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Non-hydrostatic layer-averaged Euler system with layerwise
linear horizontal velocity

C. Escalante* E.D. Fernandez-Nieto | J. Garres-Diaz!
T. Morales de Lunal Y. Penel 1

April 13, 2022

Abstract

A new hierarchy of non-hydrostatic layer-averaged models for the non-stationary Euler equations
is presented in this work, with improved dispersion relations. They are a generalisation of the layer-
averaged models introduced in [9], named LDNH models, where the vertical profile of the horizontal
velocity is layerwise constant. This assumption implies that solutions of LDNH can be seen as a
first order Galerkin approximation of Euler equations. This work focuses on particular weak solutions
where the horizontal velocity is layerwise linear on z and possibly discontinuous across layer interfaces.
Several closure relations of the layer-averaged system with non-hydrostatic pressure are presented. The
resulting models are named LIN-NH, models, with p = 0,1,2. Parameter p indicates the degree of
the vertical velocity profile considered in the approximation of the vertical momentum equation. All
the introduced models satisfy a dissipative energy balance. Finally, an analysis and a comparison of
the dispersive properties of each model are carried out. We show that Models LIN-NH; and LIN-NHj
provide a better dispersion relation, group velocity and shoaling than LDNH models.
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1 Introduction

Many efforts have been devoted to including dispersive effects in models in fluid mechanics, and in
particular, they have been widely studied in the context of shallow flows in the literature. There are
essentially two approaches to consider dispersive effects in this framework: Boussinesq type systems
and non-hydrostatic systems.

Boussinesq type systems are mainly based on classic shallow water system, whose unknowns are
the total height of the fluid and the horizontal velocity. The system is then extended by introducing
high order derivatives of the variables. The two pioneering works on Boussinesq models were pro-
posed by Boussinesq [3] and Peregrine [21]. Some other models were proposed afterwards: Madsen &
Sorensen [18,19], Nwogu [20], Serre-Green-Nagdhi [12,24], Schéffer & Madsen [23], Lannes [15], among
many others. For a review on Boussinesq type dispersive models, see [13,14].

Contrary to Boussinesq systems, non-hydrostatic models only consider first order derivatives of the
variables but with a larger number of unknowns. Usually, in addition to the water depth and horizontal
velocity, we find the vertical velocity, non-hydrostatic pressure, and other unknowns related to the
vertical profile of the different variables. One of the essential points of these models is the presence of
constraint equations related to the incompressibility condition, see for example [25] and [4].

Although both approaches seem quite different, they are equivalent, as it was shown in [7]. They
introduced a general formulation that relates classic Boussinesq systems and non-hydrostatic models.
It was shown that classic Boussinesq systems might be written as non-hydrostatic models. We want
to point out that the non-hydrostatic formulation has several advantages from the numerical point
of view. In particular, avoiding high order derivatives makes the numerical approximation easier.
Moreover, the treatment of boundary conditions is also more straightforward.

A strategy to improve the dispersion relation of such systems is to increase the accuracy of the
vertical profile for both velocity and pressure components. For this purpose, several attempts have also
been introduced in the literature. The so-called multilayer approach considers non-material vertical
interfaces, dividing the fluid into virtual vertical layers. Different profiles for the velocity and pressure
within each layer may be assumed. Notice that the term multilayer has been used sometimes for
stratified flow models, where one considers a constant density within each layer. This has no relation
with the approach we are considering in this paper. To avoid any possible confusion, in [9] it was
proposed to name the former (non-stratified flows) as layer-averaged models. We shall do the same in
what follows.

In [22] a non-hydrostatic layer-averaged model is proposed, which corresponds to the extension of
the hydrostatic model in [1]. The momentum equations are approximated by considering a constant



vertical profile for horizontal and vertical velocity components. Then, velocity may be discontinuous
at the interfaces, although the pressure profile is supposed to be continuous. However, a linear profile
of the vertical velocity within each layer is considered to approximate the incompressibility condition,
which is a compatible condition of strong solutions in each layer for this equation.

A similar model was proposed in [2], which assumes a constant profile for the horizontal velocity
and linear profiles for the vertical velocity and pressure. The common ground for both references is
that the horizontal velocity has a constant vertical profile within each layer and may be discontinuous
at the interfaces. A different assumption is found in [16], where a layer-averaged model is derived by
using a continuous global profile of the horizontal velocity, which is quadratic within each layer.

In [9] a hierarchy of models is presented, with an associated energy balance, where again a constant
profile is assumed for the horizontal velocity inside each layer. At the same time, several degrees of
freedom are introduced for the vertical velocity and pressure, accounting for the vertical approximation
of such variables. In that work, the linear dispersion relation was studied for the different models
proposed. It was shown that the dispersion relation converges to the exact dispersion relation for
Euler equations when the number of layers goes to infinity. A numerical strategy to solve these models
is proposed in [8]. Let us recall the notation of the models introduced in that paper as it will be helpful
in what follows. These models are named as LDNH; where LDNH stands for Layerwise Discretisation
Non-Hydrostatic, and k is the order of approximation. More precisely, LDNHy may be seen as a
generalisation of models [25] and [4], while LDNH; is as a generalisation of the Serre-Green-Nagdhi
model. LDNH; is an in-between intermediate model. Similarly, in [5] authors derived a weighted-
averaged non-hydrostatic pressure model, under the assumption of linear horizontal velocity, whereas
the vertical velocity and the non-hydrostatic pressure was assumed to have a quadratic profile.

This paper focuses on the derivation of 2D layer-averaged models where the vertical profile of
the horizontal velocity is supposed to be layerwise linear and discontinuous at the interfaces. The
extension to 2D is straightforward. Concretely, a hierarchy of novel models is introduced, named as
LIN-NH; models for £ = 0,1,2, where the index k corresponds to the degree of approximation of
the vertical velocity in the vertical momentum equation. Therefore, three models are proposed, based
on three different profiles for the pressure, which are related to the approximation of the vertical
momentum equation and the incompressibility condition. In addition, the pressure profile is considered
as a polynomial of degree k + 1. All the proposed non-hydrostatic models also satisfy a dissipative
energy balance. As we show in this paper, since more unknowns are introduced, linear dispersion
relation, group velocity, and linear shoaling are greatly improved for such models. In particular, the
LIN-NH; and LIN-NH; models exhibit excellent results for these dispersive properties. Moreover,
another contribution is a general procedure to compute the group velocity and shoaling gradient from
the dispersion relation for the wave celerity.

The paper is organised as follows. In Section 2, we state the notation and the layer-averaged
procedure for the layerwise linear horizontal velocity case. Subsection 2.1 focuses on the discrete
spaces and hypotheses over the vertical profile of each variable (horizontal and vertical velocities and
pressure), as well as the normal jump condition at the interfaces associated with the weak formulation
of the Euler system. In Subsection 2.2 we describe the vertical averaging of the mass and horizontal
momentum equations without detailing the pressure terms. Section 3 is devoted to derive the cascade
of LIN-NH;, non-hydrostatic models, for £k = 0,1,2. The dispersive properties for these models are
analysed in Section 4, and some conclusions are presented in Section 5. Finally, in Appendix A we give
a detailed proof of the energy balance satisfied by the LIN-NHs non-hydrostatic model.

2 Initial system and layer-averaged approach

This section introduces the general settings associated with the layer-averaged approach for the FEuler
equations. In this work we shall assume a piecewise linear approximation of the horizontal velocity.
This layer-averaged approach can be seen as a technique to approximate the solution of the Euler
equations in the framework of the Discontinuous Galerkin methods. The final model that we obtain is
a system of partial differential equations. The solution of this system may be seen as a particular weak
solution of Euler equations, in the sense that it corresponds to an approximated piecewise smooth
weak solution that may be discontinuous at the internal interfaces. We remark that these interfaces



are not physical or material interfaces. They represent a virtual decomposition or partition of the
domain vertically. The procedure is as follows: first, we consider a vertical discretisation. Second, a
layer-averaging approach is considered assuming an appropriate structure of the weak solutions. In
particular, here, we shall assume that the velocity vector has horizontal components that are linear
in the vertical z-direction within each layer. Third, some closure relations (or constraints) are needed,
and they will be presented later in Subsection 3.1.

For the sake of simplicity, we shall consider here a 2-dimensional space, where the space variables
are denoted by (z,z) € R2. Nevertheless, it could be extended easily to the 3D case. In what follows,
V = (0, 0,) represents the usual differential operator. Let us consider now an incompressible fluid
with constant density p € R. Let us denote g € R the gravity acceleration, p € R the pressure,
U = (u,w) € R? the velocity vector, and a moving domain

Q) = {(x,z) L (@) < 2 < zp(z) + H(t,x)},

where z, assumed independent from time is the topography and H the water height (see Figure 1).
The Euler system is written, for (x, z) € Q(t), as

op+V-(pU)=0,

1
o (pU)+ V- (pUU +plI) =pg, .

where g = (0, —g)/ € R? and I is the identity matrix. The system is completed with initial and
boundary conditions, and the following kinematic conditions:

8tH+U]Z:Zb+H-V(zb+H—z) =0, (2)
Ul,—, -V (2 — 2) = 0. (3)
uy (t, ) Zr41
Ua (2, 7) —/ “a+tl
H(t,z) 1

uy(t, x Z3

[N

Figure 1: Sketch of the vertical partition of the fluid domain.
Now, in order to apply the layer-averaged approach, the domain is subdivided along the vertical

direction into L € N layers with thickness h, (¢, ), which are denoted by Q. (¢). The layers are separated
by L+1 interfaces L,11/2(t), defined by 2z = z,41/2(t,x) for @ = 0, 1,..., L. The interfaces are assumed

sufficiently smooth, at least C! (see Figure 1). More explicitly,
Qa(t) = {(1’,2) : Zoc—l/?(ta l‘) <z< Za—i—l/Z(t:x)}'

4



Notice then that N
za+1/2:zb+2h@, fora=1,...,L,
B=1
where 2, = 219 and ho = 2441/2 — Za—1/2- Moreover, the total height of the fluid is equal to
L L
H= Z ha, — with he =loH, where (€a)(ne,. 1} are such that £ € [0,1], Z lo=1. (4)

a=1 a=1

Let us also denote by z, the midpoint of the layer 2, i.e.,

Za-1/2 T Zat1/2 ha

Zo = 5 =Za-1/2+ 5 fora=1,...,L.

