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Abstract: Niche partitioning studies are essential to understand the mechanisms that allow eco-
logically similar species to coexist. The Rhone streber (Zingel asper) and the European bullhead
(Cottus gobio) are both benthic riverine fishes that consume macroinvertebrates. Both species are
protected under European legislature. We focused on trophic niche partitioning between these species,
as sufficient access to trophic resources is an important requirement for long-term coexistence. We
used a combination of faeces metabarcoding dietary data and prey community data to evaluate
dietary overlap, trophic niche variation and dietary preferences. Sampling was performed in three
sites along the Durance River (France). Both species consumed a wide range of macroinvertebrates
but neither C. gobio nor Z. asper selected the most abundant taxa (chironomids and simuliids). Both
species selected larger mayfly (Baetis and Ecdyonurus) and caddisfly (Hydropsyche) taxa. Dietary
overlap was generally high but declined when large mayflies were rare. Contrasting secondary prey
preferences and trophic niche variation may allow these species to exploit the same preferred mayflies
in periods of abundance and to avoid competition during resource scarcity. We propose that dietary
partitioning may support the coexistence of these two ecologically similar, benthic predators.

Keywords: metabarcoding; trophic niche; dietary overlap; prey preferences; coexistence; conservation

1. Introduction

Understanding how species successfully coexist despite competitive pressures is a
fundamental question of trophic ecology [1–5]. When resources are scarce, competition
for resources should lead to the extinction of less efficient competitors via competitive
exclusion [1]. However, classic niche theory predicts that species that share similar funda-
mental niches differentiate in terms of their realized niches, thus promoting coexistence.
This so-called resource partitioning is an important ecological process that can prevent
competitive exclusion and promote the maintenance of species diversity and complex food
webs [6]. Resource partitioning can arise due to various trade-offs in species’ realised
niches, such as prey preferences, habitat-use and/or periods of activity (e.g., diurnal vs.
nocturnal) [7–10]. These trade-offs promote differential resource use and thus coexistence
when shared resources are scarce. The degree of dietary overlap was originally suggested
as a measurement of interspecific competition between similar predators [11]. However,
it has since become clear that dietary overlap should be interpreted in the context of prey
community data [12]. Many researchers have investigated how fluctuations in resource
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availability affect dietary overlap, and responses appear to be highly context-dependent.
For example, in temperate streams, competitors may coexist with high overlap in resource-
rich periods but specialise according to species-specific resource preferences in depauperate
periods [7,13]. In tropical streams, high resource availability during the wet season can
lead to specialisation, while during the dry period resource limitation can be so great that
high dietary overlap cannot be avoided [14]. It is, therefore, important to evaluate prey
preferences in the context of resource availability in order to properly interpret variation in
resource partitioning.

This study investigates the trophic interaction between two native benthic fish preda-
tors: the Rhone streber (Zingel asper (L.)) [Actinopterygii: Perciformes: Percidae] and
the European bullhead (Cottus gobio L.) [Actinopterygii: Scorpaeniformes: Cottidae].
Zingel asper and C. gobio are riverine fishes that coexist across the Rhone river basin in
south-eastern France and Switzerland [15]. Zingel asper was historically found throughout
the Rhone basin, but following population declines in the 20th century, it is now lim-
ited to five disconnected populations [16]. It is currently found in the Durance, Verdon,
Ardeche, Loue and Doubs river systems. Zingel asper is a small, short-lived species, with
the adult size typically varying from 12 to 20 cm [17,18] and a life-span ranging from 3 to 6
years [19,20]. The typical habitat of Z. asper is characterised by small to medium-sized rivers,
with gravel bottoms [17,21,22]. Zingel asper populations exhibit low density (maximum
~110 individuals ha−1) [18,23]. In contrast, C. gobio is widespread throughout most of
Europe with the exception of Ireland and northern parts of the United Kingdom. Cottus
gobio is not considered to be declining overall, but evidence of local population decline
has been observed in a number of countries [24–26]. Cottus gobio is smaller than Z. asper,
with individuals reaching a maximum of 12.5 cm and an average life-span estimated at
3–4 years [27]. It is found in small to medium-sized rivers as well as on rocky or gravel
shores of cold lakes [27]. Contrary to Z. asper, C. gobio populations can reach high densities
(e.g., 3400 individuals ha−1) in certain conditions [27,28]. Both Z. asper and C. gobio display
a preference for shallow, gravel river habitats and subsist on a diet mainly composed of
benthic macroinvertebrates [17,22,27,29]. If these shared ecological characteristics translate
to similar trophic niches, Z. asper and C. gobio could potentially compete for resources
when facing resource limitation. Furthermore, C. gobio has been shown to be capable of
significantly reducing key local prey densities [28,30,31]. Determining the potential for
competition between these coexisting species is of particular conservation concern for
Z. asper, which is listed as “critically endangered” on the IUCN red-list [32].

