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Abstract

We study opinion dynamics in multi-agent net-
works where agents hold binary opinions and are
influenced by their neighbors while being biased to-
wards one of the two opinions, called the superior
opinion. The dynamics is modeled by the following
process: at each round, a randomly selected agent
chooses the superior opinion with some probabil-
ity «, and with probability 1 — « it conforms to the
opinion manifested by the majority of its neighbors.
In this work, we exhibit classes of network topolo-
gies for which we prove that the expected time for
consensus on the superior opinion can be exponen-
tial. This answers an open conjecture in the litera-
ture. In contrast, we show that in all cubic graphs,
convergence occurs after a polynomial number of
rounds for every «.

We rely on new structural graph properties by char-
acterizing the opinion formation in terms of multi-
ple domination, stable and decreasing structures in
graphs, providing an interplay between bias, con-
sensus and network structure. Finally, we provide
both theoretical and experimental evidence for the
existence of decreasing structures and relate it to
the rich behavior observed on the expected conver-
gence time of the opinion diffusion model.

1 Introduction

In everyday life, when sharing or forming an opinion about
a set of issues of interest, individuals often consult with their
friends, relatives, acquaintances, or others, in their close so-
cial group. Furthermore, with the widespread use of online
social networks, social influence comes to play a prominent
role in several phenomena such as the diffusion of technologi-
cal innovations, the rise of political movements, and the inten-
sification of fears during outbreaks. Consequently, there has
been a growing interest in understanding the opinion-forming
processes that drive the formation of consensus and opinion
clustering in social systems.

Opinion dynamics are mathematical models that enable to
investigate how a group of agents change their beliefs under
the influence of other agents. While various models consid-
ered in the literature confer the same intrinsic value to all

opinions [Coates er al., 2018], an agent may be biased to-
wards a “preferred” opinion; for instance, reflecting intrinsic
superiority of one alternative (e.g., a technological innova-
tion) over the status quo. We represent a multi-agent network
by a graph made up of n agents that are modeled as nodes,
and an edge between two nodes corresponds to a relation be-
tween the respective agents such as friendship, common in-
terests, or advice. We focus on the scenario where each agent
must choose between two alternatives by exhibiting a bias to-
ward one of the opinions. In the remainder, we use labels 0
and 1 for the two opinions and we assume 1 is the superior
opinion.

Starting from an initial state in which all agents share opin-
ion 0, the system evolves in rounds. In each round, one agent
is selected uniformly at random. With some probability «
(called bias), the agent adopts 1, while with probability 1 —«,
the agent adopts to the majority opinion on the basis of those
held by its neighbors in the underlying network. When @ > 0
the process always converge to global adoption of the opin-
ion 1. Since dynamics are aimed at modeling the spread of
opinions, an important issue is to determine how fast the su-
perior opinion takes over the network [Mossel and Tamuz,
2017]. In [Anagnostopoulos er al., 2020], the authors show
that under the linear voter rule, where agents copy the opin-
ion of a randomly selected neighbor, consensus is reached
quickly within O(én logn) rounds regardless of the under-
lying topology. In contrast, under the non-linear majority
rule where agents update their opinion to the majority opinion
in their neighborhood, it turns out that the convergence time
is super-polynomial in expectation whenever the network is
dense (i.e., when the minimum degree is w(logn)).

One might wonder if the converse occurs, namely, whether
the biased majority dynamics always affords (expected) poly-
nomial convergence to the absorbing state when the network
is not dense. While this is indeed the case for cycles, trees,
and disconnected cliques of size O(log n), understanding the
behavior of the dynamics remains open for bounded degree
topologies, inducing challenging open problems formulated
in [Anagnostopoulos et al., 2020; Cruciani ef al., 2021].

In this work, we aim at contributing to the general under-
standing of the evolution of biased opinion dynamics under
the non-linear majority rule by studying their behavior the-
oretically and empirically. We make the following contribu-
tions:



- We show a polynomial time convergence for new classes
of topologies (namely, cubic graphs) and characterize
them in terms of stable structures.

- We answer negatively to the open problem in [Anagnos-
topoulos et al., 2020] by exhibiting classes of network
topologies (namely, random A-regular bipartite graphs
with A > 5) for which we prove that the expected time
for consensus on the superior opinion is exponential for
small values of .