Furthermore, let us introduce the following notations: for any function f(¢,z, z), we define:

e Its approximations at the interfaces L, /o for a =0,...,L
— _ . + _ .
fa+1/2 - Zﬁlzlglm f\QOn fa+1/2 - Zﬁlzlgllm f\Qa+1.
Z<Za+1/2 Z>Zo¢+l/2
In the case of continuous functions, we shall simply write f, /2 = f;r_l j2 = f;+1 /25
e The average value over the layer {2,
_ 1 Ra—1/2
folt,x) = h/ ft,x,z)dz; (5a)
@ Jza—1/2
e The linear average of f over the layer ),
+ —
—~ 19T
o= o 1/2 a+1/2; (5b)
2
e The variation through the layer €,
I + .
(0f)a = at+1/2 ~ Ja—1/2 (5c)
e The average value through the interface L,1/2
= f ++1 2t Jasy
fa+1/2: ol 9 otl/ ) (5d)
e The jump across the interface £, 1/2
[f]a—i—l/? - fo—:rl/Z - (;Jrl/g' (56)

Note that, in general, f, # fa, but the equality holds if f is constant or linear in z over the layer €),.

2.1 Layerwise approximation of the variables and normal jump
conditions
This subsection deals with the main hypotheses upon velocity and pressure fields in the layer-averaged

framework. In particular, we detail here the vertical profile for the variables considered in this work
and its notation. We also write the normal jump condition associated with the weak formulation.



2.1.1 Choice of discrete spaces for velocity and pressure fields

The layer-averaged models presented in [10,11] assume that the horizontal velocity is constant in the
z-direction within each layer. In practice, this will formally limit us to first order approximations of
the solution for the Euler equations. In this work we shall consider a piecewise linear profile in z for the
horizontal velocity. Concerning the other variables, a piecewise parabolic profile in z is supposed for the
vertical velocity, and a piecewise third order polynomial in z is used for the non-hydrostatic pressure.
Nevertheless, some other alternative simplified equations will be presented afterwards, resulting in
simplified models.
More explicitly, let us specify the discretisation assumptions for the velocity unknowns

!

Uy :=U, = (Ua,Wa) ,

where u, and w, are the horizontal and vertical components of the velocity field in layer ,. Then,
the following profiles and notation are chosen for this model:

Horizontal velocity: a linear profile on the vertical direction is assumed within each layer

U (t, T, 2) = Un(t, x) + Aa(t, x)(z — za(t,az)), for 2 € [z4_1/2(t, %), 2041/2(t, 7)), (6)

where u, and A\, are the averaged horizontal velocity and the slope respectively in the z direction.
In what follows and for the sake of simplicity, we shall not write the dependence of the variables on

(t, z) explicitly unless necessary. It follows then that the limit at the interfaces u_ and u' . are
a+1/2 a—1/2
obtained by evaluating (6) at z,41/2 and z,_; 9, respectively, i.e.,
_ _ haAa " _ hoda
Upyr/g = Ua + o Uo—1/2 = ta = 75 (7)

Vertical velocity: focusing on the incompressibility condition and given the piecewise linear pro-
file (6) for the horizontal velocity, a compatibility criterion leads us to consider a piecewise parabolic
polynomial in z, that is

Yo

Wo (2) = wa(2a) + Pa (2 — 2a) + B

(z — Za)z» for z € [Za—1/2a2a+1/2]- (8)

Hence, there are three parameters to set. On the one hand, the integration of (8) over the layer yields

(9)

Note that wq(z4) # W, in this case because of the contribution of the second order term.
On the other hand, a second order Taylor expansion, which is exact for a quadratic function, yields

Wa(2) = wa(2a) + (0:wa)|,_, (2 — 2a) + (szwa)|z=za (2 —2,2&)2, fora=1,...,L.
As we want w, to approximate wq,, let us mimic the incompressibility constraint d,w = —d,u
using (6). Hence we impose
(8zwa)|Z:Za = —0uUq + AaOz2a, and (82211)04)‘2:2& = —0z M. (10)
Therefore, combining (8), (9) and (10), we get
Wa(2) :@a—kgoa(z—za)—k% ((z—za)z— fé) , (11)



fora=1,...,L, with

{ Vo = —O0plUq + AaOrZa, (12a)
1/101 = _8x>\a~ (12b)
Evaluating (11) at z44.1/2, we obtain
_ _, haa | h2ta n _ haYa | hita
Wot1jg = Wat —5— + 01‘2 , Wa 1j2 = Wa— —5— + L{Q . (13)

Pressure: the total pressure is decomposed into a hydrostatic part g (z, + H — z), and a non-
hydrostatic counterpart g:

p=p(g(z+H—2)+q),

where we assume that the pressure is known at the surface, which is usually set to zero.

As mentioned above, we choose a layerwise linear horizontal velocity and a layerwise parabolic
vertical velocity (potentially discontinuous across the interfaces). Consequently, the pressure must be
a layerwise cubic function due to the vertical momentum equation. We assume in the present work
that the pressure is continuous across interfaces.

Hence, we are looking for a 3rd-order polynomial g, which satisfies the following requirements:

3
)

Qa(zod:lﬂ) = qa+1/2; and  0.qa(2a) = 7—

Together with the definitions (5), this leads to

34, — Ga Z— Zo (2= 2y)? z—2,)3
) = e g, 2 0 - ) C el a0 - m) BN

for z € [2a-1/2; 2a+1/2]-

2.1.2 Jump conditions and evolution equation for the layer midpoints

Following [11], the model is deduced by looking for a particular piecewise smooth weak solution
(p,U,p) of System (1). More explicitly, we search for a solution that satisfies the weak formulation
of the system for a particular set of tests functions. We refer to [11] for further details. In particular,
they correspond to a classic, smooth solution inside each layer €2, while it should satisfy the normal
flux jump conditions across the interfaces Lo11/2, @ =0,..., L.

The jump condition for the mass conservation law reads

[(:PU))y1/2 * (BiZas1/2 OnZasiy —1) =0, (15a)
and for the momentum conservation law
[(/)U, pU @ U — pI)]a+1/2 ’ (8tza+l/27 8wzoz+1/27 _1) =0. (15b)

We are considering here a constant density for the fluid. Hence, following [11], (15a) implies

T _ T+
Latig =Tq 1 =T0t1/2 (16a)

where I', 1/ is the mass transfer term through the interface £,1/2 given by

+ + +
Fa+1/2 = _8tza+1/2 - “a+1/28a:za+1/2 + Wo1/2: (16b)
In particular, we infer that

a Foc12+71,
Oi2a + UaOp2a = Wa — hz)\aaxha - L2 9 +1/27

(17)

which gives the evolution of the midpoint at each layer €Q,,.



2.2 Layer-averaged approximation: mass and horizontal momentum
equations

In this section we obtain the mass and horizontal momentum equations of the target model by a layer-
averaged process. In what follows, we use a general depth-integration process for mass and horizontal
momentum equations.

Mass conservation. The incompressibility condition is integrated over each layer, which leads to

Za+1/2
0= / V- -U,dz

a—1/2
Za+1/2 _ i . n
=0, / Uq (t,x,2)dz | — ua+1/2az2’a+1/2 + uafl/z&vza,lp T Wy~ Wy gy
Za—1/2

Taking into account the definition of the mass transfer terms (16), we obtain the mass conservation
laws

atha + ar (haﬂa) = Fa—1/2 — Fa+1/2, o = 1, e ,L, (18)
where we recall that 'y /5 account for mass transfer across interfaces L,41/2. Actually, they can be
expressed in terms of the velocities by combining previous equations, getting, for a« =1,...,L — 1,

L L
Torijp= Y 0 (hs(us—1)), with W= Lol (19)
B=a+1 a=1

for ¢, defined in (4). Moreover, summing Equation (18) over o we get

O H + 8, (Hu) = 0. (20)

Therefore, it is equivalent to considering Equation (18) and the set of equations defined by (19) and
(20).

Note that I'y ;5 and I'; 15 correspond to the mass exchange at the free surface and the bottom,
respectively, and they are set to zero unless specified. In any case, both of them should be provided
as data.

Averaged horizontal momentum conservation. The approximation of the horizontal mo-
mentum equation is deduced in two steps. First, a layer-integration of the horizontal momentum equa-
tion provides the horizontal momentum conservation law equation related to the averaged velocity,
Ugy-
h3 \2 1 [Fa+1/2
O (hali) + Oy <hau(21 + ‘i;‘) + p / OzPa dz = —Uqy1 /2004172 + Ua—1/2la—1/2, (21)
Ra—1/2

see (5) for notations. Note that here we have used the jump condition (15b), otherwise a term u} /2
would appear instead of uq41/o. This is done in what follows when the limit values of the horizontal
and vertical velocities at the interfaces appear.

