolution product - we now claim that:
Pi-a.s. (for i = 1, 2), s ≤ T0,

∫ T0

s

(∂v + F · D + Lα)un(v, x(v)) dv = −

∫ T0

s

hn(v, x(v))dv +

∫ T0

s

Rn(v, x(v))dv,

where hn = φn ⊗ h and

Rn(v, x) := F (v, x) · Dun(v, x) − φn ⊗
(

F · Du
)

(v, x).

This expression arises from writing the action of the differential operator on un which gives, for all (v, x)
in [t, T0] × Rd,

(∂v + F (v, x) · D + Lα)(u ⊗ φn(v, x))

= (∂v + F (v, x) · D + Lα)
(

∫

dw

∫

dz u(w, z)φn(v − w, x − z)
)

=

∫

dw

∫

dz u(w, z)(∂v + Lα)(φn)(v − w, x − z) + F (v, x) · D
(

∫

dw

∫

dz u(w, z)φn(v − w, x − z)
)

=

∫

dw

∫

dz u(w, z)(−∂w + Lα)(φn)(v − w, x − z) −

∫

dw

∫

dz u(w, z)F (v, x) · (Dzφn)(v − w, x − z)

= −

∫

dw

∫

dz {F (w, z) · Du(w, z) + h(w, z)} φn(v − w, x − z)

−

∫

dw

∫

dz u(w, z)F (v, x) · (Dzφn)(v − w, x − z)

=

∫

dw

∫

dz[F (v, x) − F (w, z)] · Du(w, z) φn(v − w, x − z) − hn(v, x).

The last equality follows from an integration by parts. The symmetry of φn eventually brings
∫

dw

∫

dz[F (v, x) − F (w, z)] · Du(w, z)φn(v − w, x − z) = F (v, x) · Dun(v, x) − φn ⊗
(

F · Du
)

(v, x).
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Let now P1 and P2 be two solutions to the martingale problem related to (µ, Lα, F ). Denoting by Ps,x0

i

the conditional probability of Ps,x0

i given {x(s) = x0}, and taking f(s, x) = un(s, x) in (MP), it follows
that, for i = 1, 2,

E
P

s,x0
i

[

un(T0, x(T0)) +

∫ T0

s

hn(v, x(v)) dv

]

−un(s, x0) = E
P

s,x0
i

[

∫ T0

s

Rn(v, x(v)) dv

]

. (3.25)

Letting n tend to infinity, by continuity and boundedness of u, un(T0, x(T0)) converges a.s. to 0 as well
as E[un(T0, x(T0))] (0 is the terminal condition of the backward equation). Similarly, un(s, x0) converges
to u(s, x0). Also, again by continuity and boundedness of h,

lim
n

E
P

s,x0
i

[

un(T0, x(T0)) +

∫ T0

s

hn(v, x(v)) dv

]

− un(s, x0) = E
P

s,x0
i

[

∫ T0

s

h(v, x(v)) dv

]

− u(s, x0).

We next claim that

lim
n

E
P

s,x0
i

[

∫ T0

s

Rn(v, x(v))dv

]

= 0. (3.26)

To check this claim, following (ii) denote by ̺i(s, x0; v, ·) the density function of the canonical process of
Ps,x0

i at time v, and observe now that:

∣

∣

∣
E

P
s,x0
i

[

∫ T0

s

Rn(v, x(v)) dv

]

∣

∣

∣

=
∣

∣

∣

∫ T0

s

dv

∫

dy F (v, y) · Dun(v, y)̺i(s, x0; v, y) −

∫ T0

s

dv

∫

dy φn ⊗
(

F · Du
)

(v, y)̺i(s, x0; ·, ·)(v, y)
∣

∣

∣

=
∣

∣

∣

∫ T0

s

dv

∫

dy F (v, y) · Dun(v, y)̺i(s, x0; v, y) −

∫ T0

s

dv

∫

dy F (v, y) · Du(v, y)φn ⊗ ̺i(s, x0; ·, ·)(v, y)
∣

∣

∣

=
∣

∣

∣

∫ T0

s

dv

∫

dy F (v, y) ·
[

Dun(v, y) − Du(v, y)
]