- We provide insights into the dynamical properties of net-
work structures that are implicitly responsible for the di-
chotomy between the slow and fast consensus behavior,
in light of a generalized notion of domination in graphs.
To the best of our knowledge, this is the first work on
biased opinion dynamics that characterizes consensus in
terms of multiple domination.

- Finally, we support our theoretical findings by consis-
tent experiments, relating the speed of consensus with
properties of the network structures.

The rest of this paper is organized as follows. In Section 2,
we review the related works. In Section 3, we formally de-
scribe the biased opinion dynamics under the non-linear ma-
jority rule. In Section 4, we present an extension of standard
domination in graphs and leverage it to analyze the expected
time to reach consensus for random bipartite regular graphs
in Sections 5 and 6. Then we validate our theoretical results
through experiments and discuss the obtained results in Sec-
tion 7. Finally, we draw our conclusions in Section 8.

2 Related Work

The problem we consider lies at the intersection of several
areas for which there is a vast amount of existing literature.
In what follows, we discuss contributions that most closely
relate to the topics of this work.

Opinion diffusion and consensus. A substantial line of
research has been devoted to the study of opinion dynam-
ics, mostly motivated by phenomena that arise from social
sciences, to physics and biology. Some recent contribu-
tions analyzed the spread of opinion formation in social in-
fluence [Out and N. Zehmakan, 2021; Zehmakan, 2021].
For a more detailed survey on opinion dynamics in multi-
agent systems, we refer the reader to [Coates er al., 2018;
Becchetti ef al., 2020].

In this paper, we study the non-linear majority rule which
originates from the study of agreement phenomena in spin
systems [Krapivsky and Redner, 2003]. It has lately received
renewed attention, mostly around the investigation of the time
and conditions that cause agents to reach consensus.

Consensus and biased majority. Some forms of bias have
been considered in the literature. In [Mukhopadhyay er al.,
20201, each agent updates each of its opinions at points of
different independent Poisson point processes, which intro-
duces a bias towards the opinion with the lowest firing rate
frequency. The works closest to ours are [Anagnostopoulos
et al., 2020; Cruciani et al., 2021].

In [Anagnostopoulos et al., 20201, the speed of conver-
gence under the majority rule is shown to be affected by the

underlying topology, namely, is superpolynomial for dense
networks. The synchronous setting has been considered in
[Cruciani et al., 2021] with qualitatively consistent findings,
albeit under a different model where agents sample %k neigh-
bors uniformly at random with replacement and update their
state to the most frequent state among those in the sample.
Yet, these results only apply to very dense networks with min-
imum degree w(n).

We show that the expected convergence time can be ex-
ponential even in sparse networks, suggesting a more com-
plicated dependence of the convergence time on the degree
distribution. Our overall approach is different since it char-
acterizes the majority opinion formation in terms of multiple
domination in graphs, providing an interplay between bias,
consensus and network structure.

Majority and graph domination. Network structure plays a
crucial rule in opinion diffusion under several models [Don-
nelly and Welsh, 1983; Hassin and Peleg, 1999; Cooper et
al., 2013; Morris, 2000]. [Auletta ef al., 2015] showed that
initial majority can be subverted for all but some topologies,
including cliques and quasi-cliques. Moreover, while there
exist always an initial opinion distribution, such that the final
majority will reflect the initial one, regardless of the topology,
computing an initial opinion configuration that will subvert an
initial majority is topology-dependent and NP-hard in general
[Auletta et al., 2018].

Dominating sets can be useful to reach all the nodes ef-
ficiently in the network. The books [Haynes et al., 2013;
Haynes, 2017] supply a comprehensive introduction to the-
oretical and applied facets of domination in graphs.

3 Majority Dynamics

In this section, we define the terminology used throughout the
paper. Then, we describe the Majority Dynamics.