Secondly, we evaluate the mean deviation of the horizontal velocity and use (6) to derive the
conservation law associated with A,. To do so, the horizontal momentum equation is multiplied by
(z — zo) and then integrated inside the layer.

To this aim, let us first compute the horizontal momentum equation multiplied by z and integrate
it inside the layer.

Ao h? h3 h3 1 [Fat1/2
O | ha | zalla + 2522 ) ) 4+ 0y ( hazal® + N2 2a =% + U A ~2 | + = / 20, pa dz
12 12 12) " plin

Za+1/2 " .
= / UaWo A2 — Zog1/2Uar1/20 at1/2 T 2a—1/2Ua-1/20a—1/2 (22)
Za—1/2



Finally, by using (17) and subtracting (21) multiplied by z, to (22), we obtain (after dividing by hy)

h2Aa hedata\ | halia 22 1 [Foti/2
@(a >+%<a u>+“u@M+‘“*Mﬁ-/) (2 = 20)0zpa dz

12 12 12 12 pha .. .,
hoda | Ta = Uat1)2 hada  Ua — Ua—1/2
:Fa+1/2< ?2a+ = 2a />_Fa1/2< ?201— = 2a />
1 Za41/2
— UaWq + — / UqWe d2.
ha Za—1/2

The last two terms in the right hand side are obtained due to the definition of the vertical velocity

(11)
- 1 Fat1/2 Uy h? Ao h?
— Uy Wy + e UqWeq dz = ?20‘81)\01 + ?20‘

Za—1/2

(=02 + Aa0z20) -

Combining the last two equations, we finally get

h2 Ao h2 o h2 Ao 1 Za+1/2
875( @ )+6'$< a ua) —&—O‘&Cua—i—/ (z — 20)O0xpa dz

12 12 12 oha ).\,
hada  Ta — Uas1)2 hada  Ta — Ua 1/2
=T -T - 2
a+1/2< 12 + 5 > a—1/2< 12 5 , (23)

fora=1,...,L.

Note that the integrals involving the pressure in (21) and (23) have not been specified. These terms
will be computed later on depending on the assumption on the pressure profile. The simplest choice
corresponds to the assumption of hydrostatic pressure, and this model is presented in the following
subsection. Non-hydrostatic pressure models are deduced in Section 3.

2.3 LIN-H model: linear horizontal velocity and hydrostatic pres-
sure

Let us mention the case of hydrostatic pressures. In that case, the final system is defined by (18), (21),
(23), where, as it is usual in the framework of hydrostatic shallow flows, the pressure is defined by

p(2) = pg (s + H - 2).

Now, the integrals associated to the pressure in (21) and (23) are
1 [Fat1/2 1 [Fot1/2
- / Ozpdz = ghoOy (2o + H) and / (z — 24)0zpdz = 0.
p Za—1/2 p Za—1/2

Therefore, the final system for hydrostatic pressure is defined by the following set of equations:

atha + 8x(haaa) = Fa—l/Q - Fa+1/27

h3 )\2 B N
8t(hzaﬂa) + az (haui —+ ‘1204> + ghaam(zb + H) — —ua+1/21—‘a+1/2 + ua—l/QFa—l/Qa
5 h2 Ao v a h2 Ao Tia +%Ma* (24)
t 12 T 12 12 'z Ux
hoz)\oz Ua — aa—i—l/Z hoc)\a Uq — ﬁa_l/g
fora=1,..., L, where

~ U+ Uat1 | hada — hat1Aat1
Uat1/2 = 9 4 .

This model verifies exactly a dissipative energy balance, stated by the following theorem.



Theorem 1 System (24) satisfies the dissipative energy balance

L L H B2
Oy ZEa + Oy Zﬁa <Ea+gh(x2+ a12a> <0,
a=1

a=1

—2 —2 212
+ ha )\ H
Fo = h"(ua =+ 34”9(%*2))‘

The proof can be seen as a particular case of the result stated in Thereom 2.

where

3 A hierarchy of non-hydrostatic layer-averaged systems
with linear horizontal velocity: LIN-NH, models

We consider now a non-hydrostatic pressure. Therefore, we must define the vertical profile for the
vertical velocity and, consequently, for the non-hydrostatic pressure. Note that the incompressibility
condition implies that inside each layer, the vertical velocity is a polynomial on z of degree d + 1,
where d is the degree of the horizontal velocity (in this paper, we consider d = 1). Thus, a hierarchy
of models is presented, based on the degree of the polynomial employed to approximate the vertical
momentum equation. We consider a polynomial of degree p < d+ 1, on z for the vertical velocity. We
also consider that the pressure profile is a polynomial on z of degree p+ 1, which becomes an essential
hypothesis to obtain a system with an associated dissipative energy balance. In [9], authors introduced
a hierarchy of non-hydrostatic layer-averaged models for Euler equations for d = 0 and p < 1.

In the following subsections, firstly, the incompressibility condition within each layer is deduced.
Secondly, three models are proposed, corresponding to different approximations of the vertical veloc-
ity and non-hydrostatic pressure counterparts. All of them satisfy a dissipative energy balance. We
will detail the more complex model, where the vertical velocity is a layerwise quadratic polynomial
according to the incompressibility condition, and therefore the non-hydrostatic pressure is a layerwise
cubic function. Later, we see that if the vertical structure of the vertical velocity is simplified just
for the vertical momentum equation, then the model degenerates to simpler models, but keeping still
an analogous energy balance. This hierarchy of non-hydrostatic models will be denoted by Multilayer
Horizontal Linear discretisation Non-Hydrostatic p model (from now on LIN-NH,), where p is the
degree of the polynomial approximating the vertical velocity in the vertical momentum conservation
equation, that is, p =0, 1, 2.

3.1 Averaged incompressibility condition

In the non-hydrostatic framework, we need some extra information or constraints to solve the resulting
system, which now includes the degrees of freedom related to the non-hydrostatic pressure. Note that
for each layer, there are three unknowns that define the non-hydrostatic pressure profile, namely g, 12,
q,, and m,. Therefore, one would need three constraints at each layer.

On the one hand, two restrictions are associated to the relationship between the first and second
order vertical derivative of the vertical and horizontal velocities. Concretely, in Subsection 2.1 the
profile for the vertical velocity was obtained, where from the incompressiblity inside each layer we got
(12).

On the other hand, the jump condition (15a) reads

+ - _ (.t —~ _
Wat12 ~ Wat12 = (“a+1/2 - “a+1/2) OzZat1/2; a=1...,L-1 (25)

By substituting (7) and (13) in (25), we obtain

T . ha+19a+1 h?x—i—lwa-i-l T — ha®a . hi%
atl 2 12 « 2 12
Py 1\ R\
:(ua+1—()&]-2(m—ua—()[2oé>ax2a+l/2, 0421,71/—1
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To get the Lth constraint, let us integrate V - Uy = 0 between z; and z;/5 (see [9,25]). We obtain
thanks to (9) applied to a =1

a +
B h w1 — Wy g
E)xul — )\185521 — Flf)xAl =+ TQ/ =0
Finally, the incompressibility conditions read
(0o = —O02TUa + AaOz2a, a=1,...,L.
Yo = —0zAa, a=1,...,L,
Tasl — ha+190oz+1 4 hi+1w&+l — W, — hoﬁpa . hgﬂ!}a
2 12 2 12
hat1A haA (26)
= (uaH - % S T “>8mza+1/2, a=1,...,L—1.
B h W1 — Wy
Opl — A\10p21 — Elax)\l + TQ/ =0.

where, in order to verify the kinematic condition (3), we set

wfﬂ:wb: ( Alh)a Zp-

3.2 LIN-NH; model: non-hydrostatic model with w, € P,|z]

In what follows we shall detail the first non-hydrostatic model that we propose here. It will be denoted
by LIN-NHj model. Its final formulation is (39) below with the subsequent notations. Later on, in
Subsection 3.3 we shall introduce as well two extra simplified models, named LIN-NH; and LIN-NHg
models.

Let us recall that, up to this point, we have evolution equations (21) and (23) together with the
restrictions (26) and the jump conditions (19) and (20).

In order to close the system, some extra equations are needed, which are obtained by successive
integration on the vertical momentum conservation equation, as shown in what follows.

