How to Achieve Data Confidentiality

Keywords: 

An encryption function encrypts a plaintext p into a ciphertext c using a secret key k ▶ A decryption function decrypts the ciphertext c into the plaintext p using the same secret key k

The only secret parameter is the secret key k.

Properties for a Strong Cryptosystem

Strong cryptosystem:

▶ Good confusion ▶ Good diffusion

Good confusion:

▶ The relationship between p and c is complex ▶ Non-linear functions

Good diffusion:

▶ Small modification(s) on p must impact many bits on c ▶ Linear functions
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The Finite Field GF(2)

Definition:
GF(2) is the set {0, 1} with operations modulo 2.

Operands Integer operations GF(2) operations Logic gates

a b a + b a -b a • b a + b mod 2 a -b mod 2 a • b mod 2 a ⊕ b a ∧ b 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 2 0 1 0 0 1 0 1
Remarks:

▶ Addition and subtraction modulo 2 are the same operation ▶ Addition modulo 2 is equivalent to a XOR gate ⊕ ▶ Multiplication modulo 2 is equivalent to an AND gate ∧

The Finite Field GF(2 8 )

Representation of elements:

Polynomials of degree 7 with coefficients in GF(2):

a 0 + a 1 X + a 2 X 2 + . . . + a 7 X 7 , a i ∈ GF(2)
is represented by the byte a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

Addition and subtraction in GF(2 8 ):

▶ Polynomial addition ▶ Bitwise XOR of bytes
Multiplication in GF(2 8 ):

Polynomial multiplication modulo an irreducible polynomial of degree 8.

Inverse in GF(2 8 ):

Every non-zero element a has an unique inverse a -1 .

AES State [DR02]

State:

A 4 × 4 matrix of elements of GF(2 8 ).

Initial and final states:

▶ At the beginning, the state is the plaintext ShiftRows

▶ At the
a 1,0 a 2,0 a 3,0 a 0,1 a 1,1 a 2,1 a 3,1 a 0,2 a 1,2 a 2,2 a 3,2 a 0,3 a 1,3 a 2,3 a 3,3

State

K(i) K(R) SubBytes a 0,0 a 1,0 a 2,0 a 3,0 a 0,1 a 1,1 a 2,1 a 3,1 a 0,2 a 1,2 a 2,2 a 3,2 a 0,3 a 1,3 a 2,3 a 3,3 b 0,0 b 1,0 b 2,0 b 3,0 b 0,1 b 1,1 b 2,1 b 3,1 b 0,2 b 1,2 b 2,2 b 3,2 b 0,3 b 1,3 b 2,3 b 3,
a 0,0 a 1,0 a 2,0 a 3,0 a 0,1 a 1,1 a 2,1 a 3,1 a 0,2 a 1,2 a 2,2 a 3,2 a 0,3 a 1,3 a 2,3 a 3,3 a 0,0 a 1,1 a 2,2 a 3,3 a 0,1 a 1,2 a 2,3 a 3,0 a 0,2 a 1,3 a 2,0 a 3,1 a 0,3 a 1,0 a 2,1 a 3,2

ShiftRows

▶ Rows of the state matrix are shifted cyclically

▶ Provides inter column diffusion MixColumns a 0,0 a 1,0 a 2,0 a 3,0 a 0,1 a 1,1 a 2,1 a 3,1 a 0,2 a 1,2 a 2,2 a 3,2 a 0,3 a 1,3 a 2,3 a 3,3 b 0,0 b 1,0 b 2,0 b 3,0 b 0,1 b 1,1 b 2,1 b 3,1 b 0,2 b 1,2 b 2,2 b 3,2 b 0,3 b 1,3 b 2,3 b 3,3

M×

MixColumns

For each column ▶ Multiply each column by the matrix M ▶ Mixes each column of the state matrix

