
HAL Id: hal-03676366
https://hal.science/hal-03676366

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Reinforcement Learning coupled with Finite Element
Modeling for Facial Motion Learning

Duc-Phong Nguyen, Marie-Christine Ho Ba Tho, Tien-Tuan Dao

To cite this version:
Duc-Phong Nguyen, Marie-Christine Ho Ba Tho, Tien-Tuan Dao. Reinforcement Learning coupled
with Finite Element Modeling for Facial Motion Learning. Computer Methods and Programs in
Biomedicine, 2022, pp.106904. �10.1016/j.cmpb.2022.106904�. �hal-03676366�

https://hal.science/hal-03676366
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Reinforcement Learning coupled with Finite Element Modeling 1 

for Facial Motion Learning 2 

Duc-Phong NGUYEN1, Marie-Christine HO BA THO1, Tien-Tuan DAO2 3 

1 Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, 4 

Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex, France 5 

2 Univ. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de Mécanique, 6 

Multiphysique, Multiéchelle, F-59000 Lille, France 7 

duc-phong.nguyen@utc.fr, hobatho@utc.fr, tien-tuan.dao@centralelille.fr   8 

 9 

Manuscript submitted as a Research Paper to the  10 

Computer Methods and Programs in Biomedicine 11 

(2nd Revision) May 2022 12 

Corresponding author: Prof. Tien Tuan Dao 13 

Centrale Lille Institut, CNRS UMR 9013 - LaMcube 14 

Laboratoire de Mécanique, Multiphysique, Multiéchelle  15 

59655 Villeneuve d'Ascq Cedex, France  16 

Tel: 33 3 20 43 43 04 17 

E-mail: tien-tuan.dao@centralelille.fr  18 

 19 

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0169260722002863
Manuscript_d4a02af1ce6b8e7234ae911db72594e6

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0169260722002863
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0169260722002863


Abstract 20 

Background and Objective: Facial palsy patients or patients with facial transplantation have abnormal 21 

facial motion due to altered facial muscle functions and nerve damage. Computer-aided system and physics-22 

based models have been developed to provide objective and quantitative information. However, the 23 

predictive capacity of these solutions is still limited to explore the facial motion patterns with emerging 24 

properties. The present study aims to couple the reinforcement learning and the finite element modeling for 25 

facial motion learning and prediction. 26 

Methods: A novel modeling workflow for learning facial motion was developed. A physically-based model 27 

of the face within the Artisynth modeling platform was used. Information exchange protocol was proposed to 28 

link reinforcement learning and rigid multi-bodies dynamics outcomes. Two reinforcement learning 29 

algorithms (deep deterministic policy gradient (DDPG) and Twin-delayed DDPG (TD3)) were used and 30 

implemented to drive the simulations of symmetry-oriented and smile movements. Numerical outcomes were 31 

compared to experimental observations (Bosphorus database) for evaluation and validation purposes. 32 

Results: As result, after more than 100 episodes of exploring the environment, the agent starts to learn from 33 

previous trials and can find the optimal policy after more than 300 episodes of training. Regarding the 34 

symmetry-oriented motion, the muscle excitations predicted by the trained agent help to increase the value of 35 

reward from R = -2.06 to R = -0.23, which counts for ~89% improvement of the symmetry value of the face. 36 

For smile-oriented motion, two points at the edge of the mouth move up 0.35 cm, which is within the range 37 

of movements estimated from the Bosphorus database (0.4 ± 0.32 cm).  38 

Conclusions: The present study explored the muscle excitation patterns by coupling reinforcement learning 39 

with a detailed finite element model of the face. We developed, for the first time, a novel coupling scheme to 40 

integrate the finite element simulation into the reinforcement learning for facial motion learning. As 41 

perspectives, this present workflow will be applied for facial palsy and facial transplantation patients to guide 42 

and optimize the functional rehabilitation program. 43 

Keywords: Reinforcement learning, finite element modeling, facial motion learning, facial rehabilitation, 44 

Artisynth.   45 



1. Introduction 46 

Facial palsy patients or patients with facial transplantation have abnormal facial motion 47 

patterns due to altered facial muscle functions and nerve damage leading to abnormal 48 

motion control for different movements such as eating, speaking, or facial expressions [1-49 

4]. Moreover, involved patients also suffer asymmetric face effect, which indicates the 50 

imbalance and inequality of facial structure in terms of shape, size, location, and 51 

arrangement of left and right components on the sagittal plane [38]. In fact, the recovery of 52 

a symmetric face with balanced functionalities requires a complex rehabilitation process in 53 

which patients must practice patient specific facial movements. Thus, understanding of 54 

facial motion mechanism helps the involved patients to recover symmetrical movements 55 

and normal facial expressions. It is important to note that current facial rehabilitation has 56 

mainly based on a mirror approach to monitor the visual qualitative feedback from the 57 

rehabilitation exercise. More precisely, patients watch their distorted features in the mirror 58 

as a reference to teach themselves the right expressions during rehabilitation exercises. 59 