Until recently, most studies aimed to quantify resource partitioning at the species
level [2]. However, this overlooks ecologically significant variation within populations,
such as variation in prey preferences [33], habitat use [34] and competitive ability [35].
Within-population variability in diet can modify predator–prey interactions (e.g., Jensen’s
inequality [2]) and thus competitive interactions. At the population level, ecological release
from interspecific competition is expected to lead to a niche expansion [36]. However,
at the individual level, population niche expansions can result from broader individual
niches (generalisation) or from higher between-individual dietary variation (e.g., speciali-
sation) [37]. The importance of accounting for individual-level trophic niche variation is
becoming increasingly recognised, as these two individual-level responses have different
ecological consequences [36,38,39]. Previous studies that incorporate both intraspecific and
interspecific trophic niche variation have yielded important insights into the mechanisms
of coexistence between potentially competing species [40,41].

Dietary studies based on metabarcoding data are becoming increasingly common and
provide a valuable alternative to traditional morphological-based and stable isotope dietary
analyses [42,43]. The main advantage of using metabarcoding data over traditional methods
is related to its capacity to provide high taxonomic resolution of prey taxa, often to the
species level [42]. Metabarcoding approaches have already proven to provide exhaustive
descriptions of dietary overlap between freshwater fishes [44]. Metabarcoding is also
particularly well-suited for determining prey preferences. Like morphological gut-content
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analyses, metabarcoding data correspond to 1–3 days of foraging [45], which facilitates
comparisons between diet and short-term prey community data.

Due to the critically endangered status of Z. asper, we aimed to evaluate the potential
for resource competition between Z. asper and C. gobio. As competition is only expected to
occur when resources are limited [1], we related local prey availability to variation in dietary
overlap, prey preferences and trophic traits to determine the potential for competition.
The expected response of trophic traits to interspecific competition is well-established
within the framework of optimal foraging theory [46] and by experimental studies [36].
Thus, in order to determine whether competitive forces drive trophic niche variation
in these species, we estimated individual and population trophic traits for Z. asper and
C. gobio. We then interpreted variation in trophic traits in the context of variation in the
prey community. By studying several dimensions of trophic variation between Z. asper
and C. gobio, this study aimed to highlight the mechanisms of coexistence between these
potentially competing species.

2. Materials and Methods
2.1. Sampling Sites

We investigated dietary overlap, prey preferences and trophic traits at three sites
along the Durance River in the southern section of the Rhone basin, southeast France.
Sampling was performed at three sites where Z. asper and C. gobio coexist, in summer and
autumn 2015 (Table 1). River flow at the sampling sites is regulated by upstream dams [47]
(Figure 1). The average water temperature was of 17.6 ◦C (min 14.3 ◦C; max 24.9 ◦C),
15.4 ◦C (min 13 ◦C; max 17.3 ◦C) and 12.5 ◦C (min 10.5 ◦C; max 15.1 ◦C) for SSL SLS and
HEN, respectively.
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Table 1. Details of faeces and macroinvertebrate sampling.

Site Coordinates Date of Faeces
Sampling

No. Faeces
Z. asper

No. Faeces
C. gobio

Date of Surber
Sampling

No. Surber
Samples

HEN N 44◦ 18′ 46′′

E 5◦ 55′ 29′′ 5 November 2015 29 27 6 November 2015 90

SSL N 44◦ 14′ 50′′

E 5◦ 55′ 17′′ 22 September 2015 44 21 21 September 2015 60

SLS N 44◦ 9′ 32′′

E 5◦ 57′ 15′′ 28 August 2015 43 16 27 August 2015 60

2.2. Macroinvertebrate Community Sampling

As Z. asper and C. gobio are described as benthic invertivores, the sampling of the
prey community aimed to characterize benthic macroinvertebrate community composition,
density and diversity. The macroinvertebrate sampling effort was distributed among the
representative habitats (i.e., riffles, runs, glides and rare pools) in the river segment. Samples
were collected using a Surber sampler by perpendicular transects between riverbanks, from
downstream to upstream (Figure S1). One to five Surber samples (0.05 m2) were collected
per transect in all accessible habitats (i.e., <80 cm depth; <2 m s−1 water velocity). Surber
samples were immediately stored in 90% ethanol for subsequent taxonomic identification.
Samples were collected at between 60 and 90 sampling points in each river segment
(Table 1).

2.3. Taxonomic Assignment of Macroinvertebrates

To characterise the global composition of the prey community at each site, the taxo-
nomic assignment of macroinvertebrates aimed to resolve taxa to low taxonomic levels
(i.e., genus). However, when this was not possible due to technical limitations, taxa were ag-
gregated at higher taxonomic levels (i.e., family or subfamily). The final macroinvertebrate
inventory comprised 58 taxa (Table S1).

The size of potential prey has been identified as a key driver of prey selectivity in ben-
thic fishes [8]. Therefore, we identified two taxa that may be positively selected by Z. asper
and C. gobio (Baetis and Heptageniidae mayflies [17]) and described their size distribution
across the three sampling campaigns. Mayfly species undergo variable emergence events
that can greatly modify the density of large individuals [48]. We specifically described the
density (inv.m−2) of individuals greater than and inferior to 5 mm, with 5 mm being a
threshold beyond which mayflies may be considered large [49].

