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Layer-averaged models with layerwise linear horizontal velocity.
Part I: Non-Hydrostatic approximation of the Euler system

with enhanced dispersion properties

C. Escalante∗, E.D. Fernández-Nieto †, J. Garres-Dı́az‡,

T. Morales de Luna§, Y. Penel ¶

October 4, 2022

Abstract

A new family of non-hydrostatic layer-averaged models for the non-stationary Euler equations is
presented in this work, with improved dispersion relations. They are a generalisation of the layer-
averaged models introduced in [9], named LDNH models, where the vertical profile of the horizontal
velocity is layerwise constant. This assumption implies that solutions of LDNH can be seen as a
first order Galerkin approximation of Euler system. Nevertheless, it is not a fully (x, z) Galerkin
discretisation of Euler system, but just in the vertical direction (z). Thus, the resulting model only
depends on the horizontal space variable (x), and therefore specific and efficient numerical methods
can be applied (see [8]). This work focuses on particular weak solutions where the horizontal velocity
is layerwise linear on z and possibly discontinuous across layer interfaces. This approach allows the
system to be a second-order approximation in the vertical direction of Euler system. Several closure
relations of the layer-averaged system with non-hydrostatic pressure are presented. The resulting
models are named LIN-NHk models, with k = 0, 1, 2. Parameter k indicates the degree of the vertical
velocity profile considered in the approximation of the vertical momentum equation. All the introduced
models satisfy a dissipative energy balance. Finally, an analysis and a comparison of the dispersive
properties of each model are carried out. We show that Models LIN-NH1 and LIN-NH2 provide a
better dispersion relation, group velocity and shoaling than LDNH models.
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1 Introduction

Many efforts have been devoted to including dispersive effects in models in fluid mechanics, and in
particular, they have been widely studied in the context of shallow flows in the literature. There are
essentially two approaches to consider dispersive effects in this framework: Boussinesq type systems
and non-hydrostatic systems.

Boussinesq type systems are mainly based on classic shallow water system, whose unknowns are
the total height of the fluid and the horizontal velocity. The system is then extended by introducing
high order derivatives of the variables. The two pioneering works on Boussinesq models were pro-
posed by Boussinesq [3] and Peregrine [24]. Some other models were proposed afterwards: Madsen &
Sorensen [21,22], Nwogu [23], Serre-Green-Nagdhi [14,27], Schäffer & Madsen [26], Lannes [18], among
many others. For a review on Boussinesq type dispersive models, see [15,17].

Contrary to Boussinesq systems, non-hydrostatic models only consider first order derivatives of the
variables but with a larger number of unknowns. Usually, in addition to the water depth and horizontal
velocity, we find the vertical velocity, non-hydrostatic pressure, and other unknowns related to the
vertical profile of the different variables. One of the essential points of these models is the presence of
constraint equations related to the incompressibility condition, see for example [28] and [4].

Although both approaches seem quite different, in many cases they are equivalent, as it was shown
in [7]. They introduced a general formulation that relates some well-known classic Boussinesq systems
and non-hydrostatic models. Concretely, it was shown that many of these classic Boussinesq systems
might be written as non-hydrostatic models. We want to point out that the non-hydrostatic formulation
has several advantages from the numerical point of view. In particular, avoiding high order derivatives

2



makes the numerical approximation easier. Moreover, the treatment of boundary conditions is also
more straightforward.

A strategy to improve the dispersion relation of such systems is to increase the accuracy of the
vertical profile for both velocity and pressure components. For this purpose, several attempts have also
been introduced in the literature. The so-called multilayer approach considers non-material vertical
interfaces, dividing the fluid into virtual vertical layers. Different profiles for the velocity and pressure
within each layer may be assumed. Notice that the term multilayer has been used sometimes for
stratified flow models, where one considers a constant density within each layer. This has no relation
with the approach we are considering in this paper. To avoid any possible confusion, in [9] it was
proposed to name the former (non-stratified flows) as layer-averaged models. We shall do the same in
what follows.

In [25] a non-hydrostatic layer-averaged model is proposed, which corresponds to the extension of
the hydrostatic model in [1]. The momentum equations are approximated by considering a constant
vertical profile for horizontal and vertical velocity components. Then, velocity may be discontinuous
at the interfaces, although the pressure profile is supposed to be continuous. However, a linear profile
of the vertical velocity within each layer is considered to approximate the incompressibility condition,
which is a compatible condition of strong solutions in each layer for this equation.

A similar model was proposed in [2], which assumes a constant profile for the horizontal velocity
and linear profiles for the vertical velocity and pressure. The common ground for both references is
that the horizontal velocity has a constant vertical profile within each layer and may be discontinuous
at the interfaces. A different assumption is found in [19], where a layer-averaged model is derived by
using a continuous global profile of the horizontal velocity, which is quadratic within each layer.

In [9] a hierarchy of models is presented, with an associated energy balance, where again a constant
profile is assumed for the horizontal velocity inside each layer. At the same time, several degrees of
freedom are introduced for the vertical velocity and pressure, accounting for the vertical approximation
of such variables. In that work, the linear dispersion relation was studied for the different models
proposed. It was shown that the dispersion relation converges to the exact dispersion relation for
Euler equations when the number of layers goes to infinity. A numerical strategy to solve these models
is proposed in [8]. Let us recall the notation of the models introduced in that paper as it will be helpful
in what follows. These models are named as LDNHk where LDNH stands for Layerwise Discretisation
Non-Hydrostatic, and k is the order of approximation. More precisely, LDNH0 may be seen as a
generalisation of models [28] and [4], while LDNH2 is as a generalisation of the Serre-Green-Naghdi
model. LDNH1 is an in-between intermediate model. Similarly, in [5] authors derived a weighted-
averaged non-hydrostatic pressure model, under the assumption of linear horizontal velocity, whereas
the vertical velocity and the non-hydrostatic pressure was assumed to have a quadratic profile.

This paper focuses on the derivation of 2D layer-averaged models where the vertical profile of
the horizontal velocity is supposed to be layerwise linear and discontinuous at the interfaces. The
extension to 2D is straightforward. Concretely, a family (with respect to the degree of approximation
of the vertical velocity and pressure) of novel models is introduced, named as LIN-NHk models for
k = 0, 1, 2, where the index k corresponds to the degree of approximation of the vertical velocity
in the vertical momentum equation. Therefore, three models are proposed, based on three different
profiles for the pressure, which are related to the approximation of the vertical momentum equation
and the incompressibility condition. In addition, the pressure profile is considered as a polynomial of
degree k + 1. All the proposed non-hydrostatic models also satisfy a dissipative energy balance. As
we show in this paper, since more unknowns are introduced, linear dispersion relation, group velocity,
and linear shoaling are greatly improved for such models. In particular, the LIN-NH1 and LIN-NH2

models exhibit excellent results for these dispersive properties. Moreover, another contribution is a
general procedure to compute the group velocity and shoaling gradient from the dispersion relation
for the wave celerity.

Although a general formulation based on a vertical Galerkin approach, i.e. polynomials with an
arbitrary degree describing the vertical profile of the variables, is possible from the theoretical point
of view (see [13] for the hydrostatic case), we remains here in the case of first order polynomials for
the horizontal velocity. Going to the general case in this non-hydrostatic framework would lead to
excessively complicated models, where we would also have an arbitrary (high) number of unknowns
associated to the pressure needed, and therefore also of constraints related to the incompressibility
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condition. Moreover, to our point of view, this model, that is expected to be second order accurate in the
vertical direction, is a good compromise between simplicity and accuracy, being already an important
improvement with respect to previous multilayer non-hydrostatic systems where the horizontal velocity
is supposed to be always constant (and therefore first-order accurate in the vertical direction).

In addition, the models proposed in this work can be seen as second order Galerkin vertical dis-
cretisations of Euler system. The main difference with respect to a fully Galerkin discretisation is the
fact that we obtain a model depending only on the horizontal space variable. As a consequence, more
efficient numerical methods may be designed. Actually, a specific and efficient numerical method was
proposed for the layer-averaged LDNH models in [8]. Here, we only focus on the deduction of the
LIN-NH models and its properties. Taking into account the key role of designing efficient methods for
the proposed models, it is out of the scope of this paper and must be addressed in the future.

The paper is organised as follows. In Section 2, we state the notation and the layer-averaged
procedure for the layerwise linear horizontal velocity case. Subsection 2.1 focuses on the discrete
spaces and hypotheses over the vertical profile of each variable (horizontal and vertical velocities and
pressure), as well as the normal jump condition at the interfaces associated with the weak formulation
of the Euler system. In Subsection 2.2 we describe the vertical averaging of the mass and horizontal
momentum equations without detailing the pressure terms. Section 3 is devoted to derive the cascade
of LIN-NHk non-hydrostatic models, for k = 0, 1, 2. The dispersive properties for these models are
analysed in Section 4, and some conclusions are presented in Section 5. Finally, Appendix A contains
a summary of all the models LIN-NH introduced in this work and the models LDNH proposed in [9],
including the layerwise vertical profile of the unknowns, and the coefficients of the dispersion relation
associated to each model.

2 Initial system and layer-averaged approach

This section introduces the general settings associated with the layer-averaged approach for the Euler
equations. In this work we shall assume a piecewise linear approximation of the horizontal velocity.