AddRoundKey a 0,0 a 1,0 a 2,0 a 3,0 a 0,1 a 1,1 a 2,1 a 3,1 a 0,2 a 1,2 a 2,2 a 3,2 a 0,3 a 1,3 a 2,3 a 3,3 K 0,0 K 1,0 K 2,0 K 3,0 K 0,1 K 1,1 K 2,1 K 3,1 K 0,2 K 1,2 K 2,2 K 3,2 K 0,3 K 1,3 K 2,3 K 3,3 b 0,0 b 1,0 b 2,0 b 3,0 b 0,1 b 1,1 b 2,1 b 3,1 b 0,2 b 1,2 b 2,2 b 3,2 b 0,3 b 1,3 b 2,3 b 3,3 + AddRoundKey
For each row and column K : round key

Types of Attacks

Attacks

• • • Physical Perturbation Observation • • •

Computational

Goal:

Guess the secret key or information on p.

Different types of attacks:

▶ Computational ▶ Physical ▶ . . .

Attack by Side Channel Observation

Available data:

▶ Plaintexts and/or ciphertexts

▶ Physical measurements during each encryption

Measured physical quantities:

▶ Power consumption [KJJ99] ▶ Electromagnetic radiation [QS01]
▶ . . .

Good book:

Power Analysis Attacks: Revealing the Secrets of Smart Cards [START_REF] Mangard | Power Analysis Attacks: Revealing the Secrets of Smart Cards[END_REF].

i ∈ [1, N] p i Encrypt c i k ALICE EVE t • • • • • • • • • •• • • • • • • • • • Trace M i

Power Consumption in Digital Circuits

Power Consumption:

P(t) = V dd × I (t)
Two components:

▶ Static consumption ▶ Dynamic consumption
Remark:

▶ Power depends on operands and their transitions

▶ Can reveal information [KJJ99] I (t) V dd GND V IN V OUT t V IN t V OUT Dynamic Static t P Glitch Glitch:
Propagation delays can cause temporary modifications of output signals.

Remark:

▶ Glitches consume power ▶ Power depends on operands and their transitions

▶ Can reveal information [MPG05] IN 1 IN 2 OUT C t prop,NAND t prop,NOT IN 1 t IN 2 t C t OUT t Glitch T 0 T 3 T 4 T 1 T 2 t prop,NAND t prop,NOT
Simple Power Analysis (SPA) [START_REF] Kocher | Differential Power Analysis[END_REF] Instructions executed depend on the value of the key. Exploits Correlation(s) between: ▶ Amplitude(s) of the measured physical signal ▶ Value(s) of the secret key bits A single trace makes it possible to recover the secret key.

for i = 1 to n do Processing(K [i]) end for 1 0 1 1 1 0 0 1 Processing(1) Processing(0) t P(t)

SPA Limits

Limitations:

Small differences and too much noise ⇒ one cannot distinguish key bits.

Solution:

Use statistics over several traces. 

for i = 1 to n do Processing(K [i])
Encrypt X k ′ at t k p i For each i ∈ [1, N] c i

Model

Hypotheses of the subkey k ′ :

h j , j ∈ [1, H]         V 1,1 • • • V 1,j • • • V 1,H . . . . . . . . . V i,1 • • • V i,j • • • V i,H . . . . . . . . . V N,1 • • • V N,j • • • V N,H         h 1 • • • h j • • • h H N Predicted power         M 1,1 • • • M 1,t • • • M 1,T . . . . . . . . . M i,1 • • • M i,t • • • M i,T . . . . . . . . . M N,1 • • • M N,t • • • M N,T         Samples N Measured power t Distinguisher For each column D 1 D 2 . . . D H

Model for Predicted Power

Predict the value of X :

Calculate X (h j ) when p i is encrypted.

Predict power consumption at t: 

i . . . X hj . . . φ X h j t . . . c i

Power Model Examples

Hamming weight model [START_REF] Kocher | Differential Power Analysis[END_REF]:

HW(Y ) = number of 1s
Hamming distance model [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF]: 

HD(X , Y ) = number of transitions =HW(X ⊕ Y ) Reg Y X

Divide and conquer:

Attacking the key k piece by piece.

p 0,0 K (0) 0,0 + S s 0,0 p 1,0 K (0) 1,0 + S s 1,0 p 2,3 K (0) 2,3 + S s 2,3 p 3,3 K (0) 3,3 + S s 3,3

SCA Countermeasures

Challenge:

How to protect implementations against DPA attacks. Masking Let x to be protected.