This strategy is ineffective and subjective without any feedback. Moreover, the current 60 

rehabilitation process is limited by a lack of patient specific knowledge about muscles 61 

driving facial motions. Therefore, understanding of facial motion mechanism and muscle 62 

activation and coordination is clearly fundamental. To provide quantitative and objective 63 

information on the facial motion during the rehabilitation exercise, computer-based 64 

systems that automatically recognizes action units (AUs) defined by the Facial Action 65 

Coding System (FACS) have been developed [5]. Such complex systems can provide an 66 

objective guideline for monitoring the facial rehabilitation process, which is a long-term, 67 

inconvenient, and sometimes ineffective [6-8]. 68 



In addition, for investigating muscles driving facial motion problem, biomechanical 69 

models are recommended because they can be customized to reflect the true anatomy and 70 

pathological anatomical deformations as well as imitate physical process [39]. In fact, 71 

physics-based facial models using finite element methods have been intensively developed 72 

to explore the role of the facial muscle excitation, contraction and coordination during 73 

facial motion [9-16, 31-32]. Muscle excitation represents the neural control process, which 74 

contracts the face tissues and moves the skull to perform facial expressions and movements. 75 

Despite a detailed view on the muscle contraction mechanism and its effect on the facial 76 

motion, the physics-based approach is descriptive with a priori known input information 77 

such as muscle properties. Moreover, which muscles and what value of muscle excitations 78 

for performing a desired movement for facial rehabilitation is still an open and 79 

longstanding research question. It is practically impossible to directly measure muscle 80 

activations from living subjects due to safety and accessibility limitations. Diverse 81 

numerical techniques have been proposed for estimating muscle excitation such as inverse 82 

dynamics, forward-dynamics tracking simulation, and optimal control strategies [10]. 83 

However, the use of this approach depends strongly on the a priori definition of input data, 84 

model properties and the targeted motion. Thus, this approach has a limited predictive 85 

capacity to explore a larger parameter space to find emerging properties during dynamic 86 

movements of the face.  87 

In spite of the increasing availability of massive databases and computational models, 88 

artificial intelligence has rapidly grown [17]. One of the promising solutions in the control 89 

field is the reinforcement learning with tremendous theoretical and practical achievements 90 

in robotics control [18], gamming [19], autonomous driving [20], computer vision [21], 91 

and healthcare [22-24]. In particular, the question of the use of this learning strategy in the 92 



healthcare domain to tackle real-world applications has recently raised [22-24]. 93 

Reinforcement learning distinguishes from other types of machine learning in several 94 

perspectives. The agent collects data through interactions with the environment and uses 95 

that data to train the agent itself. This dependence results in variation outcomes from one 96 

run to another. Recently, the reinforcement learning strategy has been coupled with rigid 97 

multi-bodies dynamics to explore the motion of the lower limbs during walking and age-98 

related falls [33]. Thus, this learning strategy opens new avenues to explore human system 99 

motion and novel emerging properties without any a priori motion data. Thus, the present 100 

study aims to explore the facial motion learning capacity by the coupling between the 101 

reinforcement learning and the finite element modeling. The main objective is to provide, 102 

for the first time, the modeling workflow for this complex coupling and then to evaluate 103 

different learning strategies to establish motion patterns of the face during facial expression 104 

motions. Our novel solution will explore the patient specific facial motions without a priori 105 

data from the patient and then provides a set of facial muscle activation and coordination 106 

patterns for a specific rehabilitation-oriented movement (e.g. symmetry or smile). The 107 

remainder of the paper is organized as follows: section 2 focuses on the coupling workflow 108 

between reinforcement learning and finite element model of the face for learning symmetry 109 

and smile motions. Section 3 provides computational results and the comparison with other 110 

studies. Section 4 provides a detail discussion on the method and obtained results. Finally, 111 

section 5 addresses conclusions and perspectives of the present work. 112 

2. Materials and methods 113 

2.1 Novel coupling workflow between reinforcement learning and finite element 114 

modeling  115 



Our novel simulation workflow requires main two components (Fig. 1): 1) A 116 

reinforcement learning agent (a human face) having a policy that decides what action 117 

(muscle excitations) to take when it observes a state (facial motion) and 2) A finite element 118 

modeling and simulation environment. The coupling between the finite element simulation 119 

environment and the reinforcement learning process is managed by an information 120 

exchange protocol. More precisely, at the beginning, the reinforcement learning agent 121 

observes the state of the face using the positions of selected key points (Fig. 2). Secondly, 122 

the policy predicts values of muscle excitations, which are then applied to the 123 

biomechanical model of the face for a physical simulation. Then, the simulation 124 

environment returns the positions of selected key points after simulation. And finally, these 125 

positions are used to compute the reward value by pre-designed multi-objective function 126 