This layer-averaged approach can be seen as a technique to approximate the solution of the Euler
equations in the framework of the Discontinuous Galerkin methods. The final model that we obtain is
a system of partial differential equations. The solution of this system may be seen as a particular weak
solution of Euler equations, in the sense that it corresponds to an approximated piecewise smooth
weak solution that may be discontinuous at the internal interfaces. We remark that these interfaces
are not physical or material interfaces. They represent a virtual decomposition or partition of the
domain vertically. The procedure is as follows: first, we consider a vertical discretisation. Second, a
layer-averaging approach is considered assuming an appropriate structure of the weak solutions. In
particular, here, we shall assume that the velocity vector has horizontal components that are linear
in the vertical z-direction within each layer. Third, some closure relations (or constraints) are needed,
and they will be presented later in Subsection 3.1.

For the sake of simplicity, we shall consider here a 2-dimensional space, where the space variables
are denoted by (x, z) ∈ R2. Nevertheless, it could be extended easily to the 3D case. In what follows,
∇ = (∂x, ∂z) represents the usual differential operator. Let us consider now an incompressible fluid
with constant density ρ ∈ R. Let us denote g ∈ R the gravity acceleration, p ∈ R the pressure,
U = (u,w)

′ ∈ R2 the velocity vector, and a moving domain

Ω(t) =
{

(x, z) : zb(x) < z < zb(x) +H(t, x)
}
,

where the topography zb is assumed to be independent from time and H the water height (see Figure 1).
The Euler system is written, for (x, z) ∈ Ω(t), as ∂tρ+∇ · (ρU) = 0,

∂t (ρU) +∇ · (ρU ⊗U + pI) = ρ g,
(1)
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where g = (0,−g)
′ ∈ R2 and I is the identity matrix. The system is completed with initial and

boundary conditions, and the following kinematic conditions:

∂tH + U |z=zb+H · ∇ (zb +H − z) = 0, (2)

U |z=zb · ∇ (zb − z) = 0. (3)

Figure 1: Sketch of the vertical partition of the fluid domain.

Now, in order to apply the layer-averaged approach, the domain is subdivided along the vertical
direction into L ∈ N layers with thickness hα(t, x), which are denoted by Ωα(t). The layers are separated
by L+1 interfaces Lα+1/2(t), defined by z = zα+1/2(t, x) for α = 0, 1, ..., L. The interfaces are assumed

sufficiently smooth, at least C1 (see Figure 1). More explicitly,

Ωα(t) =
{

(x, z) : zα−1/2(t, x) < z < zα+1/2(t, x)
}
.

Notice then that

zα+1/2 = zb +

α∑
β=1

hβ, for α = 1, . . . , L,

where zb = z1/2 and hα = zα+1/2 − zα−1/2. Moreover, the total height of the fluid is equal to

H =
L∑
α=1

hα, with hα = `αH, where (`α){α∈1,...,L} are such that `α ∈ [0, 1],
L∑
α=1

`α = 1. (4)

Let us also denote by zα the midpoint of the layer Ωα, i.e.,

zα =
zα−1/2 + zα+1/2

2
= zα−1/2 +

hα
2
, for α = 1, . . . , L.

Furthermore, let us introduce the following notations: for any function f(t, x, z), we define:

• Its approximations at the interfaces Lα+1/2 for α = 0, . . . , L

f−α+1/2 = lim
z→zα+1/2
z<zα+1/2

f|Ωα , f+
α+1/2 = lim

z→zα+1/2
z>zα+1/2

f|Ωα+1
.

In the case of continuous functions, we shall simply write fα+1/2 = f+
α−1/2 = f−α+1/2;
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• The average value over the layer Ωα

fα(t, x) =
1

hα

∫ zα−1/2

zα−1/2

f(t, x, z) dz; (5a)

• The linear average of f over the layer Ωα

f̂α =
f+
α−1/2 + f−α+1/2

2
; (5b)

• The variation through the layer Ωα

(δf)α = f−α+1/2 − f
+
α−1/2; (5c)

• The average value through the interface Lα+1/2

f̃α+1/2 =
f+
α+1/2 + f−α+1/2

2
; (5d)

• The jump across the interface Lα+1/2

[f ]α+1/2 = f+
α+1/2 − f

−
α+1/2. (5e)

Note that, in general, fα 6= f̂α, but the equality holds if f is constant or linear in z over the layer Ωα.

2.1 Layerwise approximation of the variables and normal jump con-
ditions

This subsection deals with the main hypotheses upon velocity and pressure fields in the layer-averaged
framework. In particular, we detail here the vertical profile for the variables considered in this work
and its notation. We also write the normal jump condition associated with the weak formulation.

2.1.1 Choice of discrete spaces for velocity and pressure fields

The layer-averaged models presented in [10,11] assume that the horizontal velocity is constant in the
z-direction within each layer. In practice, this will formally limit us to first order approximations of
the solution for the Euler equations. In this work we shall consider a piecewise linear profile in z for the
horizontal velocity. Concerning the other variables, a piecewise parabolic profile in z is supposed for the
vertical velocity, and a piecewise third order polynomial in z is used for the non-hydrostatic pressure.
Nevertheless, some other alternative simplified equations will be presented afterwards, resulting in
simplified models.

More explicitly, let us specify the discretisation assumptions for the velocity unknowns

Uα := U |Ωα := (uα, wα)
′
,

where uα and wα are the horizontal and vertical components of the velocity field in layer Ωα. Then,
the following profiles and notation are chosen for this model:

Horizontal velocity: a linear profile on the vertical direction is assumed within each layer

uα(t, x, z) = uα(t, x) + λα(t, x)
(
z − zα(t, x)

)
, for z ∈ [zα−1/2(t, x), zα+1/2(t, x)], (6)

where uα and λα are the averaged horizontal velocity and the slope respectively in the z direction.
In what follows and for the sake of simplicity, we shall not write the dependence of the variables on
(t, x) explicitly unless necessary. It follows then that the limit at the interfaces u−α+1/2 and u+

α−1/2 are

obtained by evaluating (6) at zα+1/2 and zα−1/2, respectively, i.e.,

u−α+1/2 = uα +
hαλα

2
, u+

α−1/2 = uα −
hαλα

2
. (7)
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Vertical velocity: focusing on the incompressibility condition and given the piecewise linear pro-
file (6) for the horizontal velocity, a compatibility criterion leads us to consider a piecewise parabolic
polynomial in z, that is

wα(z) = wα(zα) + ϕα (z − zα) +
ψα
2

(z − zα)2 , for z ∈ [zα−1/2, zα+1/2]. (8)

Hence, there are three parameters to set. On the one hand, the integration of (8) over the layer yields

wα(zα) = wα −
h2
αψα
24

. (9)

Note that wα(zα) 6= wα in this case because of the contribution of the second order term.
On the other hand, a second order Taylor expansion, which is exact for a quadratic function, yields

wα(z) = wα(zα) + (∂zwα)|z=zα (z − zα) +
(
∂2
zzwα

)
|z=zα

(z − zα)2

2
, for α = 1, . . . , L.

As we want wα to approximate w|Ωα , let us mimic the incompressibility constraint ∂zw = −∂xu
using (6). Hence we impose

(∂zwα)|z=zα = −∂xuα + λα∂xzα, and
(
∂2
zzwα

)
|z=zα

= −∂xλα. (10)

Therefore, combining (8), (9) and (10), we get

wα(z) = wα + ϕα(z − zα) +
ψα
2

(
(z − zα)2 − h2

α

12

)
, (11)

for α = 1, . . . , L, with {
ϕα = −∂xuα + λα∂xzα, (12a)

ψα = −∂xλα. (12b)

Evaluating (11) at zα±1/2, we obtain

w−α+1/2 = wα +
hαϕα

2
+
h2
αψα
12

, w+
α−1/2 = wα −

hαϕα
2

+
h2
αψα
12

. (13)

Pressure: the total pressure is decomposed into a hydrostatic part g (zb +H − z), and a non-
hydrostatic counterpart q:

p = ρ (g (zb +H − z) + q) ,

where we assume that the pressure is known at the surface, which is usually set to zero.
As mentioned above, we choose a layerwise linear horizontal velocity and a layerwise parabolic

vertical velocity (potentially discontinuous across the interfaces). Consequently, the pressure must be
a layerwise cubic function due to the vertical momentum equation. We assume in the present work
that the pressure is continuous across interfaces.

Hence, we are looking for a 3rd-order polynomial qα which satisfies the following requirements:

qα(zα±1/2) = qα±1/2, and ∂zqα(zα) =
πα
hα
.

Together with the definitions (5), this leads to

qα(z) =
3qα − q̂α

2
+ πα

z − zα
hα

+ 6 (q̂α − qα)
(z − zα)2

h2
α

+ 4
(
(δq)α − πα

)(z − zα)3

h3
α

, (14)

for z ∈ [zα−1/2, zα+1/2].
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2.1.2 Jump conditions and evolution equation for the layer midpoints

Following [11], the model is deduced by looking for a particular piecewise smooth weak solution
(ρ,U , p) of system (1). More explicitly, we search for a solution that satisfies the weak formulation
of the system for a particular set of tests functions. We refer to [11] for further details. In particular,
they correspond to a classic, smooth solution inside each layer Ωα, while it should satisfy the normal
flux jump conditions across the interfaces Lα+1/2, α = 0, . . . , L.