SCA Countermeasures:

Boolean masking:

▶ Combine x with an uniform random bit m:

x ⊕ m ▶ One get two shares x ⊕ m and m

▶ Each share is independent of x ▶ Manipulate shares, but never x x Rand x ⊕ m m ⊕

Unmasking

Unmasking:

XOR of the two shares:

(x ⊕ m) ⊕ m = x because m ⊕ m = 0
Warning:

By combining the two parts, we can unmask and reveal x.

x x ⊕ m m ⊕ Boolean Masking in GF(2 8 ) Let x ∈ GF(2 8
) a variable to be protected.

Problem:

How to mask a variable in GF(2 8 )?

Boolean masking in GF(2 8 ):

Mask each bit individually:

▶ Generate a uniform random mask m ∈ GF(2 8 ) ▶ Calculate x + m in GF(2 8 )
▶ The shares are (x + m, m)

x

Rand

x + m m

+ Masking x x + m m + Unmasking

Masking a Function

Let F a function.

Method:

▶ Mask x into (x + m, m)
▶ Apply a masked function F ′ ▶ Unmask to get y

Masked function:

A function F ′ such that for all x:

unmask(F ′ (mask(x))) = F(x)
Remark:

Masked function can use other random values.

Masking

x + m m Rand F ′ Rand ′ Unmasking x F y
Boolean Masking for Linear Functions is Simple

Let L a linear function in GF(2 8 ).

Method:

▶ Mask x into (x + m, m)
▶ Apply L independently to each share.

▶ Unmasks (L(x + m), L(m)):

L(x + m) + L(m) = L(x + m + m) = L(x)

Masked function of L:

Function that applies L independently to each share.

+ x + m m Rand L L L(x + m) L(m) + x L y
The Noisy Leakage Model [START_REF] Prouff | Masking against Side-Channel Attacks: A Formal Security Proof[END_REF] Adversary model: 

▶

Remark:

▶ Realistic models

▶ Difficult security proof x + m m F ′
Boolean Masking for Multiplication is More Complex Let x, y ∈ GF(2 8 ), masked respectively in (x 0 , x 1 ) and (y 0 , y 1 ).

Method:

▶ Compute separately

z 0 = x 0 y 0 + x 1 y 0 z 1 = x 0 y 1 + x 1 y 1
▶ Get xy by unmasking (z 0 , z 1 ): z 0 + z 1 =x 0 y 0 + x 1 y 0 + x 0 y 1 + x 1 y 1 =(x 0 + x 1 )(y 0 + y 1 ) =xy Problem:

Not probing secure because z 0 depends on x.

x 0

x 1 y 0 y 1

x 0 y 0 x 1 y 0 x 0 y 1 x 1 y 1 + + z 0 z 1 × × × ×
x 0 y 0 + x 1 y 0 =(x 0 + x 1 )y 0 =xy 0 Depends on x Boolean Masking for Multiplication: Secure Solution Solution:

Add some randomness.

Method:

▶ Compute separately

z 0 = x 0 y 0 + (x 1 y 0 + R) z 1 = x 1 y 1 + (x 0 y 1 + R)
with R a random value.

▶ Get xy by unmasking (z 0 , z 1 )

Probing security:

Masked multiplication is probing secure.

x 0

x 1 y 0 y 1

x 0 y 0 x 1 y 0 x 0 y 1 x 1 y 1 + + R + + z 0 z 1 × × × ×
x 0 y 0 + x 1 y 0 + R Independent of x and y Glitch-Extended Probing Model [START_REF] Faust | Composable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model[END_REF] Problem:

Glitches can reveal information.

Solution [GMK16]:

Add registers to stop glitches: ▶ Where to insert the registers? ▶ How many should be inserted?

x 0

x 1 y 0 y 1

x 0 y 0 x 1 y 0 x 0 y 1 x 1 y 1 + + R Reg Reg Reg Reg + + z 0 z 1 × × × ×

SubBytes Based on Inversion

S function:

Composition of the inversion in GF(2 8 ) and an affine function.