̺i(s, x0; v, y)

+

∫ T0

s

dv

∫

dy F (v, y) · Du(v, y)
[

̺i(s, x0; v, y) − φn ⊗ ̺i(s, x0; ·, ·)(v, y)
]

∣

∣

∣
, (3.27)

expanding the convolution and using the symmetry of φn as well as the Fubini theorem for the second
equality. At this stage, (3.26) is a consequence of the convergence of the mollified sequences Dun and
φn ⊗ ̺i(s, x0; ·, ·) to Du and ̺i(s, x0; ·, ·) respectively.

For the first term in the r.h.s. of (3.27) we will use the uniform Hölder continuity of the gradient in time
and space (see Theorem 2 in [20]) which gives that for all (r, y) ∈ [s, T0] × Rd,

|Dun(v, y) − Du(v, y)| ≤

∫

Rd+1

dwdz|Du(v − w, y − z) − Du(v, y)|φn(w, z)

≤ C[Du(·, ·)](θ−1−ε′)/α,θ−1−ε′n−(θ−1−ε′)/α −→
n

0.

Applying then the Hölder inequality, we derive

∣

∣

∣

∫ T0

s

dv

∫

dy F (v, y) ·
[

Dun(v, y) − Du(v, y)
]

̺i(s, x0; v, y)
∣

∣

∣

≤ |F |L¯s(L∞)

(

∫ T0

s

dv

(
∫

dy
∣

∣Dun(v, y) − Du(v, y)
∣

∣̺i(s, x0; v, y)

)¯s
′)1/¯s′

≤ |F |L¯s(L∞)

(

∫ T0

s

dv
∣

∣Dun(v, ·) − Du(v, ·)
∣

∣

¯s
′

L∞

)1/¯s′

−→
n→∞

0. (3.28)

To handle the second term in the r.h.s. of (3.27) we will use the continuity property of the shift operator

for Lebesgue norms: for f ∈ L¯̌s(R, Lℓ) with 1 ≤ ℓ < ∞, 1 ≤ ˇ̄s < ∞ - non-necessarily equal - the mapping
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(w, z) 7→ |f(·+w, ·+z)−f(·, ·)|
L

ˇ
¯s(R,Lℓ)

is continuous. This property naturally yields |f ⊗φn−f |
L

ˇ
¯s(R,Lℓ)

→

0 as n tends to infinity.

Now, extending by zero ̺i(s, x0; ·, ·) outside [t, T ] × Rd, ̺i(s, x0; ·, ·) can be viewed as an element of

L¯s
′

(L1) and so

∣

∣

∣

∫ T0

s

dv

∫

dy F (v, y) · Du(v, y)
[

̺i(s, x0; v, y) − φn ⊗ ̺i(s, x0; ·, ·)(v, y)
]

∣

∣

∣

≤ |F |L¯s(L∞)|Du|L∞(L∞)

(

∫ T0

s

dv

(
∫

dy
∣

∣

∣
̺i(s, x0; v, ·) − φn ⊗ ̺i(s, x0; ·, ·)(v, ·)

∣

∣

∣

L1

)¯s
′)1/¯s′

−→
n→∞

0,

which, together with (3.28), gives (3.27).

Consecutively, for i = 1 or i = 2, the quantity

E
P

s,x0
i

[

∫ T0

s

h(v, x(v)) dv

]

is uniquely given by u(s, x0) (passing to the limit in (3.25)). As h can be taken in a determining class for
probability measures, this grants immediately the equality of the marginal distributions of P1 and P2,
and by extension (see e.g. [20], Section 2.2, item (iii)) the equality P1 = P2 on Ωα.

�

3.3. On strong solutions. The following Proposition gives conditions on the parameters that ensure
existence and uniqueness of a strong solution for the McKean-Vlasov SDE (1.1).

