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SOfIc APPrOXIMATIONS AND OPTIMAL qUANTITATIVE
OrBIT EqUIVALENcE

Amandine Escalier*

May 19, 2022

We say that two groups are orbit equivalent if they both admit an action
on a same probability space that share the same orbits. In particular the
Ornstein-Weiss theorem implies that all infinite amenable groups are orbit
equivalent to the group of integers. To refine this notion Delabie, Koivisto,
Le Maître and Tessera introduced a quantitative version of orbit equivalence
and of its measure theoretic counterpart calledmeasure equivalence. They fur-
thermore obtained an upper bound to the possible quantification between
two given groups.
In this article we offer to answer the inverse problem (find a group being
orbit or measure equivalent to a prescribed group with prescribed quan-
tification) in the case of the group of integers, the lamplighter group and
Brieussel-Zheng’s diagonal products. These results moreover show that the
upper bound given by Delabie et al. is optimal: the orbit and measure equiv-
alences we obtain all realize the aforementioned upper bound.
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1 INTrODUcTION

A recurring theme in group theory is the description of large-scale behaviour of groups
and their geometry. A well known example is the study of groups up to quasi-isometry: it
describes the large-scale (or “coarse”) geometry from the metric point of view. A measure
analogue of quasi-isometry was introduced by Gromov in [GNR93] and is called measure
equivalence. A first elementary illustration of measure equivalent groups is given by lat-
tices in a common locally compact group. In parallel with this measure theoretic point of
view and under the impulsion of works of Dye [Dye59, Dye63] emerged the ergodic coun-
terpart of measure equivalence, called orbit equivalence: two groups are orbit equivalent
if they admit free measure-preserving actions on a same standard probability space (X, μ)
which share the same orbits. This notion can be seen as a strenghtening of the previous
one. Indeed orbit equivalence implies measure equivalence, altough the converse is not
necessarily always true.
However, even without using this strenghtened version, measure equivalence itself can

show remarkable rigidity properties. For instance Furman proved [Fur99] that any count-
able group which is measure equivalent to a lattice in a simple Lie group G of higher rank,
is commensurable (up to finite kernel) to a lattice in G. In the same vein Kida [Kid06]
showed that every group which is measure equivalent to a mapping class group is actually
commensurable (up to finite kernel) to it. More recently Guirardel and Horbez [GH21]
showed that for n ≥ 3, any countable group that is measure equivalent to Out(Fn) is virtu-
ally isomorphic to Out(Fn). On the contrary, completely opposite to the aforementioned
results, a famous theorem ofOrnstein andWeiss [OW80] implies that all amenable groups
are measure equivalent. In particular —unlike quasi-isometry—measure equivalence does
not preserve coarse geometric invariants.
To overcome this issue it is therefore natural to look for some refinements of this equiv-

alence notion. For example Kerr and Li [KL21] offer to sharpen it by considering the
Shannon entropy of partitions associated to the actions of the two groups. A second way
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1 Introduction

to proceed is to quantify how close the two actions are by studying the integrability of the
associated cocycles.
Indeed, assume thatG andH are twomeasure equivalent groups over a probability space

(X, μ) and denote by XG (resp. XH) the fundamental domains associated to the actions.
The corresponding cocycles α ∶ G × XH → H and β ∶ H × XG → G are defined by

α(g, x) = h ⇔ h ⋅ (g ⋅ x) ∈ XH β(h, x) = g ⇔ g ⋅ (h ⋅ x) ∈ XG. (1.1)

When x ↦ α(g, x) and x ↦ β(h, x) are Lp for all g ∈ G and h ∈ H, we say that the groups
are Lp-measure equivalent. This refinement allowed for example Bader, Furman and Sauer
[BFS13] to obtain a new rigidity result: they showed that any group L1-measure equivalent
to a lattice in SO(n, 1) for some n ≥ 2 is virtually a lattice in SO(n, 1). It also lead Bowen
to prove in the appendix of [Aus16] that volume growth was invariant under L1-orbit
equivalence. Delabie, Koivisto, Le Maître and Tessera offered in [DKLMT20] to extend
this quantification to a family of functions larger than {x ↦ xp, p ∈ [0,+∞]} (see Defi-
nition 1.5). In [DKLMT20, CDKT22] the authors also present tools to build equivalences
and quantify them using respectively tilings of Følner sequences and Sofic approxima-
tions. But instead of trying to determine the integrability of a given measure equivalence,
one can also look at the inverse problem, viz. given a quantification φ and a group G, find
a group that is measure equivalent to G with this prescribed integrability φ.
This is the problem we address in this article. To tackle this question we rely on the

monotonicity of the isoperimetric profile under quantitative measure equivalence (see
Theorem 1.11) and on the construction made by Brieussel and Zheng [BZ21] of groups
with prescribed isoperimetric profile called diagonal products. Using these tools we first
exhibit a group that is orbit equivalent to ℤ with a prescribed quantification (see The-
orem 1.16). In a second time we construct a measure equivalence coupling between two
diagonal products (seeTheorem 1.18). In both cases we compare the obtained couplings to
the constraints given byTheorem 1.11 and show that our couplings are optimal as precised
in Section 1.2. Before looking at these results, we recall some material about quantitative
measure equivalence couplings in Section 1.1 and connect it with the isoperimetric profile
in Section 1.2.

1.1 Quantitative measure equivalence

Let us recall some material of [DKLMT20]. Ameasure-preserving action of a discrete count-
able group G on a measured space (X, μ) is an action of G on X such that the map sending
(g, x) to g ⋅ x is a Borel map and μ(E) = μ(g ⋅ E) for all E ⊆ ℬ(X) and all g ∈ G. We will say
that a measure-preserving action of G on (X, μ) is free if for almost every x ∈ X we have
g ⋅ x = x if and only if g = eG.

Definition 1.1 ([DKLMT20, Def. 2.3])

Let G and H be two countable groups. A measure equivalence coupling from G to H is a
quadruple (X, XG, XH, μ) such that:

• (X, μ) is a standard measure space equipped with measure-preserving, commut-
ing, smooth, free actions of G and H,

• XG (resp. XH) is a fundamental domain of finite measure for the action of G
(resp. H) on X.

We say thatG andH aremeasure equivalent if there exists ameasure equivalence coupling
from G to H.
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1 Introduction

Asmentioned earlier, two lattices in the same locally compact group aremeasure equiv-
alent. Remark that our definition is asymmetric, we talk indeed of a coupling from one
group to another. This asymmetry might be unsettling for now since it is called measure
equivalence but it will make sense when we will define the quantification of the coupling
(see Definition 1.5). Let us now introduce a stronger equivalence relation between groups
which comes from ergodic theory.

Definition 1.2

Let G and H be two finitely generated groups. We say that G and H are orbit equivalent
if there exists a probability space (X, μ) and two measure-preserving free actions of G
and H on (X, μ) such that for almost every x ∈ X we have G ⋅ x = H ⋅ x. We call (X, μ) an
orbit equivalence coupling from G to H.

We called this equivalence relation stronger than measure equivalence because orbit
equivalence implies measure equivalence. But the converse is not always true. To ensure
that two measure equivalent groups are orbit equivalent we need the two fundamental
domains XG and XH to be equal. This is what we formalise below.

Proposition 1.3

Two countable groups G and H are orbit equivalent if and only if there exists a measure
equivalence coupling (X, XG, XH, μ) from G to H such that XH = XG.

Although this orbit equivalence relation is stronger than measure equivalence, it does
not distinguish amenable groups. Indeed by the Ornstein Weiss theorem [OW80, Th. 6]
below, all infinite amenable groups are in the same equivalence class.

Theorem 1.4 ([OW80])

All infinite amenable groups are orbit equivalent to ℤ.

To refine this equivalence relation and “distinguish” amenable groups we introduce a
quantified version of orbit and measure equivalence.
Recall that if a finitely generated group G acts on a space X and if SG is a finite generat-

ing set of G, we can define the Schreier graph associated to this action as being the graph
whose set of vertices is X and set of edges is {(x, s ⋅ x) | s ∈ SK}. This graph is endowed with
a natural metric dSG fixing the length of an edge to one. Remark that if S′G is another
generating set of G then there exists C > 0 such that for all x ∈ X and g ∈ G

1
CdSG(x, g ⋅ x) ≤ dS′G(x, g ⋅ x) ≤ CdSG(x, g ⋅ x).

xH ⋅ x g ∙ xH ⋅ (g ⋅ x)

g ⋅ xg

g ⋅ x Elements of XH Other elements of the corresponding orbit

Figure 1: Definition of g ∙ x
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Finally if (X, XG, XH, μ) is a measure equivalence coupling fromG toHwe have a natural
action of G on XH (see Figure 1 for an illustration) denoted by ∙ where for all x ∈ XH and
g ∈ G we define g ∙ x to be the unique element of H ⋅ g ⋅ x contained in XH viz.

{g ∙ x} = (H ⋅ g ⋅ x) ∩ XH.

To formulate this in terms of cocycles, if α ∶ G×X → H is the cocycle introduced in eq. (1.1)
then g ∙ x = α(g, x) ⋅ g ⋅ x.

Definition 1.5 ([DKLMT20, Def. 2.20])

Let φ,ψ ∶ ℝ+ → ℝ+ be two non-decreasing maps. We say that a measure equivalence
coupling (X, XG, XH, μ) from G to H is (φ,ψ)-integrable if for all g ∈ G (resp. h ∈ H)
there exists cg > 0 (resp. ch > 0) such that both

∫XH
φ(

1
cg
dSH(g ⋅ x, g ∙ x))dμ(x) and ∫XG

ψ(
1
ch
dSG(h ⋅ x, h ∙ x))dμ(x)

are finite. We say that the coupling is L∞-integrable if the map x ↦ dSH(s ⋅ x, s ∙ x) is
essentially bounded. We say that an orbit equivalence coupling is (φ,ψ)-integrable if it
is (φ,ψ)-integrable as a measure equivalence coupling.

We introduce the constants cg and ch in the definition for the integrability to be inde-
pendent of the choice of generating sets SG and SH.

Remark 1.6. Denote by |g|S the length of g inG = ⟨S⟩. An equivalent manner to formulate
the above definition using cocycles is to replace dSH(g ⋅ x, g ∙ x) and dSG(h ⋅ x, h ∙ x) in the
integrals by |α(g, x)|SH and |β(h, x)|SH respectively.

If φ(x) = xp we will sometimes replace φ by Lp and thus talk of (Lp, ψ)-integrability
instead of (φ,ψ)-integrability. In particular L0 means that no integrability assumption
is made. Finally, note that every (L∞, ψ)-integrable coupling is (φ,ψ)-integrable for any
increasing map φ ∶ ℝ+ → ℝ+. When φ = ψ we will say that the coupling is φ-integrable
instead of (φ,φ)-integrable.

Example 1.7. Shalom proved in [Sha04] that two quasi-isometric amenable groups are
L∞-measure equivalent.

Example 1.8. Delabie et al. obtained the following examples using a technique of tiling of
Følner sequences (see [DKLMT20, Section 6]).

1. Let n,m ≥ 1. There exists an orbit equivalence coupling from ℤm to ℤn which is
(Lp, Lq)-integrable for all p < n/m and q < m/n.

2. Letm ≥ 2. There exists an orbit equivalence coupling between ℤ and ℤ/mℤ ≀ℤ that
is (exp, φε)-integrable for all ε > 0 where

φε(x) =
log(x)

log(log(x))1+ε .

3. There exists an orbit equivalence coupling between ℤ4 and the Heisenberg group
Heis(ℤ) that is Lp-integrable for all p < 1.

In the light of these last examples, a natural question to ask is whether there exists
obstructions for findingφ-integrable couplings between two amenable groups, for a given
function φ. A first answer —and thus a first obstruction— is given by the isoperimetric
profile.
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1 Introduction

1.2 From the isoperimetric profile to the inverse problem

We saw that these equivalence notions do not preserve coarse geometric invariants. How-
ever the quantified version defined above allowed Delabie et al. [DKLMT20] to get a
relation between the isoperimetric profiles of two measure equivalent groups which we
describe below. But first let us introduce some notations.

Notation 1.9. If f and g are two real functions we denote f ≼ g if there exists some constant
C > 0 such that f(x) = 𝒪(g(Cx)) as x tends to infinity. We write f ≃ g if f ≼ g and g ≼ f.

Recall that if G is generated by a finite set S, the isoperimetric profile of G is defined as1

IG(n) ∶= sup
|A|≤n

|A|
|∂A| .

Remark that due to Følner criterion, a group is amenable if and only if its isoperimetric
profile is unbounded. Hence we can see the isoperimetric profile as a way to measure
the amenability of a group: the faster IG tends to infinity, the more amenable G is. For
example the isoperimetric profile of ℤ verifies Iℤ(n) ≃ n. A famous result of Erschler
[Ers03] gives the two following examples.

Examples 1.10.
• Let q ≥ 2 and d ≥ 1. If G ∶= ℤ/qℤ ≀ ℤd then IG(n) ≃ (log(n))1/d.
• If G ∶= ℤ ≀ ℤ then IG(n) ≃ log(n)/ log ∘ log(n).

The following theorem shows the monotonicity of the isoperimetric profile under mea-
sure equivalence.

Theorem 1.11 ([DKLMT20, Th.1])

Let G and H be two finitely generated groups admitting a (φ, L0)-integrable measure
equivalence coupling. If φ and t/φ(t) are increasing then

φ ∘ IH ≼ IG.

This theorem provides an obstruction for finding φ-integrable couplings with certain
functions φ between two amenable groups. For example we can deduce from the pre-
ceding examples that there is no L1 measure equivalence coupling from ℤ ≀ ℤ to ℤ/2ℤ ≀ ℤ.
The above theorem lead Delabie et al. to ask the following question.

Question 1.12 ([DKLMT20, Question 1.2]). Given an amenable finitely generated group
G, does there exist a (IG, L0)-integrable orbit equivalence coupling from G to ℤ?

This interrogation contains actually two questions: first it asks whetherTheorem 1.11 is
optimal when H = ℤ. We answer it positively in Theorem 1.16 for a large family of G and
investigate its generalisation to any group H.

Question 1.13. Given two groups G and H is there a φ-integrable measure equivalence
coupling from G to H such that IG ≃ φ ∘ IH?

As we will see, the couplings obtained with G = ℤ in Theorem 1.16 and the one given
by Theorem 1.18 answer the above Question 1.13 positively.
Second, the question ofDelabie et al. raises thematter of the “inverse problem”—stated

here for any group G.
1We chose to adopt the convention of [DKLMT20]. Note that in [BZ21], the isoperimetric profile is defined
as ΛG = 1/IG.
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Question 1.14. Given a group H and a function φ does there exist a group G such that
there exists a (φ, L0)-measure equivalent from G to H?

When H = ℤ, we answered this question in [Esc22] for a large family of maps φ.

Theorem 1.15 ([Esc22, Theorem 1.8])

For all non-decreasing function ρ ∶ [1, +∞[→ [1,+∞[ such that x/ρ(x) is non-decreasing,
there exists a group G such that

• IG ≃ ρ ∘ log;
• there exists an orbit equivalence coupling from G to ℤ that is (φε, exp ∘ρ)-inte-
grable for all ε > 0, where φε(x) ∶= ρ ∘ log(x)/(log ∘ρ ∘ log(x))

1+ε.

This coupling however is only optimal up to a logarithmic error. Changing of quantifi-
cation technique, we propose here an answer with optimal integrability both for H = ℤ
(Theorem 1.16) or H a diagonal product (Theorem 1.18). We also refer to the paragraph
named “Couplings building techniques and optimality” (page 9) for a discussion on this
optimality.

1.3 Main results

In this article we show the two main theorems below and their following corollaries. Fig-
ure 2 sums up these results and provides an overview of the couplings known so far, in-
cluding the ones from [DKLMT20, CDKT22]. First let

𝒞 ∶=
{
ζ ∶ [1, +∞) → [1,+∞)

|
ζ continuous,

ζ and x ↦ x/ζ(x)non-decreasing}
.

cOUPLING WITH THE INTEGErS The first result we prove provides an optimal
coupling with the group of integers with prescribed integrability. It therefore answers
Question 1.14 for H = ℤ.
Theorem 1.16

Let ρ ∈ 𝒞 and κ ≥ 3. If (ρ(κm)κ−m)m∈ℕ is summable, then there exists a group G such
that

• IG ≃ ρ ∘ log;
• There exists a (ρ ∘ log, L0)-integrable orbit equivalence coupling from G to ℤ.

We compare this result with Theorem 1.15 stated above and discuss advantages and
disadvantages of each construction on page 9.
Optimality Recall that Iℤ(x) ≃ x. We know by Theorem 1.11 that for a coupling from

a group G to ℤ, the best integrability we can hope for is φ ≃ IG. The above theorem
thus shows that it is reached for a very large family of maps φ. In particular it answers
Question 1.13 about optimality positively.
Remark on the hypothesisTheassumptionmade on (ρ(κm)κ−m)m excludes groups with

isoperimetric profile IG ≃ log. In particular Question 1.13 is still open when G is a Lamp-
lighter group and H = ℤ.
Delabie et al. [DKLMT20] introduced a way to compose couplings: given a measure

equivalence fromG toℤ and one fromℤ to some other groupHwe can construct ameasure
equivalence from G to H. Moreover, its integrability will be close to the optimal one
suggested by Theorem 1.11 if the growth of IH is close to the one of Iℤ. This is the case
when H = ℤd.
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Corollary 1.17

Let ρ ∈ 𝒞, let d ∈ ℕ∗ and κ ≥ 3. If (ρ(κm)κ−m)m∈ℕ is summable, then there exists a
group G such that

• IG ≃ ρ ∘ log;
• There exists a (ρ ∘ log, L0)-integrable orbit equivalence coupling from G to ℤd.

A GENErAL PrEScrIBED cOUPLING Our second main theorem concerns the ex-
istence of an optimal coupling between two groups whose isoperimetric profile is pre-
scribed. We first state the theorem in a deliberately vague way. Its formulation will be
precised in Theorem 4.1.

Theorem 1.18

Let ̃ρ, ρ ∈ 𝒞 with ρ moreover bijective. If
• there exits ε > 0 such that ̃ρ ∘ ρ−1(x) ≼ x1−ε;
• and if ρ does not grow too slowly;

then there exists two groups G and H such that IG ≃ ̃ρ ∘ log and IH ≃ ρ ∘ log and there
exists a ( ̃ρ ∘ ρ−1, L0)-integrable measure equivalence coupling from G to H.

Remark on the hypothesis The assumption that ̃ρ ∘ ρ−1(x) ≼ x1−ε guaranties that the
coupling goes from the bigger group to the smaller one. Since our aim is to check the opti-
mality of the inequality inTheorem 1.11 and since this inequality is true for concave maps,
it makes sense to work from the bigger group to the smaller one and not the other way
round. The hypothesis on the growth of ρ will be precised in Theorem 4.1. As we will
see, it will not be that restrictive and it is verified by maps as slow as ρ(x) = log ∘⋯ ∘ log⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r times
for r ∈ ℕ. In particular, the above theorem applies to ρ(x) = x and gives the following
corollary.

Corollary 1.19

Let ̃ρ ∈ 𝒞. If there exists ε > 0 such that ̃ρ(x) ≼ x1−ε, then there exists a group G such
that

• IG ≃ ̃ρ ∘ log ;
• there exists a measure equivalence coupling from G to ℤ/qℤ ≀ ℤ that is ( ̃ρ, L0)-
integrable.

We can deduce from the above result two corollaries. First define H ∶= ℤ2 ⋊A ℤ where
A is the matrix

A ∶=
(
2 1
1 1)

.

Corollary 1.20

Let ̃ρ ∈ 𝒞. If there exists ε > 0 such that ̃ρ(x) ≼ x1−ε, then there exists a group G such
that

• IG ≃ ρ ∘ log;
• there exists a ( ̃ρ, L0)-integrable measure equvalence coupling from G to H.

Second consider k ∈ ℕ∗ and the Baumslag-Solitar group defined by

BS(1, k) = 〈a, b | a−1ba = bk〉 .

8
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Corollary 1.21

Let ̃ρ ∈ 𝒞. If there exists ε > 0 such that ̃ρ(x) ≼ x1−ε, then there exists a group G such
that

• IG ≃ ̃ρ ∘ log;
• There exists a ( ̃ρ, L0)-integrable measure equivalence coupling fromG to BS(1, k).

OVErVIEW Figure 2 sums up the known results on the integrability of couplings be-
tween the different groups appearing in this article.

ℤ IZ(x) ≃ x

ℤd IZ(x) ≃ x1/d

ΔIΔ ≃ ρ ∘ logΔ̃

IΔ̃ ≃ ̃ρ ∘ log

LLILL ≃ log BS(1, k)

ℤ2 ⋊A ℤ

Lp
Lq

p < 1/d
q < d

ρ ∘ log exp

log
(log∘ log)1+ε L∞

exp

L∞

exp

by
com

position

by composition

̃ρ ∘ ρ−1 ρ

Orbit equivalence couplings

Measure equivalence couplings

LL Lamplighter group ℤ/qℤ ≀ ℤ

Couplings obtained in this paper

Couplings from Delabie et al.

Couplings from Carderi et al.

Figure 2: Overview of the mentioned couplings

cOUPLINGS BUILDING TEcHNIQUES AND OPTIMALITY We state in this arti-
cle two results giving couplings with ℤ with prescribed integrability: Theorem 1.15 from
[Esc22] andTheorem 1.16. Each of them has in fact its own interest; this what we propose
to discuss here.
Theorem 1.15 was obtained using a coupling building technique called “Følner tiling

shifts”. Instead of using sofic approximations it relies on Følner sequences defined recur-
sively: the n-th term is tiled by the (n − 1)-th term (see [DKLMT20] for more details).
This tiling technique —though inspiring— is not always usable to get orbit or measure
equivalence couplings. Indeed it requires that the two sequences must have at each step
the same cardinality, which is possible to achieve for a coupling with the integers but
not necessarily for other groups. It was, for example, not possible to use it to obtain our
coupling between diagonal products (Theorem 4.1). Furthemore this technique does not
seem to produce couplings with optimal integrability. Whether it is our Theorem 1.15 or
Example 1.8 from [DKLMT20], the integrability is always optimal up to a logarithmic error.
Hence we work here with Sofic approximations and the engineering developped in

[CDKT22] instead. It allows us to obtain couplings with optimal integrability.
Note however that where Theorem 1.15 does not require any additional conditions on

ρ ∈ 𝒞, Theorem 1.16 does. In particular it does not apply to ρ ≃ id, and therefore excludes

9



2 Sofic approximations

couplings from the Lamplighter group to ℤ. Hence Question 1.14 is still open for φ ≃ log
as well as the existence of an optimal coupling from the Lamplighter to ℤ.
So both techniques have their own advantages. Although the tiling process does not

produce optimal couplings, the proofs are technically simpler and —in contrast to the
Sofic constructions— the coupling is explicit2. While at the cost of more intricate demon-
strations, the Sofic technique we used here provides couplings with optimal integrability.

STrUcTUrE OF THE PAPEr The tools we use to build and quantify couplings are
presented in Section 2. We start by recalling material from [CDKT22] about Sofic ap-
proximations and introduce the corresponding integrability criterion. In a second time
we construct useful Sofic approximations of Brieussel-Zheng’s diagonal products. We use
this machinerie to showTheorem 1.16 in Section 3, while Section 4 is devoted to the proof
of Theorem 1.18. The construction of the coupling with ℤ can be seen as in introduction
to the quite more technical proof of Theorem 1.18. Finally an appendix sums up neces-
sary material about diagonal products (appendix A) and decomposition in variable base
(appendix B). We strongly encourage readers unfamiliar with diagonal products to read the
aforementioned appendix A before reading Sections 2 to 4.
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for suggesting the topic, sharing their precious insights and for their many useful advices.