Notation and Preliminaries. We model the multi-agent net-
work by an undirected graph G = (V, E) with |[V| = n
nodes, each node v € V representing an agent. The system
evolves in discrete time steps and, at any given time ¢ € N,
each node v holds an opinion z) € {0,1} (see Defini-
tion 1). We denote by X; = (xgt), e z,(f)) the correspond-
ing state of the system at time ¢. For each v € V, we denote
the open neighborhood of v with T'(v) := {u € V : {u,v} €
E} and the degree of v with d(v) := |I'(v)|. Forany X C V,
let G[X] denote the subgraph of G induced by X . Finally, for
a family of events {&, },cn we say that £, occurs with high
probability (w.h.p, for short) if a constant k& > 0 exists such
that P(£,) = 1 — O(n=%), for every sufficiently large n.
Definition 1. For everyt > 0, a node v is said to be active if
fo) is 1. Otherwise, it is idle. Moreover, we say that a subset
S of V is active if every node in S is active.

M-Dynamics. We study the random process {X;}+cn de-
fined on GG as follows: starting from the initial state Xy =

(0,...,0), in each round ¢, every node v € A; updates its
value according to the non-linear rule:

with probability «,

1
O
Tv {MG(U, X:—1) with probability 1 — «,



where A; C V is the set of nodes that update their opinion,
a € (0, 1] (modeling the bias) is the probability to transition
to the superior opinion, and M (v, X;_1) is the value held in
configuration X;_; by the majority of the neighbors of node
vin G:

Mg (v, Xi—1) = {

. (t—1) T'(v
1 if Zwel"(v) Lw > (2 )’

. t—1 I'(v
0 if Zwel—‘('u)xgﬂ : < (2)’

and ties are broken uniformly at random, that is, if
Zwef(v) Y = % then M¢ (v, X;—1) = 0 or 1 with
probability 1/2.

Stabilization. The M-Dynamics is a discrete-time Markov
chain with a very large state space of size 2" and has 1 =
(1,...,1)T as the only absorbing state. This implies that,
since the graphs are finite, such an absorbing state will be
reached in finite time with probability 1. We use 7,(G) to
denote the stabilization time, which is the number of rounds
for the process to reach the absorbing state 1:

(@) =inf {teN Vo eV al) =1},

Models. We distinguish between two main models of the M-
dynamics, which differ according to the choice of A;:

- Asynchronous (Async). In each round ¢, some agent v,
chosen randomly, updates its opinion, A; = {v;}.

- Synchronous (Sync). In each round ¢, all agents update
their opinion concurrently, that is, 4, = V.

Our results and proof techniques are similar between the
Async and Sync models. For the sake of space, we present
our results for Async.

4 Decreasing structures and ~-domination

In this section, we relate the notion of domination to the M-
Dynamics and introduce the concept of decreasing sets.

4.1 Multiple domination
We present a generalized extension of domination in graphs.
Definition 2 (k-domination). Let S C Vandk € {1,...,n}.

- We say that a vertex v is k-dominated by S (equivalently,
S k-dominates v) if |T'(v)N S| > k. We denote by Dy(S)
the set of all nodes k-dominated by S.

- Let U C V. U is said to be k-dominated by S if S k-
dominates all vertices u € U, that is, if U C Dy(S).

When k£ = 1, a 1-dominating set S of smallest size such
that D1 (S) = n is called a minimum dominating set and its
size is known as the domination number, denoted by ~(n).
The problem of determining ~(n) is one of the core NP-
complete optimization problems in graph theory and remains
NP-complete even for planar graphs of maximum degree 3
[Garey and Johnson, 1979]. In the following, we focus on the
case of majority domination.

Definition 3 (M -domination). Let S C V. We say that a
vertex v is M -dominated by S (equivalently, S M -dominates

v) if v is k-dominated by S with k = {@J + 1. We denote

by Dy (S) the set of all nodes M -dominated by S.

The decision problem of finding a set .S of size s such that
|Daq(S)| = 1 for arbitrary non-negative integers s, is NP-
hard. The proof is omitted for the sake of space.

Note that for A-regular graphs where A = 2k — 1, the no-
tions of M -domination and k-domination become identical.

4.2 Stable and decreasing structures

In order to analyze the stabilization time of the M-dynamics,
we first introduce the notions of stability and decrease.

Definition 4. Let S C V. S is stable if S C D py(S).
Definition 5. Let S C V. S is decreasing if |[Dq(S)] < |S|.

Once stable structures become active under the M-dynamics
at some round ¢, they remain active forever (i.e., for all rounds
t’ > t). Hence, we introduce the following definition.

Definition 6. A subset S of V is stabilized if S is active and
stable. Its induced subgraph G[S] is also said to be stabilized.