2.4. Dietary Data Sampling

Fishes were caught by electrofishing and then laid in a plastic, wire mesh fishpond
until faeces collection was performed. Faeces were collected by pressing the fish abdomen
by hand in order to drain out faeces. Faeces were immediately placed in a 2 mL vial
containing 96% ethanol and stored at −20 ◦C. After faeces collection, fishes were released
within the sampling area. A total of 115 and 64 faeces samples were collected for Z. asper
and C. gobio, respectively.

2.5. Metabarcoding Protocol

Faecal DNA extractions and metabarcoding protocol were performed as described
by [50,51]. Our metabarcoding protocol included a PCR-enrichment step based on the
one-locus-several-primers (OLSP) strategy developed by Corse et al. (2019), which aims to
minimize false negatives in metabarcoding data by using three distinct primer sets that
target an overlapping region of the 5’ end of the Cytochrome c oxidase subunit I gene
(COI) (Table 2). PCRs were conducted in triplicates, and amplicons were then processed
and sequenced on an Illumina MiSeq v3 platform (as detailed in [50]). Our protocol also
included a series of negative controls and two distinct mock sample communities (described
in [51]) as positive controls.
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Table 2. Details of primer sets used in this study.

Primer Set Primer Name Forward (F)/
Reverse (R) Sequence (5’-3’) Reference

MFZR
Uni-Minibar-F1 F TCCACTAATCACAARGATATTGGTAC [52]

ZBJ-ArtR2c R WACTAATCAATTWCCAAATCCTCC [53]

ZFZR
ZBJ-ArtF1c F AGATATTGGAACWTTATATTTTATTTTTGG [53]
ZBJ-ArtR2c R WACTAATCAATTWCCAAATCCTCC [53]

LFCR
LepLCO F RKTCAACMAATCATAAAGATATTGG [51]
McoiR2 R CCBCCRATTAWAATKGGTATHAC [51]

High-throughput sequencing (HTS) data were then filtered using the amplicon se-
quence variant (ASV)-based procedure developed by [50], which is now implemented in
VTAM [54]. In short, this procedure explicitly uses the sequencing outputs of negative
and positive controls and exogenous samples in order to minimize false positives in faecal
samples (i.e., experimental/molecular artefacts such as PCR/sequencing errors, tag switch-
ing and cross-sample contaminations). Reproducibility of ASVs was further ensured by
explicitly using the sequencing outputs of technical (PCR) replicates. We also discarded
chimeras and pseudogenes. Finally, the ASVs obtained from the different primer sets that
were identical in their overlapping regions (~130 bp) were combined into contigs (further
details in: [50,51]).

The taxonomic assignment of ASVs/contigs was conducted as detailed in [50]. As
Z. asper mainly feed on macroinvertebrates but can also feed on fishes [17,51,55], we
considered macroinvertebrates and fishes as relevant prey and collectively referred to them
as Macrometazoans. All other taxa (listed in [51]) were excluded from the analyses. Prey
abundance in each diet was estimated using the minimal number of individuals (MNI)
statistic ([56]; MNI is a quantitative statistic that corresponds to the number of distinct
ASVs/contigs validated in each sample for a given prey taxon (see [50]). A complete list of
validated ASVs/contigs after filtration is available in Table S2.

2.6. Statistical Analyses

All statistical analyses and data manipulations were performed in R v 4.0.0 [57]. All
dietary analyses were performed using the final taxonomic assignment (FTA) of prey
acquired via metabarcoding, except for prey electivity analyses that were grouped at
macroinvertebrate taxonomic assignment (Table S3).

2.6.1. Macroinvertebrate Community Composition

The taxonomic diversity of the macroinvertebrate community was estimated for
each sampling site using a coverage-based rarefaction approach. In order to standardize
the estimates for variation in sample coverage, rarefaction estimates were conducted at
95% sample coverage using the function EstimateD from the package iNEXT [58]. Taxo-
nomic diversity was calculated using the Hill number equivalent of the Shannon index
(q = 1;1D; [59]). Variation in macroinvertebrate composition between and within sites was
visualized using principal component analysis (function PCA, package FactoMineR [60]).
PCA visualisations were based on log10 (x + 1) transformed macroinvertebrate abundances.

2.6.2. Electivity

We evaluated prey preferences for Z. asper and C. gobio using the econullnetr package,
which estimates electivity based on the discrepancy between observed prey consumption
and neutral prey consumption according to null model simulations [61]. To avoid false
positives (type-I errors) we only considered prey species that constituted a significant
proportion of either Z. asper or C. gobio diets (>5% abundance) and/or the prey community
(>5% abundance). This selection criterion was applied separately for each sampling site.
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The null model was calculated using the generate_null_net function based on mean popula-
tion diets (sims = 1000). Electivity tests were performed using the test_interactions function.