2 SOFIc APPrOXIMATIONS

We start by recalling some results from [CDKT22] about Sofic approximations. These are
the tools needed to build couplings and quantify their integrability. Then we construct
Sofic approximations for diagonal products and compute some useful estimates of their
growth and diameter. We refer to appendixA for the definition and properties of diagonal
product.

2.1 Sofic approximations

We recall here some material from [CDKT22]. In this paragraph G will be a finitely gen-
erated group endowed with a finite generating set SG and (𝒢n)n∈ℕ will be a sequence of
finite, directed graphs labeled by the elements of SG. Let r > 0 and denote by 𝒢(r)n the set
of elements x ∈ 𝒢n such that B𝒢n(x, r) is isomorphic to BG(eG, r) seen as directed labeled
graphs, viz. 𝒢(r)n = {x ∈ 𝒢n | B𝒢n(x, r) ≃ BG(eG, r)}.

Definition 2.1

We say that (𝒢n)n∈ℕ is a Sofic approximation if for every r > 0

lim
n→∞

|𝒢(r)n |
|𝒢n|

= 1.

Example 2.2. Any Følner sequence in an amenable group G is a Sofic approximation.

2We refer to [DKLMT20, Section 6] for the construction of the coupling
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2 Sofic approximations

In [CDKT22] Carderi, Delabie, Koivisto and Tessera proved a condition for a measure
equivalence to be (φ, L0)-integrable using Sofic approximations.

Theorem 2.3 ([CDKT22])

Letφ∶ ℝ+ → ℝ+ be a non-decreasingmap. LetG andH be twofinitely generated groups
with Sofic approximations (𝒢n)n and (ℋn)n and let ιn ∶ 𝒢n → ℋn be an injective map
such that

1. There exists C > 0 such that the image of ιn is C-dense for all n ∈ ℕ;
2. For every s ∈ SG there exists δ > 0 such that

lim
R→∞

sup
n

R
∑
r=0

φ(δr) |{
x ∈ 𝒢(1)n ∣ dℋn(ιn(x), ιn(x.s)) = r}|

|𝒢n|
< ∞; (2.1)

3. For every h ∈ H there exists δ > 0 such that

lim
R→∞

sup
n

R
∑
r=0

ψ(δr) |{
y ∈ ιn(𝒢n) ∩ ℋ(1)

n ∣ d (ι−1n (y), ι−1n (y ⋅ h)) = r}|
|𝒢n|

< ∞. (2.2)

then there exists a (φ,ψ)-integrable measure equivalence coupling from G to H. More-
over if the maps ιn are bijective then there is a (φ,ψ)-integrable orbit equivalence cou-
pling from G to H.

In [CDKT22] the authors used this theorem to obtain the following example.

Example 2.4 ([CDKT22, Th. 6.1]). Let k ≥ 3 and let H ∶= ℤ2 ⋊A ℤ where A is the matrix

A ∶=
(
2 1
1 1)

.

There exists a (L∞, exp)-integrable measure equivalence coupling from ℤ/kℤ ≀ ℤ to H.

2.2 Sofic approximation of diagonal product

In this subsection we describe Sofic approximations of diagonal products. As we will see,
these approximations are actually Følner sequences.
In the following we denote by Δ a diagonal product as defined in appendix A verifying

hypothesis (H) page 51. In particular (km)m and (lm)m denote subsequences of geometric
sequences and we let κ such that (km)m is a subsequence of (κm)m. To condense the proofs
to come let

𝒮1 ∶= {((amδ0)m, 0) | am ∈ Am} 𝒮2 ∶= {((bmδkm)m, 0) | bm ∈ Bm} . (2.3)

Finally, recall that 𝔩(n) denotes the integer such that k𝔩(n) ≤ n < k𝔩(n)+1.

A FIrST SEQUENcE In [Esc22, Prop. 2.13] we showed that (Fn)n defined in eq. (2.4)
below, is a Følner sequence for Δ. We refer to appendix A.2 for details on the range of an
element.

Fn ∶= {(𝐟, t) ∈ Δ | range(𝐟, t) ∈ [0, n − 1]} (2.4)

11



2 Sofic approximations

This sequence will be enough to obtain the integrability of the coupling with ℤ wanted
in Theorem 1.16, but not for the one of Theorem 1.18. We thus introduce a finer one.

A rEFINED SEQUENcE To show Theorem 1.18 we will need to control the speed at
which the cardinal of the Følner sets grows. More precisely if (ℱn)n denotes this sequence,
we want it to verify C|ℱn| ≤ |ℱn+1| ≤ C′|ℱn| for some constants C,C′ > 0. Note that this
is not true for (Fn)n defined above. Indeed in Fn+1, unlike in Fn, an element (𝐟, t) can
take non-trivial values at f′m(n) for allm ∈ [0, 𝔩(n)]. This allows for many new elements in
Fn+1. To counter this, the idea is thus to allow f′m(n) to take non-trivial values for one m
at a time. Moreover since |Γ ′m| can grow fast, we choose for allm a subset series (Λmj )j of
Γ ′m such that C|Λmj | ≤ |Λmj+1| ≤ C′|Λmj |. This is what we formalize below and sum up in
Figure 3.
For all i ∈ ℕ∗ we define an integer Ni > 0 and a sequence (Λij)j∈{0,…,Ni} such that

⎧
⎨⎩

{e} = Λi0 ⊂ Λi1 ⊂ ⋯ ⊂ ΛiNi ∶= Γ ′i
2|Λij | ≤ |Λij+1| ≤ 2q|Λij | (∀j ∈ {0,…Ni − 1}).

(2.5)

When i = 0 define N0 ∶= 1 and let Λ01 ∶= Γ0 ∼ A × B.
Now for all n ∈ ℕ, all i ∈ {0,… , 𝔩(n − 1)} and j ∈ {1,… ,Ni} we define

Fn,i,j ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪
⎩

(𝐟, t)

||||||||||||||

|

t ∈ [0, n − 1]
supp(f0), supp(f′m) ⊂ [0, n − 1] ∀m ∈ {1,… , i}

f′i(n − 1) ∈ Λij
supp(f′m) ⊂ [0, n − 2] ∀m ∈ {i + 1,… , 𝔩(n − 1)}

f′m ≡ e ∀m > 𝔩(n − 1)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪
⎭

(2.6)

For an element (𝐟, t) of Fn,2,j, we represent the sets where 𝐟 takes its values in Figure 3.

f′1

k1

f′2

k2

f′3

k3

Λi
j

f0

nn − 10

Values taken in…

A0 × B0 Γm Λi
j

Figure 3: An element of Fn,2,j.

Before proving that this sequence provides a Følner sequence, let us state some conven-
tions. For all n ∈ ℕ and i ∈ {0,… , 𝔩(n − 1)} we define

Fn,i,Ni+1 = Fn,i+1,1 and Fn,𝔩(n−1)+1,0 = Fn+1,0,1.

Proposition 2.5

Let (ℱn)n∈ℕ be the sequence defined inductively by ℱ0 ∶= F1,0,N0 and for all n ≥ 0 by
ℱn+1 = Fm,i,j+1 where m, i and j are such that ℱn = Fm,i,j. Then (ℱn)n∈ℕ is a Følner
sequence of Δ.

12



2 Sofic approximations

Proof. Let n ∈ ℕ, let i ∈ [0, 𝔩(n − 1)] and j ∈ [1,Ni] and take (𝐟, t) in Fn,i,j.
If s = (0, 1) then (𝐟, t)s belongs to Fn,i,j if and only if t ≠ n − 1. Similarly if s = (0,−1)

then (𝐟, t)s ∈ Fn,i,j if and only if t ≠ 0.
Now let s = ((amδ0)m, 0) for some a ∈ A. The action of s on (𝐟, t) does not change the

value of the cursor, thus there exists some 𝐠 such that (𝐟, t)s = (𝐠, t). For all x ≠ t it verifies
g0(x) = f0(x), moreover g0(t) = f0(t)a0. Thus supp(g0) = supp(f0). Now consider m > 0.
Then for all x ≠ t we have gm(x) = fm(x) and in particular g′m(x) = f′m(x). Furthermore
using the decomposition given by Lemma A.6 and the above value of g0(t) we get

gm(t) = fm(t)am = f′m(t)θAm (f0(t)) θBm(f0(t − km))am,
= f′m(t)θAm (f0(t)am) θBm(f0(t − km)),
= f′m(t)θAm (g0(t)) θBm(g0(t − km)).

By unicity of the decomposition we thus obtain g′m(t) = f′m(t). Hence supp(g′m) =
supp(f′m) and g′m(n−1) = f′m(n−1) which belongs to Λij . Thus (𝐠, t) belongs to Fn,i,j. The
case where s ∈ 𝒮2 is very similar.
Thus ∂Fn,i,j = {(𝐟, t) ∈ Fn,i,j | t ∈ {0, n−1}} and in particular |∂Fn,i,j|/|Fn,i,j| ∼ 2/n. Hence

(ℱn)n is a Følner sequence.

Remark 2.6. Note that (Fn)n∈ℕ defined in eq. (2.4) is a subsequence of (ℱn)n∈ℕ. Indeed
using [Esc22, Lemma 2.12] we can prove that Fn ∶= Fn,𝔩(n−1),N𝔩(n−1) .

2.3 Growth and diameter

Let us start by computing the number of elements in Fn,i,j and give an estimate of the
growth of this Følner sequence.

Lemma 2.7

Let n ∈ ℕ and i ∈ [0, 𝔩(n − 1)] and j ∈ [0,Ni] and consider Fn,i,j as defined in eq. (2.6).
Then

|Fn,i,j| = nqn
i−1

∏
m=1

|Γ ′m|
n−km

|Λij |
𝔩(n−1)

∏
m=i

|Γ ′m|
n−km−1

In particular 2|Fn,i,j| ≤ |Fn,i,j+1| ≤ 2q|Fn,i,j|.

The last assertion precises the control we have on the growth of |Fn,i,j|. It will be precious
when proving Theorem 1.18.

Proof. Let Fn,i,j as defined in eq. (2.6) and take (𝐟, t) ∈ Fn,i,j, then there are exactly n possi-
ble values of t. Moreover 𝐟 is uniquely determined by f0 and f′1, … , f′𝔩(n−1) (see LemmaA.6).
But f0 is supported on [0, n−1]which is set of cardinal n so there are exactly (|A||B|)

n pos-
sible values for f0. Moreover if 0 < m < i then f′m is supported on [kn, n − 1] which has
n − km elements, and on this interval it can take any values in Γ ′m so there are exactly

|Γ ′m|
n−km

possibilities for f′m. Similarly for m > i the map f′m is supported on [km, n − 2]
which contains n − 1 − km elements, thus we have |Γ ′m|

n−km−1
choices for such a map.

Finally when m = i the map f′i is supported on [ki, n − ki] and
• for any x ∈ [ki, n − ki − 1] all values of |Γ ′i | can be taken by f′i;
• f′i(n − 1) can take any value in Λij .

We thus have |Λij | |Γ ′i |n−ki−1 possibilities for f′i. Hence the first assertion.

13



2 Sofic approximations

Assume first that i < 𝔩(n− 1) and j = Ni, then Fn,i,Ni+1 = Fn,i+1,1 and hence using also
eq. (2.5)

|Fn,i+1,1|/|Fn,i,Ni | = |Λi+11 | ∈ [2, 2q].

Similarly if j < Ni then |Fn,i,j+1|/|Fn,i,j| = |Λij+1| / |Λij | which belongs to [2, 2q]. Finally if
i = 𝔩(n − 1) and j = Ni then Fn,i,j+1 = Fn+1,0,1. In that case

|Fn,i,j+1|/|Fn,i,j| = |Fn+1,0,1|/|Fn,i,Ni | = q(n + 1)/n ∈ [q, 2q].

Hence the wanted inequalities.

We will use this last lemma to estimate the value of ln |Fn,i,j|.

Proposition 2.8

There exists C2 > 0 depending only on Δ such that ln |Fn,i,j| ≤ C2nl𝔩(n−1) for all n ∈ ℕ.

Remark 2.9. Let us mention that a similar estimation was done in [Esc22] for the value
of ln |Fκn |. We refer to eq. (2.4) and Remark 2.6 for the definition of (Fn)n∈ℕ and its link
with the sequence Fn,i,j. Most importantly, in the case of this precise subsequence, we
were also able to give a lower bound. Indeed if we define 𝔏(n) ∶= 𝔩(κn − 1) then by [Esc22,
Prop. 4.3] there exists two constants C3, C4 > 0 such that for all n ∈ ℕ,

C3κn−1l𝔏(n) ≤ ln |Fκn | ≤ C4κnl𝔏(n).

We refer to the proof of Lemma 4.5 for a use of this precise lower bound.

Similarly the lemma below generalises [Esc22, Lemma 4.4].

Lemma 2.10

There exists C1 > 0 depending only on Δ such that for all n ∈ ℕ∗,

ln
(

𝔩(n−1)

∏
m=1

|Γ ′m|
n−km

)
≤ C1nl𝔩(n−1).

Proof. By eq. (A.1) there exists c1, c2 > 0 such that ln |Γm| ≤ c1lm + c2, for all m. Then,

ln
(

𝔩(n−1)

∏
m=1

|Γ ′m|
n−km

)
≤

𝔩(n−1)

∑
m=1

(n − km) ln |Γ ′m|,

≤
𝔩(n−1)

∑
m=1

(n − km) (c1lm + c2) .

But we can bound n−km from above by n and since (lm)m is a subsequence of a geomet-
ric sequence the sum∑𝔩(n−1)

m=1 (c1lm + c2) is bounded from above by its last term up to a
multiplicative constant. That is to say: there exists C1 > 0 such that

ln
(

𝔩(n−1)

∏
m=1

|Γ ′m|
n−km

)
≤ C1nl𝔩(n−1).
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3 Coupling with ℤ

Proof of Proposition 2.8. Since Λij ⊆ Γ ′i, using Lemma 2.7 and Lemma 2.10 we get

ln |Fn,i,j| ≤ ln
(
nqn

𝔩(n−1)

∏
m=1

|Γ ′m|
n−km

)
≤ ln (n) + n ln(q) + C1nl𝔩(n−1).

Thus, there exists C2 > 0 such that ln |Fn,i,j| ≤ C2nl𝔩(n−1).

3 cOUPLING WITH 𝕫

This section is devoted to the proof of Theorem 1.16. In the following Δ will be a diagonal
product as defined in appendix A and verifying (H) page 51. In particular its isoperimetric
profile is of the form IΔ ≃ ρ ∘ log for some ρ ∈ 𝒞. To prove Theorem 1.16 we actually show
that the diagonal product obtained from the isoperimetric profile ρ ∘ log is the wanted
group G. The integrability of the coupling is proved using the criterion of Theorem 2.3.
We thus start by defining Sofic approximations 𝒢n ⊆ Δ and ℋn ⊆ ℤ and then define a
bijection ιn between them. For this we use the notion of decomposition in variable base of
an integer. All necessary material are recalled in appendix B.1.
Now let us describe the idea of the bijection. Given (𝐟, t) in 𝒢n we map 𝐟 to an integer

decomposed in some variable base (bi)i and decompose t is some constant base κ. The
image of (𝐟, t) by ιn will be the integer produced by intertwining the digits of these two
decomposition. We illustrate this in Figure 4 and refer to Section 3.1 for more details on
this interlacing.
In a second time we study the different components appearing eq. (2.1) giving the con-

dition for integrability. We thus investigate the behaviour of the value of ιn(𝐟, t) under
the action of some generator s of Δ on (𝐟, t). Then for some distance r > 0, we compute
the proportion of elements (𝐟, t) in 𝒢n that the action of s sents ιn(𝐟, t) at distance r from
ιn((𝐟, t)s). We conclude on the proof of Theorem 1.16 by showing that eq. (2.1) is verified.

3.1 Bijection between Sofic approximations

Recall that (Fn)n∈ℕ defined in eq. (2.4) is a Følner sequence (and hence a Sofic approxi-
mation) of Δ. Therefore, the following subsequence of (Fn)n∈ℕ provides a Sofic approxi-
mation of Δ:

𝒢n ∶= Fκn = {(𝐟, t) | range (𝐟, t) ⊆ {0,… , κn − 1}} .

Letℋn ∶= [0, |𝒢n|−1] ⊆ ℤ and denote by𝔏(n) the integer verifying k𝔏(n) ≤ κn−1 < k𝔏(n)+1.

Idea of the bijection Consider (𝐟, t) ∈ 𝒢n. To construct our bijection we are going
to “encode” the information contained in 𝐟 into an integer. We decompose it in some
variable base (bi)i to be precised later and decompose t in base κ. We then intertwine the
digits to obtain one integer from the two preceding ones (see Figure 4).

𝒢n
𝐟
t ∑n−1

i=0 tiκi
∑i xibi−1⋯b0

ℋn ⊆ ℤ

z = t0 + κx0+κb0t1 +⋯

Figure 4: Definition of the injection

This is the general idea, now let us describe the numbering process of 𝐟.
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3 Coupling with ℤ

Numbering process and blocs decompositon For the condition of eq. (2.1) to be verified,
we need the bijection to correspond to the geometry of the groups. That is to say: for some
s ∈ 𝒮Δ, we need ιn(𝐟, t) to be sent at a reasonable distance from ιn((𝐟, t)s) in ℤ.
Recall (see Claim A.10) that 𝐟 is uniquely determined by f0 and (f′m)m. As we will see,

the main problem is to number f0. So first assume for simplicity that Δ is a lamplighter
group and thus 𝐟 = f0 ∶ ℤ → A×B. A naive way to encode the information contained in f0
is to map it to the integer∑κn−1

i=0 f0(i)qi. But then the action of s ∈ 𝒮ℤ\{(0, 1)} will change
the value of the lamp f0(t) and thus the distance between ιn((𝐟, t)s) and ιn(𝐟, t) might
be quite large. Therefore, when encoding f0 in an integer we need to start numbering it
from the cursor t and continue moving away from t (instead of starting from 0). This way
the action of a generator modifying the lamps will only change the corresponding integer
from a small value (see Lemma 3.6). Now, the action of s = (0, 1) changes the value of the
cursor; it thus modifies the starting point of this numbering and hence disrupts (all) the
digits encoding f0. To counter this we define in Section 3.1.1 a numbering that depends on
the decomposition in base κ of t. More precisely, if t = ∑n−1

i=0 tiκi denotes the decomposition
in base κ of t, we define a sequence of nested intervals (ℬj(t))j such that the lower and
upper bounds of ℬj(t) depends only on (ti)i≥j. We then encode the information of f0
reading first the values taken by f0 on ℬ0(t), then on ℬ1(t), etc. (see Figure 5). This way, if
t and t+1 differ only in their first i0 digits then ℬj(t) and ℬj(t+1) are the same intervals,
for all j > i0. In other words: the reading window are the same and the encoded values
are consequently identical.
To obtain the encoding of an element (𝐟, t) in a general diagonal product, we start by

number f0 using the foregoing blocs decomposition and then encode (f′m)m in an integer.
We refer to Figure 6 for an illustration.

We start by formalising our blocs decomposition in Section 3.1.1 below. We then define
our numbering of (𝐟, t) and the injection ιn in Section 3.1.2. We conclude by the proof of
the bijectivity of ιn in Section 3.1.3.

3.1.1 Bloc decomposition

Fix (𝐟, t) ∈ 𝒢n and decompose t in base κ as t = ∑n−1
i=0 tiκi. In this paragraph we de-

fine the blocs or “reading windows” that will determine the encoding of f0. As described
previously, the idea is to define a sequence of nested intervalsℬi(t) such that if the decom-
position in base κ of t and t + 1 differ only in their first i0 terms, then the corresponding
intervals ℬi(t) and ℬi(t + 1) are the same for all i > i0.

Lemma 3.1

Let t ∈ [0, κn − 1] and i ∈ {0,… , n} and define

ℬi(t) ∶=
[

n−1

∑
j=i

tjκj,
n−1

∑
j=i

tjκj + κi − 1
]
.

The sequence (ℬi(t))0≤i≤n thus defined verifies ℬi(t) ⊂ ℬi+1(t) for all i ≤ n − 1. In
particular

{t} = ℬ0(t) ⊂ ℬi(t) ⊆ ℬn(t) = [0, κn − 1],

and thus t belongs to ℬi(t) for all i ≤ n.

Remark 3.2. Remark that by definition diam (ℬi(t)) = κi − 1 ∼ κi for all i ≤ n.
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3 Coupling with ℤ

We represent in Figure 5 such a nesting of intervals for κ = 3, n = 3 and t = 16 whose
decomposition is thus given by t = 1 + 2 ⋅ 3 + 1 ⋅ 32.

0 9 15 16

t

17 33 = 27
26

B3(t) = [0, 26]

B2(t) = [9, 17]

B1(t)

B0(t)

B0(t) B1(t)\B0(t) B2(t)\B1(t) B3(t)\B2(t)

Figure 5: Example of ℬi(t) for κ = 3, n = 3 and t = 16.

Proof of Lemma 3.1. Let t ∈ [0, κn − 1] and i ∈ {0,… , n − 2} and let us prove that ℬi(t) ⊂
ℬi+1(t). Remark that∑n−1

j=i tjκj is greater than∑
n−1
j=i+1 tjκj. Moreover, since

tiκi ≤ (κ − 1)κi = κi+1 − κi,

we thus have

n−1

∑
j=i

tjκj + κi − 1 ≤ (κi+1 − κi) +
n−1

∑
j=i+1

tjκj + κi − 1 =
n−1

∑
j=i+1

tjκj + κi+1 − 1.

Hence the inclusion.

Remark 3.3. By Remark 3.2 and the above lemma, we have |ℬi(t)\ℬi−1(t)| = κi − κi−1. In
particular the number of lamp configurations from ℤ toA×B supported on ℬi(t)\ℬi−1(t)
is qκi−κi−1 .

3.1.2 Global numbering

By the preceding remark we can define applications

ν0,t ∶ {ζ ∶ ℬ0(t) → A× B} → [0, q − 1] ,

∀i ≥ 1 νi,t ∶ {ζ ∶ ℬi(t)\ℬi−1(t) → A× B} → [0, q
κi−κi−1 − 1] .

such that these maps are bijections. From now on we assume fixed such bijections. Re-
mark that they actually depend on the value of t. When we do need to keep track of the
value of t we will denote νi instead of νt,n.

Claim 3.4. There exists a bijection

μn ∶ {𝐟′| supp(f′m) ⊆ [km, κn − 1], ∀m ∈ [0, 𝔏(n)]} → [
0, |𝒢n|
κnqκn − 1]

.
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3 Coupling with ℤ

Proof. Recall that 𝒢n = Fκn . Consider (𝐟, t) ∈ 𝒢n. The number of such possible 𝐟 is equal
to the number of elements of 𝒢n divided by the number of possible cursor t, that is to
say |𝒢n|/κn. Recall moreover (see appendix A.1) that in a diagonal product 𝐟 is uniquely
determined by f0 and 𝐟′. Since supp(f0) ⊆ [0, κn −1] and f0 can take all possible values on
that interval, we have qκn possible values for f0. Similarly, for allm ∈ [0, 𝔏(n)] the support
of f′m is in [km, κn − 1] and f′m can take all possible values on that interval. Hence

|{𝐟′| supp(f′m) ⊆ [km, κn − 1], ∀m ∈ [0, 𝔏(n)]}| = |{𝐟 | ∃t ∶ (𝐟, t) ∈ 𝒢n}| /qκ
n ,

= |𝒢n|/(κnqκn).