Note that, informally, a simple condition for polynomial time
stabilization is the existence of a covering of G by small sta-
ble structures as we illustrate in Section 5 for cubic graphs.

Large bias. For large values of «, [Anagnostopoulos ef
al., 2020] shows that the stabilization time is polynomial for
dense networks, but leaves as open the case for sparse net-
works. In the following theorem, whose proof is omitted for
the sake of space, we show that the stabilization time is also
fast for A-regular graphs whenever the bias « is greater than
some threshold value that depends on the degree.

Theorem 1. Let G be a A-random regular graph on n nodes.
Whenever o > 5L where k = [£FL], then the expected
stabilization time for the Async M-Dynamics is polynomial.

5 Fast Stabilization for Cubic Graphs

In this section, we show that cubic graphs stabilize in ex-
pected polynomial time.

Theorem 2. Let G be a cubic graph of size n. The expected
absorption time for the Async M-Dynamics in G is

E [10(G)] = O(n*~00e®) 602 ).

The result is derived by observing that cubic graphs have
a small girth (see Lemma 1) and by making use of proper-
ties that cycles are stable structures and that a path linking
two stable substructures is itself stable (see Lemma 2). In-
deed, cubic graphs are covered by logarithmic stable struc-
tures which ensures expected polynomial time stabilization.
Note that Theorem 2 implies that E [1,(G)] = O(n/(®)
where f is an increasing function of the bias «. There exist
families of graphs with finite stable structures such as planar
cubic graphs for which the expected stabilization time is at
most g(«)n® (for some function g sensitive to the bias) where
¢ does not depend on «.

Lemma 1. [Bollobds, 2004]
Let G be a A-regular graph on n nodes with A > 3. Let
9(G) denote the girth of G. Then

g(G) < 2logn_qn+1.



Lemma 2. Let G be a cubic graph on n nodes. Suppose that
G has a subgraph S which is either a cycle of size | or a path
of length | between two stabilized structures. Let Tg denote
the number of rounds for S to become active. Then, we have

El[fs] =0 (;lnlogn) .

We note that Lemma 2 implies that E[7g] is still
O(n**"logn) when a = ©(:%) for any r > 0, hence poly-
nomial as long as r is constant.

6 Slow Stabilization for Random Regular
Bipartite graphs with odd degree

In this section, we show that there exist graphs (namely, ran-
dom A-regular bipartite graphs with odd degree' A > 5) for
which every linear substructure (of size smaller than C'n, with
C a non-negative constant) is decreasing for small values of
«. This leads to an exponential expected stabilization time.

6.1 Model discussion

We consider random A-regular balanced bipartite graphs G
of the form G = (AUB, F) with |A| = |B|and E C (4, B).
We first study the case of an odd degree A = 2k — 1(k > 3)
for which there cannot be ties under the majority update rule.
Let |A] = n and note that |[E| = An. The random regular
graph model® that we use is analogous to the configuration
model proposed by [Bollobés, 1980].

We shall prove that there exists an ag > 0 such that for
every A > 5 the expected stabilization time is exponential
whenever a < «g. This phenomena is mainly due to the ran-
dom structure which fosters the existence of small decreas-
ing structures.

6.2 Existence of decreasing sets

In the following, we prove (see Proposition 1) that there exist
A-regular graphs for which all sufficiently small linear sets S
M-dominate a strictly smaller set (with an actual linear gap).
To obtain this result, we employ Lemma 3 corresponding
to the case for which sets .S are contained in only one side
of the bipartition of G (without loss of generality, we assume
that S C A). To make the proof more comprehensive, we
introduce first some auxiliary functions.
Definition 7 (Decrease functions). For (o,7) € [0,1]% we
let N (o, T) be the expected number of pairs of subsets (S, T)
with S C A, T C B of respective sizes on,Tn such that S
k-dominates T.
We define F : (0,12 — R as

ﬁ(@ )= logy (N (on, T?’L))

n
Moreover, for every 3 in (0,1), we define @5 :(0,1) > Ras
Gs(0) = F(o, Bo).

and we refer to 8 by the decrease intensity.

'Similar results hold when the degree is even and G is non bi-
partite. See brief discussion in Section 7.