The jump condition for the mass conservation law reads

[(ρ; ρU)]α+1/2 ·
(
∂tzα+1/2, ∂xzα+1/2,−1

)
= 0, (15a)

and for the momentum conservation law

[(ρU ; ρU ⊗U − pI)]α+1/2 ·
(
∂tzα+1/2, ∂xzα+1/2,−1

)
= 0. (15b)

We are considering here a constant density for the fluid. Hence, following [11], (15a) implies

Γα+1/2 := Γ−α+1/2 = Γ+
α+1/2, (16a)

where Γα+1/2 is the mass transfer term through the interface Lα+1/2 given by

Γ±α+1/2 = −∂tzα+1/2 − u±α+1/2∂xzα+1/2 + w±α+1/2. (16b)

In particular, using previous equation for Γα±1/2 and making the average, we infer that

∂tzα + uα∂xzα = ŵα −
hα
4
λα∂xhα −

Γα−1/2 + Γα+1/2

2
, (17)

which gives the evolution of the midpoint at each layer Ωα.

2.2 Layer-averaged approximation: mass and horizontal momentum
equations

In this section we obtain the mass and horizontal momentum equations of the target model by a layer-
averaged process. In what follows, we use a general depth-integration process for mass and horizontal
momentum equations.

Mass conservation. The incompressibility condition is integrated over each layer, which leads to

0 =

∫ zα+1/2

zα−1/2

∇ ·Uα dz

= ∂x

(∫ zα+1/2

zα−1/2

uα (t, x, z) dz

)
− u−α+1/2∂xzα+1/2 + u+

α−1/2∂xzα−1/2 + w−α+1/2 − w
+
α−1/2.

Taking into account the definition of the mass transfer terms (16), we obtain the mass conservation
laws

∂thα + ∂x (hαuα) = Γα−1/2 − Γα+1/2, α = 1, . . . , L, (18)

where we recall that Γα±1/2 account for mass transfer across interfaces Lα±1/2. Actually, they can be
expressed in terms of the velocities by combining previous equations, getting, for α = 1, . . . , L− 1,

Γα+1/2 =

L∑
β=α+1

∂x
(
hβ
(
uβ − u

))
, with u :=

L∑
α=1

`αuα, (19)
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for `α defined in (4). Moreover, summing equation (18) over α we get

∂tH + ∂x
(
Hu
)

= 0. (20)

Therefore, it is equivalent to considering equation (18) and the set of equations defined by (19) and
(20).

Note that Γ1/2 and ΓL+1/2 correspond to the mass exchange at the free surface and the bottom,
respectively, and they are set to zero unless specified. In any case, both of them should be provided
as data.

Averaged horizontal momentum conservation. The approximation of the horizontal mo-
mentum equation is deduced in two steps. First, a layer-integration of the horizontal momentum equa-
tion provides the horizontal momentum conservation law equation related to the averaged velocity,
uα.

∂t (hαuα) + ∂x

(
hαu

2
α +

h3
αλ

2
α

12

)
+

1

ρ

∫ zα+1/2

zα−1/2

∂xpα dz = −ũα+1/2Γα+1/2 + ũα−1/2Γα−1/2, (21)

see (5) for notations. Note that here we have used the jump condition (15b), otherwise a term u∓α±1/2

would appear instead of ũα±1/2. This is done in what follows when the limit values of the horizontal
and vertical velocities at the interfaces appear.

Secondly, we evaluate the mean deviation of the horizontal velocity and use (6) to derive the
conservation law associated with λα. To do so, the horizontal momentum equation is multiplied by
(z − zα) and then integrated inside the layer, yielding to

∂t

(
h2
αλα
12

)
+ ∂x

(
h2
αλα
12

uα

)
+
h2
αλα
12

∂xuα +
1

ρhα

∫ zα+1/2

zα−1/2

(z − zα)∂xpα dz

= Γα+1/2

(
hαλα

12
+
uα − ũα+1/2

2

)
− Γα−1/2

(
hαλα

12
−
uα − ũα−1/2

2

)
, (22)

for α = 1, . . . , L.
Note that the integrals involving the pressure in (21) and (22) have not been specified. These terms

will be computed later on depending on the assumption on the pressure profile. The simplest choice
corresponds to the assumption of hydrostatic pressure, and this model is presented in the following
subsection. Non-hydrostatic pressure models are deduced in Section 3.

2.3 LIN-H model: linear horizontal velocity and
hydrostatic pressure

Let us mention the case of hydrostatic pressure, where the resulting model is a particular case of the
multilayer-moment model presented in [13]. In that case, the final system is defined by (18), (21), (22),
where, as it is usual in the framework of hydrostatic shallow flows, the pressure is defined by

p(z) = ρg (zb +H − z) .

Now, the integrals associated to the pressure in (21) and (22) are

1

ρ

∫ zα+1/2

zα−1/2

∂xp dz = ghα∂x (zb +H) , and
1

ρ

∫ zα+1/2

zα−1/2

(z − zα)∂xp dz = 0.
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Therefore, the final system for hydrostatic pressure is defined by the following set of equations:

∂thα + ∂x(hαuα) = Γα−1/2 − Γα+1/2,

∂t(hαuα) + ∂x

(
hαu

2
α +

h3
αλ

2
α

12

)
+ ghα∂x(zb +H) = −ũα+1/2Γα+1/2 + ũα−1/2Γα−1/2,

∂t

(
h2
αλα
12

)
+ ∂x

(
h2
αλαuα

12

)
+
h2
αλα
12

∂xuα

= Γα+1/2

(
hαλα

12
+
uα − ũα+1/2

2

)
− Γα−1/2

(
hαλα

12
−
uα − ũα−1/2

2

)
,

(23)

for α = 1, . . . , L, where

ũα+1/2 =
uα + uα+1

2
+
hαλα − hα+1λα+1

4
.

This model verifies exactly a dissipative energy balance, stated by the following theorem.

Theorem 1 System (23) satisfies the dissipative energy balance

∂t

(
L∑
α=1

Eα

)
+ ∂x

(
L∑
α=1

uα

(
Eα + ghα

H

2
+
h3
αλ

2
α

12

))
≤ 0,

where

Eα := hα

(
u2
α + w2

α

2
+
h2
αλ

2
α

24
+ g

(
zb +

H

2

))
.

The proof can be seen as a particular case of the result stated in Theorem 2. Concerning the hyper-
bolicity of previous system, it is not ensured. Actually, following [13, Remark 6], a loss of hyperbolicity
could arise, although it was not found in their simulations. As they explained, the hyperbolic character
of multilayer system with constant horizontal velocity was only proven for the two-layer case (see [1]).
Moreover, in [12] it is concluded that the hyperbolicity of these multilayer systems might be lost in
the case of strong vertical profiles (big differences between the layer velocity and the averaged one).

One should also note that the one-layer case and linear horizontal velocity (system (23) with L = 1)
is always hyperbolic. This is also a motivation to not going to the general case (arbitrary polynomials
for uα) since the hyperbolicity is lost when increasing the polynomial degree even for the one-layer
case (see [16]).

3 Non-hydrostatic layer-averaged systems with linear
horizontal velocity: LIN-NHk models

We consider now a non-hydrostatic pressure. Therefore, we must define the vertical profile for the
vertical velocity and, consequently, for the non-hydrostatic pressure. Note that the incompressibility
condition implies that inside each layer, the vertical velocity is a polynomial on z of degree d+1, where
d is the degree of the horizontal velocity (in this paper, we consider d = 1). Thus, a family of models
is presented, based on the degree of the polynomial employed to approximate the vertical momentum
equation. We consider a polynomial of degree k ≤ d+1, on z for the vertical velocity. We also consider
that the pressure profile is a polynomial on z of degree k+1, which becomes an essential hypothesis to
obtain a system with an associated dissipative energy balance. In [9], authors introduced a hierarchy
of non-hydrostatic layer-averaged models for Euler equations for d = 0 and k ≤ 1.

In the following subsections, firstly, the incompressibility condition within each layer is deduced.
Secondly, three models are proposed, corresponding to different approximations of the vertical veloc-
ity and non-hydrostatic pressure counterparts. All of them satisfy a dissipative energy balance. We
will detail the more complex model, where the vertical velocity is a layerwise quadratic polynomial
according to the incompressibility condition, and therefore the non-hydrostatic pressure is a layerwise
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cubic function. Later, we see that if the vertical structure of the vertical velocity is simplified just
for the vertical momentum equation, then the model degenerates to simpler models, but keeping still
an analogous energy balance. This family of non-hydrostatic models will be denoted by Multilayer
Horizontal Linear discretisation Non-Hydrostatic k model (from now on LIN-NHk), where k is the
degree of the polynomial approximating the vertical velocity in the vertical momentum conservation
equation, that is, k = 0, 1, 2.

3.1 Averaged incompressibility condition

In the non-hydrostatic framework, we need some extra information or constraints to solve the resulting
system, which now includes the degrees of freedom related to the non-hydrostatic pressure. Note that
for each layer, there are three unknowns that define the non-hydrostatic pressure profile, namely qα+1/2,
qα and πα. Therefore, one would need three constraints at each layer.

On the one hand, two restrictions are associated to the relationship between the first and second
order vertical derivative of the vertical and horizontal velocities. Concretely, in Subsection 2.1 the
profile for the vertical velocity was obtained, where from the incompressiblity inside each layer we got
(12).