The information encoded by each of the previous maps is represented in Figure 6.

ν̃0

ν̃1
ν̃2

ν̃n

k̃1

f′1

k̃2

μ̃

f′2

k̃3

f′3

f0

κn0

Figure 6: Numbering in Δ

Using the maps defined above we are now able to encode in an integer the information
contained in 𝐟. Indeed we can consider the map sending 𝐟 to the number

ν0 (f0|ℬ0(t)) +
n

∑
i=1

νi,t (f0|ℬi(t)\ℬi−1(t)) qκ
i−1 + κnqκnμn(𝐟′).

The above decomposition can be seen as the writing of the corresponding integer in the
variable base (q, qκ−1, … , qκn−κn−1 ,maxμn+1). We refer to appendix B.1 for more details
on variable base. The digits of the decomposition are given by the values of the νi,t’s and
μn. Intertwining these digits with the ones of the decomposition of t in base κ we obtain:

ιn(𝐟, t) ∶= ν0 (f0|ℬ0(t)) +
n−1

∑
i=0

tiκiqκi +
n

∑
i=1

νi,t (f0|ℬi(t)\ℬi−1(t)) κiqκ
i−1

+κnqκnμn(𝐟′).
(3.1)

It corresponds to the decomposition of ιn(𝐟, t) in the variable base (βi)i defined below.

β0 = q
∀i ∈ [1, n] β2i = qκi−κi−1

∀i ∈ [1, n] β2i−1 = κ
β2n+1 = max(μn) + 1.

Please note that the variable base depends on n but in order to reduce formalism we
chose to abuse notations and write βi instead of βn,i.
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3 Coupling with ℤ

3.1.3 Bijection

In order to obtain an orbit equivalence using Theorem 2.3 we need to prove that ιn is
bijective.

Proposition 3.5

For all n ∈ ℕ, the map ιn defined in eq. (3.1) is a bijection from 𝒢n = Fκn to ℋn =
[0, |𝒢n| − 1].

Proof. Let n ∈ ℕ. By Lemma B.1 on the decomposition in variable base applied to (βi)i the
map ιn defined in eq. (3.1) verifies min ιn = 0 and max ιn = κnqκn(maxμn + 1) − 1. Since
maxμn + 1 = |𝒢n|/(κnqκn) we obtain that the image of ιn is included in ℋn = [0, |𝒢n| − 1].
The injectivity of ιn comes from the unicity of the decomposition in variable base (see

Lemma B.1). To prove the surjectivity, consider z ∈ ℋn then we can decompose it in
base (βi)i as z = [z0, … , z2n+1]β. In particular z2i−1 ∈ [0, q − 1] for all i ∈ [1, n]. Define
t = ∑n

i=1 z2i−1κi then t belongs to [0, κn]. Moreover since νi,t and μn are bijections the
others coefficients determine 𝐟 such that (𝐟, t) ∈ 𝒢n verifies ιn(𝐟, t) = z.

3.2 Quantification

Now that we have defined a bijection between our Sofic approximations we need to show
that eq. (2.1) is verified. So for (𝐟, t) ∈ 𝒢(1)n and s ∈ 𝒮Δ we first bound the distance between
ιn(𝐟, t) and ιn((𝐟, t)s). Then for a given r > 0 we provide an estimate of the proportion of
elements in 𝒢n such that ιn(𝐟, t) and ιn((𝐟, t)s) are at distance r in ℋn. Finally we show
that the aforementioned equation is verified.

3.2.1 Distance

Consider (𝐟, t) ∈ 𝒢(1)n . We compare in this section the distance in ℤ between ιn(𝐟, t) and
ιn((𝐟, t)s) for some s ∈ 𝒮Δ. We will distinguish two cases depending on s = (0, 1) or not.
If (𝐟, t) belongs to Δ we denote by 𝐟′ the sequence (f′m)m=0,…,𝔏(n).

AcTION ON THE LAMP Let us start by looking at a generator that modifies the lamp
configurations. So consider s ∈ 𝒮1 ∪ 𝒮2 and let ( ̃𝐟, t) ∶= (𝐟, t)s.

Lemma 3.6

For all s ∈ 𝒮1 ∪ 𝒮2 and (𝐟, t) ∈ 𝒢(1)n we have |ιn(𝐟, t) − ιn((𝐟, t)s)| ≤ q.

Proof. First recall that we showed in the proof of Proposition 2.5 that 𝐟′ = ̃𝐟′. Thus μn(𝐟′) =
μn( ̃𝐟′). Moreover ̃f0 differs from f0 only at t. Since the cursors of (𝐟, t)s and (𝐟, t) are the
same we obtain

(∀i > 0) νi,t (f0|ℬi(t)\ℬi−1(t)) = νi,t ( ̃f0|ℬi(t)\ℬi−1(t)) .

Hence using eq. (3.1) we get

|ιn(𝐟, t) − ιn((𝐟, t)s)| = |ν0,t (f0(t)) − ν0,t ( ̃f0(t))| ≤ q.

19



3 Coupling with ℤ

AcTION ON THE cUrSOr Now consider s = (0, 1). Let t + 1 ∶= ∑n−1
i=0 ̃tiκi be the

decomposition in base κ of t + 1. Note that since (𝐟, t) belongs to 𝒢(1)n , it verifies t < n− 1
and thus there exists i ∈ {0,… , n − 1} such that ti < κ − 1. Therefore, we can define

i0(t) ∶= min{i ≤ n | ti < κ − 1}. (3.2)

This index corresponds to the one of the coefficients ti that will absorb the carry when
we add one to t.

Lemma 3.7

For all (𝐟, t) ∈ 𝒢(1)n we have |ιn(𝐟, t) − ιn(𝐟, t + 1)| < κi0(t)+1qκi0(t)+1 .

Let us start by showing the following useful claim.

Claim 3.8. Let t ∈ [0, n − 2], then ℬi(t) = ℬi(t + 1) for all i > i0(t).

Proof of the claim. By definition of i0(t) the decomposition of t + 1 in base κ is given by
t+1 ∶= (ti0(t)+1)+∑

n−1
i=i0(t)+1 tiκi. In particular ̃ti = ti for all i > i0(t). Butℬi(t) depends

only on the value of (tj)j≥i (see Lemma 3.1). Hence the claim.

Proof of Lemma 3.7. By the above claim ℬi(t) = ℬi(t + 1) for all i > i0(t). Hence

(∀i > i0(t) + 1) νi,t (f0|ℬi(t)\ℬi−1(t)) = νi,t+1 ( ̃f0|ℬi(t+1)\ℬi−1(t+1)) .

Thus by eq. (3.1) we get

|ιn(𝐟, t) − ιn((𝐟, t)s)|

≤ |ν0,t (f0(t)) − ν0,t+1 ( ̃f0(t + 1))| +
i0(t)

∑
i=0

|ti − ̃ti|κiqκi

+
i0(t)+1

∑
i=1

|νi,t (f0|ℬi(t)\ℬi−1(t)) − νi,t+1 (f0|ℬi(t+1)\ℬi−1(t+1))| κiqκ
i−1

Thus by Lemma B.1 we can bound |ιn(𝐟, t) − ιn((𝐟, t)s)| by above by κi0(t)+1qκ
i0(t)+1 − 1.

Hence the lemma.

3.2.2 Enumeration

Consider r > 0. We now give an estimate of the number of elements (𝐟, t) ∈ 𝒢(1)n such
that ιn(𝐟, t) and ιn((𝐟, t)s) are at distance r in ℤ. With regard to the previous section, it
corresponds to determining the number of elements (𝐟, t) ∈ 𝒢n such that i0(t) = m.

Lemma 3.9

Let n ∈ ℕ and (𝐟, t) ∈ 𝒢(1)n . For all m ∈ [0, n − 1]

|{(𝐟, t) ∈ 𝒢n | κ
mqκm ≤ |ιn(𝐟, t) − ιn((𝐟, t + 1))| < κm+1qκ

m+1

}| ∼ |𝒢n|κ
−m.

Proof. Let m ∈ [0, n − 1]. By Lemma 3.7

|{(𝐟, t) ∈ 𝒢n | κ
mqκm ≤ |ιn(𝐟, t) − ιn((𝐟, t + 1))| < κm+1qκ

m+1

}| = |{(𝐟, t) ∈ 𝒢n | i0(t) = m}| .
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3 Coupling with ℤ

But requiring i0(t) = m forces t0, … , tm−1 to be equal to κ − 1 and tm can only take κ − 1
possible values. Thus there are (κ − 1)κn−m−1 possible values of t verifying i0(t) = m.
Finally there is no condition on 𝐟 so we have |𝒢n|/κn possible values for 𝐟, therefore

|{(𝐟, t) ∈ 𝒢n | i0(t) = m}| = |𝒢n|(κ − 1)κ−(m−1) ∼ |𝒢n|κ−m.

3.2.3 Integrability

We can now prove that the conditions of integrability given by Theorem 2.3 are verified.

Proof of Theorem 1.16. Let ρ ∈ 𝒞 and consider Δ the diagonal product with isoperimetric
profile IΔ ∶= ρ ∘ log as defined in appendix A.3.2. Assume moreover that (ρ(κm)κ−m) is
summable.
Consider 𝒢n and ℋn as defined in Section 3.1 above and ιn the bijection defined in

eq. (3.1). Before looking at the integrability, note since ιn is bijective Theorem 2.3 gives an
orbit equivalence coupling. We need to show that eq. (2.1) is verified for φ = ρ ∘ log.
Fix R > 0 and n ∈ ℕ. For all s ∈ 𝒮Δ, we need to bound the following sum

ΣR,n ∶=
R

∑
r=0

ρ ∘ log (r) |{
(𝐟, t) ∈ 𝒢(1)n ∣ dℋn (ιn(𝐟, t), ιn((𝐟, t) ⋅ s)) = r}|

|𝒢n|

First consider s ∈ 𝒮ℤ\{(0, 1)}. By Lemma 3.6 the distance between ιn(𝐟, t) and ιn((𝐟, t) ⋅ s)
is at most q for all (𝐟, t) ∈ 𝒢(1)n . Using this last remark and then that for all r ≤ min(R, q)
we can bound ρ ∘ log(r) by above by ρ ∘ log(q), we obtain

ΣR,n =
min(R,q)

∑
r=0

ρ ∘ log (r) |{
(𝐟, t) ∈ 𝒢(1)n ∣ dℋn (ιn(𝐟, t), ιn((𝐟, t) ⋅ s)) = r}|

|𝒢n|

≤ ρ ∘ log(q) |{
(𝐟, t) ∈ 𝒢(1)n ∣ dℋn (ιn(𝐟, t), ιn((𝐟, t) ⋅ s)) ≤ q}|

|𝒢n|
= ρ ∘ log(q).

If s = (0, 1) then using both Lemmas 3.7 and 3.9 we get that Σn,R is bounded (up to a
multiplicative constant) by∑n−1

m=0 ρ ∘ log(κ
m+1qκm+1

)κ
−m. But there exists C ≥ 1 such

that
ρ ∘ log(κ

m+1qκm+1

) = ρ (κ
m+1 log(q) +m log(κ)) ≤ ρ (Cκm) .

Since ρ(Cx) ≤ Cρ(x) (see eq. (A.2)) we get that

n−1

∑
m=0

ρ ∘ log(κ
m+1qκm+1

)κ
−m ≤ C

n−1

∑
m=0

ρ (κm) κ−m

By hypothesis (ρ (κm) κ−m)m is summable, thus the above sum can be bounded by a con-
stant that does not depend on R nor n. Hence eq. (2.1) is verified.
By Theorem 2.3 the coupling is a (ρ ∘ log, L0)-integrable orbit equivalence.

Let us now turn to the proof of Corollary 1.17. The idea is to compose the coupling from
Δ to ℤ just obtained with the one from ℤ to ℤd given by the first point of Example 1.8.
We refer to [DKLMT20, Sections 2.3 and 2.5] for more details on the construction of this
composition and recall below the theorem we will use to obtain its integrability.
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4 Coupling between diagonal products

Proposition 3.10 ([DKLMT20, Prop. 2.9 and 2.26])

If (X1, μ1) (resp. (X2, μ2)) is a (φ, L0)-integrable (resp. (ψ, L0)-integrable) measure
equivalence coupling from Γ to Λ (resp. Λ to Σ), the composition of couplings gives
a (φ∘ψ, L0)-integrable measure equivalence coupling from Γ to Σ. If both couplings are
orbit equivalence couplings, then so is the composition.

We can now use it to prove our corollary on ℤd.

Proof of Corollary 1.17. Let d ∈ ℕ∗. Let ρ ∈ 𝒞 and let Δ be the diagonal product defined in
Proposition A.12, in particular it verifies IΔ ≃ ρ ∘ log. Recall that by the first point of Ex-
ample 1.8 there exists an orbit equivalence from ℤ to ℤd that is (Lp, L0)-integrable for all
p < d. Using the aforementioned composition of couplings, we can deduce from Propo-
sition 3.10 above that there exists a (ρ ∘ log(⋅p), L0)-integrable orbit equivalence coupling
from Δ to ℤd. Now if d > p ≥ 1 by eq. (A.2)

ρ ∘ log(x) ≤ ρ(p log(x)) ≤ pρ ∘ log(x).

Since ρ(p log(x)) = ρ ∘ log(xp) we thus have ρ ∘ log(xp) ≃ ρ ∘ log. When p < 1, using
Claim A.18 instead of eq. (A.2) we obtain a similar equivalence. Thus in both cases ρ ∘
log(xp) ≃ ρ ∘ log(x). Hence the corollary.

4 cOUPLING BETWEEN DIAGONAL PrODUcTS

Our aim in this section is to showTheorem 1.18. We actually show themore precise version
below (Theorem 4.1). In particular the meaning of the assumption that ρ “does not grow
too slowly” is formalised.
Let us set the framework of this Section 4. Recall that two sequences (km)m and (lm)m

induce a piecewise affine map ̄ρ (see Lemma A.16) and a bijective piecewise affine map ρbij
(see Lemma A.19) such that the corresponding diagonal product Δ verifies IΔ ∼ ̄ρ ∘ log ∼
ρbij ∘ log.

Framework (F)
1. κ ≥ 3;
2. (k̃m)m and (km)m are subsequences of (κm)m;
3. ( ̃lm) and (lm)m are subsequences of a geometric sequence;
4. Δ̃ is the diagonal product determined by the two sequences (k̃m) and
( ̃lm) and ̃ρ is corresponding the piecewise affine map;

5. Δ is the diagonal product determined by (km)m and (lm)m and ρbij is
the corresponding bijective piecewise affine map.

The following theorem precises the statement of Theorem 1.18.

Theorem 4.1

In the framework (F), if
• there exits ε > 0 such that ̃ρ ∘ ρ−1bij (x) ≼ x1−ε
• and the sequence lm exp(−lm−1) is summable

then there exists a ( ̃ρ ∘ ρ−1bij , L0)-integrable measure equivalence coupling from Δ̃ to Δ.

We will discuss the hypothesis and detail the idea of the proof but first let us give some
examples of diagonal products verifying the above conditions.
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4 Coupling between diagonal products

Example 4.2. If ρ(x) = x then k1 = +∞ and l1 = 0 and Δ is the usual lamplighter group
over A × B. In particular it verifies the second assumption. We will use this to show
Corollary 1.19.

Example 4.3. Let ρ(x) ∶= x1/(1+α). In this case km = κm and lm = καm and the sequence
(lm exp(−lm−1))m is therefore summable. In particualr, if ̃ρ(x) ∶= x1/(1+α̃) with α̃ > α
then there exists a (L(1+α)/(1+α̃), L0)-coupling from Δ̃ to Δ.

Example 4.4. Similarly if ρ(x) = log(x)1/α then km = κm and lm = exp(καm). Such a
sequence (lm)m verfies the second assumption. More generally if r ≥ 1 and ρ = log ∘⋯∘log
with r logarithms, then km = κm and lm = exp(⋯ exp(κm)) with r exponentials. Again
(lm)m verfies the second assumption

We will discuss the hypothesis but first let us give the outline of the proof. We recall
that the idea of the latter —without its technicities— is contained in the demonstration
ofTheorem 1.16. We therefore strongly recommend to read Section 3 before entering into
the details of the present section.

IDEA OF THE PrOOF Similarly as in Section 3, the idea is to use Theorem 2.3. We
thus start by constructing appropriate Sofic approximations for the two diagonal prod-
ucts Δ̃ and Δ. In Section 4.2 we define the injection between the aforementioned approx-
imations and finally show in Section 4.2 that this map satisfies eq. (2.1). Let us describe
the process in more details.
Our goal is to define 𝒢n in Δ̃ and ℋn in Δ being two Sofic approximations and a C-

dense injection between 𝒢n and ℋn, where C is a constant that does not depend on n. To
construct this injection we are going to “encode” the information contained in an element
of 𝒢n in two different integers, that is to say we are going to define an embedding from
𝒢n to ℤ2. This part is the analogue of the encoding described in Sections 3.1.1 and 3.1.2 for
the coupling with ℤ. Doing the same thing for elements of ℋn we will obtain the wanted
injection from 𝒢n toℋn (see Figure 7). Then our goal would be to show that the injection
ιn thus defined verifies eq. (2.1) with φ ∶= ̃ρ ∘ ρ−1bij .

𝒢n ℋnℤ2

(𝐟, t) (𝐠, u)(x, y)

ιn

Figure 7: Definition of the injection: first idea

This is the general idea, let us now describe the encoding process. An element (𝐟, t)
of 𝒢n or ℋn is composed of two informations: a lamp configuration 𝐟 and a cursor t. A
first “naive” way to proceed to define the injection would be to associate to every lamp
configuration 𝐟 appearing in 𝒢n a lamp configuration 𝐡 that appears in ℋn, and to each
cursor t of an element in 𝒢n a cursor u appearing in ℋn. In doing so we would need ℋn

to verify

|{𝐠 | ∃u ∈ ℤ, (𝐠, u) ∈ ℋn}| ≥ |{𝐟 | ∃t ∈ ℤ, (𝐟, t) ∈ 𝒢n}|. (4.1)

But by assumption on the isoperimetric profile, Δ̃ is the “bigger group” hence form large
enough the number of elements in ̃Γ ′m is larger than the one of Γ ′m. Therefore for the same
support we have more possible lamp configurations f′m ∶ ℤ → ̃Γ ′m than we have of the form

23



4 Coupling between diagonal products

g′m ∶ ℤ → Γ ′. In other words, in order for (ℋn)n∈ℕ to be a Følner sequence of the form
(Fdn,in,jn)n∈ℕ that verifies eq. (4.1) above, we would need the sequence (dn)n∈ℕ to grow
much faster than n. In these conditions the map sending a cursor t ∈ [0, n] to a cursor
u ∈ [0, dn − 1] would only reach a few cursors and the proportion of unreached cursors
would grow with n. Hence it would be impossible to obtain a C-dense injection with C
not depending on n.
This is why we build our injection in the following way: given an element (𝐟, t) in 𝒢n,

we use a part of the information contained in the lamp configuration and the cursor t to
define a cursor in Δ. The unused information contained in 𝐟 is then used to define a lamp
configuration in ℋn. See Figure 8 for an illustration. The encoding process of this lamp
configurations into an integer is based on the same decomposition in nested intervals
developped in Section 3.1.1. We therefore refer to the lead paragraph of Section 3.1 for the
strategy of this ”blocs decomposition”. We finally prove that the map ιn thus defined is a
C-dense injection for some constant C.
Finally, the object of Section 4.3 is to prove that ιn verifies eq. (2.1). To do so, we

first study the behaviour of ιn under the action of the generators of Δ̃: for s ∈ SΔ̃ and
(𝐟, t) ∈ 𝒢n, we give an estimate of the distance between ιn(𝐟, t) and ιn((𝐟, t)s). This section
is the analogue of Section 3.2.1. Then, similarly as in Section 3.2.2, we compute for a given
distance r the proportion of elements in 𝒢n such that ιn(𝐟, t) is at distance r from ιn((𝐟, t)s).
We conclude by showing that eq. (2.1) is verified.

HYPOTHESIS As discussed in the introduction, the construction we make is suitable
for a coupling from the bigger group to the smaller one, that is to say from the group with
slower isoperimetric profile to the one with faster isoperimetric profile. This is what is
reflected in the condition on the growth of ̃ρ ∘ ρ−1bij . We use it more precisely in the proof
of Lemma 4.5 and page 48, when checking the integrability condition.
The condition on (lm)m∈ℕ is only a technical assumption that could be avoided by con-

sidering another numbering process, more complex, subdividing the groups Γ ′m. How-
ever, as Examples 4.3 and 4.4 and Corollary 1.19 show, this summability condition is
verified by a large family of diagonal products. Let us describe where we use it. First
consider (𝐟, t) ∈ 𝒢n and (𝐠, u) = ιn(𝐟, t) its image by the built injection. The action of
a generator on (𝐟, t) might modify the value of g0, g′1, … , g′m in Δ for some m ∈ ℕ (see
Section 4.3.1 for more details). Denote Dn = range(𝐠, u), we can show that the dis-
tance between (𝐠, u) and this modified element is then equivalent to Dnlm. Now the
proportion of such elements (𝐟, t) in 𝒢n is asymptotically bounded by |Γ ′m−1|−1q−Dn (see
Lemma 4.29). But |Γ ′m−1| ∼ exp (lm−1). Hence for eq. (2.1) to be verified, we need the
sequence (Dnq−Dnlm exp (lm−1))m∈ℕ to be summable. The hypothesis made on (lm)m
ensures this integrability. We refer to pages 48 and 49 for the corresponding computa-
tions using it.

4.1 Definition of the Sofic approximation

Let 𝒢n ∶= F̃κn ⊂ Δ̃. In this subsection we build an injection from 𝒢n to ℤ2.
The idea summed up in Figure 8 and described in Section 4.1.2 is the following: we

encode a part of the information contained in the lamp configuration (in blue) to obtain
the first integer x and we use the cursor and a part of the lamp configuration (represented
in grey) to give the second integer y. In Section 4.1.3 we give an estimate of the possible
values of x. Indeed, this is the number we will use to define the lamp configuration in
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Δ and obtain our injection. Thus when defining 𝒦n we need to ensure that this last set
contains enough possible lamp configurations to encode all possible values of x.

g′
1

k1

g′
2

k2

g0

70

cursor

(x,y) ∈ ℤ2

Figure 8: Numbering in Δ̃

4.1.1 Numbering framework

Let dn ∈ ℕ and in ∈ [0, 𝔩(dn − 1)] and jn ∈ [0,Nin ] such that

|Fdn,in,jn−1| < |𝒢n| ≤ |Fdn,in,jn | . (4.2)

The ideal thing to do would be to define an injection from 𝒢n to Fdn,in,jn . As we will
see at the end of this section, the numbering process we use requires that we consider
Fdn,in,jn+1 instead of Fdn,in,jn (see page 28 for a discussion of such a necessity). But when
in = 𝔩(dn−1) and jn = Nin −1 the Følner we will work with actually verifies Fdn,in,jn+1 =
Fdn+1,0,0. In particular there are dn + 1 possible values for the cursor (and not dn). So in
order to work with the right number of cursors we define

Dn =
⎧
⎨⎩

dn if jn < Nin − 1 and in < 𝔩dn − 1,
dn + 1 else.