(related to symmetry or smile exercises), which is then used to update training parameters 127 

for the training process. 128 

 129 

Figure 1. Overview of the novel coupling workflow between reinforcement learning and 130 

finite element modeling.  131 



 132 

Figure 2. Detailed flowchart of the interaction between reinforcement learning and finite 133 

element modeling processes.  134 

2.2 Face finite element model 135 

A physically-based model of the face within the Artisynth modeling platform was used 136 

(Fig. 3a). This model has been from previous researches [16], [25], [26], [27]. The face 137 

finite element model includes three components such as 1) soft-tissue component with the 138 

hypodermis, dermis, and epidermis layers, 2) a cranium and maxilla component, 3) a jaw-139 

hyoid component [28]. To reduce computational cost and accelerate the training process, 140 

the facial model is simplified by keeping only the soft-tissue component with ten orofacial 141 

muscles (Levator Anguli Oris (LAO), Levator Labii Superioris Alaeque Nasi (LLSAN), 142 

Buccinator (BUC), Zygomaticus (ZYG), Depressor Anguli Oris (DAO), Risorius (RIS), 143 

Depressor Labii Inferioris (DLI), Mentalis (MENT), Orbicularis Oris Peripheralis (OOP), 144 



Orbicularis Oris Marginalis (OOM)) (Fig. 3c). The soft tissue finite element mesh consists 145 

of 6342 brick elements (with 6024 hexahedrons and 318 wedges) and 8720 nodes. The 146 

activation for the face model results from the orofacial muscle strain and force. 147 

Ten orofacial muscles are modeled and attached in the lower face that applies muscle 148 

forces in terms of muscle excitations onto the finite element model. Muscle fibers are 149 

modeled by a set of uniaxial cable elements. For example, the zygomatic ligaments are 150 

represented by fixing all degrees-of-freedom of soft tissue nodes that are in the region 151 

where these ligaments attach to the maxilla. Soft tissue constitutive equation for the 152 

hypodermis layer is based on a Mooney-Rivlin constitutive equation, and Fung constitutive 153 

equation for the epidermis and dermis layer as in the Flynn et al. paper [16]. The 154 

mechanical characteristics (such as force-displacement response, pre-stress behaviors, non-155 

linear, anisotropic, and viscoelastic constitutive laws) for the skin layer were estimated 156 

based on a combination of in vivo experiments and numerical methods. Muscles are 157 

modeled as continuous sets of cable elements, which activate in tension as point-to-point 158 

Hill-type models and are aligned along element edges. The mechanical property evolution 159 

of muscle contraction comprises muscle contractile fibres (active part), muscle body 160 

(passive part), and the stress stiffening effect [25]. The movements of the mandible 161 

generated by muscles of mastication are not handled yet in the model. Thus, the superficial 162 

muscles, which are muscles around the lip region, involved in facial mimics are focused. 163 

Two finite element models of the face corresponding with the modeling of the symmetric 164 

face (Fig. 3a) and the asymmetric face (Fig. 3b). 165 



 166 

Figure 3. The face finite element model (a) referred as the symmetric face, (b) referred as 167 

the asymmetric face (unbalanced deformation between left and right sides), and related 168 

facial muscle network (c). 169 

2.3 Reinforcement Learning for Facial Motion Control 170 

2.3.1 Reinforcement learning model and algorithms  171 

Reinforcement learning (RL) aims to find a policy, ��	|��, which maps the state space to 172 

the action space and instructs the agent on how to make decisions that maximizes the long-173 

term cumulative reward inspired by a reward function 
��, 	�, where 	 is the action needs 174 

to take in the state �. Bellman equations are solved to find the optimal policy. In this 175 

present study, two RL algorithms were used. The first algorithm is the Deep Deterministic 176 

Policy Gradient (DDPG) in which the Bellman equation was solved by combining a deep 177 

neural network for learning Q function and a deterministic policy gradient algorithm for 178 

learning a policy. This is off-policy reinforcement learning used for continuous state and 179 

action spaces, which is suitable for our problem. The second used algorithm is the Twin 180 

Delayed DDPG (TD3). DDPG is often brittle with the tuning process for hyperparameters. 181 

It usually fails when exploiting the error in the Q-function, the learned Q function starts to 182 



overestimate Q-values results in policy breaking. Twin delayed DDPG copes with this 183 

issue and improves performance by applying three tricks as 1) Clipped Double-Q Learning: 184 

learning two Q-functions (twin) and using smaller Q-values for the Bellman error loss 185 

functions, 2) Delayed Policy Updates: sparse updating the policy compared to the Q-186 

function, 3) Target Policy Smoothing: adding noise to target actions to reduce exploiting 187 

Q-function errors. 188 

 189 

Figure 4. The network architecture of DDPG: one actor network and one critic network. 190 