Let us first rewrite evolution equations in the non-hydrostatic framework by computing explicitly
pressure terms. For (21), we have

1 a+1/2
P / Oxpa dz = ghaOz (2 + H) + 0z (hals) — dat1/2082a+1/2 + Ga—1/20%a—1/2;
a—1/2
and then
h3 \2
at(haﬂa) + 8:1: <hau§ + (1206 + haqa> + ghaax(zb + H)
= QQ—I—I/Qa’EZa—I—l/Q - qa—1/23xza—1/2 - ﬂa+1/2ra+l/2 + ﬂa—l/QFa—l/Q- (27)
For (23), we have

|: 5q « 0‘:|> _}_gaaxza

2
<h [ 8q)a m]) _ da+1/202%a41/2 + da—1/2022a-1/2

w

Za+1/2
/ (z — za) &;padz——
ph Za—1/2

2



and then

h2 o4 h2 alla 1 a a h2 a
8t< ot >+8x< oo >+108x <ha [(5q) +”]> 4 teda ) G 4 Gua

12 12 2 3 12
o _8zha (0q)a T Ta X CIa+1/2azzoc+1/2 + ch—l/anZa—l/Q
10 2 3 2
haAa aoe—|—1/2 — Uq haXa U — aa—1/2
+ Fa—i—l/? < 12 - 9 ) - I‘04—1/2 ( 192 - 9 ) ’ (28)

fora=1,...,L.
Let us focus now on the equations for the variables involved in the vertical velocity. To do so, we
consider a basis in Pa[z] of test functions

(z —20)%> 2
o 17 R - )
Xa(2) € { z—z 5 24

and compute the averaged equations

Za+41/2 Za+1/2
Oy / WaXa dz | + 0, / UaqWa Yo A2
Za—1/2 Za—1/2

Za+1/2
+ / (XaazQ(x — waatXa - uawaaxXoc - wiazXa) dz

Ra—1/2

= ~Xal, wa+1/2ra+l/2 + on|za_1/2 Ujafl/2ra71/2’ (29)

a+1/2

e When considering y,(z) = 1 in (29), we obtain a standard evolution equation for w,:

hi@a)\a )

825 (hawa) + aac (hauawa + 12

= qa-1/2 = Qa+1/2 — Wat1/2Laq1/2 + Wa—1/2Ta—1/2- (30)

o If xo(2) = 2 — 24 in (29), using (17), we obtain

hi% hi@aua hg)\ocwa hi‘:@a _ hg/\a _ hgiﬁi ~ _
8t< 12 >+ax< 2 360 >+ 13 Osfla+ =15 0ula = 50" + fta (@2 = o)
ho,

=5 (Tac1y2 (Wa — Wa1/2) = Tat1/2 (Wat1/2 —Wa)), (31)

where we recall that g, is defined by (5). Taking into account the mass conservation equation
(18) and dividing by hg, it is rewritten as

h2 o, R2oute WAAata\ B2 Ri2 B3 Atba
8t<aso>+am<as0u+a w>+ ata g o awa+ oAt

amha + aa - @a

12 12 360 12 -~ 720 360
A <h§<§a N Wa — §a+1/2) T (h(i(ga | Wa — 12%_1/2) (32)
o For xo(2) = (2 — 24)?/2 — h2 /24, one gets
O (%) + Oy (hzf;(‘)u& + hg‘;’%?“)
o, S U o)
= heTat1y2 (hgza + o _1112}%1/2) —hZla 1) <— h;ja + e _12&_1/2> - (33)
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Again, we use the mass equation (18) and divide by h2, so that it writes

at<ha¢>+aw<awu+aw >_a Pag . Mapad

720 720 360 120 ¢ 240

(5(])04 hgﬂwba hawa = Wa — ﬁ;a—i-l/Q
o = Ra _ p
T 0 ar1/2\ 3gg T o T 12

R0 haa = Wa — Wa—1/2
Fa—1/2< Vo hat + />. (34)

360 24 12

For the sake of simplicity, let us introduce the following notations:

2
ha Aoz P hoc Pa hawoz

Aa - ) a — 5 o — .
2V/3 23 125

Hence the LIN-NHy model, which is made of (20,26,27,28,30,32,34), reads

OuH + 0, (HT) = 0,

at(haﬂa) + 0y (haui + haAgé + haqa) + ghozax(zb + H)

= qa+1/28xza+1/2 - QQ—I/anZa—1/2 - ﬂa+1/2ra+1/2 + ﬂa—l/QFa—l/%

3 —
8 (haly) + O, <haAaua+haf <q6“+1/2 fa1/2 | ; )) + haAaOyTin

5 2
\/§ da — Ga—
T < = 2 =t )3 ha = V3 (dat1/205%a11/2 + da-1/20570-1/2)

+2v/3 GoO0r20 = Fa+1/2 (Aa - f(ua+1/2 - Ua))
_Fa—1/2 (Aa - \/g(ﬂa - ﬂa—l/Q)) )

Oy (hawa) + 0y (haﬂoawa + hocAaq)oc) = ~qa+1/2 + do—1/2 — @a+1/2ra+1/2 + wa71/2ra71/27

O (ha®y) + Oy (ha<I>aua 2\fh AU ) + haMoOpWa — 2¢/3V2 + ﬁA U o0ihe

da + da— _ ~ _
+2v/3 ( +1/2 5 1z _ qa> =Tay1/2 (q)oc — \/g(onrl/Q - wa))
—Lo_1/2 (P — V3(Wa — Wa—1/2)) ,

O (ha¥y) + 0, (ha\I/aua—i—Z\E)/gha(I)aAa) 6‘fc1> AaOrho + 6V30,9,,

2v/5 L
t- (dat1/2 = Ga—1/2 — Ta) = Cas1/2 (2‘I’a + V150, + V5(Wa — wa+l/2))
\ —To_19 (2¥s — V1I5®q + VB(Wa — Wa—_1/2)) »

13
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fora =1,..., L, combined with the following constraints,

;

haOyTia + 2v3®4 — 2v/3AM00424 = 0, a=1,...,L,
2
J§%+fim@%wam@:m a=1,... L

5 15
waJrl - \/gq)oﬂrl + \/g\I’aJrl — Wq — \/g(I)aJrl - \/B\I’a+1 (37)

== (Ha—i-l — \/gAa-i-lﬂa — \/ngH_l)azza_,’_l/z o = 1, e 7L - 1,
I +

_2V3 1 W1 =Wy
0,u1 — —MN10y 21 — —= (0, A1 — A0 D —= =0,

U1 hl 10221 \/g( 1 1 1) + h1/2

where
w;r/Q = (ﬂl — \/gAl)abe.
In System (36) the velocities at the interfaces are given by
wiil/Z =W, & \/§<I)a + \/5\1/0“ (38)
“Lﬂ/z = To £ V3Aa,

and therefore 0ot A A
~ u —
Uai1j2 = afuaﬂ +3 %aﬂ
and
- w w b, — P v 04
Ty = ot Totl +2wa+1 +3 2 ot 5 otl | ol “atl +2 otl

The system is thus composed of 8 L + 1 equations for 8 L 4+ 1 unknowns,

(H7 {ﬂaa AOHEOM ®O¢7 \I]quon qa71/27 7705}5:1) .

Finally, let us rewrite System (36) and Constraints (37) in a compact way which will have the same
structure for all models LIN-NH:

O.H + 0, (Hii) = 0, (392)
8t(hozXo<) + aa:(hozxaﬁa) + Fa + vNHQOc = Saax (Zb + H) + Foz+1/2G";r - Fa71/2G;7 (39b)
VNH . Xa = 0, (39C)

where we introduced some notations, namely the vectors of unknowns

Xao=|Wa | Qa = Qa—1/2 | »

@ T

where
9z (haAZ) —gha
ha\oOyTg, 0
F,= Oz (ha Ao ®y) ) Sq = 0 )
0
0

[\

259, (hahaWa) + hahadela + 25NV 0D h,
2

S

8ac(hoonc(I)a) - %Aaq)aaxha + 6\/§(I>a\lla

! ‘
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—Ug+1/2
Ao+ V3(Ty — Ugt1/2)
GE= —Wat1/2
D + V3(Wa — Wat1/2)
20, £ V15®o + VB (Wa — Wast1/2)

and the following differential operators, for aw € {1,..., L}

9z(haly) — (6 (q022))
‘f {ax (ha ((53)”‘ + 7;)) 10,0570 + ( (% > Ooho — 10(qdp2),
VNEQo = (69)a
2V3 (Go — 1)
25 (60), — )

Then for o € {2,..., L} we define

haOplia + 2v3P4 — 2v3M 00,24
Wo — Wa—1 — (ﬂa - Hoz—l)a:czaflﬂ - \/g(q)a + (I)oz—l)

2v/5

i(\l} - \Ila—l) + \/g(Aa + Aa—l)aarzafl/Q
Vg - Xo = \/, 5!
+ﬁ(A 8 h haaan - Aa—laxha—l + ha—laan—l)

~ 12v50, + *f (haOzAa — Aadzhy)

and finally

h10:T1 + 2v/3®1 — 2¢/3M10,21

3 2
Vg Xy = | W1 — 02 + V3(A10,25 — 1) + £(1\15’xh1 h10:A1) + i\l’l

2
*!\1:1 4+ Y2 v3 = (m0sAy — A10ghy)

These definitions of the NH-gradient and the NH-divergence operators satisfy the following duality
relation,

- - \/g (5Q)a T
; (VNHQa = z:: vNH Xa +a (Zh [ 5 Aa< 9 +3) . (40)

Remark 1 Notice that setting Ao, =0, ¥, = 0 and m, = 0, System (39) reduces to the LDN Hs(L)
model described in [8] where the assumptions were: a layerwise-constant horizontal velocity, a layerwise-
linear vertical velocity and a quadratic pressure.

An interesting property of such a system is that it satisfies a dissipative energy balance, as stated
by the following theorem.
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Theorem 2 The proposed LIN-NHy model, defined by (39) satisfies the dissipative energy balance

L L
H
61} (Z hanz> + 0:1: ( Z ha [ua <Ea + 95 + Ai + QQ> + (I)ozAawa
a=1

a=1
T Q‘f%\DQAa + ?Aa ((5q)a W“) D <0

X, |2 H
Boi | 5' +g<z”+z>'

PRrOOF: The proof relies on algebraic relations. Multiplying (39b) by X, we then use the duality
relation (40), the divergence constraint (39¢) and the following equalities:

where

X, X, |? X, |?
Xa : [at(haXa) + ax(haxaﬂa)] — 61‘, <ho¢‘ 9 | > + am (hoz‘ 2 ‘ ua> + ‘ ‘ (Fa—1/2 - F04—5—1/2) )

2
2V/5
and

Aaﬂa + q)awa + Tq)a‘;[la > )
S - X0, (Zb—i-H) = 0Oy (SQ'X(Z(,—FH)) +g(zb+H)8x (haﬂa)
=0y (SOé -X (Zb + H)) +9g (Zb + H) (Fafl/Z - I‘onr1/2) -9 (Zb + H) Otha,

F, X,=0; (haAa

where
H H H
g (26 + H) Opha = g <Zb + 2> Othe + ggatha = 0 <hag (Zb + 2>> - % (haOyH — HOthy,) .
and, given the expressions of interface velocities (38),
’2

Xa

Lot12Gy —Too12Gy + 5 (Lot —Taz1/2)

_ Ugt1y2 _ Woirsa
Yayr2 | 79 T Uat1/2 T Wat1/2 T " Wat1/2

qu—1/2 er—1/2
—To 12 [U;r_l/g (2 - a04—1/2> + wz_l/g (2 - @a—1/2>] .