Proposition 15. Under the assumption (C0S), for any (t, µ) in [0, T ] × P(Rd) there exists a unique

strong solution to (1.1) such that its law µ
t,µ lies in Lr̄(B−β

p′,q′) for any r satisfying (3.1) and such that

for a.e. s in (t, T ], µ
t,µ
s (dx) = ρt,µ(s, x)dx.

Proof. As weak uniqueness holds, strong well-posedness follows from the strong well-posedness of the
linear version of the McKean-Vlasov SDE (1.1) where the law is frozen. This thus ends up to prove that
the drift

b : [0, T ] × R
d ∋ (s, x) 7→ b(s, x) =

∫

Rd

b(s, x − y)µt,µ
s (dy) =

∫

Rd

dy b(s, x − y)ρt,µ(s, y), (3.29)

satisfies a Krylov and Röckner type condition, see [42] if α = 2, or the criterion in [61, Theorem 2.4] if
α ∈ (1, 2). This can be summarized as follows:

(i) If α = 2, then strong well-posedness holds if the drift b defined in (3.29) lies in L¯s(Lℓ) with
¯s, ℓ ∈ (2, ∞] such that

2

¯s

+
d

ℓ
< 1.

(ii) If α ∈ (1, 2), then strong well-posedness holds if the drift b defined in (3.29) satisfies that (I −
∆)γ/2

b ∈ L¯s(Lℓ), or expressed equivalently in terms of Bessel potential space, b ∈ L¯s(Hγ,ℓ),
where γ, ℓ and ¯s are such that

γ ∈
(

1 −
α

2
, 1
)

, ℓ ∈
(2d

α
∨ 2, ∞

)

, ¯s ∈
( α

α − 1
, ∞
)

,
α

¯s

+
d

ℓ
< α − 1. (3.30)

Note that the condition on b in (ii) will actually follow if we manage to prove that b ∈ L¯s(Bγ
ℓ,1). Indeed,

Bγ
ℓ,2 →֒ Hγ,ℓ when ℓ ≥ 2 (see e.g. [57, Th. 2.5.6 p.88] and [58, Rq.2 p.96]) and we know from (E2)

that for all γ > 0, Bγ
ℓ,1 →֒ Bγ

ℓ,2. Observing as well that, in the case α = 2, since from (E1),(E2),

Bγ
ℓ,1 →֒ B0

ℓ,1 →֒ Lℓ, it suffices to prove that b ∈ L¯s(Bγ
ℓ,1) for α ∈ (1, 2] to ensure that both conditions (i)

and (ii) hold.
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Write now from (Y) and for ℓ meant to be large (but finite4):

|b(s, ·)|Bγ

ℓ,1
≤ |b(s, ·)|Bβ

p,q
|ρt,µ(s, ·)|Bγ−β

ℓ2,q′
, with ℓ2 = p′ 1

p′

ℓ + 1
.

Note that one can choose any ℓ2 < p′ close to p′, since again ℓ is arbitrarily large but finite. Write from
the Hölder inequality,

∫ T

t

ds |b(s, ·)|¯sBγ

ℓ,1
≤
(

∫ T

t

ds |b(s, ·)|¯sa
Bβ

p,q

)
1
a
(

∫ T

t

ds |ρt,µ(s, ·)|¯sa′

Bγ−β

ℓ2,q′

)
1

a′

, a−1 + (a′)−1 = 1. (3.31)

We now claim that for all ¯s lying in the interval in (3.1),

∀ℓ < p′, ∀ϑ ∈ [0, 1), ∃θ > 0 s.t.

∫ T

t

ds|ρt,µ(s, ·)|¯s
B−β+ϑΓ

ℓ,q′

≤ C(T − t)θ. (⋆)

As b ∈ Lr((t, T ], Bβ
p,q), choosing now a such that a¯s = r which implies 1/a′ = 1−1/a = 1− ¯s/r ⇐⇒ a′ =

r/(r − ¯s), γ = ϑΓ with ϑ ∈ (0, 1) and ℓ large enough, the claim follows provided the set of parameters
ϑ, ℓ and ¯s = ¯s/a′ satisfying (3.30) and the above condition is non-empty.