2.6.3. Trophic Niche Traits

We calculated two individual trophic traits for Z. asper and C. gobio: the individual
diet niche width (INW; related to α-diversity) and the between-individual component of
diet niche width (BIC; related to β-diversity). The INW is related to the within-individual
component (WIC) of the trophic niche width when using diet data [38]. Both INW and
BIC were estimated using Hill number diversity indices [62,63]. The sensitivity of Hill
numbers (qD) to rare prey taxa can be adjusted with the order of diversity parameter q [64].
INW was estimated using Hill number 1D (INW) [64], using hilldiv [65], which is related
to the Shannon–Weaver index. BIC was estimated by calculating pairwise dissimilarity
measurements from Hill number (1D) β-diversities and averaging the mean dissimilarity
between each individual and other individuals in its population. Differences in INW and
BIC between species were determined for each sampling campaign using Welch’s t-tests,
which account for differences in sample sizes.

In addition to individual trophic traits, we estimated the total niche width (TNW;
related to γ-diversity) for Z. asper and C. gobio at all sites using a coverage-based rarefaction
approach [66]. In order to standardize the TNW estimates for variation in sample coverage,
1D rarefaction and extrapolation estimates were conducted at 85% sample coverage using
the function EstimateD from the package iNEXT [58].

2.6.4. Dietary Overlap

Dietary overlap between Z. asper and C. gobio was estimated using Pianka’s overlap
index [67]. We compared observed overlap at each sampling campaign to simulated
values based on a null model to determine statistical significance (function niche_null_mode,
package EcoSimR; [68]). The null model (N = 5000 simulations) was based on the most
conservative algorithm (ra4), which shuffles resource use between and within each predator
species. Lastly, we tested for differences in dietary overlap between sampling campaigns
by comparing pairwise Bray–Curtis distances between Z. asper and C. gobio diets (function
vegdist, package vegan). Due to the non-normal distribution of distance data, we performed
a non-parametric Kruskal–Wallis test (function kruskal.test) followed by a Dunn’s test
(function Dunntest, package FSA) post hoc comparison.

3. Results
3.1. Macroinvertebrate Community Composition

Macroinvertebrate community composition varied greatly between sites. HEN was char-
acterized by high Caenis (745 inv.m−2), Orthocladiinae (570 inv.m−2) and Baetis (550 inv.m−2)
abundance (Figure 1), respectively constituting 20, 16 and 15% of the total prey abundance.
At SSL, Simuliidae was the major macroinvertebrate group (792 inv.m−2), constituting 26%
of total abundance. The next most abundant groups, Baetis (420 inv.m−2), Hydropsyche
(374 inv.m−2) and Orthocladiinae (343 inv.m−2), only constituted 14%, 13% and 11% of the
total macroinvertebrate abundance, respectively. Lastly, SLS was strongly characterized
by Orthocladiinae (1414 inv.m−2) and Gammaridae (1266 inv.m−2), respectively consti-
tuting 27% and 24% of the total abundance, followed by Baetis (698 inv.m−2), Simuliidae
(590 inv.m−2) and Plecoptera (Leuctridae; 336 inv.m−2), which accounted for 13%, 11% and
7% of the total abundance, respectively. For a complete inventory of macroinvertebrate
assemblages, see Table S1.

According to principal component analysis, SLS exhibited the most distinct prey as-
semblage, rarely overlapping with HEN and SSL sampling points. The majority of SLS
sampling points were characterized by high Gammaridae and Orthocladiinae abundance
(Figure 2A). In comparison, SSL and HEN exhibited a higher degree of overlap and were
characterized by high Hydropsyche and Caenis abundance. Rarefaction diversity estimates
revealed that HEN exhibited the most taxonomically diverse macroinvertebrate assemblage
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(1D = 10.95), closely followed by SSL (1D = 10.11) (Figure 2B). SLS exhibited the lowest
macroinvertebrate taxonomic diversity (1D = 7.49) but the highest average macroinverte-
brate density (5194 inv.m−2), compared to 3004 inv.m−2 and 3659 inv.m−2 at SSL and HEN,
respectively (see Table 3 for more details).
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Figure 2. The macroinvertebrate community. (A) Principal component analysis (PCA) biplot per-
formed on macroinvertebrate abundances (log10 (x + 1) transformed). (B) Taxonomic diversity
(1D) and 95% CIs (shaded area) of the macroinvertebrate community. Dots indicate the estimate of
taxonomic diversity standardised at 95% sample coverage.

Table 3. Summary of trophic niche traits for Z. asper and C. gobio and of the diversity (1D) and density
(inv.m−2) of the macroinvertebrate community.