On the other hand, the jump condition (15a) reads

w+
α+1/2 − w

−
α+1/2 =

(
u+
α+1/2 − u

−
α+1/2

)
∂xzα+1/2, α = 1, . . . , L− 1. (24)

By substituting (7) and (13) in (24), we obtain

wα+1 −
hα+1ϕα+1

2
+
h2
α+1ψα+1

12
− wα −

hαϕα
2
− h2

αψα
12

=

(
uα+1 −

hα+1λα+1

2
− uα −

hαλα
2

)
∂xzα+1/2, α = 1, . . . , L− 1.

To get the Lth constraint, let us integrate ∇ · U1 = 0 between z1 and z1/2 (see [9, 28]). We obtain
thanks to (9) applied to α = 1

∂xu1 − λ1∂xz1 −
h1

6
∂xλ1 +

w1 − w+
1/2

h1/2
= 0

Finally, the incompressibility conditions read

ϕα = −∂xuα + λα∂xzα, α = 1, . . . , L.

ψα = −∂xλα, α = 1, . . . , L,

wα+1 −
hα+1ϕα+1

2
+
h2
α+1ψα+1

12
− wα −

hαϕα
2
− h2

αψα
12

=

(
uα+1 −

hα+1λα+1

2
− uα −

hαλα
2

)
∂xzα+1/2, α = 1, . . . , L− 1.

∂xu1 − λ1∂xz1 −
h1

6
∂xλ1 +

w1 − w+
1/2

h1/2
= 0.

(25)

where, in order to verify the kinematic condition (3), we set

w+
1/2 = wb =

(
u1 − λ1

h1

2

)
∂xzb.
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3.2 LIN-NH2 model: non-hydrostatic model with wα ∈ P2[z]

In what follows we shall detail the first non-hydrostatic model that we propose here. It will be denoted
by LIN-NH2 model. Its final formulation is (31) below with the subsequent notations. Later on, in
Subsection 3.3 we shall introduce as well two extra simplified models, named LIN-NH1 and LIN-NH0

models.
Let us recall that, up to this point, we have evolution equations (21) and (22) together with the

restrictions (25) and the jump conditions (19) and (20).
In order to close the system, some extra equations are needed, which are obtained by successive

integration on the vertical momentum conservation equation, as shown in what follows.
Let us firstly focus on the horizontal momentum equations (21) and (22). In these equations, we

compute, in the non-hydrostatic framework, the explicit pressure terms

1

ρ

∫ zα+1/2

zα−1/2

∂xpα dz = ghα∂x(zb +H) + ∂x (hαqα)− qα+1/2∂xzα+1/2 + qα−1/2∂xzα−1/2,

and

1

ρhα

∫ zα+1/2

zα−1/2

(z − zα)∂xpα dz =
1

10
∂x

(
hα

[
(δq)α

2
+
πα
3

])
+ qα∂xzα

+
∂xhα

10

(
hα

[
(δq)α

2
+
πα
3

])
−
qα+1/2∂xzα+1/2 + qα−1/2∂xzα−1/2

2
.

Let us focus now on the equations for the variables involved in the vertical velocity. To do so, we
consider a basis in P2[z] of test functions

χα(z) ∈
{

1, z − zα,
(z − zα)2

2
− h2

α

24

}
,

and compute the averaged equations

∂t

(∫ zα+1/2

zα−1/2

wαχα dz

)
+ ∂x

(∫ zα+1/2

zα−1/2

uαwαχα dz

)

+

∫ zα+1/2

zα−1/2

(
χα∂zqα − wα∂tχα − uαwα∂xχα − w2

α∂zχα
)

dz

= −χα|zα+1/2
w̃α+1/2Γα+1/2 + χα|zα−1/2

w̃α−1/2Γα−1/2. (26)

For the sake of simplicity, we omit here the details of the computations. Let us introduce the
following notations:

Λα =
hαλα

2
√

3
, Φα =

hαϕα

2
√

3
, Ψα =

h2
αψα

12
√

5
, (27)

obtaining hence the LIN-NH2 model, which reads
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

∂tH + ∂x (H ¯̄u) = 0,

∂t(hαuα) + ∂x

(
hαu

2
α + hαΛ2

α + hαqα

)
+ ghα∂x(zb +H)

= qα+1/2∂xzα+1/2 − qα−1/2∂xzα−1/2 − ũα+1/2Γα+1/2 + ũα−1/2Γα−1/2,

∂t (hαΛα) + ∂x

(
hαΛαuα + hα

√
3

5

(
qα+1/2 − qα−1/2

2
+
πα
3

))
+ hαΛα∂xuα

+

√
3

5

(
qα+1/2 − qα−1/2

2
+
πα
3

)
∂xhα −

√
3
(
qα+1/2∂xzα+1/2 + qα−1/2∂xzα−1/2

)
+2
√

3 qα∂xzα = Γα+1/2

(
Λα −

√
3(ũα+1/2 − uα)

)
−Γα−1/2

(
Λα −

√
3(uα − ũα−1/2)

)
,

∂t (hαwα) + ∂x (hαuαwα + hαΛαΦα) = −qα+1/2 + qα−1/2 − w̃α+1/2Γα+1/2 + w̃α−1/2Γα−1/2,

∂t (hαΦα) + ∂x

(
hαΦαuα +

2
√

5

5
hαΛαΨα

)
+ hαΛα∂xwα − 2

√
3Ψ2

α +
2
√

5

5
ΛαΨα∂xhα

+2
√

3

(
qα+1/2 + qα−1/2

2
− qα

)
= Γα+1/2

(
Φα −

√
3(w̃α+1/2 − wα)

)
−Γα−1/2

(
Φα −

√
3(wα − w̃α−1/2)

)
,

∂t (hαΨα) + ∂x

(
hαΨαuα +

2
√

5

5
hαΦαΛα

)
− 6
√

5

5
ΦαΛα∂xhα + 6

√
3ΦαΨα

+
2
√

5

5

(
qα+1/2 − qα−1/2 − πα

)
= Γα+1/2

(
2Ψα +

√
15Φα +

√
5(wα − w̃α+1/2)

)
−Γα−1/2

(
2Ψα −

√
15Φα +

√
5(wα − w̃α−1/2)

)
,

(28)

for α = 1, . . . , L, combined with the following constraints,

hα∂xuα + 2
√

3Φα − 2
√

3Λα∂xzα = 0, α = 1, . . . , L,

2
√

5

5
Ψα +

√
3

15
(hα∂xΛα − Λα∂xhα) = 0, α = 1, . . . , L,

wα+1 −
√

3Φα+1 +
√

5Ψα+1 − wα −
√

3Φα −
√

5Ψα

= (uα+1 −
√

3Λα+1 − uα −
√

3Λα)∂xzα+1/2 α = 1, . . . , L− 1,

∂xu1 −
2
√

3

h1
Λ1∂xz1 −

1√
3

(∂xΛ1 − Λ1∂xh1) +
w1 − w+

1/2

h1/2
= 0,

(29)

where
w+

1/2 = (u1 −
√

3 Λ1)∂xzb.

In system (28) the velocities at the interfaces are given by{
w∓α±1/2 = wα ±

√
3Φα +

√
5Ψα,

u∓α±1/2 = uα ±
√

3Λα,
(30)

and therefore

ũα+1/2 =
uα + uα+1

2
+
√

3
Λα − Λα+1

2
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and

w̃α+1/2 =
wα + wα+1

2
+
√

3
Φα − Φα+1

2
+
√

5
Ψα + Ψα+1

2
.

The system is thus composed of 8L+ 1 equations for 8L+ 1 unknowns,(
H, {uα,Λα, wα,Φα,Ψα, qα, qα−1/2, πα}Lα=1

)
.

Note that thanks to the vertical partition (4), using equations (18) for hα an explicit expression for
Γα+1/2 is achieved, and then neither hα nor Γα+1/2 are unknowns anymore, unlike the total height H.

Finally, let us rewrite system (28) and constraints (29) in a compact way which will have the same
structure for all models LIN-NHk:

∂tH + ∂x (H ¯̄u) = 0,

∂t(hαXα) + ∂x(hαXαuα) + Fα +∇NHQα = Sα∂x (zb +H) + Γα+1/2G
+
α − Γα−1/2G

−
α ,

∇NH ·Xα = 0,

(31a)

(31b)

(31c)

where we introduced some notations, namely the vectors of unknowns

Xα =



uα

Λα

wα

Φα

Ψα


, Qα =


qα

qα−1/2

πα

 ,

where

Fα =



∂x(hαΛ2
α)

hαΛα∂xuα

∂x(hαΛαΦα)

2
√

5
5 ∂x(hαΛαΨα)− 2

√
3Ψ2

α + hαΛα∂xwα + 2
√

5
5 ΛαΨα∂xhα

2
√

5
5 ∂x(hαΛαΦα)− 6

√
5

5 ΛαΦα∂xhα + 6
√

3ΦαΨα


, Sα =



−ghα
0

0

0

0


,

G±α =



−ũα±1/2

Λα ±
√

3(uα − ũα±1/2)

−w̃α±1/2

Φα ±
√

3(wα − w̃α±1/2)

2Ψα ±
√

15Φα +
√

5(wα − w̃α±1/2)


and the following differential operators, for α ∈ {1, . . . , L}

∇NHQα =



∂x(hαqα)− (δ (q∂xz))α√
3

5

[
∂x

(
hα

(
(δq)α

2
+
πα
3

))
+ 10qα∂xzα +

(
(δq)α

2
+
πα
3

)
∂xhα − 10(̂q∂xz)α

]
(δq)α

2
√

3 (q̂α − qα)

2
√

5

5
((δq)α − πα)


.
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Then for α ∈ {2, . . . , L} we define

∇NH ·Xα =



hα∂xuα + 2
√

3Φα − 2
√

3Λα∂xzα

wα − wα−1 − (uα − uα−1)∂xzα−1/2 −
√

3(Φα + Φα−1)

+
2
√

5

5
(Ψα −Ψα−1) +

√
3(Λα + Λα−1)∂xzα−1/2

+

√
3

10
(Λα∂xhα − hα∂xΛα − Λα−1∂xhα−1 + hα−1∂xΛα−1)

1

5

[
2
√

5Ψα +

√
3

3
(hα∂xΛα − Λα∂xhα)

]


and finally

∇NH ·X1 =


h1∂xu1 + 2

√
3Φ1 − 2

√
3Λ1∂xz1

w1 − u1∂xzb +
√

3(Λ1∂xzb − Φ1) +

√
3

10
(Λ1∂xh1 − h1∂xΛ1) +

2
√

5

5
Ψ1

2
√

5

5
Ψ1 +

√
3

15
(h1∂xΛ1 − Λ1∂xh1)

 .