Firstly, the condition ¯s = ¯sa′ belongs to the interval in (3.1) writes

¯sa′ =¯s

r

r − ¯s

<

(

1

α

[

− β + ϑΓ +
d

p

]

)−1

⇐⇒

(

1

α

[

− β + ϑΓ +
d

p

]

)

r <
r

¯s

− 1

⇐⇒ ¯s < r

{

1 +

(

1

α

[

− β + ϑΓ +
d

p

]

)

r

}−1

.

Thus, if

α

α − 1
< r

{

1 +

(

1

α

[

− β + ϑΓ +
d

p

]

r

)}−1

, (SI)

there exists ¯s satisfying the two last condition in (ii) and such that ¯s = ¯sa′ lies in the interval in (3.1).
Indeed, since ℓ can be taken arbitrarily large (but finite), the above condition allows to obtain

α

¯s

+
d

ℓ
< α − 1.

As (SI) equivalently rewrites:

r

(

1 −
1

α
−

1

r

)

>

[

−
β

α
+

ϑΓ

α
+

d

pα

]

r ⇐⇒ β > 1 − α +
d

p
+

α

r
+ ϑΓ

and, from the condition (C0) and the definition of (G), for all ϑ ∈ [0, 1) it holds

β > 1 − α +
d

p
+

α

r
+ ϑΓ,

condition (SI) is always satisfied under our current assumptions.

Secondly, we need to check that

∃ϑ ∈ (0, 1) such that ϑΓ = γ ∈
(

1 −
α

2
, 1
)

.

Under (C0S) - which matches (C0) in the case α = 2 - we have

Γ = β −

(

1 − α +
d

p
+

α

r

)

> 1 −
α

2
⇐⇒ β > 2 −

3

2
α +

d

p
+

α

r
,

so that ϑ can be taken sufficiently close to 1 in order to have γ = ϑΓ > 1 − α/2.

To conclude, it only remains to prove that (⋆) holds true. Observe that for α = 2 and taking ℓ =
+∞, ℓ2 = p′ the control readily follows from the representation (1.18) in Proposition 6 and Lemmas
7-8. For α ∈ (1, 2), still starting from the representation (1.18) of ρt,µ, one may thus restart the proof of

Lemma 7 up to (3.6) and choosing now therein ℓ2 < p′ for the free integrability parameter, γ = −β + ϑΓ.
In such case, as ℓ2 < p′, we obtain a lower singularity (in time) for the estimate of the first term in the

4we restrict here to a finite ℓ to consider the cases α = 2 and α ∈ (1, 2) in a similar way. The case α = 2 could also be
handled more directly considering ℓ = +∞.
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r.h.s. (see (HK)) in (3.6). As the horizon time T is assumed to be small (T < 1) therein, the bounds
remain valid and the estimate (⋆) follows. �

A. Proof of Proposition 2.

We first focus on the spatial approximation. Consider a time homogeneous kernel b ∈ Bβ
b,q, with β ∈

(−1, 0], and define for ε > 0, bε(x) = P̃ α
ε b(x) = p̃α(ε, ·) ⋆ b(x). We are going to prove that for all β̃ < β

then

|bε − b|
Bβ̃

p,q
−→

ε−→0
0. (A.1)

To this aim, we first consider the thermic part T β̃
p,q(bε − b) of |bε − b|

Bβ̃
p,q

. For the proof we temporarily

specify the notation of the operator T β̃
p,q into T β̃

p,q,n making the index n in (2.1) now explicit. As β̃ < 0,

n can be chosen freely over the set of non-negative integers, meanwhile, as b is in Bβ
b,q, T β

p,q,m(b) < ∞ for
any integer m > β. In particular if β < 0 then m ≥ 0 and we can choose m = n ≥ 0, while if β = 0, it
would be enough to consider the case n = 0, m = 1. But to keep the same parameters for all cases we
first choose n = m = 1. We first assume q < ∞. Then,