(4.3)

Finally we define In ∈ [0, 𝔩(Dn − 1)] and Jn ≤ NIn such that FDn,In,Jn = Fdn,in,jn+1.
As explained above we have to extract information from 𝐟 and combine it with t to

define the cursor (denoted u) in Δ. Recall that if (𝐟, t) is in 𝒢n then t belongs to [0, κn −
1]. The idea is thus to split the interval [0,Dn] in subintervals of length κn plus some
remainder interval of length less than κn. The extracted information from 𝐟 will define
the subinterval in which our cursor u will be and t will give the position of u inside
that subinterval (see eq. (4.10)). Before defining u we explicit how to extract the wanted
information from 𝐟 and then how to define our integer encoding the remaining data of 𝐟.
Let us denote the Euclidean division of Dn by κn by

Dn = Qnκn + Rn 0 ≤ Rn < κn. (4.4)

Lemma 4.5

If ̃ρ∘ρ−1bij (x) ≼ x1−ε for some ε > 0 then the sequence (Qn)n is unbounded. In particular
there exists n0 ≥ 0 such that for all n ≥ n0

1. Qn ≥ 3;
2. Dn ≥ dn > κn.

So up to consider (𝒢n)n≥n0 instead of (𝒢n)n≥0 we can assume without loss of generality
that Qn ≥ 3 for all n.

To prove this lemma we rely on the properties of ρbij and ̄ρ showed in appendix A.3.
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4 Coupling between diagonal products

Proof. By Remark 2.9 and eq. (4.2)

C3κn−1 ̃l𝔏(n) ≤ ln |𝒢n| ≤ ln |Fdn,in,jn |.

But by Proposition 2.8 there exists some constant C2 > 0 such that ln |Fdn,in,jn | is bounded
by above by C2dnl𝔩(dn−1). Noting that dn is smaller than 2(dn − 1) we obtain

κn ̃l𝔏(n) ≤
2κC2
C3

(dn − 1) l𝔩(dn−1).

Now recall that by definition of 𝔩 we have k𝔩(dn−1) ≤ dn − 1 < k𝔩(dn−1)+1. Hence by
Lemma A.16 we have ̄ρ((dn − 1)l𝔩(dn−1)) = dn − 1. Thus by Lemma A.19

κn ̃l𝔏(n) ≤
2C2κ
C3

ρ−1bij (2(dn − 1)) .

Using first that ̃ρ(κn ̃l𝔏(n)) = κn and second that ̃ρ ∈ 𝒞 and thus verifies eq. (A.2) we obtain

κn = ̃ρ(κn ̃l𝔏(n)) ≤ max {1, 2C2κ/C3} ̃ρ ∘ ρ−1bij (2(dn − 1)) .

But recall that ̃ρ ∘ ρ−1bij (x) ≼ x1−ε. Hence κn ≼ (dn − 1)1−ε and thus using eq. (4.4)

κn ≼ d1−εn ≤ (Qn + 1)1−εκn(1−ε).

Therefore κnε ≼ (Qn+1)1−ε. Since the left term tends to infinity, so doesQn. In particular
there exists n0 such that Qn ≥ 3 for all n ≥ n0 and

Dn ≥ dn ≥ Qnκn − 1 ≥ 3κn − 1 > κn.

4.1.2 Numbering in Δ̃

Consider (𝐟, t) ∈ 𝒢n and let us describe our encoding process. The first goal is to encode
the information contained in 𝐟 in an integer. The idea is very similar to the one used in
Section 3.1. What changes here is that we are going to extract some information from 𝐟
and use it to define the cursor in the second diagonal product Δ.
Recall that (𝐟, t) is uniquely determined by the value of t, of f0 and (f′m)m≥1. Similarly as

in Section 3.1 let t = ∑n−1
i=0 tiκi be the decomposition in base κ of t. Define for t ∈ [0, κn−1]

and i ∈ {0,… , n}:

ℬ̃i(t) ∶=
[

n−1

∑
j=i

tjκj,
n−1

∑
j=i

tjκj + κi − 1
]
. (4.5)

The conclusions of Lemma 3.1 apply to (ℬ̃i(t))i. In particular we can define as before the
following bijections:

ν̃0 ∶ {ζ ∶ ℬ̃0(t) → A× B} → [0, q − 1] ,

∀i ≥ 1 ν̃i ∶ {ζ ∶ ℬ̃i(t)\ℬ̃i−1(t) → A× B} → [0, q
κi−κi−1 − 1]

μ̃n ∶ {𝐟′| supp (f′m) ⊆ [k̃m, κn − 1] , ∀m ∈ [0, 𝔏(n)]} → [
0, |𝒢n|
κnqκn − 1]

.

Recall that Figure 6 represents the information encoded by each of these maps.
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4 Coupling between diagonal products

As explained above, we need to extract information from 𝐟 to define our cursor in Δ.
To that end we denote the Euclidean division of μ̃n(𝐟′) by Qn by

μ̃n(𝐟′) = En(𝐟′)Qn + Pn(𝐟′) 0 ≤ Pn(𝐟′) < Qn. (4.6)

The value of Pn is the part that will be used for the cursor. Let us now define a variable
base (b̃i)i and express our numbering in it (see appendix B for details on variable base).

b̃0 = q
∀i ∈ [1, n] b̃i = qκi−κi−1

b̃n+1 = max(En) + 1.

Please note that the variable base depends on n but in order to reduce formalism we
chose to abuse notations and write b̃i instead of b̃n,i. In this base we thus write

ϑ̃n(𝐟, t) ∶=ν̃0 (f0|ℬ̃0(t)) +
n

∑
i=1

ν̃i (f0|ℬ̃i(t)\ℬ̃i−1(t)) b̃i−1⋯ b̃0

+ En(𝐟, t)b̃n⋯ b̃0.
(4.7)

Remark 4.6. Remark that this base differs from (βi)i defined page 18 only from the last
coefficient. In particular b̃i⋯ b̃0 = qκi for all i ∈ [0, n]. The difference between the last
coefficients comes from the extraction made in eq. (4.4).

We saw in Claim 3.4 that μ̃n was surjective onto [0,max μ̃n − 1], but it does not neces-
sarily imply that (En, Pn) is surjective onto the product [0,max(En)] × [0,Qn − 1]. Indeed
unless max μ̃n equals (max(En)+1)Qn−1, some elements of {max(En)}× [0,Qn−1]might
not be reached. This is what the next lemma specifies and what will lead to the definition
of ℋn given in eq. (4.17).

Lemma 4.7

The map sending (𝐟, t) to (t, ϑ̃n(𝐟, t), Pn(f′)) is a bijection from 𝒢n to the set

[0, κn − 1]×( [0, q
κn max(En) − 1] × [0,Qn − 1]

∪ [q
κn max(En),max(ϑ̃n)] × [0,max μ̃n −QnmaxEn]) .

Proof. Let us first prove the injectivity. If (t, ϑ̃n(𝐟, t), Pn(f′)) equals (t′, ϑ̃n(𝐠, t′), Pn(g′))
then Pn(f′) = Pn(g′) and t = t′. Thus ℬ̃i(t) = ℬ̃i(t′) for all i and by unicity of the decom-
position in variable base (see Lemma B.1)

ν̃0 (f0|ℬ̃0(t)) = ν̃0 (g0|ℬ̃0(t)) ν̃i (f0|ℬ̃i(t)\ℬ̃i−1(t)) = ν̃i (g0|ℬ̃i(t)\ℬ̃i−1(t)) .

and En(𝐟) = En(𝐠′). In particular μ̃n(𝐟′) = μ̃n(𝐠′) and thus 𝐟′ = 𝐠′, by bijectivity of μ̃n.
Similarly the bijectivity of the ν̃i’s implies that f0 coincide with g0 on

ℬ̃0(t)∪∪
i
(ℬ̃i(t)\ℬ̃i−1(t)) = [0, κ

n − 1].

Hence 𝐟 = 𝐠 and thus the injectivity.
Now let t ∈ [0, κn − 1]. Recall that μ̃n is bijective onto [0,max μ̃n]. Using eq. (4.6)

we obtain that QnE + P is smaller than max μ̃n for all P < Qn and all E < max(En). In
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4 Coupling between diagonal products

particular for all such E and P there exists 𝐟 such that μ̃n(𝐟′) = EQn+P. Now if E = max(En)
then there exists 𝐟 such that μ̃n(𝐟′) = EQn + P if and only if P ≤ max ν̃n −QnmaxEn.
Now, since the ν̃t,i and μ̃m are bijections, Lemma B.1 implies that the image of ϑ̃n(⋅, t)

is the interval [0,max ϑ̃n]. Consider x in this interval and write [x0, … , xn+1]�̃� its decom-
position in base (b̃i)i. If x < qκn max(En) then xn+1 < max(En). In particular by the
above study of im(μ̃n) for all P ∈ [0,Qn − 1] there exists 𝐟′ such that μ̃n(𝐟′) = xnQn + P,
that is to say Pn(𝐟′) = P and En(𝐟′) = xn. If x ≥ qκn max(En) a similar argument as above
gives that for all P smaller than max ν̃n − QnmaxEn there exists 𝐟′ such that En(𝐟′) = E
and Pn(𝐟′) = P. Finally, in both cases there exists f0 such that xi = ν̃i (f0|ℬ̃i(t)\ℬ̃i−1(t))
for all i. The element (𝐟, t) thus defined verifies ϑ̃n(𝐟, t) = x and Pn(𝐟′) = P. Hence the
surjectivity.

Now that we encoded the information in a integer wewill have to do the reverse process
in Δ, that is to say we will have to convert this integer into a lamp configuration in Δ. We
thus have to give an estimate of the amount of lamps we need to encode all the possible
values of ϑ̃n. This is the object of the next paragraph.

4.1.3 Bounds

In order to obtain the number of lamps in Δ needed to encode the information contained
in ϑ̃n(𝐟, t), we need to estimate the maximal value taken by ϑ̃.
Why such a need? The “ideal” Følner set used to define ℋn would have been Fdn,in,jn

but the encoding process we chose does not allow us to work with this set. Indeed assume
for example that |Fdn,in,jn | = |𝒢n|. In that case we could —theoretically speaking— find a
bijection between these two sets. But to obtain such a map we would need to extract the
optimal quantity of information from the lamps 𝐟 to define the cursor u in Δ. What we
actually do when defining our map ϑ̃n is that we take a little “too much” information from
the lamp configuration 𝐟 to define the integer ϑ̃n(𝐟, t) and thus we left “not enough“ infor-
mation to be used to define the cursor in Δ. Hence when defining our wanted embedding
from 𝒢n to Fdn,in,jn , not all the cursors in [0, dn − 1] will be reached (see Section 4.2.1)
and we will need a little more lamp configurations than the possible ones in Fdn,in,jn to
encode all the values of ϑ̃n. What Lemma 4.8 shows is that Fdn,in,jn+1 contains enough
lamps configurations to allow us to encode the values of ϑ̃n in it.
Thus our aim in this paragraph is to prove the following lemma.

Lemma 4.8

For n large enough

|Fdn,in,jn−1| /Dn ≤ max
(𝐟,t)∈𝒢n

ϑ̃n(𝐟, t) + 1 ≤ |Fdn,in,jn+1| /Dn.

But before proving the above statement, let us bound the value of b̃n+1 = max(En) + 1.

Lemma 4.9

For n large enough

|Fdn,in,jn−1|
Dnqκn

≤ max(En) + 1 ≤ |Fdn,in,jn+1|
Dnqκn
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4 Coupling between diagonal products

Proof. Let n ∈ ℕ∗. By eq. (4.6) we have En = ⌊μ̃n/Qn⌋, thus En ≤ μ̃n/Qn ≤ En + 1. Since
max(μ̃n) = |𝒢n|/(κnqκn) we hence have

max(En) ≤ |𝒢n|
Qnκnqκn

≤ max(En) + 1. (4.8)

Let us show the left inequality of the lemma. Using the lower bound given by eq. (4.2)
and then eq. (4.4) we get,

max(En) + 1 ≥
|𝒢n|

Qnκnqκn
≥ |Fdn,in,jn−1|

Qnκnqκn
≥ |Fdn,in,jn−1|

Dnqκn
.

Now for the upper bound. By eq. (4.2) we know that |𝒢n| ≤ |Fdn,in,jn |, hence using the
left part of eq. (4.8) we get that max(En) + 1 is less or equal to |Fdn,in,jn |/(κnQnqκ

n) + 1.
Now using the euclidean division given by eq. (4.4) we get Dn/(Qnκn) ≤ 1 + 1/Qn, thus

max(En) + 1 ≤ |Fdn,in,jn |
κnQnqκn

+ 1 ≤ |Fdn,in,jn |
Dnqκn (1 +

1
Qn)

+ 1.

Using thatQn is unbounded (Lemma 4.5) we obtain that for n large enough max(En)+1 ≤
2 |Fdn,in,jn | /(Dnqκ

n). So up to consider (𝒢n)n≥N for some N > 0, we can assume that this
is true for all n. We obtain the lemma using Lemma 2.7.

We can now prove that we need at most |Fdn,in,jn+1 | /Dn to encode the information
contained in the integer ϑ̃n(𝐟, t).

Proof of Lemma 4.8. . By eq. (4.7) and Lemma B.1 we have max(ϑ̃n) + 1 = ∏n+1
i=0 b̃i. Now

recall (see Remark 4.6) that∏n
i=0 b̃i = qκ

n . Hence, max(ϑ̃n) + 1 = (maxEn + 1)qκn . We
conclude using the bounds given in Lemma 4.9.

Now remark that |Fdn,in,jn+1| /Dn is exactly the number of possible lamp configura-
tions for elements in Fdn,in,jn+1. Hence by the above lemma we can define an embedding
from [0,max ϑ̃n] to the set of lamp configurations of elements in Fdn,in,jn+1.
We define

𝒦n ∶= Fdn,in,jn+1 = FDn,In,Jn . (4.9)

and now have to define and injection between 𝒢n and 𝒦n.

Remark 4.10. Note that |𝒦n| ∼ |𝒢n|. Indeed by eq. (4.2) we have |𝒢n| ≤ |Fdn,in,jn | ≤ |𝒦n|.
Moreover using twice Lemma 2.7, we obtain

|𝒦n| ≤ 2q |Fdn,in,jn | ≤ 4q2 |Fdn,in,jn−1| ≤ 4q2|𝒢n|.

4.2 Injection between Sofic approximation

Let n ∈ ℕ and recall that 𝒢n = F̃κn and 𝒦n = Fdn,in,jn+1. The purpose of this section is to
define an injection ιn from 𝒢n to 𝒦n. Moreover we want that injection to be C-dense for
some C > 0. Let (𝐟, t) ∈ 𝒢n and denote by (𝐠, u) the image of (𝐟, t) by ιn. We first explicit
the definition of the cursor u, then turn to the definition of 𝐠 and conclude by showing
that ιn thus defined is injective and C-dense.
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4 Coupling between diagonal products

4.2.1 Cursor

Recall that the Euclidean division of Dn by κn is given by Dn = Qnκn +Rn. As explained
in the last section, the idea is to split [0,Dn − 1] in subintervals of length κn (plus some
remainder interval of length less than κn) and to use Pn to define the subinterval in which
the cursor u will be and use t to give the position of u inside that subinterval. In other
words we would like to set u(𝐟, t) = Pn(𝐟′)κn + t, but such a definition of the cursor u
would leave the Rn-last cursors of [0,Dn − 1] out of im(ιn). The injection would thus not
beC-dense. To counter this we distribute the unreached cursors inside the last subinterval
(see Figure 9 for an illustration).
Let t ∈ [0, κn] and P ∈ [0,Qn − 1]

u ∶= u(P, t)
⎧⎪⎪
⎨⎪⎪
⎩

Pκn + t if P < Qn − 1,
Pκn + 2t if P = Qn − 1 and t < Rn
Pκn + Rn + t if P = Qn − 1 and t ≥ Rn.

(4.10a)

(4.10b)

(4.10c)

We represent in Figure 9 the possible values of u when Qn = 4 and Rn = 3.

κn

Rn unreached cursors

κn 2κn (Qn − 1)κn 4κn Dn

Qnκ
n reached cursors

…

Figure 9: Possible values for u when Dn = 4κn + 3.

Claim 4.11. Let P ∈ [0,Qn − 1], let t ∈ [0, κn − 1] and u be as defined in eq. (4.10). Then
u(P, t) ∈ [0,Dn − 1]. In particular u (Pn(𝐟′), t) ∈ [0,Dn − 1] for all (𝐟, t) ∈ 𝒢n.

Proof. First recall that we always have t < κn. Now if P < (Qn − 1) then

u(P, t) = Pκn + t ≤ (Qn − 1)κn + κn − 1 ≤ Dn

If P = Qn − 1 and t < Rn then

u(P, t) = (Qn − 1)κn + 2t < (Qn − 1)κn + Rn + κn − 1 = Qnκn + Rn = Dn.

Finally in the last case we get u(P, t) = (Qn−1)κn+Rn+t < (Qn−1)κn+Rn+κn = Dn.

4.2.2 Numbering in Δ

For now we have an integer ϑ̃n(𝐟, t) and a cursor u(Pn(𝐟′), t) defined above. Our goal is
to associate to ϑ̃n(𝐟, t) a lamp configuration sequence 𝐠 in Δ supported on [0,Dn −1]. For
each value of u(𝐟, t) we are going to define a map between the set of lamp configurations
contained in 𝒦n and the interval [0, |𝒦n|/Dn − 1].
To do so we will define a numbering based on the same idea as the bloc decomposition

defined in Lemma 3.1. We thus want to define a nested sequence of intervalsℬi depending
on the cursor u(Pn(𝐟′), t)—that is to say depending on Pn(𝐟′) and t— such that |ℬi| ∼ κi,
the last interval of the sequence is [0,Dn−1] andℬi verifies Claim 3.8. The idea would thus
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be similar to the one used in the definition of (ℬ̃i) and presented in Figure 5. However,
in this present case two difficulties arise and lead to a more technical definition. First the
interval [0,Dn−1] is bigger than [0, κn−1] so we will need more than n+1 nested intervals
and as wewill see in eq. (4.13) wewill have to be careful when definingℬi for i > n. Second,
we will have to deal with the fact that some of the cursors are not reached by u. In order
to first give the idea of the process we thus start by defining the nested intervals assuming
that Rn = 0 (see paragraph below). Then in a second time (see paragraph “Concrete blocs
decomposition”) we detail how to set these nested intervals in the general case.

IDEAL BLOcS DEcOMPOSITION Let us first assume that Rn = 0 that is to say Dn =
Qnκn. Then all cursors in [0,Dn − 1] are reached by u. We start by defining

∀i ∈ [0, n] ℬ′i(P, t) ∶= Pκn + ℬ̃i(t). (4.11)

That is to say ℬ′i(P, t) corresponds to the nested sequence of intervals ℬ̃i(t) shifted by
Pκn. In particular ℬ′n(P, t) = [Pκn, (P + 1) κn −1]. We now have to define the bigger blocs
ℬ′i in order to cover the entire interval [0,Dn − 1]. Before detailing the definition let us
explain the idea. If P was equal to Qn − 1 (the biggest possible value of Pn) then ℬ′n(P, t)
would be the interval [(Qn−1)κn, Qnκn−1]. Which can also be written as [Dn−κn, Dn−1],
sinceDn = Qnκn. To obtain the next terms of the sequenceℬ′i (represented in Figure 10a)
we could then consider ℬ′i(P, t) = [Dn − κi, Dn − 1] that is to say [(P + 1)κn − κi, Dn − 1].
Now if we try to extend this definition to smaller values of P, the left bound of this last
interval might be negative (see illustration in Figure 10b). In that case we thus set the
lower bound to 0 and the upper bound to κi − 1 (see eq. (4.13)).

ℬ′
n+2(t)

ℬ′
n+1(t)

ℬ′n(t)

0 (Qn − 1)κn Qnκn

(a) P = Qn − 1

ℬ′
n+2(t)

ℬ′
n+1(t)

ℬ′n(t)

0 (Qn − 1)κnPn(𝐟′)κn (Pn (𝐟′) + 1) κn Qnκn

(b) P < Qn − 1

Figure 10: Example of nested intervals for different values of P.

Now for the formal definition. Let pn ∈ ℕ be such that

κpn−1 < Dn ≤ κpn (4.12)

let ℬ′pn(P, t) ∶= [0,Dn−1] namely ℬ′pn(P, t) ∶= [0,Qnκn−1] and set for all i ∈ [n+1, pn−1]

ℬ′i(P, t) =
⎧
⎨⎩

[(P + 1) κn − κi; (P + 1) κn − 1] if P + 1 ≥ κi−n,

[0, κi − 1] else.
(4.13)
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Lemma 4.12

The sequence (ℬ′i(P, t))i defined by eqs. (4.11) and (4.13) verifies ℬ′i(P, t) ⊂ ℬ′i+1(P, t) for
all i < pn. In particular

{Pκn + t} = ℬ′0(P, t) ⊂ ℬ′i(P, t) ⊆ ℬ′pn(P, t) = [0,Qnκn − 1],

Proof. Recall that ℬ̃0(t) = {t}. Thus ℬ′0(𝐟, t) = {Pκn + t} by eq. (4.11). Since we assumed
Rn = 0 we get Dn = Qnκn and thus ℬ′pn(P, t) = [0,Qnκn − 1]. Let us now prove that
ℬ′i(P, t) ⊂ ℬ′i+1(P, t) for all i < pn.

• If i < n the inclusion comes Lemma 3.1.
• If i = n then ℬ′n(P, t) = [Pκn, (P + 1)κn − 1]. If (P + 1) < κ then in that case
ℬ′n+1(P, t) = [0, κn+1−1]. Since Pκn is positive and by the last assumption (P+1)κn
is smaller than κn+1 we thus obtain the inclusion.
For the second case, first remark that κn − κn+1 < 0 and thus (P + 1)κn − κn+1 is
smaller than Pκn. Hence when (P + 1) ≥ κ we get

ℬ′n(P, t) = [Pnκn, (P + 1)κn − 1]
⊆ [(P + 1)κn − κn+1, (P + 1)κn − 1] = ℬ′n+1(P, t).

• Assume that i > n. If (P + 1) ≥ κi+1−n then (P + 1) ≥ κi−n and thus

ℬ′i(P, t) = [Pκn − κi, (P + 1)κn − 1]
⊆ [(P + 1)κn − κi+1, (P + 1)κn − 1] = ℬ′i+1(P, t).

If (P + 1) < κi+1−n then ℬ′i+1(P, t) = [0, κi+1 − 1]. Then either (P + 1) < κi−n thus
ℬ′i(P, t) = [0, κi −1] and the inclusion comes immediately, or (P + 1) ≥ κi−n. In this
case (P + 1)κn −κi is positive, moreover since (P + 1) is assumed to be smaller than
κi+1−n we have (P + 1)κn ≤ κi+1. That is to say

ℬ′i(P, t) = [(P + 1)κn − κi, (P + 1)κn − 1]
⊆ [0, κi+1 − 1] = ℬ′i+1(P, t).

cONcrETE BLOcS DEcOMPOSITION We turn now to the general case where Rn
might be greater than zero. Wefirst define in Lemma 4.13 a surjectivemap χ from [0,Dn−1]
to [0,Qnκn − 1] and then use it to define our blocs ℬi(P, t) in [0,Dn − 1] as the preimages
of the “ideal” blocs ℬ′i(P, t).
Figure 11 represents the map χ and Lemma 4.13 formalizes its definition.