 191 

Figure 5. The network architecture of TD3: one actor network and two critic networks. 192 

The network architecture of DDPG contains the actor network and the critic network. Each 193 

network has two hidden layers with 64 nodes (Fig. 4). The actor network inputs the state 194 

vector while outputs the action vector. The input of the critic network contains both the 195 



action vector output from the actor network and the state vector, while the output is the 196 

predicted Q-value. TD3 has the same architecture as in DDPG except it has two critic 197 

networks (Fig. 5). 198 

2.3.2 Reward Function, Action Space, and State Space 199 

The aim of our study is to find the appropriate muscle excitations for performing a facial 200 

motion, which is generated by defining appropriate biomechanics-inspired reward function. 201 

In our model, action is a vector of 10 pairs of left and right muscles in terms of muscle 202 

forces normalized between 0 and 1. To avoid the exhausted search, only significant 203 

muscles (left and right Levator Anguli Oris (LAO), left and right Levator Labii Superioris 204 

Alaeque Nasi (LLSAN), left and right Zygomatics (ZYG), left and right Risorious (RIS), 205 

Orbicularis Oris Marginalis (OOM), Orbicularis Oris Peripheralis (OOP)) were included 206 

in training process (Fig. 6a). In our model, the agent’s state was defined through a set of 207 

landmark points focusing on the mouth region of the face. In fact, 8 key points on the lips 208 

are chosen as representations of the state of the face (Fig. 6b). 209 

 210 

Figure 6. Selected muscles excitations for training (a) and landmark points for the RL 211 

agent’s state (b). 212 



Regarding the reward function, the agent receives a reward value from environment at each 213 

time-step. Note that the training efficiency of reinforcement learning algorithm depends 214 

strongly on defining the reward function. In our study, the reward function is designed by a 215 

motion-oriented (e.g. symmetry-targeted motion, smile expression, sound pronunciations) 216 

strategy. More precisely, different reward functions were formulated using the Euclidean 217 

distance and angle created from the defined 8 landmark points. Mathematically, reward 218 

functions are defined as follows: 219 

���������
�������� = −1000 ∗ �
 

� + 
"
� + 
#

�$                                 (1) 220 

���������
��%&� = −�
 

� + 
"
� + 
#

��                                              (2) 221 

����&� = ∆(                                                                              (3) 222 

where 
�
�, 
�

� are the symmetry value-based distance and angle between left side compared 223 

to right side for each pair point (point 1-5, 2-4, 8-6). ∆( is the total moving up of point #1 224 

and point #5 defined in Fig. 6b. 225 

2.4 Information exchange protocol and implementation  226 

Our study is based on two modeling platforms (i.e. Artisynth and PyTorch) coming from 227 

different fields. The exchange information between these platforms need a novel 228 

communication protocol. Artisynth-RL has been proposed to open the exchange capacity 229 

with rigid multi-bodies dynamics simulation [30]. In the present study, Artisynth-RL was 230 

extended to exchange information between the PyTorch platform which is a Python-based 231 

training platform for RL models and Artisynth for running face finite element simulation. 232 

Note that Artisynth-RL is a cross-platform based java script. To achieve this objective, 233 

different technologies (RESTful API as a plugin, Spark framework from java, and Request 234 



package from python) were used as shown in Fig. 7. Regarding the communication 235 

protocol, the muscle excitations from the reinforcement learning module are posted into 236 

the Artisyngh module, then a new state is obtained from the Artisynth module to 237 

reinforcement learning module after each simulation step. 238 

 239 

Figure 7. RESTful API as a plugin for bridging reinforcement learning and Artisynth 240 

As hardware configuration, a virtual machine configuration with ubuntu 20.04, 8 CPU, 16 241 

Gb RAM, Python 3.6, and the open-source stable-baselines3 was used for the training 242 

process. 243 

2.5 Evaluation and validation   244 

An open access 3D face database, named Bosphorus, was used for evaluation and 245 

validation purpose. This database includes 105 subjects (44 females and 61 males) with 246 

different expressions, poses, and occlusion conditions. 65 subjects have 7 expressions such 247 

as happiness (smile), surprise, fear, sadness, anger, disgust, and neutral. Happiness (smile) 248 

and neutral expressions, which are available in 130 face scans of all the subjects, were used 249 

for further validation. Firstly, three key point at positions #1, #5, and #7 (as in Fig. 6b) 250 

were manually picked for each face scan. Secondly, all the face scans were transferred 251 

such that the point at position #7 is at the origin (coordinate [0, 0, 0]) and face scans of the 252 

same person is at the same orientation. Finally, the total displacement of moving up action 253 

of the two key points at positions #1 and #5 (as in Fig. 6b) were computed by subtracting 254 

the corresponding points of smile face scan and neutral face scan of the same person. In 255 