(

T β̃
p,q,1(bε − b)

)q

:=

∫ 1

0

dv

v
v(1− β̃

α
)q|∂vp̃α(v, ·) ⋆ (bε − b)|qLp

≤2q−1

∫ 2ε

0

dv

v
v(1− β̃

α
)q
(

|∂vp̃α(v, ·) ⋆ bε|qLp + |∂vp̃α(v, ·) ⋆ b|qLp

)

+

∫ 1

2ε

dv

v
v(1− β̃

α
)q|(∂v p̃α(v + ε, ·) − ∂vp̃α(v, ·)) ⋆ b|qLp =: T1 + T2. (A.2)

Since

|∂v p̃α(v, ·) ⋆ bε|qLp = |p̃α(ε, ·) ⋆ ∂v p̃α(v, ·) ⋆ b|qLp ≤ |∂v p̃α(v, ·) ⋆ b|qLp ,

- such inequality following from the L1 − Lp convolution inequality and recalling that |p̃α(ε, ·)|L1 = 1 -
we derive for β ∈ (−1, 0]:

T1 ≤2q

∫ 2ε

0

dv

v
v(1− β̃

α
)q|∂vp̃α(v, ·) ⋆ b|qLp ≤ 2q(2ε)

−β̃+β
α

q

∫ 2ε

0

dv

v
v(1− β

α
)q|∂v p̃α(v, ·) ⋆ b|qLp

≤2q(2ε)
−β̃+β

α
q
(

T β
p,q,1(b)

)q
−→
ε→0

0, (A.3)

since β̃ < β.

Let us now turn to T2 for which we get:

T2 ≤

∫ 1

2ε

dv

v
v(1− β̃

α
)qεq

∣

∣

∣

∣

∫ 1

0

dλ∂2
v p̃α(v + ελ, ·) ⋆ b

∣

∣

∣

∣

q

Lp

≤ε
−β̃+β

α
q

∫ 1

2ε

dv

v
v(1− β̃

α
)qεq+ β̃−β

α
q
(

∫ 1

0

dλ|∂2
v p̃α(v + ελ, ·) ⋆ b|Lp

)q

≤ε
−β̃+β

α
q

∫ 1

2ε

dv

v
v(2− β

α
)q

∫ 1

0

dλ|∂2
v p̃α(v + ελ, ·) ⋆ b|qLp

≤ε
−β̃+β

α
q

∫ 1

0

dλ

∫ 1

2ε

dv

v
v(2− β

α
)q|∂2

v p̃α(v + ελ, ·) ⋆ b|qLp

≤ε
−β̃+β

α
q

∫ 1

0

dλ

∫ 1+λε

ε(2+λ)

dṽ

(ṽ − λε)
(ṽ − λε)(2− β

α
)q|∂2

ṽ p̃α(ṽ, ·) ⋆ b|qLp ,

the last inequality following from the change of variables ṽ = v + ǫλ. Now, since ṽ ≥ 2ε, we have that for
all λ ∈ [0, 1], ṽ − λε ≥ ṽ/2 so that:

T2 ≤2ε
−β̃+β

α
q

∫ 1

0

dλ

∫ 1+λε

ε(2+λ)

dṽ

ṽ
ṽ(2− β

α
)q|∂2

ṽ p̃(ṽ, ·) ⋆ b|qLp

≤2ε
−β̃+β

α
q
[

(

T β
p,q,2(b)

)q
+

∫ 1

0

dλ

∫ 1+λε

1

dṽ

ṽ
ṽ(2− β

α
)q|∂2

ṽ p̃(ṽ, ·) ⋆ b|qLp

]

. (A.4)
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Recall now from (E1) and (Y) that:

|∂2
ṽ p̃(ṽ, ·) ⋆ b|Lp ≤ |∂2

ṽ p̃(ṽ, ·) ⋆ b|B0
p,1

≤ cY|b|Bβ
p,q

|∂2
ṽ p̃(ṽ, ·)|B−β

1,1
≤ C|b|Bβ

p,q
ṽ−2− β

α ,

which plugged into (A.4) yields:

T2 ≤2ε
−β̃+β

α
q
[

(

T β
p,q,2(b)

)q
+ Cε|b|q

Bβ
p,q

]

.