Lemma 4.13

Consider v ∈ [0,Dn − 1].
• If v = u(P, t) for some (P, t) ∈ [0,Qn−1]×[0, κn−1] then define χ(v) ∶= Pn(𝐟′)κn+t.
• If v ∉ im(u) then (v − 1) ∈ im(u) and we define χ(v) ∶= χ(v − 1).

Then χ ∶ [0,Dn − 1] → [0,Qnκn − 1] is a well defined surjective map. Moreover for
any interval I ⊆ [0,Qnκn − 1] the pre-image χ−1(I) is also an interval and it verifies
|χ−1(I)| ≤ 2|I|.

Proof. If v ∈ im(u) there exists a unique (P, t) ∈ [0,Qn − 1] × [0, κn − 1] such that u(P, t) =
v.Moreover, since P belongs to [0,Qn − 1] and t to [0, κn − 1] then Pκn + t belongs to
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Rn unreached cursors

0 κn 2κn (Qn − 1)κn
4κn Dn

κn 2κn (Qn − 1)κn 4κn

χ · · · · · · · · ·

Figure 11: Map χ

[0,Qnκn−1]. Hence χ is well defined. It is also surjective. Finally consider y ∈ [0,Qnκn−1]
then χ−1(y) contains either 1 or 2 consecutive elements in [0,Dn − 1]. Thus |χ−1(I)| ≤ 2|I|
and χ−1(I) is an interval, since χ preserves the order.

We now define ℬi(P, t) as the pre-image of the ideal bloc ℬ′i(P, t). The following lemma
comes immediately from Lemmas 4.12 and 4.13.

Lemma 4.14

Let (P, t) ∈ [0,Qn − 1] × [0, κn − 1] and consider the sequence (ℬ′i(P, t))i as defined by
eqs. (4.11) and (4.13). Let

∀i ∈ [0, pn] ℬi(P, t) ∶= χ−1 (ℬ′i(P, t)) .

The sequence (ℬi(P, t))i thus defined verifies ℬi(P, t) ⊂ ℬi+1(𝐟, t) for all i < pn. In
particular

u(P, t) ∈ ℬ0(P, t) ⊂ ℬi(P, t) ⊆ ℬpn(P, t) = [0,Dn − 1],

and thus u(P, t) belongs to ℬi(P, t) for all i ≤ pn.

Remark 4.15. Lemma 4.13 implies that κi ≤ |ℬi(P, t)| ≤ 2κi for all i.

NUMBErING Let us now define our numbering. The strategy is quite similar to the
one used in Section 4.1.2 page 17, except that here the variable base used to associate a
number to a lamp configuration depends on the value of the cursor u(Pn(𝐟′), t) = v.
Now consider (𝐠, v) such that v belongs to the image of u and let P ∈ [0,Qn − 1] and

t ∈ [0, κn] such that u(P, t) = v. Remark that for all i ∈ [1, pn + 1], the number of maps
of the form ζ ∶ ℤ → A× B supported on ℬi(P, t)\ℬi−1(P, t) is equal to q|ℬi(P,t)\ℬi−1(P,t)|.
Hence we can define applications

ν0,P,t ∶ {ζ ∶ ℬ0(P, t) → A× B} → [0, q − 1] ,
∀i ∈ [1, pn] νi,P,t ∶ {ζ ∶ ℬi(P, t)\ℬi−1(P, t) → A× B} → [0, q|ℬi(P,t)\ℬi−1(P,t)| − 1] ,

such that these maps are bijections. Please note that the above maps depend on the value
of P and t, if we do not need to keep track of the values of P and twe will denote νi instead
νi,P,t to simplify the notations.
We now have to number (g′m)m∈[1,𝔩(Dn−1)]. Let us first make a general remark on

FDn,In,Jn . We refer to Figure 12 for an illustration. Recall that 𝔩(Dn − 1) is defined as
𝔩(Dn−1) = max{m ∶ km ≤ Dn−1}. In particular (see Section 4.2.2) if k𝔩(Dn−1) = Dn−1 and
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4 Coupling between diagonal products

(𝐠, t) belongs to FDn then g′𝔩(Dn−1) is supported on {k𝔩(Dn−1)}. Therefore if In < 𝔩(Dn−1),
an element (𝐠, t) of FDn,In,Jn verifies g′𝔩(Dn−1) ≡ e. Thus 𝐠 is only determined by g0 and
(g′m)m≤𝔩(Dn−1)−1. We thus define

Mn ∶=
⎧
⎨⎩

𝔩(Dn − 1) − 1 if k𝔩(Dn−1) = Dn − 1 and In < 𝔩(Dn − 1),
𝔩(Dn − 1) else.

(4.14)

g′1

k1

g′2

k2

g′3

k3

g0

Dn0

k𝔩(Dn−1) = Dn − 1

(a) FDn for k𝔩(Dn−1) = Dn − 1

g′1

k1

g′2 Λ2j

g0

Dnk3k20

k𝔩(Dn−1) = Dn − 1

(b) FDn,In,Jn for In < 𝔩(Dn − 1)

Figure 12: Comparison of FDn and FDn,In,Jn when k𝔩(Dn−1) = Dn − 1

We thus are actually going to number (g′m)m≤Mn . But we will need a more refined
numbering than the one defined in Section 4.1.2.
Why refine the numbering? Consider (𝐟, t) in 𝒢n and denote (𝐠, u) ∶= ιn(𝐟, t). While

the action of a generator s on (𝐟, t) only changes the value of f0(t) or of the cursor, we will
see in Section 4.3.1 that it can modify numerous digits of ϑ̃n(𝐟, t). Hence it can modify
the image (𝐠, u) by the values of 𝐠′ and not just g0. When it happens, if we encode the
information of 𝐠′ in one digit as in Section 4.1.2 then the best bound we can obtain on
the distance between (𝐠, u) = ιn(𝐟, t) and ιn((𝐟, t)s) will be diam (ℋn). Furthemore we
can show that the proportion of such elements is about q−Dn . Hence when checking the
condition given by eq. (2.1) we will obtain an unbounded sum since diam (𝒦n) is much
bigger than qDn . To overcome this, we refine the numbering such that the more terms
we modify in 𝐠′ (and thus the more the distance grows), the more the proportion of such
elements decreases.
By a similar proof as the one of Claim 3.4 we can show that for allm ∈ [1, In − 1], there

exists a bijection

μm ∶ {h′m ∶ ℤ → Γ ′m | supp(h′m) ⊆ [km, Dn − 1]} → [0, |Γ ′m|Dn−km − 1] .

Similarly for the In − th element we have a bijection

μIn ∶ {
h′m ∶ ℤ → Γ ′m

|
supp(h′In) ⊆ [kIn , Dn − 1]
and h′In(Dn − 1) ∈ Λ

In
Jn }

→ [0, |Γ
′m|Dn−kIn−1 |ΛInJn | − 1] .

Finally for all m ∈ [In + 1,Mn], there exists a bijection

μm ∶ {h′m ∶ ℤ → Γ ′m | supp(h′m) ⊆ [km, Dn − 2]} → [0, |Γ ′m|Dn−km−1 − 1] .

We represent in Figure 13 the numbering defined so far.
Let us now define the variable base (bi,P,t)i. We reproduce the idea used in the defini-

tion of (b̃i)i with two changes: first |ℬi(P, t)\ℬi−1(P, t)| depends on P and t so we cannot
replace it by its numerical value as we did for b̃i, second the numbering of 𝐟′ contains here
more than one term.
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Figure 13: Numbering in Δ

b0,P,t = b0 ∶= q
∀i ∈ [1, pn] bi,P,t = q|ℬi(P,t)\ℬi−1(𝐟,t)|

∀m ∈ [1, In − 1] bpn+m,P,t = bpn+m = |Γ ′m|Dn−km

bpn+In,P,t = bpn+In = |Γ ′m|Dn−1−km |ΛInJn |
∀m ∈ [In + 1,Mn] bpn+m,P,t = bpn+m = |Γ ′m|Dn−1−km

Remark that∏pn
i=0 bi,P,t = qDn and thus this product does not depend on (P, t). Before

defining our map ϑn let us show some useful result about the base we just introduced.

Lemma 4.16

For all P ∈ im(Pn) and all t ∈ [0, κn − 1] let (bi,P,t)i be the base defined above.
• For all i < pn it verifies bi,P,t⋯b0,P,t ∈ [qκi , q2κi ]. Moreover for all j ∈ [1, i − 1]

qκi−2κj−1 ≤
i

∏
k=j

bk,P,t ≤ q2κi−κj−1 .

• If i = pn then bi,P,t⋯b0,P,t = qDn and for all j ∈ [1, i−1]we have bi,P,t⋯bj,P,t ≥
qDn−2κj .

• For all i > pn we have bi,P,t⋯b0,P,t ≥ qDn exp(li−pn) and for all j ∈ [1, i − 1] we
have bi,P,t⋯bj,P,t ≥ qDn−2κj exp(li−pn).

Proof. First consider i < pn. By Lemma 4.13 ℬi(P, t) contains at most 2|ℬ′i(P, t)| elements
and at least |ℬ′i(P, t)| elements. But |ℬ′i(P, t)| = κi, the first assertion of the lemma thus
comes by noting that bi,P,t⋯b0,P,t is equal to q|ℬi(P,t)|. For the second assertion, re-
mark that bi,P,t⋯bj,P,t equals q|ℬi(P,t)\ℬj−1(P,t)|. Moreover by Lemma 4.14 the interval
ℬj−1(P, t) is included in ℬi(P, t) thus |ℬi(P, t)\ℬj−1(P, t)| is equal to |ℬi(P, t)| − |ℬj−1(P, t)|.
Hence the first point.
If i = pn then |ℬi(P, t)| = Dn and a similar argument as above implies that bi,P,t⋯b0,P,t

equals qDn and bi,P,t⋯bj,P,t ≥ qDn−2κj for all j ∈ [1, i − 1].
Finally if i > pn note that bi,P,t⋯bj,P,t is greater than bi,P,tbpn,P,t⋯b0,P,t. But note

that by eq. (4.14), for allm ≤Mn we have km < Dn−1. Therefore for all pn < i ≤ pn+Mn

bi,P,t ≥ |Γ ′i−pn |Dn−1−ki−pn ≥ |Γ ′i−pn | ∼ exp(li−pn).

Hence bi,P,tbpn,P,t⋯b0,P,t is greater than exp(li−pn)qDn . The last assertion is similarly
obtained by bounding bpn,P,t⋯bi,P,t by below by qDn−2κi .
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4 Coupling between diagonal products

In the base (bi,P,t)i=0,…,pn+Mn
we thus write

ϑn(𝐠, u(P, t)) ∶=ν0 (g0|ℬ0(P,t)) +
pn−1

∑
i=1

νi (g0|ℬi(P,t)\ℬi−1(P,t)) bi−1,𝐟,t⋯b0,P,t

+
Mn

∑
m=1

μm (g′m) bm+pn,P,t⋯b0,P,t.
(4.15)

Lemma 4.17

Let ϑn as defined in eq. (4.15). For all v ∈ im(u) the map ϑn(⋅, v) is injective and its
image is exactly the interval [0,max(ϑn)].

Proof. Assume that there exist 𝐠,𝐡 such that ϑn(𝐠, v) = ϑn(𝐡, v) and let P and t such that
v = u(P, t). Then ϑn(𝐠, v) and ϑn(𝐡, v) share the same decomposition in base (bi,P,t) that
is to say μm(g′m) = μn(h′m) for all m, and ν0(g0|ℬ0(P,t)) = ν(h0|ℬ0(P,t)) and similarly for
the νi’s. Since all the μm and νi’s are bijections we thus get that g0 = h0 and 𝐠′ = 𝐡′.
Hence 𝐠 = 𝐡. The second part comes from Lemma B.1 applied to the base (bi,P,t)i.

4.2.3 Injection

So far we can define a map that sends an element (𝐟, t) in Δ̃ to (ϑ̃n(𝐟, t), u(𝐟, t)) in ℤ2.
For v ∈ im(u) we can also consider the map that sends (𝐠, v) ∈ Δ to (ϑn(𝐠, v), v) ∈ ℤ2.
A first idea to define our injection ιn ∶ 𝒢n → 𝒦n would be to compose the first map
with the inverse of the second (see also Figure 7). But doing so would lead to a non-C-
dense injection. Indeed, the image of ϑ̃n is strictly included in the one of ϑn and more
precisely the elements in im(ϑn) that are not reached by ϑ̃n are the greatest values.That is
to say some values of μn might not be reached. Hence translating ϑ̃n into a sequence of
lamp configurations 𝐠 in Δ might not give us all the possible values for 𝐠′. But if such a
(𝐠,w) ∈ 𝒦n is not reached then it might differ from the nearest element in im(ιn) by a
value of g′Mn . Such an element will be far away from the reached one, since changing a
lamp of g′Mn requires a lot of multiplications by generators.
In order to obtain the density we thus need to spread the unreached values across the

interval im(ϑn). This is the aim of the next paragraph.

SPrEADING Let us discuss the idea the definition. Since our goal is to spread the values
of {0,… ,max(ϑ̃n)} accross the intervall [0,max(ϑn)], the ideal map to consider would be the
one sending x to max(ϑn))/max(ϑ̃n)x (represented in Figure 14a). But we also want the
values taken by this spreading map to be integers. Since the quotient max(ϑn))/max(ϑ̃n)
is not necessarily an integer, the aforementioned values do not necessarily belong to ℕ.
This is why we define 𝔞n ∶= ⌈max(ϑn)/max(ϑ̃n)⌉ and consider instead a piecewise affine
map that approaches the above linear one and gives integers values (see Figure 14b).

Lemma 4.18

Let n ∈ ℕ. There exists a piecewise affine map 𝔰n: [0,max ϑ̃n] → [0,max ϑn] which is
(q3)-Lipschitz and verifies

• 𝔰n(x) ∈ ℕ, for all x ∈ {0,… ,max ϑ̃n};
• 𝔰n(max ϑ̃n) = max ϑn.

The map we are going to construct is the one described in Figure 14b.
Before showing the above lemma let us bound the value of 𝔞n.
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4 Coupling between diagonal products

y = max(ϑn)/max(ϑ̃n)x

0
0

1

2

3

4

5

max ϑ̃n

max ϑn

im(ϑ̃n)

(a) Linear map for max(ϑn))/max(ϑ̃n) = 1.5

y = max(ϑn)/max(ϑ̃n)x

0

y = (𝔞 − 1)x

y = 𝔞x + 𝔟

0

1

2

3

4

5

im(ϑ̃n)

max ϑ̃n

max ϑn

(b) Affine approximation with 𝔞 = 2

Figure 14: Affine approximation

Claim 4.19. Let n ∈ ℕ and 𝔞n ∶= ⌈max(ϑn)/max(ϑ̃n)⌉. Then 1 ≤ 𝔞n ≤ q3.

Proof of the claim. Using eq. (4.15) which gives the definition of ϑn and Lemma B.1 we ob-
tain max(ϑn) = |𝒦n|/Dn − 1. Since |𝒦n| is equal to |Fdn,in,jn−1|, the lower bound of the
claim comes immediately from Lemma 4.8. Moreover by Lemma 4.8

max
(𝐟,t)∈𝒢n

ϑ̃n(𝐟, t) ≥ |Fdn,in,jn−1| /Dn − 1.

Hence using these two observations, then bounding very roughly |Fdn,in,jn−1| − Dn by
below by |Fdn,in,jn−1|/2 and finally using Lemma 2.7, we get

max(ϑn)
max(ϑ̃n)

≤ |𝒦n|
Dn

Dn
|Fdn,in,jn−1| − Dn

= |Fdn,in,jn+1|
|Fdn,in,jn−1| − Dn

,

≤ 2|Fdn,in,jn+1|/|Fdn,in,jn−1|,

≤ 2 × (2q)2.

Hence 𝔞n ≤ 4q2 + 1 ≤ q3.

Proof of Lemma 4.18. First let 𝔟n ∶= max(ϑn) − 𝔞nmax ϑ̃n and remark that it belongs to ℕ.
Now let

𝔰n ∶ x ↦
⎧
⎨⎩

(𝔞n − 1)x if x < −𝔟,
𝔞nx + 𝔟n if x ≥ −𝔟.

By definition 𝔰n is 𝔞n-Lipschitz and hence by Claim 4.19 it is (q3)-Lipschitz. Moreover,
since 𝔟n, 𝔞n and (𝔞n − 1) are integers then 𝔰n maps any integer to an integer. Finally we
can check easily that 𝔰n(max ϑ̃n) = max ϑn.

We can now define the “spreading” version of ϑ̃n

ϑ̂n(𝐟, t) ∶= 𝔰n ∘ ϑ̃n(𝐟, t). (4.16)
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4 Coupling between diagonal products

INJEcTIVITY AND DENSITY Let us now define the Sofic approximation we want
to work with in Δ. We saw in Lemma 4.7 that the image of the map sending (𝐟, t) to
(t, ϑ̃n(𝐟, t), Pn(f′)) was not necessarily the product [0, κn − 1] × [0,max ϑ̃n] × [0,Qn − 1]. It
might indeed be smaller. The unreached part of this last product might lead to a large
area of unreached elements in 𝒦n, preventing the injection from 𝒢n to 𝒦n to be C-dense.
We consequently define a new sofic approximationℋn included in𝒦n but not containing
the aforementioned unreached elements.

ℋn ∶= 𝒦n\
{
(𝐠, v) ∈ 𝒦n

|
ϑn(𝐠) ≥ 𝔰n (qκn max(En))
χ(v) ≥ κn [max (μ̃n) − Qnmax (En) + 1]}

(4.17)

Lemma 4.20

The set ℋn defined in eq. (4.17) is a Følner set of Δ.

Proof. Using that 𝔰n is (q3)-Lipschitz and that max(ϑ̃n) ≤ qκn max(En) + qκn − 1 we get

|[𝔰n (q
κn max(En),max(ϑ̃n))]| ≤ q3 |[q

κn max(En),max(ϑ̃n)]| ≤ q3qκn .

Hence

|{
(𝐠, v) ∈ 𝒦n

|
ϑn(𝐠) ≥ 𝔰n (qκn max(En))
χ(v) ≥ κn [max (μ̃n) − Qnmax (En) + 1]}|

≤ |[0,Dn − 1]| ⋅ |[𝔰n (q
κn max(En),max(ϑ̃n))]|

≤Dnq3+κn .
Recall (see eq. (4.9)) that 𝒦n = FDn,In,Jn . Using the value of |𝒦n| given by Lemma 2.7,
we get that Dnq3+κn/|𝒦n| tends to zero, thus 𝒦n minus some set of at most Dnq3+κn

elements is still a Følner sequence.

Let us now define the C-dense injection.

Lemma 4.21

Let ιn ∶ 𝒢n → ℋn be the map such that ιn(𝐟, t) ∶= (𝐠, u(Pn(𝐟′), t)) where u is defined
in eq. (4.10) and 𝐠 verifies ϑ̂n(𝐟, t) = ϑn (𝐠, u(Pn(𝐟′), t)). Then there exists a constant
C > 0 such that ιn is injective and C-dense for n large enough.

Proof. Let us first show that ιn is well defined, that is to say: for all (𝐟, t) ∈ 𝒢n there exists a
unique𝐠 such that (𝐠, u(Pn(𝐟′), t)) belongs toℋn and verifies ϑ̂n(𝐟, t) = ϑn (𝐠, u(Pn(𝐟′), t)).
Recall that ϑ̂n = 𝔰n ∘ ϑ̃n and that χ is defined in Lemma 4.13.

• Let (𝐟, t) ∈ 𝒢n. By Lemmas 4.17 and 4.18 ϑ̂n(𝐟, t) belongs to [0,max ϑn]. Thus there
exists 𝐠 such that (g, u(Pn(𝐟′), t)) belongs to 𝒦n and ϑ̂n(𝐟, t) = ϑn (𝐠, u(Pn(𝐟′), t)).

• By choice of 𝐠, if ϑ̂n(𝐟, t) < 𝔰n (qκn max(En)) then ϑn(𝐠, u(Pn(𝐟′), t)) is also strictly
smaller than 𝔰n (qκn max(En)) and thus (𝐠, u(Pn(𝐟′), t)) belongs to ℋn.

• Recall that 𝔰n is increasing, thus ϑ̃n(𝐟, t) is greater than qκn max(En) if and only if
ϑ̂n(𝐟, t) is greater than 𝔰n (qκn max(En)). Therefore if ϑ̂n(𝐟, t) ≥ 𝔰n (qκn max(En))
then Lemma 4.7 implies that Pn(𝐟′) equals at most max(μ̃n)−Qnmax(En) and thus

χ (u (Pn(𝐟′), t)) ≤ κn (max(μ̃n) − Qnmax(En) + 1) − 1.
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Hence (𝐠, u (Pn(𝐟′), t)) belongs to ℋn by eq. (4.17).
• Finally if there exists 𝐠 such that ϑ̂n(𝐟, t) = ϑn (𝐠, u(Pn(𝐟′), t)) then it is unique
since ϑn(⋅, v) is injective for any v in the image of u (see Lemma 4.17).

Let us now prove the injectivity of ιn. Let (𝐟, t), (𝐡, v) ∈ 𝒢n such that ιn(𝐟, t) = ιn(𝐡, v).
Then u(𝐟, t) = u(𝐡, v) and if we denote 𝐠 the element such that (𝐠, u(𝐟, t)) = ιn(𝐟, t) we
thus get ϑ̂(𝐟, t) = ϑn(𝐠, u(𝐟, t)) = ϑ̂(𝐡, v).

• If u(𝐟, t) = u(𝐟, v) then χ ∘ u(𝐟, t) = χ ∘ u(𝐟, v) and thus

(Pn(𝐟′) − Pn(𝐡′)) κn = v − t.

But 0 ≤ t, v < κn, the above equation thus leads to t = v and Pn(𝐟′) = Pn(𝐡′).
• Let us now prove that 𝐟′ = 𝐡′. Since 𝔰n is a piecewise affinemap then ϑ̂(𝐟, t) = ϑ̂(𝐡, v)
implies that ϑ̃n(𝐟, t) = ϑ̃n(𝐡, v). In particular the coefficients of the decomposition
of ϑ̃n(𝐡, v) in base (b̃i)i are equal to the one of the decomposition of ϑ̃n(𝐟, t). In
other words

ν̃t,i(𝐟, t) = ν̃v,i(𝐡, v) and En(𝐟′) = En(𝐡′). (4.18)

But by the last claim Pn(𝐟′) = Pn(𝐡′) thus μ̃n(𝐟′) = μ̃n(𝐡′). Since μ̃n is bijective it
implies that 𝐟′ = 𝐡′.

• Moreover the fact that t equals v implies that for all i ∈ [0, n]

ℬ̃i(t) = ℬ̃i(v),

In particular ν̃t,i is defined on the same set as ν̃v,i. Combining this with the bijec-
tivity of these maps and eq. (4.18) we thus get that f0 = h0.

Since 𝐟 (resp. 𝐡) is uniquely determined by f0 (resp. h0) and 𝐟′ (resp. 𝐡′) we thus have
𝐟 = 𝐡. Hence the injectivity of ιn.

Now let us show the density. Let (𝐡, v) ∈ ℋn. We need to distinguish two cases de-
pending on whether v belongs to im(u) or not.