These definitions of the NH-gradient and the NH-divergence operators satisfy the following duality
relation,

L∑
α=1

Xα · (∇NHQα) = −
L∑
α=1

Qα · (∇NH ·Xα) + ∂x

(
L∑
α=1

hα

[
qαuα +

√
3

5
Λα

(
(δq)α

2
+
πα
3

)])
. (32)

Remark 1 Notice that setting Λα = 0, Ψα = 0 and πα = 0, system (31) reduces to the LDNH2(L)
model described in [8] where the assumptions were: a layerwise-constant horizontal velocity, a layerwise-
linear vertical velocity and a quadratic pressure.

An interesting property of such a system is that it satisfies a dissipative energy balance, as stated
by the following theorem.

Theorem 2 The proposed LIN-NH2 model, defined by (31) satisfies the dissipative energy balance

∂t

(
L∑
α=1

hαEα

)
+ ∂x

( L∑
α=1

hα

[
uα

(
Eα + g

H

2
+ Λ2

α + qα

)
+ ΦαΛαwα

+
2
√

5

5
ΦαΨαΛα +

√
3

5
Λα

(
(δq)α

2
+
πα
3

)])
≤ 0,

where

Eα :=
|Xα|2

2
+ g

(
zb +

H

2

)
.

Proof: The proof relies on algebraic relations. Let us multiply (31b) by Xα. Notice that:

Xα · [∂t(hαXα) + ∂x(hαXαuα)]
(32)
= ∂t

(
hα
|Xα|2

2

)
+ ∂x

(
hα
|Xα|2

2
uα

)
+
|Xα|2

2

(
Γα−1/2 − Γα+1/2

)
,

Fα ·Xα
(31c)
= ∂x

(
hαΛα

[
Λαuα + Φαwα +

2
√

5

5
ΦαΨα

])
,

and

Sα ·Xα∂x (zb +H) = ∂x (Sα ·X (zb +H)) + g (zb +H) ∂x (hαuα)

= ∂x (Sα ·X (zb +H)) + g (zb +H)
(
Γα−1/2 − Γα+1/2

)
− g (zb +H) ∂thα,

15



where

g (zb +H) ∂thα = g

(
zb +

H

2

)
∂thα + g

H

2
∂thα = ∂t

(
hα g

(
zb +

H

2

))
− g

2
(hα∂tH −H∂thα) .

Given the expressions of interface velocities (30), we get

(
Γα+1/2G

+
α − Γα−1/2G

−
α

)
·Xα +

|Xα|2

2
(Γα+1/2 − Γα−1/2)

= Γα+1/2

[
u−α+1/2

(
u−α+1/2

2
− ũα+1/2

)
+ w−α+1/2

(
w−α+1/2

2
− w̃α+1/2

)]

− Γα−1/2

[
u+
α−1/2

(
u+
α−1/2

2
− ũα−1/2

)
+ w+

α−1/2

(
w+
α−1/2

2
− w̃α−1/2

)]
.

Summing the last equality over all layers, we get

L∑
α=1

Γα−1/2

[(
ũα−1/2 −

u−α−1/2 + u+
α−1/2

2

)
[u]α−1/2 +

(
w̃α−1/2 −

w−α−1/2 + w+
α−1/2

2

)
[w]α−1/2

]
= 0

due to the definition1 of ũα±1/2, w̃α±1/2 and

L∑
α=1

g (zb +H)
(
Γα−1/2 − Γα+1/2

)
= 0,

L∑
α=1

g

2
(hα∂tH −H∂thα) = 0,

which completes the proof. �
Notice that thanks to the compact form (31) and the duality relation (32), the proof of Theorem 2

has been notably shortened. Let us also remark that in the case of smooth enough solutions, then the
equality would hold in Theorem 2 instead of an inequality. This is also true for all the energy results
in this work.

1-layer model

In the 1-layer case, the model may be written in Boussinesq form by expressing all variables in terms
of the averaged horizontal velocity and the fluid height as the only unknowns of the system. As we
have said previously, this will result in a system of equations that contains third order derivatives in
space and time. See for example, [9], where it is shown that the LDNH2 model with 1 layer coincides
with the Serre-Green-Naghdi model. More explicitly, the model proposed in this work for 1-layer case
may be written as follows,

1Here, the average at interfaces is chosen to be the convex combination (1
2 ,

1
2 ). A more general combination (γα−1/2, 1 −

γα−1/2) would provide a negative term, which would ensure the decrease of the energy.
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

∂tH + ∂x(Hu) = 0,

∂t(Hu) + ∂x(Hu2) + ∂x(HΛ2) + gH∂x(zb +H) = −∂x(Hq)− q1/2∂xzb,

∂t(HΛ) + ∂x(HΛu) +HΛ∂xu =

√
3

5
∂x

(
H
(q1/2

2
− π

3

))
− 2
√

3 q∂x

(
zb +

H

2

)
+

√
3

5

(q1/2

2
− π

3

)
∂xH +

√
3q1/2∂xzb,

w = wb −
H

2
∂xu+

√
3Λ∂x

(
zb +

H

3

)
+

H

2
√

3
∂xΛ,

Φ = −H∂xu
2
√

3
+ Λ∂x

(
zb +

H

2

)
,

Ψ =
1

2
√

15
(Λ∂xH −H∂xΛ) ,

q1/2 = H(∂tw + u∂xw) + ∂x(HΛΦ),

q =
q1/2

2
+

1

2
√

3

[
H(∂tΦ + u∂xΦ) +

2
√

5

5
∂x(HΛΨ) +HΛ∂xw − 2

√
3Ψ2 +

2
√

5

5
ΛΨ∂xH

]
,

π = −q1/2 +

√
5

2

[
H(∂tΨ + u∂xΨ) + 6

√
3ΦΨ

]
+ ∂x(HΦΛ)− 3ΦΛ∂xH.

Note that by a subsequent substitution of the different unknowns of the system into the second and
third equations, we easily obtain a system formed by three equations with the unknowns H, u and Λ,
which includes terms of third order derivatives in space and time.

3.3 Simplified non-hydrostatic models

We propose now to obtain two simplified models in order to reduce the complexity of the previous one.
The main objective is to reduce the number of unknowns related to the pressure and consequently
the number of constraints. From a numerical point of view, this would be important to reduce the
computational cost. For example, if a projection method is considered, it will be needed to solve a
linear system for the pressure where the number of equations is proportional to the number of pressure
variables and layers. Then, for the simplified models, we consider a more straightforward structure for
the vertical velocity and, therefore, the non-hydrostatic pressure. We remark that it is essential that, to
obtain models with an associated exact energy balance, we must always consider the incompressibility
equation without any simplification on the vertical velocity profile.

We mention that among the two simplified models presented below, named LIN-NH1 and LIN-
NH0, the one corresponding to a layerwise constant vertical velocity (LIN-NH0) does not produce
good results concerning the dispersive properties. However, we find interesting to show these results
for the sake of completeness in the study, since it is natural to wonder whether it is a reasonable
simplification or not. A possible reason for the poor results for that model could be that there should
be a relation between the degrees of the polynomials approximating horizontal and vertical velocities.
This fact would suggest that the degree of the polynomial approximation for the vertical velocity
should be at least the one for the horizontal velocity, and it cannot be not be smaller.

The derivation of these simplified models can be obtained by following a similar approach as the
one carried out in Subsection 3.2 for LIN-NH2 model. This results in a similar compact form (31).
Hence analogous energy balances as in Theorem 2 are obtained. For the sake of brevity, we do not
give here these proofs, which can be easily carried out following the analogous steps described in the
proof of Theorem 2.