Fermat's little theorem in GF(2 8 ):

x -1 = x 254 .

Inverse computation:

Split x 254 into a sequence of multiplications and squares:

x 

-1 = x 254 = x 2 x 4 x 2 x 16 x 2 x 4 x 2 x (•) 2 × (•) 4 × (•) 16 × × x 254 MixColumns a 0,0 a 1,0 a 2,0 a 3,0 a 0,1 a 1,1 a 2,1 a 3,1 a 0,2 a 1,2 a 2,2 a 3,2 a 0,3 a 1,3 a 2,3 a 3,3 b 0,0 b 1,0 b 2,0 b 3,0 b 0,1 b 1,1 b 2,1 b 3,1 b 0,2 b 1,2 b 2,2 b 3,2 b 0,3 b 1,3 b 2,3 b 3,

Independence of Shares

Let x to be protected.

Boolean masking:

Add to x a bit m uniform and independent of x.

Result:

x ⊕ m is uniform and independent of x. Other Masking Schemes Let x ∈ GF(2 8 ) a variable to be protected and m ∈ GF(2 8 ) a random.

Boolean masking:

▶ A boolean masking of x is (x + m, m)

▶ Linear functions are easy to mask

Multiplicative masking: Precomputed Look-up Table

The challenge:

Mask a S-Box S : GF(2 8 ) → GF(2 8 ).

Solution:

Precomputed look-up table T :

T (x 0 , x 1 ) = S (x 0 + x 1 ) + x 1 

▶

  Repeat on the state a round that brings confusion and diffusion ▶ The number of rounds depends on the key sizeRound keys:K (i) are 128 bits round keys derived from the secret key.

  Use a power model φ to model the consumption from the value of X .

  p

2

  128 key hypotheses for a 128-bit key.

  ⊕ m = a)

▶▶

  A multiplicative masking of x is (x × m, m) Multiplications are easy to mask Shamir masking:▶ Let P(X ) = x + mX ▶ Evaluate P in two non-zero values a 1 and a 2 ▶ A Shamir masking of x is (x + m × a 1 , x + m × a 2 )▶ Generalization of boolean masking

  So S(x) + m = T [x + m, m] Problem: ▶ T have 2 16 entries ▶ The table is very large x + m m S(x) + m m + S +

  end, the state is the ciphertext

	p 0	p 4	p 8	p 12	
	p 1 p 2	p 5 p 6	p 9 p 10	p 13 p 14	AES
	p 3	p 7	p 11	p 15	
			p	a 0,0	

  Probe each intermediate variable ▶ The probe of a variable Z gives Z + B with B an independant noise

	Noisy leakage security:

F ′ is (σ, δ) noisy leakage secure if ▶ Probe noise have variance σ ▶ Need at least δ traces to attack

Evaluating the Security of Masked Function

Using real attacks: 

Probing security:

F ′ is probing secure if any potential probe is independent from the unmasked inputs.

Security reductions [DDF14]:

Probing secure implies noisy leakage secure.

Linear Functions are Secure in Probing Model

Probing security analysis: 

Conclusion:

A masked linear function is probing secure.

x + m m

How to Mask AES? [START_REF] Rivain | Provably Secure Higher-Order Masking of AES[END_REF] The approach:

Mask linear sub-functions:

Apply the sub-function independently to each share.

Mask SubBytes:

How to mask SubBytes?

Masking SubBytes Based on Masked Multiplication

The approach:

▶ Mask each atomic blocks

▶ Securely compose all blocks

The problem:

Composition of mask blocks is not always secure.

Solution [RP10]:

Add refresh blocks and add registers to avoid glitches.

Masking of AES

Method:

Cost of masking:

▶ Area is at least doubled Higher order masking:

Combine a variable x with d random masks. 

Objectives of my PhD Thesis

Thesis title:

Cryptographic extensions for embedded processors.

Objectives:

Design, prototype and evaluate cryptographic extensions for:

▶ Higher-order masking schemes ▶ Post quantum cryptosystems

End of Presentation

Thank you for your attention Do you have any questions?