Summing the last equality over all layers, we get

L u_ +ut w +wh

~ a—1/2 a—1/2 ~ a—1/2 a—1/2
E Loc1/2 [(ua1/2 - Y 5 Y ) [U]a—1/2 + (wal/Q - Y 5 / ) [w]a1/2] =0
a=1

due to the definition' of Ug+1/2, Wat1/2 and

= I-‘cv—l-1/2

(haO H — Hdyha) = 0,

N

L L
ZQ(ZI;+H) (Ta—1/2 = Tay1/2) =0, Z
a=1 a=1

which completes the proof. O

Notice that thanks to the fact of writing the compact form (39) and the duality relation (40) the
proof of Theorem 2 has been notably shortened. However, for the sake of clarity and completeness, we
give the detailed proof in Appendix A.

IHere, the average at interfaces is chosen to be the convex combination (%, %) A more general combination (v4—1/2,1 —

Ya—1/2) would provide a negative term, which would ensure the decrease of the energy.
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1-layer model

In the 1-layer case, the model may be written in Boussinesq form by expressing all variables in terms
of the averaged horizontal velocity and the fluid height as the only unknowns of the system. As we
have said previously, this will result in a system of equations that contains third order derivatives in
space and time. See for example, [9], where it is shown that the LDNHs model with 1 layer coincides
with the Serre-Green-Naghdi model. More explicitly, the model proposed in this work for 1-layer case
may be written as follows,

O,H + 0, (HT) = 0,
Oy(Hu) + 0,(HU?) + 0,(HA?) + gHO (2 + H) = —0:(Hq) — q1/2022,
Bu(HA) + 8, (HATG) + HAd,u = ‘fax (H (‘“2& - g)) — 2330, (zb n I;)
L J(q; ~TY o+ Bz
o+ V3o, <zb . ) + o,
u

3
HO, H
¢ =- +Aaz +—=1,
/3 <z” 2)
UV=—— (AO,H— HO,N),
Nﬁ( )
Q12 = H(07w + U0, W) + 0 (HA®),
_ @y 1 - 24/5 - )
= L4~ |H(H, . ®) + =0, (HAY) + HAO, W — 2V/3¥
q 2+2\/§ (8t+u8)+56( )+ HAD,w — 2302 +

T=—q 2+ \25 [H(at\If +ud, V) + 6\/§<I>\If} + 0,(HP®A) — 39A0, H.

w = wp —

2\5/5A\I/8xH :

Note that by a subsequent substitution of the different unknowns of the system into the second and
third equations, we easily obtain a system formed by three equations with the unknowns H, @ and A,
which includes terms of third order derivatives in space and time.

3.3 Simplified non-hydrostatic models

We propose now to obtain two simplified models in order to reduce the complexity of the previous one.
The main objective is to reduce the number of unknowns related to the pressure and consequently
the number of constraints. From a numerical point of view, this would be important to reduce the
computational cost. For example, if a projection method is considered, it will be needed to solve a
linear system for the pressure where the number of equations is proportional to the number of pressure
unknowns and layers. Then, for the simplified models, we consider a more straightforward structure for
the vertical velocity and, therefore, the non-hydrostatic pressure. We remark that it is essential that, to
obtain models with an associated exact energy balance, we must always consider the incompressibility
equation without any simplification on the vertical velocity profile.

We mention that among the two simplified models presented below, named LIN-NH; and LIN-
NHj, the one corresponding to a layerwise constant vertical velocity (LIN-NHj) does not produce
good results concerning the dispersive properties. However, we find interesting to show these results
for the sake of completeness in the study, since it is natural to wonder whether it is a reasonable
simplification or not. A possible reason for the poor results for that model could be that there should
be a relation between the degrees of the polynomials approximating horizontal and vertical velocities.
This fact would suggest that the degree of the polynomial approximation for the vertical velocity
should be at least the one for the horizontal velocity, and it cannot be not be smaller.

The derivation of these simplified models can be obtained by following a similar approach as the
one carried out in Subsection 3.2 for LIN-NHs model. This results in a similar compact form (39).
Hence analogous energy balances as in Theorem 2 are obtained. For the sake of brevity, we do not
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give here these proofs, which can be easily carried out following the analogous steps described in the
proof of Theorem 2.

3.3.1 LIN-NH; model: non-hydrostatic model with w, € P;[z]

We consider first that the vertical velocity is a layerwise linear polynomial in z, w, € P1[z] to approx-
imate the vertical momentum equation, that is,

Wa(2) =Wa + pa (2 — 2a) for z € [24-1/2, Za+1/2]- (41)

Concerning the pressure, we consider a piecewise parabolic function, g, € P3[z], given by

(2= 2a)’

37, — q. (z — 2q) o
nz

o lo + (5Q)a

5 I + 6 (Ga — 7o)

QQ(Z) = for z € [Za—1/27Za+1/2]' (42)

Note that this pressure profile coincides with (14) by setting 7o, = (0¢)q. Then, the unknowns related
to the non-hydrostatic pressure are q,, and q,_1/2 for @« = 1,..., L. Recall that g1,/ is a given data,
usually assumed to vanish at the surface.

The system thus comprises 6 L 4+ 1 equations for 6 L + 1 unknowns,

<H7 {ﬂOHAOHwOm (I)Ouaay qa—1/2}(€c/—1> .

Analogously to what is done for the LIN-NHs model, the LIN-NH; model can be written in a compact
form (39), where in this case

Uq
Ao Ty
Xo=| | Qu={ ™ . (43)
We do—1/2
with
az(haAgz) _aail/Q —gha
F, — haAaOzlia ’ Gi: _ Ao £ \/g(ﬁoc - ﬂail/Q) .S, = 0 :
a:c(haAa(I)a) _{Ba:lzl/2 0
haMNaOrWa + %Aa\paa’phox ¢, £ \/g(wa - aai1/2)7 0
where

~ Uy + U, Ao — A - Wy + W, o, — O
ua+1/2: Uy +2Ua+1 +\/§ « 5 a+1’ and wa+1/2: W +2’LUa+1 +\/§ a 5 a+1'

The following NH-gradient operator read in this case, for o € {1,..., L},

ax(hocqa) - (5 (qaﬂfz))a
‘f 0y (ha(00)a) + 123,00 20 + (60)adsha — 12(q0,7),,
(09)a

2v3 (Ga — Q)

VNEHQo =

18



and the NH-divergence opertator, for a € {2,...,L}

L

[ haOylia + 2V3®a — 2v/3M00y24
VNH . Xa = Wo — Wa—1 — (ﬂa - aa—l)a:czafl/Q - \/§(q>a + (I)a—l)

+\/§(Ao¢ + Aa—l)axza—l/Z + ﬁ(Aaaa:ha - h()éa.Z’AOc - Aa—laazhoc—l + ha—laonc—l)

6

and for a =1,

h10zu1 + 2\/3(1)1 — 2\/§A18x21 \

\@1 — W10z 2p + V3(A102p — ®1) + ?(Alaxhl — h10;A1)

Vg - Xy =

These differential operators verify in this case the following duality relation,

- V3
0; (VNHQa = ZQ&' vNH Xa +8 <Zh [qaua 6 Aa(5Q)a]>-

a=1

This simplified system satisfies a dissipative energy balance, that coincides with the result stated
at Theorem 2 by setting ¥, = 0 and 7, = (d¢q). We obtain in this case the following result.

Theorem 3 The proposed LIN-NH, model satisfies the dissipative energy balance

L L H \/g
Oy (Z haEa> + 0, ( > ha [ua <Ea +95 + A%+ qa> + B MW + 6Aa(5q)a]> <0,
a=1 a=1

where x ‘2 I
By =2 — .
5 +g (Zb + 5 >

with X, is defined by (43).

The proof is analogous to LIN-NHy model.