Agent (Gym OpenAI) Environment (Face-Artisynth)

Request package Spark framework

RESTFul API

postExcitation()

getState()



fact, the values of the used reward functions were computed for each posture (neutral and 256 

smile expression). Obtained values were represented in mean and standard deviation and 257 

then compared to the final outcomes from the RL process. 258 

 259 

Figure 8. Illustration from Bosphorus database with two expressions: neutral (left) and 260 

smile (right). 261 

A hyperparameter tuning process was implemented to select the best neural network 262 

architecture and parameters. In particular, the hyperparameter tuning process is not 263 

automatically tuned, but manually selects each parameter, while other parameters remain 264 

unchanged. Each trial was performed for a training task with the hyperparameter within a 265 

predefined set to ensure that the agent successfully explores and learns to make decisions 266 

in its environment. The predefined set of hyperparameters includes several most critical 267 

parameters, which govern the performance of reinforcement learning such as the neural 268 

network size (nodes in hidden layers ([64, 64] or [400, 300] for the actor and the critic 269 

networks)), learning rate (0.001, 0.01, note that the learning rate is shared for all networks), 270 

batch size (16, 32), ) parameter, which used to soft update both critic and actor target 271 

networks (0.001, 0.005). 272 

3. Computational results 273 



3.1 RL accuracy and performance 274 

Figure 9 shows the reward and the loss evolutions during the training process of the agent 275 

to conduct one symmetry action. In general, after more than 100 episodes of random 276 

interaction in the environment, the agent starts to learn from previous trials and can find 277 

the optimal policy after more than 300 episodes of training. In particular, the learning start 278 

parameter was set to 100 in the training phase, allowing the reinforcement learning agent 279 

to collect a set of transitions (* = ��, 	, 
, �+, (�) by performing a random action from the 280 

action space to the environment before learning from previous trials. These random actions 281 

result in instable trend in the reward values in first 100 episodes. Having just 200 episodes 282 

of learning, the agent still learns and explores the environment to discover the optimal 283 

policy. During learning, the not optimal policy may predict the random actions for 284 

exploring more the environment that might dramatically drop reward values. From 200 to 285 

300 episodes of learning, the agent gradually finds the optimal policy after more than 300 286 

episodes of training. The reduction in actor loss and critic loss values demonstrates the 287 

efficacy of learning strategy in both DDPG and TD3 methods. The reward value predicted 288 

using the model trained by TD3 (R = -0.26) is slightly higher than that of using the model 289 

trained by DDPG (R = -0.33). 290 
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Figure 9. The reward value and the loss values of the actor network and the critic network 292 

during training reinforcement learning agent with two different methods: DDPG (left), 293 

TD3 (right) for symmetry-oriented functional rehabilitation using 4 muscles as ZYG, RIS, 294 

OOM, OOP. The reward value predicted using the model trained by DDPG is R = -0.33. 295 

The reward value predicted using the model trained by TD3 is R = -0.26. 296 

Figure 10 shows the reward and the loss evolutions during the training process of the agent 297 

to perform the smile action. The similar patterns are observed according to figure 9. More 298 

precisely, the agent spends 100 episodes collecting a set of transitions by taking random 299 

actions to the environment resulting in instability of reward values. It then starts to learn 300 

from previous trials and can find the optimal policy after more than 200 episodes of 301 

training. The training is successfully demonstrated by the reduction of the loss value of 302 

both actor and critic networks. The reward values during training model using DDPG 303 

algorithm seem noisier compared to that of training model using TD3 algorithm. The 304 

reward value predicted using the model trained by TD3 (R = 5.36) is slightly higher than 305 

that of using the model trained by DDPG (R = 5.26). 306 

  307 

Figure 10. The reward value and the loss values of the actor network and the critic 308 

network during training reinforcement learning agent with two different methods: DDPG 309 
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(left), TD3 (right) for smile-oriented functional rehabilitation using 3 facial muscles as 310 

LAO, LLSAN, ZYG. The reward value predicted using the model trained by DDPG is R = 311 

5.26. The reward value predicted using the model trained by TD3 is R = 5.36. 312 

Table 1 shows the reward values obtained during the hyperparameter tuning process for 313 