• Since v ∈ [0,Dn − 1] there exists P ∈ [0,Qn − 1] and t ∈ [0, κn − 1] such that χ(v) =
Pκn + t.

• If v ∈ im(u) (resp. v ∉ im(u)) denote by [y0, … , ypn+Mn ]𝐛 the decomposition in
base (bi,P,t)i of ϑn(𝐡, v) (resp. ϑn(𝐡, v+1)). Now by Lemma 4.5 if n is large enough,
Dn > κ3, hence b0,P,t, b1,P,t and b2,P,t are well defined. Moreover q = 6 (see page 51)
and κ ≥ 3, hence for all such n we always have

b0,P,tb1,P,tb2,P,t = qκ2 ≥ q9 > q3.

So up to consider (𝒢n1+n)n∈ℕ instead of (𝒢n)n for some n1 ≥ 0, we can assume
that the above inequality is true for all n. Now, since 𝔰n is q3-Lipschitz, Lemma B.6
implies that there exists x ∈ im(ϑ̂n) such that xj = yj for all j > 2 where x =
[x0, … , xpn+Mn ]𝐛 denotes the decomposition of x in base (bi,P,t)i.

• Since (𝐡, v) belongs to ℋn then by eq. (4.17) the triple (t, P, 𝔰−1n (x)) belongs to the
set defined at the end of Lemma 4.7. The aforementioned lemma thus implies that
there exists (𝐟, t) ∈ 𝒢n such that Pn(𝐟′) = P and ϑ̃n(𝐟, t) = 𝔰−1n (x) that is to say
ϑn ∘ ιn(𝐟, t) = x.

• Let (𝐠, u(𝐟, t)) ∶= ιn(𝐟, t) and assume first that v belongs to the image of u. Then
u(𝐟, t) = v by definition of χ the first point. Moreover by definition of the num-
bering ϑn and since xj = yj for all j > 2, the lamp configuration 𝐡 differs at most
from 𝐠 from the values of h0|ℬ2(v). But ℬ2(v) is an interval containing the cursor
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4 Coupling between diagonal products

v and which contains at most 2κ2 elements. Thus by Proposition A.22 the distance
between (𝐠, v) and (𝐡, v) is bounded by 2κ2 up to some multiplicative constant.
Now if v ∉ im(u), by a similar argument we can show that (𝐠, u) and (𝐡, v+1) are at
distance at most 2κ2 and thus (𝐠, u) and (𝐡, v) are at distance at most 2κ2 + 1 from
one another.

This shows that ιn is C-dense for C equals to 2κ2 + 1. Hence the proposition.

4.3 Quantification

Now that we have defined the injection between our Sofic approximations we need to
show that eq. (2.1) is verified. Although some technicalities appear in the details of the
computations, the strategy is quite similar to the one used in Section 3.2. So for (𝐟, t) ∈ 𝒢n
and s ∈ 𝒮Δ̃ we first bound the distance between ιn(𝐟, t) and ιn((𝐟, t)s). Then for a given
r > 0 we provide an estimate of the proportion of elements in 𝒢n such that ιn(𝐟, t) and
ιn((𝐟, t)s) are at distance r in Δ. Finally we show that eq. (2.1) is verified.

4.3.1 Distance

Let s ∈ 𝒮Δ̃ and (𝐟, t) ∈ 𝒢(1)n . Our aim in this section is to bound by above the distance
between ιn(𝐟, t) and ιn((𝐟, t)s). We will distinguish two cases depending on s = (0, 1) or
not. But first let us introduce some notations. As in Section 3 let t = ∑n−1

i=0 tiκi be the
decomposition in base κ of t. If (𝐟, t) belongs to 𝒢(1)n then t < n − 1 and thus there exists
i ∈ {0,… , n − 1} such that ti < κ − 1. Therefore, as in eq. (3.2) we can define

i0(t) ∶= min{i ≤ n | ti < κ − 1}. (4.19)

Recall that this index corresponds to the one of the coefficient ti that will absorb the carry
when we add one to t. In other words, the decomposition of t + 1 in base κ is given by
t+1 = (ti0(t)+1)κi0(t)+∑

n−1
i=i0(t) tiκi. In particular we can obtain the following analogue

of Claim 3.8.

Lemma 4.22

Let P ∈ [0,Qn − 1] and t ∈ [0, κn − 1]. Then ℬ̃i(t) = ℬ̃i(t + 1) and ℬi(P, t) = ℬi(P, t) for
all i > i0(t).

Proof. The first assertion comes from Claim 3.8. Now for the second one. Since ℬi(P, t) is
the preimage by χ of ℬ′i(P, t) we only have to show that ℬ′i verifies ℬ′i(P, t) = ℬ′i(P, t + 1).
This equality is true if i > n, since the definition given in eq. (4.13) of ℬ′i(P, t) does not
depend on t. When i ∈ [i0(t) + 1, n], it is given by the first assertion and eq. (4.11). Hence
the lemma.

Now define
x ∶= x(𝐟, t, s) = min{ϑ̂(𝐟, t), ϑ̂((𝐟, t)s)} ,
y ∶= y(𝐟, t, s) = max{ϑ̂(𝐟, t), ϑ̂((𝐟, t)s)} .

(4.20)

In this section we denote P ∶= Pn(𝐟′). Recall that (bi,P,t)i∈[0,pn+Mn] is the base defined
in the box page 34 and denote by (xi)i (resp. (yi)i) the decomposition of x (resp. y) in
base (bi,P,t)i. In other words using the notation introduced in appendix B these sequences
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4 Coupling between diagonal products

verify x = [x0, … , xpn+Mn ]𝐛P,t and y = [y0, … , ypn+Mn ]𝐛P,t . Finally for i in [0, pn +Mn]
define

jP,t(x, i) ∶= min{j > i | xj < bj,P,t − 1} . (4.21)

Proposition 4.23

Let (𝐟, t) ∈ 𝒢n, let x and jP,t be as above and

m ∶=
⎧
⎨⎩

jP,t(x, 2) if s ∈ 𝒮1 ∪ 𝒮2 or (s = (0, 1) and i0(t) = 0)
jP,t(x, i0(t) + 1) if s = (0, 1) and i0(t) > 0.

If m ≤ pn then d (ιn(𝐟, t), ιn((𝐟, t)s)) ≤ 6κm.
If m ≥ pn + 1 then d (ιn(𝐟, t), ιn((𝐟, t)s)) ≼ Dnlm−pn .

Strategy of the proof The injection ιn is defined using the two maps ϑ̂n and ϑn which
transform lamp configurations into integers. In order to estimate the distance between
ιn(𝐟, t) and ιn((𝐟, t)s) we thus need to understand how the action of smodifies these inte-
gers and in particular how it acts on their decompositions in base (bi,P,t)i. Hence in a first
paragraph we bound the difference between the ϑ̂(𝐟, t) and ϑ̂ ((𝐟, t)s) (see Lemma 4.24). In
the second one we use this bound to compare the decompositions in base (bi,P,t)i of these
two integers (see Claim 4.27) and conclude with the proof of the above proposition.

FrOM LAMPS TO INTEGErS For all this section let ( ̃𝐟, ̃t) ∶= (𝐟, t)s. The aim in this
paragraph is to show the lemma below.

Lemma 4.24

Let s ∈ 𝒮Δ̃ and i0(t) as in eq. (3.2). Denote P ∶= Pn(𝐟′), then

|ϑ̂(𝐟, t) − ϑ̂((f, t)s)| <
⎧
⎨⎩

b0b1,P,tb2,P,t if s ∈ 𝒮1 ∪ 𝒮2 or (s = (0, 1) and i0(t) = 0)
b0,P,t⋯bi0(t)+1,P,t else.

Before proving the lemma, let us prove some useful results. Recall that μ̃m is defined in
Claim 3.4 and Pn and En are defined in eq. (4.6).

Claim 4.25. Recall that ( ̃𝐟, ̃t) ∶= (𝐟, t)s. These elements verify μ̃n(𝐟′) = μ̃n( ̃𝐟′).
In particular Pn(𝐟′) = Pn( ̃𝐟′) and En(𝐟′) = En( ̃𝐟′).

Proof of the claim. If s = (0, 1) then s only modifies the cursor of (𝐟, t). That is to say 𝐟 = ̃𝐟.
Hence the first equality.
If s = ((aδ0)m, 0) for some a ∈ A, then ̃fm = fmaδt for all m > 0. In particular for all

x ≠ t it verifies ̃fm(x) = fm(x). Using Lemma A.6 at x = t we obtain

̃fm(t) = fm(t)a = f′m(t)θAm(f0(t)) θBm(f0(t − km))a,

= f′m(t)(θ
Am(f0(t))a) θ

Bm(f0(t − km)).

By uniqueness of the decomposition we thus get ̃f′m(t) = f′m(t). Hence ̃f′m = f′m for all
m > 0 and thus μ̃n(𝐟′) = μ̃n( ̃𝐟′). Finally the case when s = ((bδkm)m, 0) for some b ∈ B is
identical to the one above. In all cases, the second part of the lemma comes immediatly
from eq. (4.6).
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4 Coupling between diagonal products

Let us now study the behaviour of the blocs ℬ̃i( ̃t) and the maps (ν̃i)i. Note that if
s = (0, 1) then ̃t = t + 1.

Claim 4.26. If s ∈ 𝒮1 ∪ 𝒮2

(∀i > 0) ν̃i (f0|ℬ̃i(t)\ℬ̃i−1(t)) = ν̃i ( ̃f0|ℬ̃i(t)\ℬ̃i−1(t)) .

If s = (0, 1) then ℬ̃i(t) = ℬ̃i(t + 1) for all i > i0(t) and thus

(∀i > i0(t)) ν̃i (f0|ℬ̃i(t)\ℬ̃i−1(t)) = ν̃i ( ̃f0|ℬ̃i(t+1)\ℬ̃i−1(t+1)) .

Proof of the claim. Let i > 0. If s belongs to 𝒮1 ∪ 𝒮2 then ̃t = t. But ℬ̃i( ̃t) depends only
on the value of i and ̃t thus ℬ̃i(t) = ℬ̃i( ̃t). Moreover ̃f0(x) = f0(x) for all x ≠ t. But by
Lemma 3.1 the set ℬ̃i(t)\ℬ̃i−1(t) does not contain t, thus f0 restricted to this last set is
equal to ̃f0 restricted to it. Hence the first assertion.
Let us now treat the case when s = (0, 1). By Lemma 4.22 for all i > i0(t) we have

ℬ̃i(t) = ℬ̃i(t + 1). Finally, since s = (0, 1) then 𝐟 = ̃𝐟 and in particular ̃f0 = f0. Hence the
second assertion.

We can now prove the first lemma.

Proof of Lemma 4.24. First suppose that s ∈ 𝒮1 ∪ 𝒮2. By Claims 4.25 and 4.26 and using the
definition of ϑ̃n given in eq. (4.7), we get

|ϑ̃n(𝐟, t) − ϑ̃n((𝐟, t)s)| = |ν̃0(f0|ℬ̃0(t)) − ν̃0( ̃f0|ℬ̃0(t))| ≤ q.

Now recall that ϑ̂n = 𝔰n ∘ ϑ̃n where 𝔰n is a q3-Lipschitz map, thus

|ϑ̂n(𝐟, t) − ϑ̂n((f, t)s)| ≤ q3q.

But κ is greater than 3 thus q4 < qκ2 . Moreover by Remark 4.15 |ℬ2(P, t)| is greater than
κ2 for all P and t, since b0b1,P,tb2,P,t = q|ℬ2(P,t)| we thus obtain

|ϑ̂n(𝐟, t) − ϑ̂n((f, t)s)| < qκ2 ≤ b0b1,P,tb2,P,t.

Assume now that s = (0, 1). By Claims 4.25 and 4.26 and definition of ϑ̃n

|ϑ̃n(𝐟, t) − ϑ̃n((f, t)s)|
=|ν̃0 ( ̃f0|ℬ̃0(t+1)) − ν̃0 ( ̃f0|ℬ̃0(t))

+
i0(t)

∑
i=1

[ν̃i ( ̃f0|ℬ̃i(t+1)\ℬ̃i−1(t+1)) − ν̃i (f0|ℬ̃i(t)\ℬ̃i−1(t))] b̃i−1⋯ b̃0|.

But ν̃0 takes its values in [0, q−1], thus |ν̃0( ̃f0|ℬ̃0(t+1))− ν̃0( ̃f0|ℬ̃0(t))| ≤ q−1. Similarly, for
all i ∈ [1, i0(t)] we have

|ν̃i (
̃f0|ℬ̃i(t+1)\ℬ̃i−1(t+1)) − ν̃i (f0|ℬ̃i(t)\ℬ̃i−1(t))| ≤ b̃i − 1,

thus

|ϑ̃n(𝐟, t) − ϑ̃n((f, t)s)| ≤ (q − 1) +
i0(t)

∑
i=0

(b̃i − 1) b̃i−1⋯ b̃0 < b̃i0(t)⋯ b̃0.
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But ϑ̂n = 𝔰n ∘ ϑ̃n where 𝔰n is a q3-Lipschitz map thus

|ϑ̂n(𝐟, t) − ϑ̂n((f, t)s)| < q3b̃i0(t)⋯ b̃0.

If i0(t) = 0 then q3b̃i0(t)⋯ b̃0 = q3b̃0 = q3q. By the same argument as in the above case
we obtain that q3b̃0 ≤ b0b1,P,tb2,P,t. Hence the result for i0(t) = 0.
To prove the case when i0(t) > 0 we only have to show that q3b̃i0(t)⋯ b̃0 is smaller

than bi0(t)+1,P,t⋯b0,P,t. First recall (see Remark 4.6) that b̃i0(t)⋯ b̃0 = qκ
i0(t) . And since

i0(t) < n ≤ pn we can use Lemma 4.16 and obtain that qκi0(t)+1 ≤ bi0(t)+1,P,t⋯b0,P,t.
Now remark that since i0(t) > 0 and κ ≥ 3 we have κi0(t) + 3 ≤ κi0(t)+1. Thus

|ϑ̂n(𝐟, t) − ϑ̂n((f, t)s)| < q3b̃i0(t)⋯ b̃0 ≤ q3qκi0(t)

≤ qκi0(t)+1 ≤ bi0(t)+1,P,t⋯b0,P,t.

FrOM INTEGErS TO LAMPS Let us now prove Proposition 4.23. Let (𝐠, v) ∶= ιn(𝐟, t)
and (𝐡,w) ∶= ιn((𝐟, t)s). Recall that by definition of the injection ιn we have ϑ(𝐠, v) =
ϑ̂(𝐟, t) and ϑ(𝐡,w) = ϑ̂((𝐟, t)s). In particular, by Lemma 4.24

|ϑ(𝐠, v) − ϑ(𝐡,w)| <
⎧
⎨⎩

b0b1,P,tb2,P,t if s ∈ 𝒮1 ∪ 𝒮2 or (s = (0, 1) and i0(t) = 0)
b0,P,t⋯bi0(t)+1,P,t else.

First, applying Lemma B.5 to the result of Lemma 4.24, we deduce the following asser-
tion.

Claim 4.27. Let x and y as defined by eq. (4.20) and for all i ≥ 0 let jP,t(x, i) as defined in
eq. (4.21). Denote P = Pn(𝐟′).
If s ∈ 𝒮1 ∪ 𝒮2 or if (s = (0, 1) and i0(t) = 0) then xj = yj for all j > jP,t(x, 2).
If s = (0, 1) and i0(t) > 0 then xj = yj for all j > jP,t(x, i0(t) + 1).

We can now bound the distance and prove Proposition 4.23.

Proof of Proposition 4.23. Consider s ∈ 𝒮Δ̃ and (𝐟, t) ∈ 𝒢n. Let x as in eq. (4.20) and jP,t as in
eq. (4.21) and recall that (𝐠, v) ∶= ιn(𝐟, t) and (𝐡,w) ∶= ιn((𝐟, t)s). Define

m ∶=
⎧
⎨⎩

jP,t(x, 2) if s ∈ 𝒮1 ∪ 𝒮2 or (s = (0, 1) and i0(t) = 0),
jP,t(x, i0(t) + 1) else.

Let us first recall that if s ∈ 𝒮1∪𝒮2 then P = Pn(𝐟′) = Pn( ̃𝐟′) and thusℬi(P, t) = ℬi(Pn( ̃𝐟′), ̃t)
for all i. If s = (0, 1) then note that m > i0(t) by definition of jP,t. Thus i > i0(t) for all
i > m and by Lemma 4.22 we have ℬi(P, t) = ℬi(Pn( ̃𝐟′), ̃t) for all i > m. In particular v and
w both belong to ℬi(P, t). Moreover by Claim 4.27 we know that xj = yj for all j > m.
We distinguish 2 cases depending on the value of m.
• Assume first that m ≤ pn. Since xj = yj for all j > m, using the expression of
ϑn given in eq. (4.15) we get μi(g′i) = μi(h′i) for all i and νj(g0|ℬi(𝐟,t)\ℬi−1(𝐟,t)) =
νj(h0|ℬi( ̃𝐟,t̃)\ℬi−1( ̃𝐟,t̃)) for all i ∈ [m + 1, pn]. In other words 𝐡 and 𝐠 differ at most
from the value of g0 and h0 on the interval ℬm(P, t). Hence using Proposition A.22
we obtain

d((𝐠, u), (𝐡, v)) ≤ 3diam (ℬm(P, t)) . (4.22)

The first part of the proposition then comes from Remark 4.15.
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• Now assume that m ≥ pn + 1. By the same argument as above we get that μi(g′i) =
μi(h′i) for all i > m− pn. Then by the second part of Proposition A.22 we get

dΔ((𝐠, u), (𝐡, v)) ≤ Dnlm−pn . (4.23)

Hence the second part of the lemma.

4.3.2 Enumeration

Let s ∈ 𝒮Δ̃. Our goal is now to estimate the number of elements (𝐟, t) in 𝒢n such that
ιn sends (𝐟, t)s at distance r from (𝐟, t) in Δ̃ for a given distance r > 0. As suggested by
Proposition 4.23 it depends on the value of the map jP,t. We first study the action of
generators in 𝒮1 ∪ 𝒮2 and then the action of s = (0, 1). Recall that x(𝐟, t, s) is defined in
eq. (4.20) and jP,t in eq. (4.21).

AcTION ON THE LAMP cONFIGUrATION Let us study the case when s is a gener-
ator that modifies a lamp that is to say when s belongs to 𝒮1 ∪ 𝒮2.

Lemma 4.28

Let s ∈ 𝒮1 ∪ 𝒮2 and Xsm ∶= {(𝐟, t) ∈ 𝒢
(1)
n ∶ jPn(𝐟′),t(x(𝐟, t, s), 2) = m}.

If m ≤ 2 then |Xsm| = 0.
If 2 < m ≤ pn then |Xsm| ≼ |𝒦n|q−κm−1 .
If m = pn + 1 then |Xsm| ≼ |𝒦n|q−Dn .
If m > pn + 1 then |Xsm| ≼ |𝒦n|q−Dn exp (−lm−1−pn).

Proof. First note that by definition of jP,t we have jP,t(z, 2) > 2 for all z. Thus Xsm is empty
ifm ≤ 2. Now assume thatm > 2. Recall that x(f, t, s) belongs to {ϑ̂n(𝐟, t), ϑ̂n((𝐟, t)s)} by
eq. (4.20). Hence

Xsm ⊆{(𝐟, t) ∈ 𝒢
(1)
n | jPn(𝐟′),t(ϑ̂n(𝐟, t), 2) = m}

∪ {(𝐟, t) ∈ 𝒢
(1)
n | jPn(𝐟′),t(ϑ̂n((𝐟, t)s), 2) = m} .

(4.24)

Let us denote Ysm ∶= {(𝐟, t) ∈ 𝒢
(1)
n ∶ jPn(𝐟′),t(ϑ̂n(𝐟, t), 2) = m} and bound the value of |Ysm|.

Consider t ∈ [0, κn − 1] and P ∈ [0,Qn − 1], using first Lemma 4.7 then the fact that
𝔰n[0,max(ϑ̃n)] is contained in [0,max ϑn] we obtain

|{(𝐟, t) ∈ 𝒢n | Pn(𝐟
′) = P, jP,t(ϑ̂n(𝐟, t), 2) = m}| ≤ |{z ∈ [0,max ϑ̃n] | jP,t(𝔰n(z), 2) = m}|

≤ |{z ∈ [0,max ϑn] | jP,t(z, 2) = m}| .

Recalling that max ϑn = |𝒦n|/Dn and applying Lemma B.7 to the base (bi,P,t)i we get

|{(𝐟, t) ∈ 𝒢n | Pn(𝐟
′) = P and jP,t(ϑ̂n(𝐟, t), 2) = m}|

≤ |{z ∈ [0, |𝒦n|/Dn − 1] | jP,t(z, 2) = m}|
≤|𝒦n|/Dn(bm−1,P,t⋯b3,P,t)−1.
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By Lemma 4.16 the product b2,P,tb1,P,tb0 belongs to [qκ2 , q2κ2 ]. Hence bm−1,P,t⋯b3,P,t
is equivalent to bm−1,P,t⋯b0,P,t. We thus now need to bound by above the value of
|𝒦n|/Dn(bm−1,P,t⋯b0,P,t)−1. We apply Lemma 4.16 and distinguish three cases depending
on the value of m.

• If m ≤ pn then |𝒦n|/Dn(bm−1,P,t⋯b0,P,t)−1 ≤ q−κm−1 |𝒦n|/Dn.
• If m = pn + 1 then |𝒦n|/Dn(bm−1,P,t⋯b0,P,t)−1 = q−Dn |𝒦n|/Dn.
• If m > pn + 1 then |𝒦n|/Dn(bm−1,P,t⋯b0,P,t)−1 ≼ q−Dn exp(−lm−1−pn)|𝒦n|/Dn.

So first assume that m ≤ pn, noting that κnQn ≤ Dn we get

|Ysm| ≤ ∑
P∈[0,Qn−1]

∑
t∈[0,κn−1] |{

(𝐟, t) ∈ 𝒢n |Pn(𝐟′) = P and jP,t(ϑ̂n(𝐟, t), 2) = m}|

≤ ∑
P∈[0,Qn−1]

∑
t∈[0,κn−1]

q−κm−1 |𝒦n|/Dn,

= Qnκnq−κm−1 |𝒦n|/Dn
≤ |𝒦n|q−κm−1 .

Applying the same argument to the right most set of eq. (4.24) we can also bound its
number of elements by |𝒦n|q−κm−1 and thus get |Xsm| ≼ 2|𝒦n|q−κm−1 ∼ |𝒦n|q−κm−1 . For
the other values of m, replacing q−κm−1 in the above inequalities by the corresponding
value of (bm−1,P,t⋯b0,P,t)−1 we obtain the lemma.

AcTION ON THE cUrSOr Let us now treat the case when s = (0, 1). Recall that
according to Proposition 4.23 the case when i0(t) = 0 is slightly different from the one
where i0(t) > 0. Let us define

Zm,i ∶=
⎧
⎨
⎩
{(𝐟, t) ∈ 𝒢

(1)
n | i0(t) = 0, j0(x(𝐟, t, s), 2) = m} if i = 0,

{(𝐟, t) ∈ 𝒢
(1)
n | i0(t) = i, j0(x(𝐟, t, s), i + 1) = m} if i > 0.

Our goal is to give an upper bound to the number of elements in ⊔n−1
i=0 Zm,i.