3.3.2 LIN-NH; model: non-hydrostatic model with w, € Py[z]

Finally, we consider even a simpler case where a layerwise constant vertical velocity, w, € Py[z], is
assumed in the vertical momentum equation. Therefore, we have the structure

wo(2) =Wo for 2 € [24_1/2, Zat1/2]5 (44)

for the vertical velocity, and the pressure, which is linear g, € P1[z], is given by

(z — za)

QQ(Z) = Z]\a + (5(])a h )

for 2 € [24_1/2; Zat1/2]- (45)

Now, we have only one pressure unknow by layer, g,_1/2. Making such assumptions is equivalent to

considering

Ga+1/2 t+ da—1/2
2

LIN-NHy model can be written in a compact form (39), where in this case

=G0 = fora=1,...,L. (46)

Xa= 1A | Qo = do—1/25 (47)
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with

ax(haAgz) _ﬂai1/2 —gha
Fa = hoonzaxaa ) GZXE = Aa + \/g(ﬁa - a(:y:|:1/2) ) SO{ = 0 )
ax(haAa(I)a) _ﬁod:l/Q 0

where

~ U + 1, Ao — A
Ugt1/2 = o 2a+1+\/§ e 2044-17 and onrl/QZf’

with the following NH-gradient operator for o € {1,...,L}

&v(hocz]\oc) - (5 (q8$z))a
VN Qo = ? [a,r (ha(50)a) + 1230020 + (0q)adsha — 12(q0p2),,

(6g)a
and the NH-divergence opertator, for o € {2,..., L}
he ha-1, _
Wy — Wa—1 — (Ua - ﬂafl)axza—l/Q — —0Ug — 7183:“0(71
Ving - Xa = 5 5 2 2

+\/§(_6Aaaxha - haamAa - gAa—larha—l + ha—laan—l)
and for @ = 1,
Vng X1 =w1 —u10:2p — haOsly.
These differential operators verify in this case the following duality relation,

L

Z (VNHQ& - ZQ&' VNH X +8 (Zh

a=1 a=1

\/gA (69)a D

This simplified system satisfies a dissipative energy balance, that coincides with the result stated
at Theorem 2 by setting ¥, = &, =0, 7o = (§¢)a, Gy, = a-

4 Dispersion relations

In this section, we study the linear dispersion relations of the LIN-NH,, systems, following the approach
used in [6,17]. In particular, we focus on the linear dispersion relations for the wave celerity, the group
velocity and the linear shoaling. In other words, a formal study is performed for the PDE systems
introduced previously, focusing on the propagation of dispersive waves.

To do so, a flat bottom is assumed as usual (z; constant), and the governing equations are linearised
around a steady-state solution. Then, a standard Stokes-type Fourier analysis is used to obtain the
wave and group velocities. Finally, a shoaling analysis of the linearised equations is carried out.

4.1 Linear dispersion relation for the LIN-NH; model

Let us begin with the LIN-NHy model that is described by (36). Let us linearise the system around
the steady state
zp = —Hp = cst, ug = Ao = wo = o = Yo = 0,

and let us consider n = 2z, + H the free-surface. We consider then the following asymptotic expansion

H = Hy+en'V + O(e?), (48)
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and for any variable ¢, € {Uq, Ao, Wa, Yo, Yo

ba = egb&l) + 0(62).

(49)

For the sake of simplicity, we shall neglect in this section the superindex (1) and bars (*) so that the
notation is less cumbersome. Using this linearisation in (36), we shall neglect O(e?) terms and keep

the system at first order:

O + Hod | > Lug | =0
Orug + 8xQoz + gaxn =0,
2 H? (o Hy taHo
Oidg + ——05(00)0 + ——07o = 0,
1o Ohat 50~ 0(00)a + —55dom
o HyOrwe + (6q)o = 0,
2 H3 4 dat/2 + Ga—1/2
12 6 2 —fda = 01
/€3 HO (5Q)a — T
Optho + ———— =0,
720 OVet g
Pa = _8;10“0“
wa - _ax)\om
(o Hy (o HE =
- 009 A — H, .
Wey ) OrUa + 12 Oz ﬂzleﬁ Oaxuﬁ
{ _

Remark that combining (50c), (50d), and (50i), we obtain

62 2 172 52

(2 H,
Oamua zﬂoﬁzlzﬁﬂoamuﬁ— 200611(5@& 50

—(6q)a = il

Moreover, given that qr1/o = 0 and (0¢)a = Gat1/2 — Ga—1/2 We have

L

da—1/2 = — Z(éq)ﬁ‘

b=«
Let us consider now a plane-wave solution of the linearised system in the form

N~ Y o~ o~ &~ T (kr—wt
(n,ua7)\aawa7§0a75qa:77a) ell )7

OpaTo-

(50a)

(50b)

(50¢)

(50d)

(50e)

where here the hat notation (%) is new and is not related to (5b). Inserting the plane wave into (51)

we get
. 52 H2 62 H2k'2
- (1 + da) 0qq = kwua ¢ Hﬂszgﬁuﬁ’ do = < 02 2E2\
= 12 (1 + fatigk )
Doing so in (50e) gives
2 179 5\ €2H L 5/\
R , SO q 5 o
Qo = —Wi 0‘120 Yo+ Gat1/2 — ;H = —w? 120 Pa — Z 5% B 2a
B=a+1
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The same may be done in the other equations and we obtain, using the relation @, = —iki,,

( L
wi) = kHy Y _ Lo,

a=1
Wlg = kqo + gkn,
2

(14 do) 840 = — 258 kst + 0o H3kw S5, L5

~ 2 HZ ~ L ~ 5q.,
(Ga = —wk=5" U0 — 35011 005 — 5

Let us write the previous system under a linear system. First, consider the following vectors in R”
U= (Uy,....a5), Q= Gu....q0)F, 0Q=(0qy,...,0q;.)F, 1=(,....e0)F, e=(@1,...,1)7T,
and the matrices of size L x L

E:diag(él,...,EL), I:diag(l,...,l), Id:diag(dl,...,dL),

/it 0 0 ... O 1 11 ... 1
/i 65 0 ... O o1 1 ... 1
T=|6¢ 6 ¢ ... 0|, s=l0o01 .. 1
0ol ly ...l 000 ... 1

Then (52) may be written as

WU = kwQ + gk?Hy(l,U)e,
Q= 7 s 5Q — k:igﬁU
—\2 D iad

HQ
(Z+71)6Q = —kw?OﬁU + kwLTU,

where (-, -) represents the scalar product in R” and, performing a progressive substitution from bottom

to top, we obtain
w?As LU = gk*Ho(l,U)e,

with
22 (1 11
-AQ,L:k H() 51—8 (I+Id) §£ - LT +(I+Id).
This means that, provided As r, is invertible,

w(e,U) = gk?Hy(l,U) <A2771Le, e).

In the particular case ¢, = —, A2 1 reduces to

L

27172 27172
Ay, = 21 (1+d)‘1<12—8> (1Z—ST>+(1+d)I, d= kil (53)

: L2 2 2 22\’
1212+ R H;
60
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and assuming (e, U) # 0 we get
2 k2HO —1
w- =9 I <A2,L€7 e),

Therefore, the following dispersion relation for the wave celerity ¢ := ¥ is obtained for LIN-NHj3 model

k

C%,L(k’HO) _ w? _ l(.A_le )
gHy gk?Hy L2170

4.2 Linear dispersion relation for the LIN-NH; model

In the particular case of LIN-NH;, the equations that govern the system are those corresponding to
(36) under the assumption of (§¢)o = 7, as well as the restrictions (26).
Doing a linearisation as in (48) and (49) for ¢ € {Un, Aas Wa, Pa }, keeping the first order terms
and after inserting the plane wave solution
(7 T My ey Pay 0) e/ H7 1),

2 H2R?

we arrive to System (52) where, in this case, d, = . That leads us, for the particular case

1 w
lo = T to the following dispersion relation for the wave celerity ¢ := = :

2 (k. Hy 2 1
LL;H - gl-:;H - Z<Afie’e>’ (54)
0 0 ’

where A; 1, is similar to (53), but with a change on the value of d, more precisely:

k*H (1 1 T k*H?
A =5 (1+4d) (21—5‘) <2I—S >+(1+d)I, d= 1573 (55)

4.3 Linear dispersion relation for the LIN-NH; model

Remark that LIN-NHj is quite similar to LIN-NH; model, where some equations are removed and

da+1/2 T da—1/2
o = 9 .

This means that the linearisation (48) and (49) for ¢ € {Tq, Ao, Wa }, keeping the first order terms, will
result in a reduced version of (50). Then, following a similar procedure as in the previous subsections,
we get that a plane wave solution

(ﬁ’ aa’ }‘\047 @ou (%Q)Tei(kmf“m)a

of this reduced linearised system should satisfy

L
wij =kHo Y _ Lol
a=1

Wig = kGo + gkﬁ,

62 H2k.2 . 2 172 e n
(1 + = 15 ) 04q = — "2 kel + Lo Hitkw Y5, L5

~ L £ 5
Qo = = 250 045 — “5*,
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2 H?

that is the same as (52) except for the term —wk Uq, which is now missing in the last equation.
As a consequence, for the particular case of ¢, = 1/L, we will obtain a matrix Ag ; similar to Ay r,
n (55), but with the only difference that the last term (1 4 d) Z is replaced by Z. That is, the following

w
dispersion relation for the wave celerity ¢ := — for LIN-NHg model is satisfied:

k
cgr(kHo)  w? 1,
gH, - gszo - Z<AU,L67€>7
where k2H?2 KH2\ ' 1 1
Ao =75 <1+ mg) (22—s> <2I—ST> +T

4.4 Computation of the linear group velocity and the linear shoaling
of dispersive systems

Let us introduce a general procedure that allows to compute the linear group velocity and shoaling
for dispersive systems presented in this work.

Moreover, we provide a very general methodology that can be applied to compute the group velocity
and the linear shoaling of any dispersive PDE system once the wave celerity c?(k, Hp) of the system
is known.

4.4.1 Group velocity

The group velocity c4(k, Hp) is essentially computed by taking the derivative of the wave celerity c,
and is defined as
cg = ¢+ kOgc.

Let us express the ratio of the wave celerity of a given dispersive system and the shallow water celerity
as a function of kHy :
*(k, Ho)
————~ = f(kHy). 56
sl = f(kHy) (56)
For instance, for the LIN-NH; model, f is given in (54) as:

FkHo) = 2 (ATke.).