“The bipartite version was introduced by [Margulis, 19731, [Pip-
penger, 19771, and [Valiant, 1975] to prove that expanders exist.

Observe that if G(0) < 0 then N(o,80) < 1, which
implies that all subsets S of size on are decreasing (with a

gap /). Therefore, we refer to F and G as decrease functions
as they define regions of existence of decrease, namely when
G 8 1s negative.

Lemma 3. Let G = (AU B, E) be a random A-regular
bipartite graph with 2n nodes. Then, there exist ﬁ <pB <
1 and ya () > 0 such that for any 0 < A < ya(B) we have

VS C A, An < IS < ya(B)n: [Dm(S)] < BS].

Proof. Let N(s,t) be the expected number of pairs of sub-
sets S C A,T C B of respective sizes s,t such that S k-
dominates 7. Since we are studying sets of linear sizes we
let s = on and t = 7n with 0,7 € (0,1]. We first count
the configurations that fulfill the k-domination constraints in
order to get an upperbound on N (s, t):

N(on,7n) < (J"n) (T"n) ((%::; (ﬁ) T

ktn

Using Stirling’s approximation, we get (p’:l) < 2nH (@) for
every - < p < 1. Hence, by Inequality (1), we obtain the
following property which provides upperbounds on the de-
crease functions (see Definition 7).

Property 1. Let o, 7 be positive reals in [+, 1]. We have
ﬁ(o, 7)< F(o,7),
where
F(o,7)=H(o)+ H(r) + H (£2) Ao — H (K1) A + Tlog, (£).
and H is the binary entropy function®. Moreover, let
Gg(o) = F(o, Bo).

__We want to show that there exist ¢ and 7 such that
F(o,7) < 0. This implies that N(on,7n) < 1 and there-
fore, that there exist random regular graphs with no subsets S
of size on that k-dominate a subset T’ of size Tn.

Note that if there exists 7/ such that 7/ < 7 and
N(on,7'n) < 1then N(on,mn) < 1. Therefore, it is suffi-
cient to let 7 = So for a positive real 3 € (0,1) and prove
that Gg(o) < 0, or alternatively, by Definition 7 and Prop-
erty 1 that Gg(o) < 0. We have

Gp(o) = H(o) + H(Bo) — H(®2)A + (H(X2)A + Blog, (3))o-
<

Observe that for every 0 < z % we have

—xlogy(z) < H(z) < —xlogy(z) — g

Therefore

Gp(0) < —ology(0) — Bology(B0) + ko log, (’“ﬁ”)

(1+58)+ (H (T) A+ Blog, (i)) o.

*H(x) = —(zlog, () + (1 — o) log, (1 — ).

_|_

019



< (kB — (14 f))logy(0) + Cp(k, ), (2)

where Cg(k, A) = (ﬁ) A + Blogy (%) — Blogy(B) +
kB logQ(kﬁ) + U045 s a constant.

Since log, (o) dlverges to —oo when ¢ — 0, then
Ggs(0)/o < 0implies that k5 —(1+43) > 0, thatis § > 5
Furthermore, by setting

log 2
Blk—1)—1

then for every 0 < ¢ < oa(f8), we have Gg(o)/o < 0.
Hence, there exists ya (8) > oa(8) such that all linear sets
|S] of size on with 0 < o < ya () satisfy |[Da(S)| < 55|
with 3 € (725, 1) and the thesis follows. O

—Cg(k,A)

oa(B) =

>0,

Existence of decrease. Let us consider regions defined by
RY = (A, 7a(B)] where A > 0 and

YA (B) = max{o € (Oa 1]7 G[—}(O’) < O}
By Lemma 3, all linear sets .S of size on with o € RZ are
decreasing (with a gap of ) and will define a regime where
the process is slow, leading to consensus on the superior opin-
ion taking place after an exponential number of rounds. By
plotting the variation of Gg(o) with o (see Property 1), in
Figure 1, we illustrate the regions R%"? for different values
of A. For A = 5, a red vertical line indicates the value of
v5(8) ~ 0.043. Furthermore, we note that the highest is the
degree A, the largest is the number \Rg\ of linear sets which
are all decreasing in the network.

We now state the general case* for which sets .S can be in
A U B and not only in A.