3.3.1 LIN-NH1 model: non-hydrostatic model with wα ∈ P1[z]

We consider first that the vertical velocity is a layerwise linear polynomial in z, wα ∈ P1[z] to approx-
imate the vertical momentum equation, that is,

wα(z) = wα + ϕα (z − zα) for z ∈ [zα−1/2, zα+1/2]. (33)
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Concerning the pressure, we consider a piecewise parabolic function, qα ∈ P2[z], given by

qα(z) =
3qα − q̂α

2
+ (δq)α

(z − zα)

hα
+ 6 (q̂α − qα)

(z − zα)2

h2
α

, for z ∈ [zα−1/2, zα+1/2]. (34)

Note that this pressure profile coincides with (14) by setting πα = (δq)α. Then, the unknowns related
to the non-hydrostatic pressure are qα, and qα−1/2 for α = 1, . . . , L. Recall that qL+1/2 is a given data,
usually assumed to vanish at the surface.

The system thus comprises 6L+ 1 equations for 6L+ 1 unknowns,(
H, {uα,Λα, wα,Φα, qα, qα−1/2}Lα=1

)
.

Analogously to what is done for the LIN-NH2 model, the LIN-NH1 model can be written in a compact
form (31), where in this case

Xα =


uα

Λα

wα

Φα

 , Qα =

 qα

qα−1/2

 , (35)

with

Fα =


∂x(hαΛ2

α)

hαΛα∂xuα

∂x(hαΛαΦα)

hαΛα∂xwα

 , G±α =


−ũα±1/2

Λα ±
√

3(uα − ũα±1/2)

−w̃α±1/2

Φα ±
√

3(wα − w̃α±1/2),

 , Sα =


−ghα

0

0

0

 ,

where

ũα+1/2 =
uα + uα+1

2
+
√

3
Λα − Λα+1

2
, and w̃α+1/2 =

wα + wα+1

2
+
√

3
Φα − Φα+1

2
.

The following NH-gradient operator read in this case, for α ∈ {1, . . . , L},

∇NHQα =


∂x(hαqα)− (δ (q∂xz))α√

3

6

[
∂x (hα(δq)α) + 12qα∂xzα + (δq)α∂xhα − 12(̂q∂xz)α

]
(δq)α

2
√

3 (q̂α − qα)


and the NH-divergence operator, for α ∈ {2, . . . , L}

∇NH ·Xα =


hα∂xuα + 2

√
3Φα − 2

√
3Λα∂xzα

wα − wα−1 − (uα − uα−1)∂xzα−1/2 −
√

3(Φα + Φα−1)

+
√

3(Λα + Λα−1)∂xzα−1/2 +

√
3

6
(Λα∂xhα − hα∂xΛα − Λα−1∂xhα−1 + hα−1∂xΛα−1)


and for α = 1,

∇NH ·X1 =

 h1∂xu1 + 2
√

3Φ1 − 2
√

3Λ1∂xz1

w1 − u1∂xzb +
√

3(Λ1∂xzb − Φ1) +

√
3

6
(Λ1∂xh1 − h1∂xΛ1)

 .
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These differential operators verify in this case the following duality relation,

L∑
α=1

Xα · (∇NHQα) = −
L∑
α=1

Qα · (∇NH ·Xα) + ∂x

(
L∑
α=1

hα

[
qαuα +

√
3

6
Λα(δq)α

])
.

This simplified system satisfies a dissipative energy balance, that coincides with the result stated
at Theorem 2 by setting Ψα = 0 and πα = (δq)α. We obtain in this case the following result.

Theorem 3 The proposed LIN-NH1 model satisfies the dissipative energy balance

∂t

(
L∑
α=1

hαEα

)
+ ∂x

( L∑
α=1

hα

[
uα

(
Eα + g

H

2
+ Λ2

α + qα

)
+ ΦαΛαwα +

√
3

6
Λα(δq)α

])
≤ 0,

where

Eα :=
|Xα|2

2
+ g

(
zb +

H

2

)
.

with Xα is defined by (35).

The proof is analogous to LIN-NH2 model.

3.3.2 LIN-NH0 model: non-hydrostatic model with wα ∈ P0[z]

Finally, we consider even a simpler case where a layerwise constant vertical velocity, wα ∈ P0[z], is
assumed in the vertical momentum equation. Therefore, we have the structure

wα(z) = wα for z ∈ [zα−1/2, zα+1/2], (36)

for the vertical velocity, and the pressure, which is linear qα ∈ P1[z], is given by

qα(z) = q̂α + (δq)α
(z − zα)

hα
, for z ∈ [zα−1/2, zα+1/2]. (37)

Now, we have only one pressure unknown by layer, qα−1/2. Making such assumptions is equivalent to
considering

qα = q̂α =
qα+1/2 + qα−1/2

2
for α = 1, . . . , L. (38)

LIN-NH0 model can be written in a compact form (31), where in this case

Xα =


uα

Λα

wα

 , Qα = qα−1/2, (39)

with

Fα =


∂x(hαΛ2

α)

hαΛα∂xuα

∂x(hαΛαΦα)

 , G±α =


−ũα±1/2

Λα ±
√

3(uα − ũα±1/2)

−w̃α±1/2

 , Sα =


−ghα

0

0

 ,

where

ũα+1/2 =
uα + uα+1

2
+
√

3
Λα − Λα+1

2
, and w̃α+1/2 =

wα + wα+1

2
,
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with the following NH-gradient operator for α ∈ {1, . . . , L}

∇NHQα =


∂x(hαq̂α)− (δ (q∂xz))α√

3

6
[∂x (hα(δq)α)− 2(δq)α∂xhα]

(δq)α


and the NH-divergence operator, for α ∈ {2, . . . , L}

∇NH ·Xα = wα − wα−1 − (uα − uα−1)∂xzα−1/2 +
1

2
(hα∂xuα + hα−1∂xuα−1)

−
√

3

6
(2 (Λα∂xhα − Λα−1∂xhα−1) + hα∂xΛα − hα−1∂xΛα−1)

and for α = 1,

∇NH ·X1 = w1 − u1∂xzb +
h1

2
∂xu1 −

√
3

6
(h1∂xΛ1 + 2Λ1∂xh1) .

These differential operators verify in this case the following duality relation,

L∑
α=1

Xα · (∇NHQα) = −
L∑
α=1

Qα · (∇NH ·Xα) + ∂x

(
L∑
α=1

hα

[
q̂αuα +

√
3

6
Λα(δq)α

])
.

This simplified system satisfies a dissipative energy balance, that coincides with the result stated at
Theorem 2 by setting Ψα = Φα = 0, πα = (δq)α, qα = q̂α. Furthermore, in tables 3 and 4 in Appendix
A, the NH-divergence and NH-gradient operators for LIN-NH and LDNH models are summarized.
In these tables, we also observe how these operators, in the case of simplified models, are obtained
through appropriate simplifications in the operators associated to LIN-NH2 model.

4 Dispersion relations

In this section, we study the linear dispersion relations of the LIN-NHk systems, following the approach
used in [6,20]. In particular, we focus on the linear dispersion relations for the wave celerity, the group
velocity and the linear shoaling. In other words, a formal study is performed for the PDE systems
introduced previously, focusing on the propagation of dispersive waves.

To do so, a flat bottom is assumed as usual (zb constant), and the governing equations are linearised
around a steady-state solution. Then, a standard Stokes-type Fourier analysis is used to obtain the
wave and group velocities. Finally, a shoaling analysis of the linearised equations is carried out.

4.1 Linear dispersion relation for the LIN-NH2 model

Let us begin with the LIN-NH2 model that is described by (28). Let us linearise the system around
the steady state

zb = −H0 = cst, u0 = λ0 = w0 = ϕ0 = ψ0 = 0,

and let us consider η = zb +H the free-surface. We consider then the following asymptotic expansion

H = H0 + εη(1) +O(ε2), (40)

and for any variable φα ∈ {uα, λα, wα, ϕα, ψα},

φα = εφ(1)
α +O(ε2). (41)
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For the sake of simplicity, we shall neglect in this section the superindex (1) and bars ( · ) so that the
notation is less cumbersome. Using this linearisation in (28), we shall neglect O(ε2) terms and keep
the system at first order: 

∂tη +H0∂x

 α∑
β=1

`βuβ

 = 0

∂tuα + ∂xqα + g∂xη = 0,

`2αH
2
0

12
∂tλα +

`αH0

20
∂x(δq)α +

`αH0

30
∂xπα = 0,

`αH0∂twα + (δq)α = 0,

`2αH
2
0

12
∂tϕα +

qα+1/2 + qα−1/2

2
− qα = 0,

`3αH
3
0

720
∂tψα +

(δq)α − πα
30

= 0,

ϕα = −∂xuα,

ψα = −∂xλα,

wα =
`αH0

2
∂xuα +

`αH
2
0

12
∂xλα −

α∑
β=1

`βH0∂xuβ.

(42a)

(42b)

(42c)

(42d)

(42e)

(42f)

(42g)

(42h)

(42i)

Remark that combining (42c), (42d), and (42i), we obtain

−(δq)α =
`2αH

2
0

2
∂txuα − `αH0

α∑
β=1

`βH0∂txuβ −
`2αH

2
0

20
∂xx(δq)α −

`2αH
2
0

30
∂xxπα. (43)

Moreover, given that qL+1/2 = 0 and (δq)α = qα+1/2 − qα−1/2 we have

qα−1/2 = −
L∑

β=α

(δq)β.