Therefore, the group velocity can be written as follows

2f(kHo) + kHo f'(kHy)

cg = \/gHo Y (kHy), Y (kHo) = 2\/f(kHo)

, (57)
where f’ means the derivative of the function f w.r.t. its argument.

4.4.2 Linear shoaling

The linear shoaling gradient - is a non-dimensional quantity to measure the change in wave height in
the presence of a bottom slope. It was firstly introduced in [18] and can be expressed as

8x77 _ 8xHO

] ’YHO.

As usual, we will assume the dependency on the z—direction for Hy, n and the wave number k. On
the contrary, we suppose that the frequency w does not depends on x, and therefore d,w = 0.
The linear shoaling gradient can be determined for a given dispersive PDE system by assuming
the constancy of the energy flux
Oy (n2cg) =0,
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and therefore

O 10,
T_ %% (58)
i 2 ¢y
Now, from (57), it yields
8ng 1 T/(k‘Ho) axH(] T/(k‘H()) Oxk
==+ kH kHy———+
¢ (2 TRy ) TH Y (kHy) K (59)

where again Y’ stands for the derivative of the function Y w.r.t. its argument.
w
Given the definition of the celerity ¢ = = and the constancy of w with respect to x, it follows that

Ok _ e
ke’
and from (56), we get
Ok OzC 1 f'(kHp)\ 0. Hy f'(kHp) O,k
=———=—|=-+4+kH — kH, .
k c <2 TR, ) TH, Of(kHo) k
. Ok
Therefore, from the above relation we can express = as
Ozk 1 f(kHy) 0, Hy
== —-1) = (60)
k 2 f(kHo) + kHo f'(kHo) Hy

Finally, we can use (58), (59) and (60) to obtain the linear shoaling gradient of a given dispersive PDE
system:

O
T = —y(kHo)

0. Hy 1 Y'(kHy) f(kHy)
7 Hy ' > ' (61)

v(kHy) = 1 <1 + kHy Y(kHo) f(kHo) + kHof'(kHo)

4.5 Comparison of the dispersion relations

Let us assess the different models in the framework of the Stokes linear theory, also called Airy theory,
which establishes

Chiry  tanh(kHo) Co Airy (2kHy + sinh(2kHy))?
gHy  kHy gHo — 2kHy(2sinh(2kHy) + sinh(4kHp))’

and
(1 — kHo tanh(kHp)) (1 — tanh®(kHy))
s

(tanh(kHo) + kHo (1 — tanh?(kHy)))

In what follows, we consider the relative dispersion error for the celerity and group celerity of the
computed systems

YAiry = kHy tanh(k:Ho)

- c?Airy CZ - Cz,Airy
2 ) 2 ’
CAiry CAiry

where c and ¢, stands for the wave celerity and group velocity of a given dispersive system respectively.
Concerning the shoaling gradient, we directly compare, as usually done (see [6]), the coefficients from
the Airy theory, 744y, and the one given in the previous subsection vy for a given dispersive system.

For the sake of clarity, we recall in Table 1 the models that are analysed here, as well as the
approximation spaces for the velocity a pressure fields.

First, let us remark that it can be stated from Figures 2 and 3 that the dispersion relations of the

models studied here converge to the one given by the Stokes linear theory for the increasing number
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Figure 2: Comparison of the relative dispersion ratio and errors in logarithmic scale
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Figure 3: Comparison of the relative dispersion errors for the wave
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Figure 4: Intercomparison between the relative dispersion errors for the wave celerity of different models,

for a fixed number of layers L = 1,2, 3.
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LDNH, LDNH, | LIN-NHy, LIN-NH; LIN-NH,

(I IEDO ]P)O ]P)l Pl ]P)l
Wy P, P, Py Py P,
Gu ]P)l PQ IP)I PQ IP)3

Table 1: Summary of the model names and the approximation spaces for velocity and pressure variables
used.

of layers L. The comparison between the relative dispersion error for the different models reveals that
the new models LIN-NH; and LIN-NH; are the most accurate with bounded errors by 1 % for an
extensive range of kHy up to 32. In the same way, we can state that the dispersion accuracy of the
new model LIN-NHg does not improve the one provided by LDNHy or LDNHs, while the complexity
of the model increases.

In Figure 4 we compare the relative dispersion errors for the new models with the corresponding
one for LDNHy and LDNH;, for different numbers of layers and ranges for kHy. We can see again that
both relative dispersion errors converge to 0 as the number of layers L increases. Nevertheless, the
dispersion relation for the new model LIN-NH, is now much better than that of LDNHy. Even for the
simple case of one layer, the relative dispersion error is relatively small. Therefore, we can state that
LIN-NHj is an excellent choice in terms of dispersion accuracy. Despite the increased complexity of
the model, it gives better results for large values of kH even for a small number of layers.

In the same way, we compare in Figures 5 and 6 the group velocity, and in Figures 7 and 8 the
shoaling gradient for the different models considered in this work. We remark the outperformance of
the LIN-NH; and LIN-NHy models over LIN-NH,, LDNHy and LDNHo,.

In order to complete the dispersion study, we provide in Table 2 the minimum number of layers L
that ensures errors smaller than 5 % for the different dispersion relations and for different ranges of

kH, € [0,2M]
2 2 2 2
C™ — Cy; c,—C .
100 - || —5—2" | <5%, 100- |25 24 < 5%, 100 ||y — YAyl <5 %,
cAiry 00 cg,Airy 00
where ||-||, stands for the infinity norm
= max S)|.
1 lloo [, [f(s)]

Note that we consider relative errors for the wave celerity and group velocity. However, absolute errors
for the shoaling gradient are considered to avoid singularities when dividing by vairy-

It can be highlighted the overperformance of the model LIN-NHs even for large ranges of the pa-
rameter kHy. Despite the complexity of the presented models, the analysis of the dispersive properties
for the LIN-NHy model are outstanding. With no more than 2 layers, it can accurately represent
dispersive water waves of very high frequency.

5 Conclusions

A hierarchy of layer-averaged non-hydrostatic models for Euler equations with layerwise linear hori-
zontal velocities, named LIN-NH,, with p = 0,1, 2, has been presented. The derivation of these models
follows from a layer-averaging procedure of the mass and momentum conservation equations, where
normal jump conditions associated with the weak formulation of the problem are taken into account.
In the notation LIN-NH,, the value p indicates the closure relation chosen for the vertical profile of
the vertical velocity and pressure. Thus, p stands for the degree of the polynomial approximation of
the vertical velocity, being p + 1 the degree assumed for the pressure.
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Wave celerity ¢ Group velocity ¢,

kHy LIN-NHy LDNH, LDNH, LIN-NH; LIN-NH, LIN-NHy, LDNH, LDNH, LIN-NH; LIN-NH,

[0,2] 2 1 1 4 2 4 1 1
[0,4] 2 1 1 2 2 1
[0, 8] 2 2 1 17 3 17 2 2
[0, 16] 15 3 15 2 2 33 4 33 3 2
[0,32] 29 4 29 3 2 66 5 64 3 3
[0,64] 58 6 57 4 3 131 8 129 5 3
[0,128] 116 8 113 5 4 261 10 257 6 5

Shoaling gradient ~

kHy LIN-NHy LDNH, LDNH, LIN-NH; LIN-NH,

[0,2] 2 1 1
[0,4] 7 2 2 1
[0, 8] 12 3 13 2 2
[0,16] 24 4 26 3 2
[0,32] 48 6 50 4 3
[0, 64] 95 8 101 5 4
[0,128] 190 11 202 7 5
P~ Fainy

Table 2: Minimum number of layers (L) that holds 100 - ‘ 7
Airy
and the group velocity, respectively, and 100 - |7 — Yairy ||, < 5% TFor the shoaling gradient.

< 5%, for f = ¢, ¢, the wave celerity
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Once the most complex model (LIN-NHy) is derived, simplified LIN-NH( ; models are obtained from
simple assumptions upon the vertical profile of the vertical velocity, and therefore the pressure, just on
the vertical momentum equation. It is important to remark that for the incompressibility constraints,
the vertical profile of the velocity is not simplified for any model. For this very equation, the vertical
velocity is always a layerwise parabolic polynomial. It is essential to prove a dissipative energy balance
for all the proposed models. All the models are written in a compact form, which allows to prove
the dissipative energy balance in a few lines. It is done by defining some non-hydrostatic differential
operators, which satisfy a crucial duality relation. It is a remarkable issue, especially when designing
numerical schemes for such models (see [8]).

An analysis and a comparison of dispersion properties have been performed. In particular, we
showed the linear dispersion, shoaling, and group velocity. Interestingly, models LIN-NH; and LIN-
NHjy provide accurate dispersion relation, although LIN-NH; is a simpler model. Note that the latter
model is computationally cheaper since it has 2L equations and unknowns less than LIN-NHs model.
LIN-NH; 2 models exhibit excellent dispersion properties for a wide range of wave numbers even for
few layers. Then, these models can accurately reproduce dispersive water waves of very high frequency.
We also have shown that LIN-NH; o models improve the results of the models introduced in [9]. On the
other hand, LIN-NH, model, which considers a layerwise constant vertical velocity, gives poor results
on the linear dispersion analysis. That would suggest that there should be a restriction between the
degrees of the polynomial approximation assumed for the variables. In particular, we could induce that
the degree of the vertical velocity approximation should be greater than for the horizontal velocity. In
the future, it would be interesting to propose efficient numerical schemes for LIN-NH; o models, as well
as extend these models to the Navier-Stokes system accounting for the contribution of the deviatoric
stress tensor.
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A Proof of energy balance for LIN-NH,; model

This appendix gives detailed proof of the energy balance for LIN-NHs model. We remark that, for
the sake of clarity, we give the proof of the energy balance for System (36) before the change of
variables (35), i.e. (20,26,27,28,30,32,34). Later, Theorem 2 is obtained by simply considering these
new variables.