Proposition 1. Let G = (AU B, E) be a random A-regular
bipartite graph with n nodes. Then, there exist ﬁ < BT <

1 and ya(BT) > 0 such that for any 0 < X\ < ya(BT) we
have

VS CAUB, M < [S| <qa(B)n: [Du(S)| < B7IS].

Proof. Let Sy = SNA,Sp=5NB,then S =S54USp and
|S| = |SA| + ‘SB| Similarly, let |DM(S)| = |DM(SA)| U
Dat(S5)| and [Dac(S)] = 1Da (S1)] + [Dan(S)]-

Assume that |S| = on with 0 < ¢ < 1 and let r be a
positive integer.

o If both |S4l,|Sp| > on/r, we can apply Lemma 3
twice, giving |Daq(Sa)| < B|Sal| and |Dam(SB)| <
B1SB|. We get the result |[D(S)| < 5]S].

* If one side is small, assume without loss of generality
that |S4| < on/r. Lemma 3 applies to Sp and we have
|DM(SB)| < B|Sp|. For S4, as the graph is A-regular,
a set of size s cannot k-dominate a set of size larger than
As/k. Thus, [Da(Sa)| < £|Sa] < 222 and we

“In the case of A-regular graphs (A = 2k — 1), a k-domination
corresponds to an M-domination. However, Prop. 1 can be made
general without any relationship presumed with the degree A.

get Du(S) < BISp| + £2% < (B+ £)S]. We set
BT =B+ kAT. By plckmg r such that r > ﬁ, we
have 3% < 1 and the thesis follows.

O

6.3 Exponential stabilization

Theorem 3. Let G be a random regular graph with odd de-
gree A of size n. There exists an > 0 such that for ev-
ery o < an,E[14(G)]] is exponential for the Async M-
Dynamics.

Proof. Let S; be arandom variable indicating the set of active
nodes at round ¢ and let s, = |S;|. We first show that s,
has a negative drift inside a linear time interval. We then
use this fact to prove that the expected stabilization time is
exponential.

Negative drift. Observe that the number of active nodes at
time ¢ increases by one with probability « if a node outside .S;
is selected and with probability 1—« if a node in D (S;)\ St
is selected. Therefore, we get

Elsir1 | St = se+ 5 (@([V] = s0) + (1= @) (|Dm(Sh)] — 51))

1
Elser1 | Se] = se <at —(1=a)([Dm(S)] = s¢) ()

By Proposition 1, there exist ﬁ < BT < 1 and

va(B1) > 0 such that for any 0 < A < ya(87), each subset
S of V with An < |S| < ya(B7)n, satisfies |Dag(S)] <

+ . o
BT|S|. We set A = 12 (f ), where 7 is a positive integer.

It follows that if s, € ['YA(ﬁ ) n,va(B+)n], then since
BT — 1 < 0 we get from Inequality (3) that

(B = 1)a(8Y)

r

Therefore, by picking any o < (1 — B*)%fm, we get
that the sequence {s;}+>0 has a fixed negative drift J.

E[si41 ] Se] — s <0 <0, 4

E [5t+1\St] — S¢ S [

Exponential stabilization. We study the process when it is in
the critical region for which the drift is negative. The follow-
ing property is derived by noting that the time to exit a linear
interval by a variant of a biased random walk on {s; }+>0 with
a fixed negative bias is exponential in expectation.

Property 2. Let 3 € [15,1[. Then E [1,(G)] is exponen-
tial when o < (1 — BH)ya(B7).

Sketch of proof. Let T > 0. We introduce two random
variables 77 = min{t < T,s; = [ya(87)n]} and Ty =
max{t < Ty,s; = [~ (57) n]}. Since |St| can vary by the
values in {1, —1}, then 1To, T3] has a size linear in n. We

complete the argument by using concentration inequalities
to show that due to the negative drift, traversing the interval

[WA(B ), ,Ya(B87)n] takes ~ e®() time. U
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Figure 1: Existence of regions RBA for 8 =
0.99 in which all linear sets S of size on
satisfy | Daq(S)| < BS| (see Property 1).

Note that Property 2 provides various bounds for the bias de-
pending on the decrease intensity 3. We get the best bound

for a by setting ap = max (1 — B)ya(8). O
= <pt<1

7 Experiments and Outlook

In this section, we present and discuss experiments on the
stabilization time and the existence of decreasing structures.