Lemma 4.29

When s = (0, 1) let Xsm ∶= ⊔n−1
i=0 Zm,i. Then

|Xsm| ≼

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

|𝒦n|κ−m if m ≤ n+ 1,
|𝒦n|κ−nq2κn−κm−1 if n + 1 < m ≤ pn,
|𝒦n|κ−nq2κn−Dn if m = pn + 1.
|𝒦n|κ−nq2κn−Dn exp (−lm−1−pn) if m > pn + 1.

But first let us bound the number of elements in Zm,i.

Claim 4.30. Ifm ≤ 2 then |Zm,i| = 0 for all i. Ifm > 2 then |Zm,i| = 0 for all i ≥ m−1 and
for all 0 ≤ i < m− 1

|Zm,i| ≼

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

κ−i|𝒦n| if m = i + 2,
κ−i|𝒦n|q2κi+1−κm−1 if i + 2 < m ≤ pn,
κ−i|𝒦n|q2κi+1−Dn if m = pn + 1,
κ−i|𝒦n|q2κi+1−Dn exp(−lm−1−pn) if m > pn + 1.
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Proof of the claim. Recall that by definition of jP,t it verifies jP,t(z, i + 1) > i + 1 for all i.
So ifm ≤ 2 then i + 1 ≥ m−1 for all i ≥ 0 and therefore Zm,i is empty. Similarly it is also
empty for all m > 2 and all i ≥ m− 1.
Now assume that m > 2 and 0 < i < m− 1 (we will treat the case i = 0 separately). Fix

P ∈ [0,Qn−1] and t ∈ [0, κn−1] such that i0(t) = i. By a similar argumentation as the one
used to prove Lemma 4.28 we get

|{(𝐟, t) ∈ 𝒢n | Pn(𝐟
′) = P, jP,t(ϑ̂n(𝐟, t), i + 1) = m}|

≤ |{z ∈ [0,max ϑn] | jP,t(z, i + 1) = m}| ,

≤ |𝒦n|/Dn(bm−1,P,t⋯bi+2,P,t)−1.

Ifm ≤ pn, Lemma 4.16 implies that (bm−1,P,t⋯bi+2,P,t)−1 is less or equal to q2κi+1−κm−1 .
Note furthermore that the number of t in [0, κn − 1] verifying i0(t) = i is less than κn−i.
Using these two remarks and then that Qnκn ≤ Dn, we get

|Zm,i| ≤ ∑
P∈[0,Qn−1]

∑
t, i0(t)=i

|{(𝐟, t) ∈ 𝒢n |Pn(𝐟
′) = P i0(t) = i jP,t(ϑ̂n(𝐟, t), 2) = m}|

≤ ∑
P∈[0,Qn−1]

∑
t, i0(t)=i

|𝒦n|/Dnq2κi+1−κm−1

≤ Qnκn−i|𝒦n|/Dnq2κi+1−κm−1

≤ κ−i|𝒦n|q2κi+1−κm−1

For the other values of m, replacing q2κi+1−κm−1 in the above inequalities by the corre-
sponding value of (bm−1,P,t⋯b0,P,t)−1 we obtain the claim for i > 0.
Finally when i = 0, replacing bi+2,P,t by b3,P,t in the argument above, we obtain the

second part of the claim.

Proof of Lemma 4.29. We can now use the above claim to bound∑n−1
i=0 |Zm,i|. First ifm ≤ 2

then |Xsm| = 0 by Claim 4.30.
Now assume that m ≤ n+ 1 then Claim 4.30 implies

|Xsm| =
m−2
∑
i=0

|Zn+1,i| ≼ κ−(m−2)|𝒦n| +
m−3

∑
i=0

|𝒦n|κ−iq2κi+1−κm−1

= κ−(m−2)|𝒦n| + |𝒦n|q−κm−1
m−2

∑
i=0

κ−iq2κi+1 .

But the sum on the right is equivalent to its last term, namely κm−3q2κm−2 . Recall more-
over that κ ≥ 3 thus 2κm−2 is strictly smaller than κm−1 and hence q2κm−2−κm−1 ≤ 1.
Thus

|Xsm| ≼ κ−(m−2)|𝒦n| + κm−3q2κm−2−κm−1 |𝒦n|,
≼ κ−(m−2)|𝒦n| + κm−3|𝒦n| ∼ κ−m|𝒦n|.

Assume now that n + 1 < m ≤ pn. Then any i ∈ [0, n − 1] verifies i + 2 < m thus using
Claim 4.30 we get

|Xsm| =
n−1

∑
i=0

|Zm,i| ≼
n−1

∑
i=0

|𝒦n|κ−iq2κi+1−κm−1 .
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As before, the sum∑n−1
i=0 κ−iq2κ

i+1 being equivalent to its last term we obtain that |Xsm|
is equivalent to |𝒦n|κ−nq2κn−κm−1 . Similarly if m = pn + 1 Claim 4.30 implies that

|Xsm| ≼
n−1

∑
i=0

κ−i|𝒦n|q2κi+1−Dn ∼ κ−n|𝒦n|q2κn−Dn .

Finally if m > pn + 1 a similar proof gives

|Xsm| ≼
n−1

∑
i=0

κ−i|𝒦n|q2κi+1−Dn exp (−lm−1−pn) ,

∼ κ−n|𝒦n|q2κn−Dn exp (−lm−1−pn) .

4.3.3 Integrability

To goal of this subsection is to prove Theorem 1.18 and its precised version Theorem 4.1.
We prove that the sequences (𝒢n)n and (ℋn)n defined before verify the condition of
eq. (2.1) with φ = ̃ρ ∘ ρ−1bij . To do so we first treat the case when s belongs to 𝒮1 ∪ 𝒮2
and then the case when s = (0, 1).

Proof of Theorem 4.1. Consider Δ̃ and Δ verifying the conditions (F) page 22 and assume
that the sequence lm exp(−lm−1) is summable and that there exists ε > 0 such that ̃ρ ∘
ρ−1bij (x) ≼ x1−ε.
Let (𝒢n)n and (ℋn)n as defined respectively in Section 4.1 and eq. (4.17) and consider

s ∈ SΔ. Let us show that eq. (2.1) is verified for φ(x) ∶= ̃ρ ∘ ρ−1bij .
Let R > 0 and let n ∈ ℕ and m ∈ [0, pn +Mn]. By Proposition 4.23 if (𝐟, t) belongs to

Xsm then

d (ιn(𝐟, t), ιn((𝐟, t)s)) ≼
⎧
⎨⎩

κm if m ≤ pn
Dnlm−pn if m ≥ pn + 1.

In particular if we denote by r ∶= d (ιn(𝐟, t), ιn((𝐟, t)s))we obtain thatφ(r) ≼ φ(κm)when
m ≤ pn and φ(r) ≼ φ(Dnlm−pn) for m ≥ pn + 1. Hence

R

∑
r=0

φ(r) |{
(𝐟, t) ∈ 𝒢(1)n ∣ dℋn(ιn(𝐟, t), ιn((𝐟, t) ⋅ s)) = r}|

|𝒢n|

≼
pn
∑
m=0

φ(κm) |X
sm|
|𝒢n|

+ φ(κpn)
|Xspn+1|
|𝒢n|

+
pn+Mn

∑
m=pn+1

φ(Dnlm−pn)
|Xsm|
|𝒢n|

.

(4.25)

We are going to study two different cases, depending on whether s = (0, 1) or not and
study each of the three terms above separately.

FIrST cASE

Let n ∈ ℕ and R > 0 and first assume that s ∈ 𝒮1 ∪ 𝒮2. We use Lemma 4.28 to bound
|Xsm|, Remark 4.10 to simplify the quotient |𝒦n|/|𝒢n| and the assumption made on φ. If
2 < m ≤ pn we obtain

φ(κm) |X
sm|
|𝒢n|

≼ φ(κm) |𝒦n|q
−κm−1

|𝒢n|
∼ φ(κm)q−κm−1 ≼ κm(1−ε)q−κm−1 .
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4 Coupling between diagonal products

Note that this last term is a summable sequence. Moreover if m < 2 then |Xsm| is equal to
zero, hence

pn
∑
m=0

φ(κm)|Xsm|/|𝒢n| ≼
∞

∑
m=2

κm(1−ε)q−κm−1 ,

where the last term is a constant that does not depend on n nor on R. Similarly for all
m ≥ pn + 2

φ(Dnlm−pn)
|Xsm|
|𝒢n|

≼ φ(Dnlm−pn)
|𝒦n|q−Dn exp (−lm−1−pn)

|𝒢n|
,

∼ φ(Dnlm−pn)q−Dn exp (−lm−1−pn) ,
≼ Dnlm−pnq−Dn exp (−lm−1−pn) .

But Dn/qDn ≤ 1 and by assumption the sequence lm−pn exp (−lm−1−pn) is summable,
hence

pn+Mn

∑
m=pn+2

φ(Dnlm−pn)
|Xsm|
|𝒢n|

≼
+∞
∑
m=1

lm exp (−lm−1) < +∞.

The right most sum being a constant that does not depend on n nor on R.
If m = pn + 1 then using also eq. (4.12) we get

φ(κpn)
|Xspn+1|
|𝒢n|

≼ κpn(1−ε)q−Dn ≼ κpnq−κpn ≼ 1.

Hence all three terms of the left side of eq. (4.25) can be bounded by a constant that does
not depend on n nor on R and thus eq. (2.1) is verified for s ∈ 𝒮1 ∪ 𝒮2.

SEcOND cASE

Assume now that s = (0, 1). Using Lemma 4.29 and Remark 4.10 we get

|Xsm|
|𝒢n|

≼

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

κ−m if m ≤ n+ 1,
κ−nq2κn−κm−1 if n + 1 < m ≤ pn,
κ−nq2κn−Dn if m = pn + 1.
κ−nq2κn−Dn exp (−lm−1−pn) if m > pn + 1.

Thus for all m ≤ n + 1 we have φ(κm)|Xsm|/|𝒢n| ≼ κm(1−ε)κ−m = κ−εm. But (κ−εm)m is a
summable sequence, we can thus bound by above the value of∑n+1

m=0φ(κm)|Xsm|/|𝒢n| by a
constant that does not depend on n nor on R.
Now for all n + 1 < m ≤ pn we have φ(κm)|Xsm|/|𝒢n| ≼ κm(1−ε)κ−nq2κn−κm−1 . Let us

prove that this last term is summable and give a bound which does not depend on n. Note
first that κ ≥ 3 and m−n− 1 ≥ 1 imply that 2 − κm−n−1 < 0. Therefore

q2κn−κm−1 = (qκn)
2−κm−1−n

≤ q2−κm−1−n ∼ q−κm−1−n . (4.26)

Thus

pn
∑

m=n+2
κm(1−ε)−nq2κn−κm−1 ≤

pn
∑

m=n+2
κm−nq−κm−1−n ≤

+∞

∑
m=1

κm+1q−κm < +∞.

Note that the right most sum does not depend on n nor on R.
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4 Coupling between diagonal products

Assume that m ≥ pn + 2. Using eq. (4.4) we obtain Dnκ−n ≼ Qn. Furthermore recall
that Qn ≥ 3 thus 2 − Qn < 0 and hence by a similar argument as in eq. (4.26) we get
q2κn−Dn ≤ q2−Qn ∼ q−Qn . Hence

pn+Mn

∑
m=pn+2

φ(Dnlm−pn) |Xsm|/|𝒢n|

≼
pn+Mn

∑
m=pn+2

Dnlm−pnκ−nq2κ
n−Dn exp (−lm−1−pn)

≼Qnq−Qn
pn+Mn

∑
m=pn+2

lm−pn exp (−lm−1−pn) .

By Lemma 4.5 (Qn)n is unbounded thus Qnq−Qn can be bounded uniformly on n by a
constant and by assumption lm−pn exp(−lm−1−pn) is summable. Hence the above last
term is bounded by a constant not depending on n nor R.
Finally assume thatm = pn+1. Using a similar argument as above to estimate the value

of Dnq2κn−Dnκ−n we obtain

φ(Dnl1)|Xspn+1|/|𝒢n| ≼ Dnl1κ−nq2κn−Dn ≼ Qnq−Qnl1.

This last term can thus also be bounded by a constant. Hence the three terms in eq. (4.25)
are bounded by constants that do not depend on n nor on R. Thus eq. (2.1) is verified for
s = (0, 1).

CONcLUSION

By Theorem 2.3 we obtain that their exists a (φ, L0)-integrable measure equivalence cou-
pling from Δ̃ to Δ.

Let us conlude by the proofs of our two last corollaries.

Proof of Corollary 1.20. Let ̃ρ ∶ [1, +∞[→ [1,+∞[ such that ̃ρ and x/ ̃ρ(x) are non-decreasing
and assume that there exists ε > 0 such that ̃ρ(x) ≼ x1−ε. Consider G ∶= Δ̃ the associated
diagonal product. By Corollary 1.19 there exists a ( ̃ρ, L0)-integrable measure equivalence
coupling fromG to the lamplighter group (A×B)≀ℤ. By Example 2.4 there exists a measure
equivalence coupling from (A×B) ≀ℤ to H that is (L∞, exp)-integrable. It is thus (ψ, exp)-
integrable for all increasing map ψ ∶ ℝ+ → ℝ+. In particular if ψ = id we can compose
the couplings and obtain by Proposition 3.10 a measure equivalence coupling from G to H
that is ( ̃ρ, L0)-integrable. Hence the corollary.

We show Corollary 1.21 similarly, composing the coupling from Corollary 1.20 with the
one in Theorem 4.31 (see below).

Theorem 4.31 ([DKLMT20, Th. 8.1])

For all k ≥ 2, their exists an orbit equivalence coupling from ℤ/kℤ ≀ ℤ to BS(1, k) that
is (L∞, exp)-integrable.
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Appendices

A DIAGONAL PrODUcTS

In order for this article to be self contained, we repeat here the introduction to diagonal
product made in [Esc22, Section 2] and complete it with a finer estimate of the metric in
Proposition A.22. This section recall necessary material from [BZ21] concerning the defi-
nition of Brieussel-Zheng’s diagonal products: we give the definition of such a group, recall
and prove some results concerning the range (see Definition A.7) of an element. Finally
we present in appendix A.3 the tools needed to recover such a diagonal product starting
with a prescribed isoperimetric profile and compute useful estimate on the metric.

A.1 Definition of diagonal products

Recall that the wreath product of a group G with ℤ denoted G ≀ ℤ is defined as G ≀ ℤ ∶=
⊕m∈ℤG ⋊ ℤ. An element of G ≀ ℤ is a pair (f, t) where f is a map from ℤ to G with finite
support and t belongs to ℤ. We refer to f as the lamp configuration and t as the cursor.

A.1.1 General definition

LetA and B be two finite groups. Let (Γm)m∈ℕ be a sequence of finite groups such that each
Γm admits a generating set of the form Am ∪ Bm where Am and Bm are finite subgroups
of Γm isomorphic respectively to A and B. For a ∈ A we denote am the copy of a in Am
and similarly for Bm.
Finally let (km)m∈ℕ be a sequence of integers such that km+1 ≥ 2km for allm. We define

Δm = Γm ≀ ℤ and endow it with the generating set

SΔm ∶= {(id, 1)} ∪ {(amδ0, 0) | am ∈ Am} ∪ {(bmδkm , 0) | bm ∈ Am}.

Definition A.1

The Brieussel-Zheng’s diagonal product associated to (Γm)m∈ℕ and (km)m∈ℕ is the sub-
group Δ of (∏m Γm) ≀ ℤ generated by

SΔ ∶= {((id)m, 1)} ∪ {((amδ0)m, 0) | a ∈ A} ∪ {((bmδkm)m, 0) | b ∈ B}.

The group Δ is uniquely determined by the sequences (Γm)m∈ℕ and (km)m∈ℕ. Let us
give an illustration of what an element in such a group looks like. We will denote by 𝐠
the sequence (gm)m∈ℕ.

Example A.2. We represent in Figure 15 the element (𝐠, t) of Δ verifying

(𝐠, t) = ((gm)m∈ℕ, t) ∶= ((amδ0)m, 0)((bmδkm)m, 0)(0, 3),

when km = 2m. The cursor is represented by the blue arrow at the bottom of the figure.
The only value of g0 different from the identity is g0(0) = (a0, b0). Now ifm > 0 then the
only values of gm different from the identity are gm(0) = am and gm(km) = bm.
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…
0 2 4 2n1 3

Cursor

(a0,b0)g0

a1 b1g1

a2 b2g2

⋮
an bngn

Figure 15: Representation of (𝐠, t) = ((amδ0)m, 0)((bmδkm)m, 0)(0, 3) when km = 2m.

A.1.2 The expanders case

In this article we will restrict ourselves to a particular familiy of groups (Γm)m∈ℕ called
expanders. Recall that (Γm)m∈ℕ is said to be a sequence of expanders if the sequence of
diameters (diam (Γm))m∈ℕ is unbounded and if there exists c0 > 0 such that for all m ∈ ℕ
and all n ≤ |Γm|/2 the isoperimetric profile verifies IΓm(n) ≤ c0.
When talking about diagonal products we will always make the following assumptions.

We refer to [BZ21, Example 2.3] for an explicit example of diagonal product verifying (H).

Hypothesis (H)
• q ∶= |A × B| = 6;
• (km)m and (lm)m are sub-sequences of geometric sequences.
• km+1 ≥ 2km for all m ∈ ℕ;
• (Γm)m∈ℕ is a sequence of expanders such that Γm is a quotient of A ∗ B
and there exists c > 0 such that diam (Γm) ≤ clm for all m ∈ ℕ;

• k0 = 0 and Γ0 = A0 × B0;
• ⟨⟨[Am, Bm]⟩⟩\Γm ≃ Am × Bm where ⟨⟨[Am, Bm]⟩⟩ denotes the normal
closure of [Am, Bm].

Recall (see [BZ21, page 9]) that in this case there exist c1, c2 > 0 such that, for all m

c1lm − c2 ≤ ln |Γm| ≤ c1lm + c2. (A.1)

Finally we adopt the convention of [BZ21, Notation 2.2] and allow km to take the value
+∞. In this caseΔm is the trivial group. In particular when k1 = +∞ the diagonal product
Δ corresponds to the usual lamplighter (A × B) ≀ ℤ.

A.1.3 Relative commutators subgroups

For all m ∈ ℕ let θm ∶ Γm → ⟨⟨[Am, Bm]⟩⟩\Γm ≃ Am × Bm be the natural projection. Let
θAm and θBm denote the composition of θm with the projection to Am and Bm respectively.
Now let m ∈ ℕ and define Γ ′m ∶= ⟨⟨[Am, Bm]⟩⟩. If (gm, t) belongs to Δm then there exists
a unique g′m ∶ ℤ → Γ ′m such that gm = g′mθm(gm).

Example A.3. Let (𝐠, 3) be the element described in appendix A.1.1. Then the only non-
trivial value of θ0(g0) is θ0(g0(0)) = (a0, b0). If m > 0 then the only non trivial values
of θm(gm) are θm(gm(0)) = (am, e) and θm(gm(km)) = (e, bm). Finally for all m we have
g′m = id since there are no commutators appearing in the decomposition of (𝐠, 0).
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Example A.4. Assume that km = 2m and consider first the element (𝐟, 0) of Δ defined by
(𝐟, 0) ∶= (0,−k1)((amδ0)m, 0)(0, k1). Now define the commutator

(𝐠, 0) = (𝐟, 0) ⋅ ((bmδkm)m, 0) ⋅ (𝐟, 0)−1 ⋅ ((b−1m δkm)m, 0)

and let us describe the values taken by 𝐠 and the induced maps θm(gm) and g′m (see Fig-
ure 16 for a representation of 𝐠). The only non-trivial commutator appearing in the values
taken by 𝐠 is g1(k1) which is equal to a1b1a−11 b−11 . In other words g0 is the identity, thus
θ0 = id. Moreover whenm = 1 we have θ1 = id and the only value of g′1(x) different from
e is g′1(k1) = a1b1a−11 b−11 (on a blue background in Figure 16). Finally ifm > 1 then gm is
the identity thus θm = id and g′m = id.

(a0a−10 ,b0b−10 )

(e,e)

g0
a1b1a−11 b−11g1
a2a−12 = e b2b−12 = eg2

0 1 k1 = 2 3 k2 = 4

Cursor

Figure 16: Representation of (𝐠, 0) defined in Example A.4

Let us study the behaviour of this decomposition under product of lamp configurations.

Claim A.5. If gm, fm ∶ ℤ → Γm then (gmfm)′ = g′mθm(gm)f′m(θm(gm))
−1
.

Proof. Since gm = θm(gm)g′m and fm = θm(fm)f′m we can write

gmfm = g′mθm(gm) ⋅ f′mθm(fm) = g′mθm(gm)f′mθm(gm)−1θm(gm)θm(fm).

But θm(gm)θm(fm) takes values in Am ×Bm and Γ ′m is a normal subgroup of Γm thus the
map g′mθm(gm)f′mθm(gm)−1 takes values in Γ ′m. Hence the claim.

Combining Lemma 2.7 and Fact 2.9 of [BZ21], we get the following result.

Lemma A.6

Let (𝐠, t) ∈ Δ. For allm ∈ ℕ and x ∈ ℤwe have gm(x) = g′m(x)θAm(g0(x))θBm(g0(x−km)).
In particular the sequence 𝐠 = (gm)m∈ℕ is uniquely determined by g0 and (g′m)m∈ℕ.

In the next subsection we are going to see that we actually need only a finite number of
elements of the sequence (g′m)m∈ℕ to characterize 𝐠.

A.2 Range and support

In this subsection we introduce the notion of range of an element (𝐠, t) in Δ. We denote
by π2 ∶ Δ → ℤ the projection on the second factor.

Definition A.7

If w = s1…sm is a word over SΔ we define its range as

range(w) ∶=
{
π2
(

i

∏
j=1

sj
)
| i = 1,… , n

}
.
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The range is a finite subinterval of ℤ. It represents the set of sites visited by the cursor.

Definition A.8

The range of an element δ ∈ Δ is defined as the minimal diameter interval obtained as
the range of a word over SΔ representing δ.

When there is no ambiguity we will denote range(δ) the diameter of this interval.

Example A.9. Let (𝐠, 0) ∈ Δ such that range(𝐠, 0) = [0, 6], that is to say: the cursor can
only visit sites between 0 and 6. Then the map gm can “write” elements of Am only on
sites visited by the cursor, that is to say from 0 to 6, and it can write elements of Bm only
from km to 6 + km. Thus g0 is supported on [0, 6], since k0 = 0. Moreover, commutators
(and hence elements of Γ ′m) can only appear between km and 6, thus supp(g′m) ⊆ [km, 6].
Such a (𝐠, 0) is represented in Figure 17 for km = 2m.

g1

k1

g2

k2

g3

k3

g0

gn

70

...
...

kn

gm(x) belongs to…

A0 ×B0 Am Γm Bm

Figure 17: An element of Δ

Recall that gm : ℤ → Γm. If m ≤ 𝔩(6), then gm(x) belongs to Am if x ∈ [0, km − 1], it belongs to Γm
if x ∈ [km, 6] and to Bm if x ∈ [7, 6 + km] and equals e elsewhere. If m > 𝔩(6) then gm(x) belongs to

Am if x ∈ [0, 6] and to Bm if x ∈ [km, 6 + km] and equals e elsewhere.

Let us now recall a useful fact proved in [BZ21]. For all n ∈ ℕ we denote by 𝔩(n) the
integer such that k𝔩(n) ≤ n < k𝔩(n)+1.