PRroOF:
Using the horiztonal momentum equation as well as the layer height evolution equation, we obtain

u? h2 \2
ha (atua + 0y <2a) ) + Uq (Fa—1/2 - Fa+1/2) + Oy <ha (120[ + haqa> + ghaax(zb + H)

(62)

= Qa+1/28x2a+1/2 - Qa71/2axza71/2 - aonr1/2F(>¢+1/2 + ﬁa71/2ra71/2‘

Now, we sum up (62) multiplied by %, with the equation obtained by multiplying the mass conservation
equation by @2 /2 + g(z, + H), getting

=2 2 h3)\2
8t (ha@;l> + g(Zb + H)atha + ar (haua (121 +g(zb + H))) +Haaz < < a>

12

+ UaOr (hals) — Ua (dat1/200%041/2 — da—1/202%0-1/2) (63)

w2 w2
= g(z + H) (Fafl/Z - Fa+1/2) + Fa+1/2 (; - uaua+1/2> - Fa71/2 <2a - Uaua1/2>
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On the another hand, we have

haXa haAa haAa h2 \a
ha <at < 12 ) + U Oy < ) ) + (Fa71/2 - I‘oz+1/2) + Oyl +go¢axza

12 12 12

6 « 7ra 6 « Tra 1
+0, (ha <( 2(2 + 30>> + <( 2q3 + 30> Oxho — B (da+1/20270+1/2 + Ga—1/202%a—1/2)  (64)

ha)\a Uq — aa 1/2 ha)\a Ue — aa,1 2
= Fa+1/2( TR 2+/>_Fa1/2< - />~

12 2
Summing up (64) multiplied by ho\s With the mass conservation equation multiplied by A\2h2 /24, we
obtain

hoda)? hoda)? h3 \2
O (ha( ) >+6x haua( ) + 2297,

24 24 12

— 0q)a T haAa
+ haralnOz2a + AaOz (ha <( 23 + 30>> B (dat1/202%a11/2 + Ga—1/20220-172)  (65)
ha)\a 2 Ue — Hoz 1/2 ha)\a 2 Uq — Hoe—l 2
_ pam(( : ) +Ma2+/>_rm/2<< : ) —hwz/)

Finally we sum equations (63) and (65) to get

9 2 ) 2 242
o (haua + (ha)a) /12) o, (ha%<ua + (hada)? /12 b gl H) 4 1o >>

2 2 12

+ g(Zb + H)atha + ﬁaazc (h’aaa) + haquaaszé + Aaaﬂi <h3 <(62q3a * 7;8))

_ _ haXa
— Ga+1/2 | Ua + Ozzat1/2 + da—1/2 | Ua — 5 Oxza—1/2

1 hata)’ N hada
= Toyiy2 <2 (u?x + ( ) +uaha)\a> — Ug+1/2 <Ua + ) >

4 2
1{_ hada)® _  hoda
_ Fa—1/2 (2 (ui + (4) — Uaha)\a> — Ua+1/2 (ua - 9 > >

+ 9=+ H) (Pa—l/Q - Fa—i—l/?) )

haAa

Now, similar steps are followed for the equations of the vertical velocity variables. However, for con-
venience, we are going to use equations (30),(31),(33). Then, from (30) and using the mass equation,
we obtain

hg@a)‘a
12

ha <atwa + ana:cwa> + Wq (Fa—1/2 - 1_‘cv—|-1/2) + 0y ( > + da+1/2 = Qa—1/2

(67)
= —Way1/2lar1/2 + Wa—1/2l 0 1/2-
Previous equation is multiplied by @, and summing the mass equation multiplied by w2 /2, we get
2

w2, _ w2 - h3 0ara _
o <h0‘2> O (h“u“2> * als ( f2 > +Wa (dat1/2 = da-1/2) =

wE wE
Fa+1/2 (; - wawa+1/2) - Fa—1/2 <2a - wawa—1/2> .

(68)

33



Making analogous computations with equations (31),(33), we get

(ha‘Pa)Q _ (hOz%Oa)Q
Oy (ha24 + 0y | haTia 24

hodaa PXaPa o Bpat? | haga _
+ @aax ( 360 > + 1290 8a:wa - ,;20 + ; (QQ—I/Q + (Ia+1/2) - ha@oa@la (69)
— (ho‘goa)2 Waor — wa+1/2 (hoﬁpa)2 Wo — ’wa—l/Z
=Tat1/2 ( 3 + ha@af Po1)2 s hozgpocf .
and
(h3ba)” (h3ba)’ Bato) | Wapatl  hhgadet
8 hoz = az haioc = aa:v i efZ o el o aazvha
' ( 440 )" Yo qa0 ) Y ( 360 ) o0 7
hata hata Weta | haa |
+ 30 ((0Q)a — o) = —13 Ta+1/2 < o4 + 5 + Wy — wa+1/2> (70)
hiwa hiwa hagoa — ~
T T te12\ oy T o T Wo — We—1/2 | -

Defining now

2
_ 1 —2 —2 (hoc)\a)Q + (hozSDa)Q (h?ﬂ/}a) H
s (u T 12 T )T\t )

summing up now equations (66),(68),(69),(70), after some straightforward computations we obtain

RN2T0  h30ara®a . B2Paratla
12 12 360

H
at (haEa) + 6:1: (haEaua + ghagﬂa +
(71)

+ Pyga=MT,+ g (haO H — Hosha)

where we have used that

H
g(zb + H)@tha = 0 (hag <Zb + 2)) + % (H@tha — haﬁtH) .

In equation (71), Py o and MT, collect the terms related to non-hydrostatic pressure and mass trans-

ference, respectively, in the layer . Let us detail now these terms separately. The non-hydrostatic
contributions are

20 30 30

_ haAa _ haSOOz
+ dot+1/2 | — | Ua + 5 OrZay1/2 + Wa + 5

haA _ h

Now we use restriction (12a) to write

6 o o h2 «
PNH,a = ﬂaaz (hoﬁa) + hozqo)\aazza - hoa(paqoé + )‘Oéal‘ <h§ <(q) + u >> + i ((5(])04 - TrOé)

U Oy (haqa) + haaa)\aazza - ha@aqa =0, (haaaqa) s

and restriction (12b) to obtain

2 ((6g)a Mo hatba _ _ 2 (69)a T _@
Aa Oz <ha< 50 +30>>+ 30 ((09)a — 7o) = Op | hZ A0, 50 +30 1281;)\a(5q)a,
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where we remind that (0¢)a = gat1/2 — ¢a—1/2- Therefore, using (12b) again to recover the expression

of wT see (13)), the pressure terms are rewritten as

_ - (6@)a | Ta
PNH,a — 835 (ha (qaua + hoc)\a < 20 + 30
_ hoz)\a __ hoz@a hgﬂ/]a
+ da+1/2 <— (Ua 5 ) OrZay1/2 + Wa + 5 + 2 )
_ hada _ hapa | hiba

— 0, <ha <qaua +hada <(52qo)a i gg)»

+ Ga+1/2 (BtZat1/2 + Tas1/2) = Ga-1/2 (OiZa—1/2 + Tac1)2) »

a+1/2 (

where the definition of the mass transfer terms (16b) has been used in last equality. Notice that the

terms on ¢,+1/2 vanish when summing up from v =1,..., L, leading to
(09)s , 75

P —
;1 NH,3 = ﬂz:la <h5 (qﬂug + hgAg < 20 30

which is a conservative term.
Concerning the mass transfer terms, they are

MTy =g (2 +H) (Co—1j2 — Lat1)o)

Corisof 2 ada
+ malc ( Jruaha)\a) 2ua+1/2< h A ):|

2

FO& [ 2 ha (0%
_ Tl/Q ( _Uozho)\oz> 2Ua 1/2 ( B) :|

Fa—i—l/? aPa _ hgﬂz)a _ a@a i
+2_“+( 2 > T Wahagot =g AT

hapa oﬂ/’a

F0¢—1/2 _9 hoc@oz 2 _ hi% — hoc@a h?ﬂﬂ ?

T2 [w“ Ty ) T Wehetet T (Wem T ) i

~ _ ha@a hiwa
_9 " — .
Wa—1/2 <w 5 T o
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Looking at the velocities at the interfaces u, /o> wh, /9 (see (7) and (13)), the latter equation yields

MTo =g (2 + H) (Ta—1j2 — Tay1/2)

) (T
a 1/2 ~ _
el ( (ua+1/2) - 2uoﬂrl/27~ba+1/2 +1/2) 2wa+1/2wa+1/2)

Foo 1/2
( ug, 1/) Ua—1/2u) 12t

| - 1/2

(v
(w2

Wa—1/2 ) 2@a—1/2w:—1/2>

= g(z+H) (Tac1/2—Tayiye) + (ua 1/2%— 1/2 T W,y W wy 1/2)

Fa 1/2 -t - +
Upp1/2%r1/2 T Warr/2Waris2 )

It is easy to see that, since we have set I'y 5 = I'y 11 /2 = 0, it holds

(haOyH — HOiha) = 0

N[
-

L
ZMng(), and

B=1
and thus, summing up (71) in all the layers, the proof is finished. O
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