Bias and stabilization. We first study the effect of the bias «
on the stabilization time 7, (G). In Figure 2, we plot 7, (G) in
a random A-regular network of size n = 1000 as a function
of é Each experiment over G is averaged over 10 iterations
and terminated if 7, (G) bypasses 10 iterations (which re-
quires a prohibitive computation time of 71 hours). When the
bias is large (e.g. a > 0.15), stabilization occurs very quickly
and bears no significant dependence of the degree. The pic-
ture changes when the bias gets smaller where we observe a
fast stabilization for A = 3 (even for arbitrary small values
of a) and a very clear explosion for A > 4. Moreover, the
higher the degree, the sooner the explosion occurs. We also
see that on a network with only 1000 agents, the convergence
for a = 0.08 and A = 4 takes at least 101" iterations.

In Figure 3, we visualize the impact of the size n on stabi-
lization in a random 5-regular network. We note the presence
of two regimes (values of a) Ry and Rg depicted respec-
tively in gray and red. Each experiment over G is averaged
over 500 (resp. 5) iterations for every v in R (resp. Rg).

The first regime R corresponds to a large bias (o« >
0.13) for which we observe that the network stabilizes
in polynomial time (log7/logn is almost constant). We
also conducted experiments on large cubic networks with «
small, confirming what we proved in Theorem 2, that is
E [7o(G)] < nf(®).

In the second regime R g, stabilization takes an exponential
(note that 7 is observed on a logarithmic scale) number of
rounds (log 7/ log n increases with ) and this occurs as soon
as we start from o ~ 0.09.

Outlook. This paper leaves a number of open questions. A
first one concerns closing the gap ga = a, — aa between
the empirical and the theoretical values for the bias below
which (expected) exponential stabilization occurs due to the
existence of decreasing structures. When A = 5, the best
bound ax is attained with a decrease intensity of 5 ~ 0.9 for
which we get g5 ~ 0.08903. Note that for an arbitrary large
degree A, we get ap ~ 0.3. Furthermore, when A > 5,

Figure 2: Effect of the bias v on the stabi-
lization time 7, (G) in a random A-regular
network made up of 1000 agents.

40 50 10 20 30 40 50 60 70 80 90 100 110 120 130
n

Figure 3: Slow-fast dichotomy behavior of
the stabilization time 7, (G) induced by «
in random 5-regular networks of size n.

the evolution of the stabilization time during the intermedi-
ate regime (depicted in blue in Figure 3) is not completely
clear and might suggest an intermediate stabilization growth
(i.e., superpolynomial and subexponential) or a sharp transi-
tion between R and Rg.

We also point a rather surprising result: in the course of
the proof of Proposition 1 we showed that it is impossi-
ble for any (small enough) linear set S to k-dominate more

that % nodes (note that this bound is tight), which implies
that for some ag > 0 depending only on a and A, we get

min|g|<aon Dr(S) ~ % Thus, maximizing almost ex-
actly Dy(.S) is trivial for small linear sets, but for larger sets,
the question remains open. Unlike in the Erd6s—Rényi model,
domination problems have not yet been solved in random reg-
ular graphs even if some works [Duckworth and Wormald,
2006; Hoppen and Mansan, 2021]) have been done. We re-
mark that the lack of accurate results in this field somewhat
preludes the gaps in our bounds since the dynamics relate to
some already complex domination based questions. Finally,
we believe that the techniques we have exposed can be used
to prove many other results. For instance, we proved simi-
lar results in the general case of random regular graphs and
planar cubic graphs. While the arguments are similar, the
analysis is slightly more complicated to expose due to ties in
the even degree case and the fact that S N Dy(S) # 0 in the
non bipartite case.

8 Conclusion

In this paper, we studied a biased opinion dynamics where
agents are influenced by the majority of their neighbors. We
have shown that consensus on the preferred opinion exhibits a
dichotomy by proving that convergence time is always poly-
nomial for cubic graphs, whereas it becomes exponential (for
a small enough bias) in random A-regular graphs (A > 4),
answering an open conjecture in the literature. Moreover, we
analyzed this dichotomy by exploiting structural properties of
graphs in light of majority domination. An interesting avenue
for further research is to to extend our results to the case of
multiple opinions.
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