Z. asper C. gobio Macroinvertebrate Community

Site Estimate [95% CI] or
±SE Estimate [95% CI] or

±SE Estimate [95% CI] or
±SE

HEN

TNW 28.82 [25.44–32.21] 20.63 * [13.62–27.64] 1D 10.79 [10.63–10.95]

INW 4.42 ±0.77 2.03 ±0.26 Density
(inv.m−2) 3659 ±490

BIC 0.88 ±0.01 0.88 ±0.02

SSL

TNW 11.44 [9.66–23.05] 17.33 * [11.61–23.05] 1D 10.11 [9.89–10.32]

INW 4.40 ±0.28 3.39 ±0.37 Density
(inv.m−2) 3004 ±397

BIC 0.54 ±0.01 0.67 ±0.03

SLS

TNW 20.99 [18.60–23.38] 15.27 [12.57–17.98] 1D 7.49 [7.37–7.62]

INW 6.06 ±0.45 4.66 ±0.48 Density
(inv.m−2) 5194 ±774

BIC 0.69 ±0.02 0.68 ±0.02

* extrapolated value based on rarefaction.

We observed spatial variation in the size-classes of potentially selected mayfly (Baetis
and Heptageniidae) taxa (Table 4). The large Baetis (>5 mm) size-class was markedly
less abundant in HEN (5 inv.m−2) compared to SSL and SLS (30 and 121 inv.m−2, respec-
tively), whereas the small Baetis size-class (<5 mm) remained abundant in the three sites
(545 inv.m−2 at HEN; 390 inv.m−2 at SSL; and 577 inv.m−2 at SLS). Variation in the abun-
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dance of large Heptageniidae between sites was less marked than for Baetis. We observed
similar densities of large Heptageniidae at HEN (9 inv.m−2) and SSL (10 inv.m−2), with the
highest abundances observed at SLS (21 inv.m−2). The opposite was observed for the small
Heptageniidae size-class: HEN and SSL exhibited the highest densities (HEN and SSL; 124
and 159 inv.m−2, respectively), while SLS was notably less dense (67 inv.m−2).

Table 4. Summary of the density of large and small Baetis and Heptageniidae size-classes.

Site Taxa Size-Class Density inv.m−2

(±SE)

HEN

Baetis small (<5 mm) 545 (±121)
large (>5 mm) 5 (±1)

Heptageniidae small (<5 mm) 124 (±21)
large (>5 mm) 9 (±3)

SSL

Baetis small (<5 mm) 390 (±66)
large (>5 mm) 30 (±9)

Heptageniidae small (<5 mm) 159 (±26)
large (>5 mm) 10 (±2)

SLS

Baetis small (<5 mm) 577 (±129)
large (>5 mm) 121 (±34)

Heptageniidae small (<5 mm) 67 (±22)
large (>5 mm) 21 (±4)

3.2. Z. asper and C. gobio Diet Composition

The metabarcoding approach employed in this study led to high taxonomic resolution,
with 84 prey taxa identified: 75% at species level, 14% at genus level, 2% at sub-family level,
5% at family level and 2% at the phylum level (Table S2). Based on minimum number of
individuals (MNI), feeding events varied across sampling campaigns, though they were
consistently higher in Z. asper compared to C. gobio. MNI was lower at HEN (Z. asper;
5.03 ± 0.95, C. gobio; 2.74 ± 0.39) and SSL (Z. asper; 5.43 ± 0.37, C. gobio; 4.00 ± 0.58), and
notably higher at SLS (Z. asper; 7.47 ± 0.64, C. gobio; 5.31 ± 0.57).

Baetis species constituted a main prey group for both the Z. asper and C. gobio diets
(Figure 1; 32 and 24% of total consumption, respectively). Within the Baetis genus, B. fuscatus
was clearly a main prey species for both predators (16% and 10% of total consumption for
Z. asper and C. gobio, respectively), though other species such as B. lutheri and B. rhodani
were also consumed. Hydropsyche was also consumed in high proportion by both species,
but particularly by C. gobio, constituting 26% of overall diet, compared to 12% for Z. asper.
Various Hydropsyche species appeared in both diets, but the main prey species was H.
modesta. There was marked spatial variation in Hydropsyche consumption, with the highest
consumption being observed at HEN where they constituted 45% of the C. gobio diet and
14% of the Z. asper diet.

Both species consumed Ecdyonurus (Heptageniidae) prey but with minimal consump-
tion at HEN. Notable differences between the Z. asper and C. gobio diets included higher
Orthocladiinae consumption by Z. asper (12% versus 4%, respectively) and higher Ple-
coptera consumption by C. gobio (14% versus 6%, respectively). Diet compositions also
varied between sites. HEN was characterized by comparatively lower Baetis consumption
for both species (Z. asper: 18% compared to 43% and 35% in SSL and SLS; C. gobio: 12%
compared to 22% and 37% in SSL and SLS). Coinciding with lower Baetis consumption,
both species exhibited higher Plecoptera consumption in HEN compared to other sites. For
a complete summary of Z. asper and C. gobio diets, see Table S4.