DDPG method when training smile expression. The process can help to identify the better 314 

network architecture with associated optimal set of hyperparameters. In fact, the 315 

reinforcement learning architecture including two hidden layers [400, 300] for the actor 316 

and the critic networks, a batch size of 16, a learning rate for all networks of 0.001, τ 317 

parameter of 0.005, and without action noise yields the best reward value. The 318 

computational time for training 500 episodes for each smile training and symmetry training 319 

is around 6 hours. However, the most computational time is in the simulation environment, 320 

where each simulation lasts for 30 seconds (5 hours for 500 episodes related to simulation 321 

and restart of Artisynth only). Figure 11 reports the effect of the network architecture and τ 322 

parameter. The network architecture has a more important effect than that of the τ 323 

parameter. 324 

   325 

Figure 11. Reward value during training reinforcement learning agent with different 326 

hyperparameters and the network architecture. 327 



Table 1. The reward values obtained during the hyperparameter 

tuning process 

Hyperparameters Reward 

Batch size 
16 5.21 

32 5.16 

Learning rate 
0.01 4.59 

0.001 5.35 

Network architecture 
[64, 64] 4.81 

[400, 300] 5.45 

τ parameter 
0.001 5.22 

0.005 5.26 

Action noise 
With 4.69 

Without 5.35 

 328 

To sum up, two reinforcement learning algorithms namely DDPG and TD3 have been used 329 

for learning symmetry and smile motions of the finite element model of the face. In terms 330 

of reward predicted from the trained model, TD3 seems to have slightly better performance 331 

compared to DDPG. The hyperparameter tuning process was also proposed to find the 332 

suitable parameter for the model. 333 

3.2 Facial motion learning 334 

The obtained outcome and corresponding muscle excitation value of the symmetry-335 

oriented functional rehabilitation is shown in Fig. 12. and Table 2. According to the 336 

prediction, the muscle on the right side of the mouth such as right OOM, right RIS, and 337 

right ZYG are activated, while only the left OOP muscle is activated to improve the 338 

symmetry of the face from the initial state with the reward value R = -2.06 to the new state 339 

with the reward value R = -0.23, which counts 88.8% improvement. 340 

 341 



Figure 12. Face animation for symmetry-oriented motion. The face at initial state (on the 342 

left R = -2.06) and after received muscle excitation (on the right R = -0.23) output from 343 

reinforcement learning for symmetry-oriented functional rehabilitation. 344 

 345 

Figure 13. Face animation for smile-oriented motion. The face at initial state (on the left R 346 

= -1.6) and after received muscle excitation (on the right R = 5.35) output from 347 

reinforcement learning for smile-oriented motion. 348 

Regarding the smile-oriented motion simulation of the finite element model of the face, 349 

both left and right muscles of LAO and ZYG are activated, while LLSAN is not activated 350 

as in Fig. 13 and Table 3. The measured reward value increases from -1.6 at the initial state 351 

to 5.3 at the terminal state. The obtained muscle activation levels for smiling movement are 352 

within the range of values reported by Flynn et al. [16]. However, it is important to note 353 

that there is a difference in smiling patterns between our simulation (i.e. unconstrained 354 

smile) and their simulations (i.e. miles with open mouth or closed mouth). 355 

The muscle action line length change and contraction amplitude ,-. = /0/1

/1
= ∆/

/1
 are 356 

shown in Table 2. The contraction amplitudes of OOM and OOP are estimated as the area 357 

that these muscles cover ,-. = 2021

21
= ∆2

21
. Related to the smile, the right ZYG contracts -358 

16.26%, while this number on the left is -15.12%. The right and left LAO contract around -359 

30%. Note that all muscle contraction levels during smiling are in good agreement with 360 

those estimated using Kinect-driven rigid multi-bodies modeling (Nguyen et al. [40]). In 361 



their study [40], the head model was reconstructed from the subject-specific data acquired 362 

by a Kinect device in a smile position. Then, a skull model was generated using the 363 

statistical fitting method from a generic skull model and the head model. Moreover, a 364 

muscle network was defined using insertion points on the head model and attachment 365 

points from the skull model. Finally, the muscle contraction levels were estimated using 366 

the length of these insertion points and attachment points. 367 

Table 2. Muscle contraction levels during different facial expressions and comparison to 

the literature data.  

Muscle / 345 

symmetry Smile 
Nguyen et al. [40] 

(smile) 

67 �88� /  
:7 �88"� 

;/

/1
 (%) 

/  
;2

21
 (%) 

67 �88� /  
:7 �88"� 

;/

/1
 (%) 

/  
;2

21
 (%) 

 
;/

/1
 (%) 

Right ZYG 52 88 -2.19 54.5 88 -16.31 From -9.13 to -19.72 

Left ZYG 52.2 88 1.12 54.6 88 -15.09 From -13.59 to -21.32 

Right LLSAN 27.2 88 -1.62 27.9 88 -10.26 From -1.99 to -8.12 

Left LLSAN 27.2 88 -0.38 27.9 88 -10.2 From -0.69 to -6.13 

Right LAO 27.3 88 -1.18 30 88 -28.13 From -18.66 to -29.46 

Left LAO 24.3 88 1.56 30 88 -28.17 From -21.19 to -28.03 

Right RIS 52.2 88 -6.21 52.9 88 -8.12 From 3.55 to 7.30 

Left RIS 52 88 2.44 52.9 88 -8.135 From -3.09 to 6.96 

OOM 590 88" -12.97 665 88" -2.01 - 

OOP 1099 88" -7.98 1138 88" 17.40 - 
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 369 