Let us consider now a plane-wave solution of the linearised system in the form

(η̂, ûα, λ̂α, ŵα, ϕ̂α, δ̂qα, π̂α)T ei(kx−ωt),

where here the hat notation ( ·̂ ) is new and is not related to (5b). Inserting the plane wave into (43)
we get

− (1 + dα) δ̂qα =
`2αH

2
0

2
kωûα − `αH2

0kω
α∑
β=1

`βûβ, dα =
`2αH

2
0k

2

12
(

1 +
`2αH

2
0k

2

60

) .
Doing so in (42e) gives

q̂α = −ωi`
2
αH

2
0

12
ϕ̂α + q̂α+1/2 −

δ̂qα+1

2
= −ωi`

2
αH

2
0

12
ϕ̂α −

L∑
β=α+1

δ̂qβ −
δ̂qα
2
.
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The same may be done in the other equations and we obtain, using the relation ϕ̂α = −ikûα,

ωη̂ = kH0

L∑
α=1

`αûα,

ωûα = kq̂α + gkη̂,

(1 + dα) δ̂qα = − `2αH
2
0

2 kωûα + `αH
2
0kω

∑α
β=1 `βûβ

q̂α = −ωk `
2
αH

2
0

12 ûα −
∑L

β=α+1 δ̂qβ −
δ̂qα
2 .

(44)

Let us write the previous system under a linear system. First, consider the following vectors in RL

U = (û1, . . . , ûL), Q = (q̂1, . . . , q̂L)T , δQ = (δ̂q1, . . . , δ̂qL)T , l = (`1, . . . , `L)T , e = (1, . . . , 1)T ,

and the matrices of size L× L

L = diag(`1, . . . , `L), I = diag(1, . . . , 1), Id = diag(d1, . . . , dL),

T =



`1 0 0 . . . 0

`1 `2 0 . . . 0

`1 `2 `3 . . . 0
...

...
...

. . .
...

`1 `2 `3 . . . `L


, S =



1 1 1 . . . 1

0 1 1 . . . 1

0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1


.

Then (44) may be written as

ω2U = kωQ+ gk2H0〈l, U〉e,

Q =

(
1

2
I − S

)
δQ− ωkH

2
0

12
L2U,

(I + Id) δQ = −kωH
2
0

2
L2U + kωLT U,

where 〈·, ·〉 represents the scalar product in RL and, performing a progressive substitution from bottom
to top, we obtain

ω2A2,LU = gk2H0〈l, U〉e,
with

A2,L = k2H2
0

(
1

2
I − S

)
(I + Id)−1

(
1

2
L2 − LT

)
+ (I + Id) .

This means that, provided A2,L is invertible,

ω2〈e, U〉 = gk2H0〈l, U〉〈A−1
2,Le, e〉.

In the particular case `α =
1

L
, A2,L reduces to

A2,L = (1 + d) I +
k2H2

0

L2
(1 + d)−1

(
1

2
I − S

)(
1

2
I − ST

)
, d =

k2H2
0

12

(
L2 +

k2H2
0

60

) , (45)
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and assuming 〈e, U〉 6= 0 we get

ω2 = g
k2H0

L
〈A−1

2,Le, e〉,

Therefore, the following dispersion relation for the wave celerity c :=
ω

k
is obtained for LIN-NH2 model

c2
2,L(k,H0)

gH0
=

ω2

gk2H0
=

1

L
〈A−1

2,Le, e〉.

4.2 Linear dispersion relation for the LIN-NH1 model

In the particular case of LIN-NH1, the equations that govern the system are those corresponding to
(28) under the assumption of (δq)α = πα, as well as the restrictions (25).

Doing a linearisation as in (40) and (41) for φα ∈ {uα, λα, wα, ϕα}, keeping the first order terms
and after inserting the plane wave solution

(η̂, ûα, λ̂α, ŵα, ϕ̂α, δ̂qα)T ei(kx−ωt),

we obtain system (44) where, in this case, dα =
`2αH

2
0k

2

12
. That leads us, for the particular case `α =

1

L
,

to the following dispersion relation for the wave celerity c :=
ω

k
:

c2
1,L(k,H0)

gH0
=

ω2

gk2H0
=

1

L
〈A−1

1,Le, e〉, (46)

where A1,L is similar to (45), but with a change on the value of d, more precisely:

A1,L = (1 + d) I +
k2H2

0

L2
(1 + d)−1

(
1

2
I − S

)(
1

2
I − ST

)
, d =

k2H2
0

12L2
. (47)

4.3 Linear dispersion relation for the LIN-NH0 model

Remark that LIN-NH0 is quite similar to LIN-NH1 model, where some equations are removed and

qα =
qα+1/2 + qα−1/2

2
.

This means that the linearisation (40) and (41) for φα ∈ {uα, λα, wα}, keeping the first order terms, will
result in a reduced version of (42). Then, following a similar procedure as in the previous subsections,
we get that a plane wave solution

(η̂, ûα, λ̂α, ŵα, δ̂qα)T ei(kx−ωt),

of this reduced linearised system should satisfy

ωη̂ = kH0

L∑
α=1

`αûα,

ωûα = kq̂α + gkη̂,(
1 +

`2αH
2
0k

2

12

)
δ̂qα = − `2αH

2
0

2 kωûα + `αH
2
0kω

∑α
β=1 `βûβ

q̂α = −
∑L

β=α δ̂qβ −
δ̂qα
2 ,

23



that is the same as (44) except for the term −ωk `
2
αH

2
0

12 ûα, which is now missing in the last equation.
As a consequence, for the particular case of `α = 1/L, we will obtain a matrix A0,L similar to A1,L

in (47), but with the only difference that the last term (1 + d) I is replaced by I. That is, the following

dispersion relation for the wave celerity c :=
ω

k
for LIN-NH0 model is satisfied:

c2
0,L(kH0)

gH0
=

ω2

gk2H0
=

1

L
〈A−1

0,Le, e〉,

where

A0,L = I +
k2H2

0

L2

(
1 +

k2H2
0

12L2

)−1(
1

2
I − S

)(
1

2
I − ST

)
.

4.4 Computation of the linear group velocity and the linear shoaling
of dispersive systems

Let us introduce a general procedure that allows to compute the linear group velocity and shoaling
for dispersive systems presented in this work.

Moreover, we provide a very general methodology that can be applied to compute the group velocity
and the linear shoaling of any dispersive PDE system once the wave celerity c2(k,H0) of the system
is known.

4.4.1 Group velocity

The group velocity cg(k,H0) is essentially computed by taking the derivative of the wave celerity c,
and is defined as

cg = c+ k∂kc.

Let us express the ratio of the wave celerity of a given dispersive system and the shallow water celerity
as a function of kH0 :

c2(k,H0)

gH0
= f(kH0). (48)

For instance, for the LIN-NH1 model, f is given in (46) as:

f(kH0) =
1

L
〈A−1

1,Le, e〉.

Therefore, the group velocity can be written as follows

cg =
√
gH0Υ(kH0), Υ(kH0) =

2f(kH0) + kH0f
′(kH0)

2
√
f(kH0)

, (49)

where f ′ means the derivative of the function f w.r.t. its argument.

4.4.2 Linear shoaling

The linear shoaling gradient γ is a non-dimensional quantity to measure the change in wave height in
the presence of a bottom slope. It was firstly introduced in [21] and can be expressed as

∂xη

η
= −γ ∂xH0

H0
.

As usual, we will assume the dependency on the x−direction for H0, η and the wave number k. On
the contrary, we suppose that the frequency ω does not depends on x, and therefore ∂xω = 0.

The linear shoaling gradient can be determined for a given dispersive PDE system by assuming
the constancy of the energy flux

∂x
(
η2cg

)
= 0,
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and therefore
∂xη

η
= −1

2

∂xcg
cg

. (50)

Now, from (49), it yields

∂xcg
cg

=

(
1

2
+ kH0

Υ′(kH0)

Υ(kH0)

)
∂xH0

H0
+ kH0

Υ′(kH0)

Υ(kH0)

∂xk

k
, (51)

where again Υ′ stands for the derivative of the function Υ w.r.t. its argument.

Given the definition of the celerity c =
ω

k
and the constancy of ω with respect to x, it follows that

∂xk

k
= −∂xc

c
,

and from (48), we get

∂xk

k
= −∂xc

c
= −

(
1

2
+ kH0

f ′(kH0)

f(kH0)

)
∂xH0

H0
− kH0

f ′(kH0)

f(kH0)

∂xk

k
.

Therefore, from the above relation we can express
∂xk

k
as

∂xk

k
=

(
1

2

f(kH0)

f(kH0) + kH0f ′(kH0)
− 1

)
∂xH0

H0
. (52)

Finally, we can use (50), (51) and (52) to obtain the linear shoaling gradient of a given dispersive PDE
system:

∂xη

η
= −γ(kH0)

∂xH0

H0
, γ(kH0) =

1

4

(
1 + kH0

Υ′(kH0)

Υ(kH0)
· f(kH0)

f(kH0) + kH0f ′(kH0)

)
. (53)

4.5 Comparison of the dispersion relations

Let us assess the different models in the framework of the Stokes linear theory, also called Airy theory,
which establishes

c2
Airy

gH0
=

tanh(kH0)

kH0
,

c2
g,Airy

gH0
=

(2kH0 + sinh(2kH0))2

2kH0(2 sinh(2kH0) + sinh(4kH0))
,

and

γAiry = kH0 tanh(kH0)
(1− kH0 tanh(kH0))

(
1− tanh2(kH0)

)(
tanh(kH0) + kH0

(
1− tanh2(kH0)

))2 .
In what follows, we consider the relative dispersion error for the celerity and group celerity of the
computed systems

c2 − c2
Airy

c2
Airy

,
c2
g − c2

g,Airy

c2
Airy

,

where c and cg stands for the wave celerity and group velocity of a given dispersive system respectively.
Concerning the shoaling gradient, we directly compare, as usually done (see [6]), the coefficients from
the Airy theory, γAiry, and the one given in the previous subsection γ for a given dispersive system.