3.3. Prey Preferences

Electivity tests showed that Z. asper and C. gobio shared comparable prey preferences
within each respective sampling campaign (Figure 3). At SSL and SLS, both Z. asper and
C. gobio shared strong preferences for Baetis and Heptageniidae, and to a lesser extent for
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Hydropsyche, while Dipteran chironomids and simuliids were almost uniformly selected
against. This pattern of prey preferences differed greatly from HEN, where both Z. asper
and C. gobio shifted towards a preference for Hydropyche and two Plecoptera families
(Taeniopterygidae and Leuctridae). While Baetis and Heptageniidae were still neutrally
consumed by both Z. asper and C. gobio, they were not positively selected at HEN. It is also at
HEN that we observed the most marked differences between Z. asper and C. gobio selection.
Though both species positively selected Hydropyche at HEN, C. gobio consumed twice as
much Hydropsyche than the null model prediction. In comparison, Z. asper consumption
of Hydropsyche only marginally exceeded the null prediction. Instead, Z. asper neutrally
selected Orthocladiinae and Simuliidae (Diptera) at HEN, while C. gobio negatively selected
these taxa.
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Figure 3. Zingel asper and Cottus gobio prey electivity. Dots represent the observed mean consumption,
and bars indicate 95% CIs based on the null model. Red: significant positive electivity; Blue:
significant negative electivity; White: not significant. N.B.: In order to avoid false positives, only
abundant prey species were considered for electivity tests: i.e., >5% relative abundance in the diet
and/or in the prey community.

3.4. Comparison of Z. asper and C. gobio Trophic Traits

Variation in individual and population trophic traits appeared to follow a similar
pattern for both C. gobio and Z. asper (Figure 4, Table 2). At HEN, both species exhibited
smaller individual niche widths (INW) and higher between-individual niche variation
(BIC) in relation to SSL and SLS (summer). Summer sites (SSL and SLS) were associated
with narrower TNW and BIC, and wider INW.

Both C. gobio and Z. asper exhibited a broader population niche width (TNW) at HEN.
However, while the TNW of Z. asper at HEN fell outside of the 95% CIs of those measured
at SSL and SLS, the TNW of C. gobio at HEN overlapped with the TNW at SSL and SLS
(Figure 4; Table 2). Additionally, Z. asper tended to exhibit a larger population niche width
(TNW) than C. gobio. Although TNW 95% CIs overlapped at all sites between Z. asper
and C. gobio, overlap was marginal at HEN, with TNW = 28.8 and 20.6 for Z. asper and
C. gobio, respectively.

Zingel asper and C. gobio differed significantly in terms of INW, wherein individual
niche widths were generally larger in Z. asper compared to C. gobio. Welch’s t-tests con-
firmed that the differences were statistically significant for HEN (t33 = −2.95, p = 0.006),
SSL (t43 = −2.19, p = 0.034) and SLS (t42 = −2.14, p = 0.039). For the between-individual
component (BIC) of the trophic niche, the only significant difference between species was
observed at SSL, wherein BIC was higher in C. gobio compared to Z. asper (t30 = 4.08,
p < 0.001).
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i.e., total niche widths (TNW), solid points; 85% sample coverage, solid lines; interpolated values,
dashed lines; extrapolated values, shaded area; 95% confidence intervals. (B) Individual niche
width (INW). (C) Between-individual component of the trophic niche (BIC). All trophic traits were
calculated using Hill numbers (1D).

3.5. Trophic Niche Overlap

Mean pairwise Bray–Curtis distances between Z. asper and C. gobio diets were signifi-
cantly different between sampling campaigns (Figure 5A; Kruskal–Wallis test; H2 = 630.76,
p > 0.001). The highest mean pairwise distance between species was observed at HEN,
followed by SLS and SSL (Dunn test; HEN–SSL z = 25.10, p < 0.001; HEN–SLS z = 13.73,
p < 0.001). The same pattern of dietary overlap was found using Pianka’s overlap index:
overlap was lowest at HEN (0.63) followed by SLS (0.73) and SSL (0.85; Figure 5B). Lower
dietary overlap at HEN appeared to be associated with high chironomid and simuliid con-
sumption by Z. asper, which are rarely consumed by C. gobio (Figure 6). Similarly, slightly
lower overlap at SLS compared to SSL appeared to be associated with the difference in
chironomid consumption and, to a lesser extent, Plecoptera consumption. Lastly, it should
be noted that despite some differences in the degree of overlap between sites, the observed
dietary overlap was significantly higher than the null model-predicted values in all cases
(Figure 5B).
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Figure 5. Diet overlap between Zingel asper and Cottus gobio. (A) Bray–Curtis pairwise distances
between Z. asper and C. gobio diets by sampling campaign (non-parametric Dunn tests: *** = p < 0.001).
(B) Pianka’s index of dietary overlap of Zingel asper and Cottus gobio diets. Density plot indicates null
model-simulated Pianka values, dashed lines indicate observed Pianka values.

Diversity 2022, 14, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 5. Diet overlap between Zingel asper and Cottus gobio. (A) Bray–Curtis pairwise distances 

between Z. asper and C. gobio diets by sampling campaign (non-parametric Dunn tests: *** = p < 

0.001). (B) Pianka’s index of dietary overlap of Zingel asper and Cottus gobio diets. Density plot indi-

cates null model-simulated Pianka values, dashed lines indicate observed Pianka values. 

 

Figure 6. Bipartite plots illustrating dietary overlap between C. gobio and Z. asper at HEN, SSL and 

SLS. 