Table 3. Muscle activation levels reported from our simulation and its comparison to the 

literature data 

Muscle symmetry smile Flynn et al. [16] 

(closed mouth smile) 

Flynn et al. [16] 

(open mouth smile) 

Right ZYG 0.2 0.4 0.2 0.5 

Left ZYG 0 0.4 0.2 0.5 

Right LLSAN 0 0 0.1 0.5 

Left LLSAN 0 0 0.1 0.5 

Right LAO 0 0.4 0.1 0.5 

Left LAO 0 0.4 0.1 0.5 

Right RIS 0.4 0 0.2 0.6 



Left RIS 0 0 0.2 0.6 

Right OOM 0 0 0 0 

Left OOM 0 0 0 0 

Right OOP 0.1 0 0 0 

Left OOP 0.4 0 0 0 

 370 

3.3 Evaluation and validation 371 

For symmetry-oriented motion, the muscle excitations predicted by the trained agent help 372 

to increase the value of reward from R = -2.06 to R = -0.23, which counts for ~88.8%. 373 

While this number for smile-oriented motion, the reward value for both corners of the 374 

mouth increases from R = -1.6 at the initial state to around R = 5.3 at the terminal state, 375 

which is 0.35 cm moving up on average for each corner of the mouth. The average distance 376 

of moving up for each corner of the mouth was 3.4±0.2 estimated using reward values 377 

from Table 1 for different hyperparameters of the reinforcement learning algorithm. This is 378 

within the range of movements compared to the value calculated from the Bosphorus 379 

database, this value is 0.4 ± 0.32 <8 when a person makes maximum effort to smile as in 380 

Fig. 14. The variation in the value of this displacement of the Bosphorus database is large 381 

(0.32 cm) compared to our results (0.02 cm). This is due to this value being estimated from 382 

65 different subjects, while our result was only estimated using one patient-specific model 383 

of the face. 384 



 385 

Figure 14. Displacement of the corner point of the mouth (moving up direction) of our 386 

method and from the Bosphorus database of the smile position compared to the neutral 387 

position. 388 

4. Discussion 389 

Understanding muscle coordination mechanism of facial expressions plays a crucial role in 390 

the facial rehabilitation interventions for facial palsy or facial transplantation patients. 391 

Numerical models (i.e. finite element models) have been intensively developed [31] to 392 

provide a better understanding of this complex process. However, these developed models 393 

are descriptive and their predictive capacity is still limited. Besides, computer-based 394 

monitoring systems, that automatically recognize action units (AUs) to provide 395 

quantitative and objective information on the facial motion during the rehabilitation 396 

exercise have been developed [5, 36, 37]. Despite many efforts, understanding of facial 397 

motion mechanism still remains a scientific and clinical challenge to help the involved 398 

patients to recover functional facial movements. In particular, the role of muscle excitation 399 

4 ± 3.23.4 ± 0.2



and its value for performing a desired facial movement for facial rehabilitation is still an 400 

open and longstanding research question. To achieve this complex and challenging 401 

objective, the present study aimed to couple reinforcement learning approach to a muscle-402 

driven biomechanical model of the face to explore the facial motion learning capacity such 403 

as symmetry and facial smiling actions. For the first time, facial expressions (e.g. smile) 404 

are simulated without a priori input data (e.g. motion capture data). In fact, our novel 405 

coupling scheme allows to explore emerging properties of the facial muscle contraction 406 

mechanism and guides iteratively the face to express smiling action or becomes a 407 

symmetric face. Thus, obtained outcomes showed the potential application of this novel 408 

approach with facial palsy patients for a better understanding of facial muscle coordination 409 

and muscle activation patterns to target a specific motion.    410 

More precisely, regarding the symmetric motion of the face, the muscle contraction 411 

involves right OOM, right RIS, and right ZYG, while only the left OOP muscle is activated. 412 

This is reasonable due to the physical-based model of the face used for symmetry training 413 

is drooping of the mouth on the right side. From the biomechanics point of view, this is a 414 

symptom of the facial palsy patient on the affected side of the face. In smile-oriented 415 

motion of the face, lavetor anguli oris and zygomaticus are the main muscles responsible 416 

for smile action resulting in two corner points in the mouth moving up 0.35 cm, which is 417 

within the range of motion compared to the Bosphorus database (0.4 ± 0.32 cm). There is 418 

also a good agreement in muscle involvement for smile training as LAO and ZYG 419 

compared with the simulation of Flynn et al. [16]. Note that Flynn et al. manually adjusted 420 

muscle excitation value to find the appropriate value for expression movements of the 421 

finite element model of the face. In fact, our present study revealed the usefulness of the 422 

mechanical modeling coupled with reinforcement learning to guide the design of patient 423 



specific precision rehabilitation for the face with muscle activation and coordination 424 