For the sake of clarity, we have included in Appendix A a summary of all the models that are
analysed in this section. In particular, we refer to Table 2 where the notation of the models, as well
as the approximation spaces for the velocity and pressure fields, are summarized.
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Figure 2: Comparison of the relative dispersion ratio and errors in logarithmic scale.

First, let us remark that it can be stated from Figures 2 and 3 that the dispersion relations of the
models studied here converge to the one given by the Stokes linear theory for the increasing number
of layers L. The comparison between the relative dispersion error for the different models reveals that
the new models LIN-NH1 and LIN-NH2 are the most accurate with bounded errors by 1 % for an
extensive range of kH0 up to 32. In the same way, we can state that the dispersion accuracy of the
new model LIN-NH0 does not improve the one provided by LDNH0 or LDNH2, while the complexity
of the model increases.

In Figure 4 we compare the relative dispersion errors for the new models with the corresponding
one for LDNH0 and LDNH2 for different numbers of layers and ranges for kH0. We can see again that
both relative dispersion errors converge to 0 as the number of layers L increases. Nevertheless, the
dispersion relation for the new model LIN-NH2 is now much better than that of LDNH0. Even for the
simple case of one layer, the relative dispersion error is relatively small. Therefore, we can state that
LIN-NH2 is an excellent choice in terms of dispersion accuracy. Despite the increased complexity of
the model, it gives better results for large values of kH0 even for a small number of layers.

In the same way, we compare in Figures 5 and 6 the group velocity, and in Figures 7 and 8 the
shoaling gradient for the different models considered in this work. We remark the great performance
of the LIN-NH1 and LIN-NH2 models over LIN-NH0, LDNH0 and LDNH2.

In order to complete the dispersion study, we provide in Table 1 the minimum number of layers L
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Figure 3: Comparison of the relative dispersion errors for the wave celerity for each model and different
number of layers.
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Figure 4: Comparison between the relative dispersion errors for the wave celerity of different models, for a
fixed number of layers L = 1, 2, 3.
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Figure 5: Comparison of the relative dispersion errors for the group velocity for each model and different
number of layers.
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Figure 6: Comparison between the relative dispersion errors for the group velocity of different models, for
a fixed number of layers L = 1, 2, 3.
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Figure 7: Comparison of the shoaling gradient of each model and different number of layers.
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Figure 8: Comparison between the shoaling gradient of different models, for a fixed number of layers
L = 1, 2, 3.
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that ensures errors smaller than 5 % for the different dispersion relations and for different ranges of
kH0 ∈ [0, 2M ]

100 ·

∥∥∥∥∥c2 − c2
Airy

c2
Airy

∥∥∥∥∥
∞

≤ 5 %, 100 ·

∥∥∥∥∥c2
g − c2

g,Airy

c2
g,Airy

∥∥∥∥∥
∞

≤ 5 %, 100 · ‖γ − γAiry‖∞ ≤ 5 %,

where ‖·‖∞ stands for the infinity norm

‖f‖∞ = max
s∈[0,2M ]

|f(s)| .

Note that we consider relative errors for the wave celerity and group velocity. However, absolute errors
for the shoaling gradient are considered to avoid singularities when dividing by γAiry.

It can be highlighted the great performance of the model LIN-NH2 even for large ranges of the
parameter kH0. Despite the complexity of the presented models, the analysis of the dispersive prop-
erties for the LIN-NH2 model are outstanding. With no more than 2 layers, it can accurately simulate
dispersive water waves of very high frequency.

Wave celerity c Group velocity cg

kH0 LIN-NH0 LDNH0 LDNH2 LIN-NH1 LIN-NH2 LIN-NH0 LDNH0 LDNH2 LIN-NH1 LIN-NH2

[0, 2] 2 2 2 1 1 4 2 4 1 1

[0, 4] 4 2 4 1 1 9 2 9 2 1

[0, 8] 8 2 8 2 1 17 3 17 2 2

[0, 16] 15 3 15 2 2 33 4 33 3 2

[0, 32] 29 4 29 3 2 66 5 64 3 3

[0, 64] 58 6 57 4 3 131 8 129 5 3

[0, 128] 116 8 113 5 4 261 10 257 6 5

Shoaling gradient γ

kH0 LIN-NH0 LDNH0 LDNH2 LIN-NH1 LIN-NH2

[0, 2] 3 2 4 1 1

[0, 4] 7 2 7 2 1

[0, 8] 12 3 13 2 2

[0, 16] 24 4 26 3 2

[0, 32] 48 6 50 4 3

[0, 64] 95 8 101 5 4

[0, 128] 190 11 202 7 5

Table 1: Minimum number of layers (L) that holds 100 ·
∥∥∥f2−f2

Airy

f2
Airy

∥∥∥
∞
≤ 5%, for f = c, cg the wave celerity

and the group velocity, respectively, and 100 · ‖γ − γAiry‖∞ ≤ 5% for the shoaling gradient.

5 Conclusions

A family of layer-averaged non-hydrostatic models for Euler equations with layerwise linear horizontal
velocities, named LIN-NHk with k = 0, 1, 2, has been presented. The derivation of these models follows
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from a layer-averaging procedure of the mass and momentum conservation equations, where normal
jump conditions associated with the weak formulation of the problem are taken into account. In the
notation LIN-NHk, the value k indicates the closure relation chosen for the vertical profile of the
vertical velocity and pressure. Thus, k stands for the degree of the polynomial approximation of the
vertical velocity, and k + 1 is the degree for the pressure.

Once the most complex model (LIN-NH2) is derived, simplified LIN-NH0,1 models are obtained from
simple assumptions upon the vertical profile of the vertical velocity, and therefore the pressure, just on
the vertical momentum equation. It is important to remark that for the incompressibility constraints,
the vertical profile of the velocity is not simplified for any model. For this very equation, the vertical
velocity is always a layerwise parabolic polynomial. It is essential to prove a dissipative energy balance
for all the proposed models. All the models are written in a compact form, which allows to prove
the dissipative energy balance in a few lines. It is done by defining some non-hydrostatic differential
operators, which satisfy a crucial duality relation. It is a remarkable issue, especially when designing
numerical schemes for such models (see [8]).

An analysis and a comparison of dispersion properties have been performed. In particular, we
computed the linear dispersion, shoaling, and group velocity. Interestingly, models LIN-NH1 and LIN-
NH2 provide accurate dispersion relations, although LIN-NH1 is a simpler model. Note that the latter
model is computationally cheaper since it has 2L equations and unknowns less than LIN-NH2 model.
LIN-NH1,2 models exhibit excellent dispersion properties for a wide range of wave numbers even
for few layers. Then, these models can accurately reproduce dispersive water waves of very high
frequency. We have also shown that LIN-NH1,2 models improve the results of the models introduced
in [9]. On the other hand, the LIN-NH0 model, which relies on a layerwise constant vertical velocity
assumption, provides poor results in the linear dispersion analysis. That would suggest that there
should be a restriction between the degrees of the polynomial approximation assumed for the different
variables. In particular, we could induce that the degree of the vertical velocity approximation should
be greater than for the horizontal velocity. The extension to the Navier-Stokes case for a general
rheology, accounting for the contribution of the deviatoric stress tensor, is addressed in the second
part of this paper. In the future, it would be also interesting to propose efficient numerical schemes
for LIN-NH1,2 models, following the strategy developed in [8] for LDNH models.
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A Summary and comparison of models

In this work, three layerwise models are presented. They are closely related with previous models
LDNH0,2 introduced in [9]. A comparison of all these models, including models LDNH0,2, has been
performed in Subsection 4.5 in terms of dispersion properties.

For the sake of clarity, we include in what follows a summary of the details of these models by
means of several tables. More precisely:

• In Table 2 we show the selected approximation discrete spaces for each model, the vertical
profiles of the velocity, non-hydrostatic pressure terms and dispersion relations. Concerning the
dispersion relations of these models, this is done by means of two variables (ζ1, ζ2) which, following
the notation introduced in Section 4, take the form

ω2 =
gk2H0

L
〈A−1e, e〉, with A = I +

k2H2
0

L2

[
ζ1I + ζ2

(
1

2
I − S

)(
1

2
I − ST

)]
. (54)

The dispersion relation for each model is then recovered by simply replacing the corresponding
values of ζ1, ζ2 given in Table 2.

• In Table 3, the unknowns of the model related to the velocity, Xα, are explicitly stated together
with the non-hydrostatic divergence operator, ∇NH ·Xα.

• In Table 4, the unknowns related to the non-hydrostatic terms, Qα, and the non-hydrostatic
gradient operator, ∇NHQα, are shown.
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α

Λ
α

w̄
α

Φ
α

Ψ
α

        
∇
N
H
·X

α
=

         

h
α
∂
x
ū
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Table 3: Summary of variables related to the velocity (Xα) field and its NH divergence (∇NH ·Xα).
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Table 4: Summary of variables related to the NH pressure (Qα) field and its NH gradient (∇NHQα).
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