Claim A.10 ([BZ21, Fact 2.9]). An element (𝐠, t) ∈ Δ is uniquely determined by t, g0 and
the sequence (g′m)m≤𝔩(range(𝐠,t)).

Example A.11. Consider again (𝐠, 0) ∈ Δ such that range(𝐠, 0) = [0, 6], which was illus-
trated in Figure 17. Since k3 = 8 > 6, the element (𝐠, 0) is uniquely determined by the
data g0 (that is to say, the values read in the bottom line) and the values of g′i for i = 1, 2
(namely, the value taken in the blue area). Figure 18 represents the aforementioned char-
acterizing data.

A.3 From the isoperimetric profile to the group

We saw how to define a diagonal product from two sequences (km)m and (lm). In this
section we recall the definition given in [BZ21, Appendice B] of a Brieussel-Zheng’s group
from its isoperimetric profile. We conclude on some useful results concerning the metric
of these groups.
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g′
1

k1

g′
2

k2

g0

70

Figure 18: Data needed to characterized 𝐠 such that range(𝐠) ⊂ [0, 6] when km = 2m

A.3.1 Definition of Δ

Recall that in the particular case of expanders (see appendix A.1.2) a Brieussel-Zheng’s
group Δ is uniquely determined by the sequences (km)m∈ℕ and (lm)m∈ℕ (where lm corre-
sponds to the diameter of Γm). Thus, starting from a prescribed function ρ, we will define
sequences (km)m∈ℕ and (lm)m∈ℕ such that the corresponding Δ verifies IΔ ≃ ρ ∘ log. First,
let

𝒞 ∶=
{
ρ ∶ [1, +∞) → [1,+∞)

|
ρ continue,

ρ and x ↦ x/ρ(x)non-decreasing}
.

Equivalently this is the set of functions ρ satisfying

(∀x, c ≥ 1) ρ(x) ≤ ρ(cx) ≤ cρ(x). (A.2)

So let ρ ∈ 𝒞. Combining [BZ21, Proposition B.2 and Theorem 4.6] we can show the fol-
lowing result (remember that with our convention the isoperimetric profile considered
in [BZ21] corresponds to 1/IΔ).

Proposition A.12

Let κ, λ ≥ 2. For any ρ ∈ 𝒞 there exists a subsequence (km)m∈ℕ of (κn)n∈ℕ and a
subsequence (lm)m∈ℕ of (λn)n∈ℕ such that the groupΔ defined in appendixA.1.2 verifies
IΔ(x) ≃ ρ ∘ log.

Example A.13 ([BZ21, Example 4.5]). Let α > 0. If ρ(x) ∶= x1/(1+α) then the diagonal
product Δ defined by km = κm and lm = καm verifies IΔ ≃ ρ ∘ log.

Example A.14. If ρ = log then the diagonal product ℤ defined by km = κm and lm = κκm

verifies IΔ ≃ ρ ∘ log. More generally if r ≥ 1 then the diagonal Δ defined by km = κm and
lm = exp ∘⋯ exp(κm)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r times

verifies IΔ ≃ ρ ∘ log for ρ(x) = log ∘⋯ ∘ log⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
r times

.

Recall that we allow km to take the value +∞ (see below eq. (A.1)).

Example A.15. If ρ(x) = x then the diagonal product defined by lm = 1 for all m and
km = +∞ for all m ≥ 1 verifies Δ = (A × B) ≀ ℤ and IΔ ≃ log.

A.3.2 Technical tools

Now let us recall the intermediary functions defined in [BZ21, Appendix B] and some of
their properties.
Let ρ ∈ 𝒞 and let f such that ρ(x) = x/f(x). The construction of a group corresponding

to the given isoperimetric profile ρ∘ log is based on the approximation of f by a piecewise
linear function ̄f. For the quantification of orbit equivalence, many of our computations
will use ̄f and some of its properties. We recall below all the needed results, beginning
with the definition of ̄f.
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Lemma A.16

Let ρ ∈ 𝒞 and f such that ρ(x) = x/f(x). Let (km) and (lm) given by Proposition A.12
above and Δ the corresponding diagonal product. The function ̄f defined by

̄f(x) ∶=
⎧
⎨⎩

lm if x ∈ [kmlm, km+1lm],
x

km+1
if x ∈ [km+1lm, km+1lm+1],

(A.3)

verifies ̄f ≃ f. In particular the map ̄ρ defined by ̄ρ(x) = x/ ̄f(x) verifies ̄ρ ≃ ρ.

Example A.17. If ρ(x) = x then f(x) = 1 leads to lm = 1 for all m and km = +∞ for all
m ≥ 1. In this case Δ = (A × B) ≀ ℤ.

Remark that both ̄f and ̄ρ belong to 𝒞. In particular they verify eq. (A.2), which is only
true when c and x are greater than 1. When c < 1 we get the following inequality.

Claim A.18. If 0 < c′ < 1 and x′ ≥ 1/c′ then c′ ̄ρ(x′) ≤ ̄ρ(c′x′).

Proof. If 0 < c′ < 1 then 1/c′ > 1, thus we can apply eq. (A.2) with c = 1/c′ and x = c′x to
obtain ̄ρ(x′) = ̄ρ ( 1c′c′x′) = ̄ρ(cx) ≤ c ̄ρ(x) = 1

c′ ̄ρ(c′x′).

A.3.3 Inverse map

In order to prove Theorem 1.18 we will need to consider the inverse of a map ρ ∈ 𝒞. But
such ρ is not necessarily bijective: for example the map ̄ρ ∈ 𝒞 defined by Lemma A.16 is
constant on the intervals [km+1lm, km+1lm+1]. We show here that there exists a bijective
map ρbij ∈ 𝒞 such that ρbij ∼ ρ.

Lemma A.19

Let 1/2 > δ > 0 and ρ ∈ 𝒞. There exists a bijective piecewise affine map ρbij such that
ρbij ∼ ̄ρ ∼ ρ. Moreover if ̄ρ(x) = y for some y ≥ 1 then x ≤ ρ−1bij (2y).

The definition of ρbij is summed up in Figure 19.

0 km−1lm−1 kmlm−1 kmlm km+1lm

(km − δ)lm (km + δ)lm

km−1

km + δ km

km+1

km − δ

ρaff

ρbij

Figure 19: Definition of ρbij

Proof. Consider ρ ∈ 𝒞 and ̄ρ the induced piecewise affine map defined in Lemma A.16. In
particular ̄ρ ∼ ρ. Define ρbij such that ρbij(x) = ̄ρ(x) for all x ∈ [ (km + δ) lm, (km+1 − δ) lm]
and such that ρbij coincide on [(km+1 − δ) lm, (km+1 + δ) lm+1] with the affine map verify-
ing

(km+1 − δ) lm ↦ ̄ρ ((km+1 − δ) lm) = (km+1 − δ)
(km+1 + δ) lm+1 ↦ ̄ρ ((km+1 + δ) lm+1) = (km+1 + δ) .
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Then for all x ∈ [km+1lm − δ, km+1lm+1 + δ]

|ρbij(x) − ̄ρ(x)| ≤ ̄ρ ((km+1 + δ) lm+1) − ̄ρ ((km+1 − δ) lm) = 2δ.

Hence |ρbij(x) − ̄ρ(x)| ≤ 2δ for all x. Since ̄ρ(x) tends to infinity we thus get ρbij ∼ ̄ρ.
Finally assume that ̄ρ(x) = y ≥ 1. Then by the above estimates ρbij(x) belongs to [y −

δ, y + δ]. Since ρbij is increasing int implies x ≤ ρ−1bij (y + δ). But y + δ ≤ 2y, hence the last
assertion.

A.3.4 Metric

We recall here some useful material about the metric of Δ and refer to [BZ21, Section 2.2]
for more details. First, let (x)+ ∶= max{x, 0}.

Definition A.20

For j ∈ ℤ and m ∈ ℕ let Imj ∶= [jkm/2, (j + 1)km/2 − 1]. Let fm : ℤ → Γm. The essential
contribution of fm is defined as

Em(fm) ∶= km ∑
j:range(fm,t)∩Imj ≠∅

max
x∈Imj

(|fm(x)|Γm − 1)+ .

The following proposition sums up [BZ21, Lemma 2.13, Proposition 2.14].

Proposition A.21

For any δ = (𝐟, t) ∈ Δ we have

|(𝐟, t)|Δ ≤ 500
𝔩(range(δ))

∑
m=0

|(fm, t)|Δm ,

|(fm, t)|Δm ≤ 9 (range(fm, t) + Em(fm)) .

For some of the proofs we will need more specific estimates. These needed results are
summed up in the following proposition.

Proposition A.22

Let D ≥ 0 and consider (𝐟, t), (𝐠, u) ∈ Δ such that their range is included in [0,D].
• Let I ⊆ [0,D] a subinterval of [0,D] containing t and u. If f′j = g′j for all j ≥ 1 and
f0(z) = g0(z) for all z ∈ ℤ\I then

dΔ ((𝐟, t), (𝐠, u)) ≤ 3diam (I) .

• Let i ≥ 1. If f′j = g′j for all j > i, then

dΔ ((𝐟, t), (𝐠, u)) ≼ Dli.

Proof. Let us first introduce some notations. Recall that Δj is generated by 𝒮Δj defined
page 50. For an element s ∈ 𝒮Δj we define

ŝ ∶=
⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

(0, 1) if s = (0, 1)

((amδ0)m∈ℕ , 0) if s = (ajδ0, 0)
((bmδkm)m∈ℕ , 0) if s = (bδkj , 0).
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Now let D ≥ 0 and consider (𝐟, t), (𝐠, u) ∈ Δ such that their range is included in [0,D].
• First consider J an interval containing 0 and let (𝐡, 0) ∈ Δ such that h′m = id for all
m ≥ 1 and hm(x) = 0 for all x ∉ J. Recall that Δ0 = (A × B) ≀ ℤ thus |(h0, 0)|Δ0 ≤
3diam (J). Now decompose (h0, 0) as a product (h0, 0) = s1⋯s|(h0,0)| with si ∈ 𝒮Δ0

and consider ŝi as defined above. Then (𝐡, 0) = ŝ0⋯ ŝ|(h0,0)| by Lemma A.6. Thus
|(𝐡, 0)|Δ ≤ |(h0, 0)|Δ0 ≤ 3diam (J).

• Let I be a subinterval of [0,D] containing both t and u and assume that f′j = g′j for
all j ≥ 1 and f0(z) = g0(z) for all z ∈ ℤ\I. Then (𝐟, t)−1(𝐠, t) verifies the assumptions
of the previous point with J = I− t. In particular J has same diameter as I. We thus
obtain the first assertion of the lemmanoting that (𝐟, t)−1(𝐠, u) = (𝐟, t)−1(𝐠, t)(0, u−
t) and |u − t| ≤ diam (I).

Now for the second assertion.
• Let i ≥ 1 and (𝐡, 0) ∈ Δ such that h′j = id for all j > i. Let us first bound |(hn, 0)|Δm

for all m ≤ i. Using Definition A.20 we get

Em(hm) ≤ kmdiam (Γm) |{j ∶ Imj ∩ range(hm, t) ≠ ∅}|

But the range of (hm, t) is contained in [0,D] thus right most set contains at most
2D/km + 2 elements. Hence, by Proposition A.21

|(hm, 0)|Δm ≤ 9 (range(hm, 0) + Emhm)
≤ 9(D + diam (Γm) km(2D/km + 2)) ∼ Dlm.

Now let (h′m0) = s1,m⋯sMm be a decomposition of (h′m, 0) in a product of mini-
mal lenght of generators si,m ∈ 𝒮Δm . Note that Lemma A.6 implies |(h′m, 0)|Δm ∼
|(hm, 0)|Δm . For each generator si,m consider the corresponding ŝi,m ∈ 𝒮Δ and de-
note (𝐡(m), 0) = ∏i ŝi,m. Since h′m(x) is a product of conjugate of commutators
(by definition of Γ ′m) the element (h(m), 0) verifies h(m)m = h′m and h(m)j = id for
all j ≠ m (see for Figure 16 for an illustration). Therefore using the hypothesis that
h′m = id for allm > i and the decomposition given in Lemma A.6 we can show that
(𝐡, 0) = ∏m≤i∏

Mm
i=1 ŝi,m. Thus

|(𝐡, 0)|Δ ≤ |(h0, 0)|Δ0 +
i

∑
m=0

|(h′m, 0)|Δm ≼
i

∑
m=0

|(hm, 0)|Δm ≼
i
∑
m=0

Dlm.

Since (lm)m is a subsequence of a geometric equence this last term is equivalent to
Dli.

• Now assume that f′j = g′j for all j > i. As for the first assertion of the lemma, we
apply the result of the last point to (𝐡, 0) = (𝐟, t)−1(𝐠, t) and conclude noting that
|u − v| ≤ D.
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B VArIABLE BASE

We compute here some results concerning the decomposition of an integer in some fixed
or variable base. We start by showing the existence and uniqueness of such a decomposi-
tion, then study the behaviour of this composition under addition and conclude on some
counting result.

B.1 Decomposition in variable base

If q ∈ ℕ∗, we know that any integer can be uniquely written in base q. We extend here
such a definition for a “variable” base. Consider (bi)i∈ℕ a sequence of integers greater or
equal to 2.

Lemma B.1

For all x ∈ ℕ there exists a unique sequence of integers (xi)i∈ℕ such that

(∀i ∈ ℕ) 0 ≤ xi ≤ bi − 1 and x =∑
i∈ℕ

xi
i−1

∏
j=0

bj.

Moreover x belongs to {0,… ,∏n
i=0 bi − 1} if and only if xi = 0 for all i > n.

Proof. Consider x ∈ ℕ and let us proceed to the euclidean division of x by b0: there exist
q0 ∈ ℕ and 0 ≤ x0 < b0 such that x = x0 +b0q0. Now for all i ∈ ℕ define inductively qi+1
and xi+1 such that

0 ≤ xi+1 < bi+1 and qi = xi+1 + bi+1qi+1.

Since (qi)i∈ℕ is a strictly decreasing sequence of integers, there exists n ∈ ℕ such that
qi = 0 for all i ≥ n. Thus, by definition of the sequence, we also get xi = 0 for all i > n.
Hence,

x = x0 + b0q0 = x0 + b0(x1 + b1q1)

= x0 + b0(x1 + b1(⋯ (an−1 + bn−1an)⋯)) =∑
i≤n

xi
i−1

∏
j=0

bj

Hence the existence. For the uniqueness, consider (x′i)i to be another such sequence, then

x0 − x′0 = b0(∑i>0
x′i

i−1

∏
j=1

bj −∑
i>0

xi
i−1

∏
j=1

bj
)
.

Thus b0 divides x0 − x′0. But x0, x′0 ∈ {0,… , b0 − 1} thus x0 − x′0 = 0. Iterating this process,
we show that xi = x′i for all i. Hence the unicity.
Finally, letM ∈ ℕ and i > M. If xi > 0 then x ≥ ∏M

i=0 bi. On the contrary if xi = 0 for
all i ≥ n then

x ≤ (b0 − 1) + b0(b1 − 1) + ⋯ + (bM − 1)
M−1

∏
j=0

bj =
M

∏
j=0

bj − 1.

Thus x ∈ {0,… ,∏M
i=0 bi − 1}.

Example B.2. If bi = q for all i we obtain the usual decomposition in base q.
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An analogue result can be obtained for a finite sequence (b0, … , bM) by allowing the last
coefficient to be greater than bM.

Corollary B.3

LetM ≥ 0 and b1, … , bM be integers greater or equal to 2. For all x ∈ ℕ there exists a
unique sequence of positive integers (xi)0≤i≤M such that xi ≤ bi − 1 for all i < M and
x = ∑M

i=0 xi∏
i−1
j=0 bj. Moreover x belongs to {0,… ,∏m

i=0 bi − 1} sor some m ≤ M if and
only if xi = 0 for all i > n.

We will denote [x0, … , xM]𝐛 the integer x such that x = ∑M
i=0 xi∏

i−1
j=1 bj.

Example B.4. Consider b0 = 2, b1 = 5, b2 = 8. If x = 100 then x = [2, 0, 12]𝐛.

B.2 Addition in variable base

LetM > 0 and (bi)0≤i≤M be a sequence of positive integers. Our goal in this subsection
is to study the behaviour of the decomposition in base (bi)i under addition.
Let x, y ∈ [0,∏M

i=0 bi − 1] and write their decomposition in base (bi)1≤j≤M as x =
[x0, … , xM]𝐛 and y = [y0, … , yM]𝐛 respectively.

Lemma B.5

Let x and y be as above. Let k ∈ [0,M] and define j0(x, k) ∶= min{j > k|xj < bj − 1}.
Assume that x is smaller than y. If y − x < b0⋯bk then xj = yj for all j > j0(x, k).

Let us describe the idea of this result. First note that the definition of j0 implies that
xi = bi − 1 for all k < i < j0(x, k). Now if y − x < b0⋯bk, then there exist z0, … , zk such
that zi < bi − 1 for all i and y − x = [z0, … , zk]𝐛. Posing the addition of x with [z0, … , zk]
(see Figure 20 below) we see that it can modifiy x0, … , xk and create a carry of 1 that can
only be absorbed by xj0 . Indeed for all k < i < j0(x, k) the carry of 1will change xi = bi−1
in 0 and induce a carry of 1 on the next term.

xM+ ⋯+ xj0+1+ xj0+ bj0−1 − 1 +⋯+ bk+1 − 1+ xk+ ⋯+ x0
+ zk+ ⋯+ z0
= xM+ ⋯ xj0+1+ xj0 + 1+ 0 +⋯+ 0+ yk+ ⋯+ y0

Figure 20: Addition and behaviour of the carry

Proof. We proceed by contradiction. Assume that there existsm > j0(x, k) such that ym ≠
xm and let m0 ∶= max {m > j0(x, k) | ym ≠ xm}. Then, by definition of m0

y − x = (ym0 − xm0)bm0−1⋯b0 +
m0−1

∑
i=0

(yi − xi)
i−1

∏
j=0

bj. (B.1)

59



B Variable base

Let us use this decomposition to prove that y−x ≥ b0⋯bk. First remark that for all j ∈ ℕ,
since xj and yj belong to [0, bj −1] we have yj −xj ≥ −(bj −1). Moreover, by definition of
j0(x, k) we also have yj0(x,k) − xj0(x,k) ≥ −(bj0(x,k) − 2). Thus

m0−1

∑
i=0

(yk − xk)
i−1

∏
j=0

bj ≥ −(bj0(x,k) − 2)bj0(x,k)−1⋯b0 − ∑
i∈{0,…,m0−1}\j0

(bi − 1)bi−1⋯b0,

= bj0(x,k)−1⋯b0 −
m0−1

∑
i=0

(bi − 1)bi−1⋯b0

= bj0(x,k)−1⋯b0 − (bm0−1⋯b0 − 1) .

Moreover we assumed y > x, thus ym0 − xm0 ≥ 1 and hence using eq. (B.1) and the above
inequality

y − x ≥ bm0−1⋯b0 + bj0(x,k)−1⋯b0 − (bm0−1⋯b0 − 1) ,
= bj0(x,k)−1⋯b0 + 1.

But by definition of j0 it verifies j0(x, k) > k. Since we assumed y − x < bk⋯b0, we thus
obtain the wanted contradiction. Hence xj = yj for all j > j0(x, k).

Let us conclude this section on some density result.

Lemma B.6

Let 𝔰 ∶ ℕ → ℕ. Let i ∈ [0,M] and consider 0 < c < b0⋯bi. If 𝔰 is c-Lipschitz, then for
all y in [0,∏M

j=0 bj − 1] there exists x ∈ im(𝔰) such that xj = yj for all j > i.

Proof. Let us assume that there exists y in [0,∏M
j=0 bj − 1] such that for all x ∈ im(𝔰) there

exists j > i such that xj is different from yj. Then for such an x ∈ im(𝔰),

|x − y| ≥
j−1

∏
k=0

bk ≥
i

∏
k=0

bk > c.

That is to say for all x ∈ im(𝔰) we have |x − y| > c. In particular, considering x1 ∶= min{x ∈
im(𝔰) | x1 ≥ y} and x2 ∶= max{x ∈ im(𝔰) | x2 ≤ y} we get that |x1−x2| = |x1−y|+ |x2−y| > c
which contradicts the fact that 𝔰 is c-Lipschitz. Hence the lemma.

B.3 Enumeration

As above, let M > 0 and (bi)0≤i≤M be a sequence of integers greater or equal to 2 and
denote the decomposition of x in base (bi) as x = [x0, … , xM]𝐛. Recall that j0(x, k) ∶=
min{j > k|xj < bj − 1}. For each integer m we give an estimate of the number of elements
x in [0, bM⋯b0 − 1] verifying j0(x, k) = m.

Lemma B.7

Letm ∈ [0,M]. If k ≥ m then {x ∈ [0, bn⋯b0 − 1] | j0(x, k) = m} is empty. If k < m then

|{x ∈ [0, bM⋯b0 − 1] | j0(x, k) = m}| ∼
[

M

∏
j=0

bj
]
(bm−1⋯bk+1)−1

Proof. First note that by definition of j0 it verifies j0(x, k) > k. In particular if j0(x, k) = m
then m > k. Hence the first assertion.
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Now assume that k < m. By definition of j0 if j0(x, k) = m then xj = bj − 1 for all
j ∈ [i+ 1,m−1] (the interval being possibly empty when i = m−1) and xj0(x,k) belongs to
[0, bj0(x,k) − 2]. In other words, for each j ∈ [k + 1,m− 1] there is only one possible choice
for the digit xj and there are bm − 1 possible choices for xm. For all j ∉ [k + 1,m] the digit
xj can take any of the bj possible values, thus

|{x ∈ [0, bn⋯b0 − 1] | j0(x, k) = m}| = bn⋯bm+1(bm − 1)bk⋯b0.

Since (bm − 1) ∼ bm, we thus obtain the lemma.
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NOTATIONS INDEX

≼, ≃ See notation 1.9.
|X| Cardinal of the set X.
∂F Boundary of the set F.
ℬ̃i(t), ℬi(𝐟, t) Boxes used in the blocs decomposition (see Lemmas 3.1 and 4.14).
Δ See Definition A.1.
Δm See appendix A.1.
Fn A Følner sequence of Δ (see eq. (2.4)).
ℱn A Følner sequence of Δ (see Proposition 2.5).
𝐠 The sequence of maps (gm)m∈ℕ.
𝐠′ The sequence of maps (g′m)m>0.
g′m See appendix A.1.3.
𝒢n Sofic approximation of Δ.
𝒢(r)n The set {x ∈ 𝒢n | B𝒢n(x, r) ≃ BG(eG, r)}.
Γ ′m Normal closure of [Am, Bm].
i0(t) Defined by i0(t) ∶= min{i ≤ n | ti < κ − 1} (see eq. (3.2)).
IG Isoperimetric profile of G.
ιn Injection from 𝒢n to ℋn.
Λij See eq. (2.5).
Lq Lamplighter group (A × B) ≀ ℤ.
𝔩(n) Integer such that k𝔩(n) ≤ n < k𝔩(n)+1.
𝔏(n) Integer such that k𝔏(n) ≤ κn − 1 < k𝔏(n)+1, i.e. 𝔏(n) = 𝔩(κn − 1).
range(𝐟, t) See appendix A.2.
SG A generating set of the group G.
θAm(fm) Natural projection of fm on Am (see appendix A.1.3).
θBm(fm) Natural projection of fm on Bm (see appendix A.1.3).
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