mechanisms.  425 

Recently, deep reinforcement learning becomes an interesting solution for complex control 426 

problems [33]. The coupling between a reinforcement learning strategy and a deep neural 427 

network allows the agent to build knowledge by gathering information while interacting 428 

with the environment. In fact, no prior data is required for training. This particular 429 

character enhances the predictive capacity of the involved model. Indeed, reinforcement 430 

learning methods were used to solve our problem since they require no prior input data (i.e. 431 

muscle excitation and activation patterns). This is particularly useful for learning muscle-432 

driven facial motion problems. While other learning approaches require a database for 433 

training, collecting experimental data by directly measuring muscle excitations from living 434 

subjects is hard or impossible due to safety and accessibility limitations [9]. One of the 435 

challenges when developing an efficient RL model relates to the use cumulative rewards to 436 

quantify how the agents ought to take actions in an environment. In our present study, 437 

specific rewards were defined to guide the motion patterns toward the specific targets 438 

(symmetry and smiling motions). The efficiency of training reinforcement learning 439 

algorithms is demonstrated by the reward values predicted using the learned model. The 440 

"proper" reward function must be defined for successful training reinforcement learning. 441 

The current work used two simple reward functions to train the finite element model of the 442 

face for symmetry and smile motion. For more realistic outcomes, a bioinspired reward 443 

function built from the bio-mechanical knowledge should be developed for reshaping the 444 

mechanism of the desired facial motion. Moreover, two the state-of-the-art RL methods 445 

(DDPG method and the successor TD3), which are off-policy algorithms and applicable 446 

for complex environments with continuous action spaces, were used to drive the face 447 



toward the targeted motions from the activation of the facial muscles. Note that the use of 448 

these methods leads to the win of the Learn to Move competition [35]. The reward values 449 

during training model using DDPG algorithm seem noisier compared to that of training 450 

model using TD3 algorithm. This is due to the nature of DDPG algorithm when it updating 451 

the policy more often during training. In terms of reward predicted from the trained model, 452 

TD3 seems to have slightly better performance compared to DDPG. 453 

One of the most important limitations of the present work deals with the sensitive nature of 454 

the hyperparameters of the physics-based face model. Further investigations should be 455 

done to take the uncertainties of these parameters into account to provide more reliable 456 

prediction outcomes. In fact, each parameter should be represented in a more generic 457 

format like interval or probability-based structures (e.g. probability density function (PDF); 458 

cumulative distribution function (CDF)) and then associated outcomes (i.e. muscle 459 

activation) should be estimated within a plausible range of values. However, taking the 460 

parameter uncertainty into account increases drastically the computational cost during the 461 

reinforcement learning process. Thus, more efficient uncertainty propagation algorithms 462 

should be investigated to scope with this constraint. Moreover, the present face model 463 

includes only 10 muscles. In particular, all parameters were set up for a generic model. 464 

Thus, a more detailed face model and patient-specific properties of the face tissues and 465 

structures should be taken into consideration from medical imaging toward a patient 466 

specific rehabilitation application. In particular, the increase of the number of muscles of 467 

interest will allow the modeling system to explore full muscle action patterns of the face. 468 

Thus, the present system could benefit from the FACS pattern for a given expression to 469 

converge quickly to the optimal solution and then other applications like speech synthesis 470 

or language learning could be investigated. Regarding the limitation of the used RL 471 



approach, the use of only a deep neural network seems to be underestimated for the 472 

complex face motion coordination. As perspective, a multi-network approach should be 473 

investigated for a better coordination of the facial muscle activations and contractions. 474 

Finally, the coupling between RL and FE modeling frameworks requires the development 475 

of a specific communication protocol. In a further work, the developed information 476 

exchange protocol will be improved to provide a generic communication channel between 477 

the RL framework and any other powerful and dedicated FE modeling frameworks like 478 

Abaqus or Ansys to overcome the limitation of the current physics-based face model. 479 

5. Conclusions 480 

The present study explored the muscle excitation patterns by coupling reinforcement 481 

learning with a finite element model of the face. We developed, for the first time, a novel 482 

coupling scheme to integrate the finite element simulation into the reinforcement learning 483 

for facial motion learning. In particular, two state-of-the-art reinforcement learning 484 

algorithms (deep deterministic policy gradient (DDPG) and Twin-delayed DDPG (TD3)) 485 

were successfully applied and implemented to drive the simulations of symmetry-oriented 486 

and smile movements. Obtained results were in very good agreement with experimental 487 

observation. In fact, a better understanding of the facial muscle activation and coordination 488 

mechanism is of great clinical interest to guide the optimal rehabilitation strategy. The 489 

present work opens new avenues to achieve this challenging objective. As perspectives, 490 

this present workflow will be applied for facial palsy and facial transplantation patients to 491 

guide and optimize the functional rehabilitation program. 492 
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