This, together with (A.3), since T β
p,q,2(b) < +∞, finally yields:

(

T β̃
p,q,1(bε − b)

)

−→
ε→0

0. (A.5)

It is easily seen that the previous arguments can be adapted to the case q = +∞ , by modifying the
decomposition (A.2) accordingly to the splitting

T β̃
p,∞,1(bε − b) := sup

v∈(0,1]

v(1− β̃
α

)|∂v p̃α(v, ·) ⋆ (bε − b)|Lp

≤ sup
v∈(0,2ǫ]

v(1− β̃
α

)|∂vp̃α(v, ·) ⋆ (bε − b)|Lp + sup
v∈(2ǫ,1]

v(1− β̃
α

)|∂vp̃α(v, ·) ⋆ (bε − b)|Lp .

Also, the last argument can be adapted to control the non-thermic part of the Besov norm. Namely,

|φ̂ ⋆ (bε − b)|Lp = |(p̃α(ε, ·) ⋆ φ̂ − φ̂) ⋆ b|Lp ≤ C|b|Bβ
p,q

|p̃α(ε, ·) ⋆ φ̂ − φ̂|B−β
1,1

−→
ε→0

0 (A.6)

from the smoothness of φ̂ and the continuity of the shift operator in Lp. The statement (A.1) eventually
follows from (A.6) and (A.5). Moreover, as the by-product of the above arguments,

|bε|Bβ
p,q

≤
(Y)

cY|p̃α(ε, ·)|B0
1,∞

|b|Bβ
p,q

≤
(E1)

`c|p̃α(ε, ·)|L1 |b|Bβ
p,q

= `c|b|Bβ
p,q

,

for all ε > 0.

Consider now a time dependent drift i.e. b ∈ Lr((t, T ], Bβ
p,q). Then for almost any s ∈ (t, T ], b(s, ·) ∈ Bβ

p,q.

Thus, setting bε
sp(s, ·) = P̃ α

ε b(s, ·), we have

|bε
sp(s, ·) − b(s, ·)|

Bβ̃
p,q

−→
ε→0

0.

If r = +∞, the uniform control of bε
sp(s, ·)

Bβ̃
p,q

readily yields

|bε
sp − b|

L∞((t,T ],Bβ̃
p,q)

−→
ε→0

0.

If now r < +∞, since from the previous arguments and from (Y) and (E2),

|bε
sp(s, ·)−b(s, ·)|

Bβ̃
p,q

| ≤ |bε
sp(s, ·)|

Bβ̃
p,q

+|b(s, ·)|
Bβ̃

p,q
≤ (1 + cY)|b(s, ·)|

Bβ̃
p,q

≤ (1 + cY)|b(s, ·)|Bβ
p,q

∈ Lr((t, T ]),

we get from the bounded convergence theorem that
∫ T

t

ds |bε
sp(s, ·) − b(s, ·)|r

Bβ̃
p,q

−→
ε→0

0.

Introduce bε(s, ·) = (bε
sp(·, ·)∗ηε)(s) for a mollifier ηε(·) = ε−1η(·/ε) for some smooth compactly supported

η, where ∗ stands for the convolution in the time argument. Considering this additional convolution in
time then yields the statement. The uniform control of |bε|Lr̄(Bβ

p,q) is then clear.