4. Discussion 

4.1. Dietary Overlap and Coexistence 

 
 
 
 
  
 

    

    

    

    

    

         

 
  
 
 
 
 
  
  
  
 
  
 
  
 
  
  
  
 
 
 

 

 

 

 

                    

   

   

   

    
      

   

                                 

   

   

   

            

              

          

             

      

              

      

             

                   

           

                 

          

          

          

           

           

    

         

Figure 6. Bipartite plots illustrating dietary overlap between C. gobio and Z. asper at HEN, SSL
and SLS.
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4. Discussion
4.1. Dietary Overlap and Coexistence

This study highlighted extensive dietary overlap between C. gobio and Z. asper. Dietary
overlap was the most prevalent at SSL and SLS where both species disproportionately
consumed the same mayfly taxa (Baetis, Heptageniidae), indicating shared prey preferences.
Dietary overlap was weaker at HEN as Z. asper and C. gobio slightly diverged in their
trophic niches. At HEN, C. gobio appeared to specialise on the caddisfly genus Hydropsyche
(constituting almost half of its diet), whereas Z. asper diversified its diet by increasing its
consumption of taxa that were otherwise avoided at SSL and SLS (e.g., Orthocladiinae and
simuliids; Figure 6). This pattern of niche diversification has been observed in all major
extant Z. asper populations in autumn [23] and is also associated with higher between-
individual niche variation (BIC). Interestingly, the observed diet shift at HEN did not
appear to be associated with variation in the taxonomic diversity or density of the macroin-
vertebrate community (Table 3). The most notable spatial difference in the prey community
was in terms of the composition of preferred mayfly size-classes. Indeed, Angermeier [69]
also related diet variation to a decline in large, high-value prey individuals in a temperate
stream. Small Baetis individuals were abundant at HEN, but large individuals (i.e., >5 mm)
were greatly reduced. If C. gobio and Z. asper select larger mayfly size-classes, this may
explain their broader trophic niches at HEN. Dietary diversification is often associated
with prey diversity and abundance as they relate to the foraging options available to preda-
tors [70,71]. Our results indicate that variation in preferred prey size-classes, rather than
prey diversity or abundance, drives trophic niche variation in Z. asper and C. gobio.

Prey preferences are the product of predator and prey traits [8,72], and variation in
prey preferences can provide useful information about predator behaviour [73,74]. Prey
abundance is an important prey trait to consider as it is related to encounter rate. When the
encounter rate is high, it may be energetically beneficial for predators to specialise on highly
abundant prey [4]. However, neither Z. asper nor C. gobio appeared to adopt this frequency-
dependent selection criterion. In fact, both species generally avoided highly abundant prey
such as Caenis, Orthocladiinae and Simuliidae. Prey size is another important trait that can
drive selection, affecting both the visual detectability and nutritional value of prey [75,76].
Zingel asper and C. gobio selected moderately sized prey such as Baetis, Heptageniidae
and Hydropsyche but rarely consumed larger, less abundant Plecoptera prey (e.g., Dinocras,
Perla) [49]. Our results, therefore, indicate that selection in C. gobio and Z. asper is driven
by a trade-off in prey traits, notably in prey size and abundance. This would explain why
C. gobio and Z. asper reduced their consumption of Baetis at HEN, where the large size-class
of their preferred prey was less abundant. This is in line with previous studies that have
demonstrated that C. gobio selects larger prey [28,77]. Furthermore, as we demonstrated
that Z. asper and C. gobio mostly share the same prey preferences, they may also select prey
based on similar criteria (here, size and abundance).

A consequence of shared prey preferences is that C. gobio and Z. asper may compete
for preferred prey when resources are scarce [13,78]. Classic niche theory states that when
resources are limited, two species cannot occupy the same ecological niche and, therefore,
must avoid competition for resources via niche partitioning [1]. As C. gobio and Z. asper
coexist across the range of Z. asper [15], it is likely that competition for shared, preferred
prey is mediated by some degree of dietary partitioning. Indeed, dietary partitioning
between these species was highest at HEN (63% overlap compared to 73–85%), where the
larger size-class of preferred mayfly taxa was markedly less abundant (Figure 5, Table 3).
Predators are expected to shift their prey preferences if the abundance of preferred prey
drops below a threshold wherein it is no longer the energetically optimal prey choice [76].
Accordingly, both species reduced mayfly consumption at HEN and shifted their consump-
tion to contrasting secondary prey, which also resulted in broader population niche widths
(TNW) than was observed at SSL and SLS. Differential trophic responses to variation in prey
availability are a common mechanism promoting the coexistence of ecologically similar
species [13,79,80]. Our results suggest that contrasting secondary prey preferences may be
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a mechanism of coexistence for Z. asper and C. gobio, allowing for some degree of dietary
partitioning when shared, high-value prey (e.g., >5 mm Baetis) are less abundant.