B. Proof of Lemma 3.

Given s in (t, T ] and f a bounded and smooth function on Rd, with bounded derivatives, the function
φ(v, x) := pα

s−v ⋆ f(x) is itself a smooth solution of the backward equation:
{

∂vφ(v, x) + Lα(φ)(v, x) = 0 in [t, s) × R
d,

φ(s, ·) = f(·).
(B.1)

Itô’s formula applied to φ(v, Xε,t,µ
v ) over the interval [t, s] yields, in view of (B.1),

f(Xε,t,µ
s ) = φ(s, Xε,t,µ

s ) = φ(t, ξ) +

∫ s

t

Bε
ρ

ε
t,µ

(v, Xε,t,µ
v ) · ∇φ(v, Xε,t,µ

v ) dv + M ε,t,µ
s ,
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where

M ε,t,µ
s =















∫ s

t

∇φ(v, Xε,t,µ
v ) · dWv, if α = 2,

∫ s

t

∫

Rd\{0}

[φ(v, Xε,t,µ
v− + x) − φ(v, Xε,t,µ

v− )]Ñ(dv, dx), if α ∈ (1, 2),

denoting by W , the standard d-dimensional Brownian motion and by Ñ , the compensated Poisson mea-
sure.

Averaging the above expression further yields
∫

dx f(x)ρǫ
t,µ(s, x) =

∫

pα
s−t ⋆ f(y) µ(dy) +

∫ s

t

dv

∫

Rd

dy {Bε
ρ

ε
t,µ

(v, y)ρε
t,µ(v, y)} · ∇pα

s−v ⋆ f(y) (B.2)

By Fubini’s theorem, the convolution with pα
s−t can be shifted to µ and

∫

pα
s−t ⋆ f(y) µ(dy) rewrites as

∫

dx f(x) pα
s−t ⋆ µ(x). In the same way, observe that, since |ρε

t,µ(v, ·))|L1 = 1 for all v > t,
∫ s

t

dv

∫

dy

∫

dx |f(x)||∇pα
s−v(y − x)||Bε

ρ
ε
t,µ

(v, y)||ρε
t,µ(v, y)|

≤ |f |L∞

∫ s

t

dv |∇pα
s−v|L1 |Bε

ρ
ε
t,µ

(v, ·)|L∞ |ρε
t,µ(v, ·)|L1 = |f |L∞

∫ s

t

dv|∇pα
s−v |L1 |Bε

ρ
ε
t,µ

(v, ·)|L∞ .

Using (Y) and again that |ρε
t,µ(v, ·))|L1 = 1 , it follows that for all v,

|Bε
ρ

ε
t,µ

(v, ·)|L∞ = |(bε(v, ·) ⋆ ρ
ε
t,µ(v, ·)|L∞ ≤ |bε|L∞(L∞).

Therefore, applying the embedding |∇pα
s−v|L1 ≤ C|∇pα

s−v|B0
1,1

(following (E2)) and next (HK) for γ = 0,

ℓ = 1 = m,
∫ s

t

dv

∫

dy

∫

dx|f(x)||∇pα
s−v(y − x)||Bε

ρ
ε
t,µ

(v, y)||ρε
t,µ(v, y)|

≤ C|f |L∞ |bε|L∞(L∞)

∫ s

t

dv

(s − v)
1
α

< ∞,

the finiteness being granted by the fact that α > 1. Consequently, (B.2) rewrites as
∫

dx f(x)ρε
t,µ(s, x) =

∫

dx f(x)

[

pα
s−t ⋆ µ(x) −

∫ s

t

dv
(

∇pα
s−v ⋆ {Bε

ρ
ε
t,µ

(v, x)ρε
t,µ(v, x)}

)

]

.

By a density argument, we can extend the previous computations to the class of functions f that are only
bounded measurable functions and we eventually deduce that, for all t ≤ s ≤ T and for a.e. x in Rd,

ρ
ε
t,µ(s, x) = pα

s−t ⋆ µ(x) −

∫ s

t

dv
(

∇pα
s−v ⋆ {Bε

ρ
ε
t,µ

(v, x)ρε
t,µ(v, x)}

)

.

By continuity of y 7→ ρ
ε
t,µ(s, y), the equality extends to all point y of Rd.
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