In addition to differing secondary prey preferences, HEN was characterised by very
high between-individual niche variation (BIC) in both species (Figure 3). Niche diversifica-
tion via BIC is a common response to intraspecific competition for resources [35,81,82], but
it is limited by the constraining force of interspecific competition [36,83–85]. If C. gobio and
Z. asper were indeed competing for resources, classic niche theory would predict the niche
expansion of one species to constrain the niche width of the other. However, we found no
evidence of one species affecting the other’s trophic traits. Instead, the expansion of their
trophic niches when preferred prey were scarce was associated with contrasting secondary
prey preferences (chironomids and simuliids for Z. asper, and Hydropsyche for C. gobio).
Indeed, despite expanding their niches at HEN, dietary overlap was lower between Z. asper
and C. gobio compared to the SSL and SLS sites (where preferred prey were abundant).
Declining dietary overlap being associated with broader population niches has been previ-
ously reported [86]. This association can occur when the niche expansion is achieved by
exploiting otherwise unused niche space [40]. Moreover, diet generalisation (rather than
specialisation) in response to resource limitation has been shown to promote coexistence
(see [86]) as predicted by the optimal foraging theory. Overall, our results indicate that
C. gobio and Z. asper sustainably coexist by adopting broader population niches and greater
between-individual variation when preferred prey are scarce.

Finally, the contrasting strategies observed at HEN may also indicate some degree
of habitat partitioning between C. gobio and Z. asper. Caddisflies from the Hydropsyche
genus are described as net-spinning filter-feeders that generally prefer high-velocity riffles
over pools [87,88], whereas Orthocladiinae chironomids occupy a more diverse range of
substrate types and water velocities [49]. The high consumption of Hydropsyche at HEN
may indicate that C. gobio mostly forage in rheophilic habitats. In contrast, the diversified
diet of Z. asper and its high consumption of ubiquitous chironomids could indicate that
Z. asper forages in a wider range of microhabitats when preferred prey are scarce. Habitat
partitioning has been shown to be an important mechanism of coexistence [77,89–91], and
our results indicate that microhabitat partitioning may be an important mechanism for
limiting competition and promoting coexistence between C. gobio and Z. asper.

4.2. Conservation Implications for the Critically Endangered Z. asper

In conservation management, the presence of potential competitors is generally con-
sidered to be unfavourable for the target species [92,93]. In this study, we highlighted
the potential for competition between C. gobio and Z. asper if resources are limited. While
the potential for competition should not be overlooked, notably because C. gobio can sig-
nificantly deplete its resources [15,28], our results revealed some of the mechanisms that
might offset competition and promote the coexistence of Z. asper and C. gobio (e.g., contrast-
ing secondary prey preferences and trophic niche expansion). This increase in resource
partitioning (observed at HEN) may prevent competitive exclusion when preferred prey
are scarce.

In parallel, we demonstrated that C. gobio and Z. asper appear to share similar nu-
tritive requirements. The presence of heterospecifics with similar dietary requirements
has been used to provide an indirect indication of habitat suitability [94]. Certain birds
and fish species use the presence of heterospecifics as an indirect cue of habitat quality
when selecting novel habitats [95–98]. The presence of C. gobio may, therefore, indicate
suitable trophic conditions for Z. asper. While such indirect cues do not necessarily pro-
vide definite indications of habitat quality [99–101], the presence of C. gobio could provide
an immediate, approximate estimate of habitat suitability for Z. asper in the context of
reintroduction projects.
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5. Conclusions

Diet studies have proven to be critical for guiding the conservation and management
of species and habitats [84,102]. In this perspective, metabarcoding is now recognized
as highly valuable for dietary analysis and has proven to be effective to describe dietary
overlap due to its potential for high taxonomic resolution [42,44]. Using a high-resolution
metabarcoding dataset, we characterized the dietary overlap between Z. asper and C. gobio
in the context of spatial variation in the taxonomic and size composition of the prey
community. Our approach revealed that neither C. gobio nor Z. asper selected the most
abundant taxa and suggested that both C. gobio and Z. asper selected mayfly when their
large size-classes were abundant. When large mayfly abundance was low, C. gobio shifted
to a caddisfly-dominated diet, while Z. asper exploited a more diverse range of prey
(e.g., chironomids and simuliids). Variation in prey preferences may promote resource
partitioning and thus coexistence between Z. asper and C. gobio when preferred resources
are scarce. The coexistence of these native benthic predators, therefore, appears to be
mediated by dietary changes that promote resource and habitat partitioning in the context
of potential interspecific competition. This study also provides important insights into how
predators can modulate individual and population-level dietary traits to adapt to variation
in ecological opportunity and to ensure their coexistence. Our results present an important
reference point for future studies investigating the trophic interaction between Z. asper and
C. gobio.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14050412/s1, Figure S1: Macroinvertebrate sampling method-
ology; Table S1: Summary of macroinvertebrate sampling; Table S2: Complete list of validated
ASVs/contigs; Table S3: Cross-reference guide for Final Taxonomic Assignment (FTA) obtained via
metabarcoding and morphological assignment; Table S4: Summary of Z. asper and C. gobio diets
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