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SOFIC APPROXIMATIONS AND OPTIMAL QUANTITATIVE

CON

ORBIT EQUIVALENCE

Amandine Escalier”

May 19, 2022

We say that two groups arc orbit equivalent if rhcy both admit an action

on a same probability space that share the same orbits. In particular the
Ornstein-Weiss theorem implies that all infinite amenable groups are orbit
equivalent to the group of integers. To refine this notion Delabie, Koivisto,
Le Maitre and Tessera introduced a quantitative version of orbit equiva]ence
and of its measure theoretic counterpart called measure equivalence. They fur-
thermore obtained an upper bound to the possible quantification between
two given groups.
In this article we offer to answer the inverse problem (find a group being
orbit or measure equivalent to a prescribed group with prescribed quan-
tification) in the case of the group of integers, the lamplighter group and
Bricussel-Zheng’s diagonal products. These results moreover show that the
upper bound given by Delabie et al. is optimal: the orbit and measure equiv-
alences we obtain all realize the aforementioned upper bound.
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INTRODUCTION

A recurring theme in group theory is the description oflarge—seale behaviour of groups
and their geometry. A well known example is the study of groups up to quasi-isometry: it
describes the large-scale (or “coarse”) geometry from the metric point of view. A measure
analoguc ofquasi—isometry was introduced by Gromov in [GNR();] and is called measure
equivalence. A first elementary illustration of measure equivalent groups is given by lat-
tices in a common locally compact group. In parallel with this measure theoretic point of
view and under the impulsion of works of Dye [Dyes9, Dye63] emerged the ergodic coun-
terpart of measure equivalence, called orbit equivalence: two groups are orbit equivalent
if they admit free measure-preserving actions on a same standard probability space (X, p)
which share the same orbits. This notion can be seen as a strenghtening of the previous
one. Indeed orbit Cquivalcncc irnplics measure Cquivalencc, altough the converse is not
necessarily always true.

However, even without using this strenghtened version, measure equivalence itself can
show remarkable rigidity properties. For instance Furman proved [Furgg| that any count-
able group which is measure equivalent to alatticein a simple Lie group G ofhigher rank,
is commensurable (up to finite kernel) to a lattice in G. In the same vein Kida [Kido6]
showed that every group which is measure equivalent to a mapping class group is actually
commensurable (up to finite kernel) to it. More 1'Cccntly Guirardel and Horbez [GH21]
showed that forn > 3, any countable group that is measure equivalent to Out(F,) is virtu-
ally isomorphic to Out(Fy). On the contrary, completely opposite to the aforementioned
results, a famous theorem of Ornstein and Weiss [OW8o] implies that all amenable groups
are measure cquivalcnt. In particular —unlike quasi-isometry— measure equivalcncc does
noL preserve coarse geometric invariants.

To overcome this issue it is therefore natural to look for some refinements of this equiv-
alence notion. For example Kerr and Li [KL21] offer to sharpen it by considering the

Sh:ll’anl’l entropy ofpartitions associated to tl’lﬁ‘, actions Of tht‘ two groups. A second way
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to proceed is to quantify how close the two actions are by studying the integrability of the
associated Coeycies.

Indeed, assume that G and H are two measure equivalent groups over a probability space
(X, ) and denote by Xg (resp. Xp) the fundamental domains associated to the actions.
The corrcsponding Cocyclcs oa:GxXy— Hand B :Hx Xg — G are defined by

«(g,x) =h&h-(g-x)eXu Bhx)=g&g-(h-x) € Xq. (1.1)

When x - «(g,x) and x — B(h,x) are LP for all g € G and h € H, we say that the groups
are LP-measure equivalent. This refinement allowed for example Bader, Furman and Sauer
[BFSi'g] to obtain a new rigidity result: they showed that any group L'-measure cquivaicnt
to a lattice in SO(n, 1) for some n > 2 is Virtuaily a lattice in SO(n, 1). It also lead Bowen
to prove in the appendix of [Ausi6] that volume growth was invariant under L'-orbit
equivalence. Delabie, Koivisto, Le Maitre and Tessera offered in [DKLMT20] to extend
this quantification to a farniiy of functions iarger than {x — xP, p € [0,+o0l} (sece Defi-
nition 1.5). In [DKLMT20, CDKT22] the authors also present tools to build equivalences
and quantify them using respectively tilings of Folner sequences and Sofic approxima-
tions. But instead of trying to determine the integrability of a given measure equivalence,
one can also look at the inverse pi‘obiem, viz. given a qu:tntiiication @ and a group G, find
a group that is measure equivalent to G with this prescribed integrability ¢.

This is the problem we address in this article. To tackle this question we rely on the
monotonicity of the isoperimetric profiie under quantitative measure Cquivaiencc (see
Theorem 1.11) and on the construction made by Brieussel and Zheng [BZ21] of groups
with prescribed isoperimetric profile called diagonal products. Using these tools we first
exhibit a group that is orbit equivalent to Z with a prescribed quantification (sce The-
orem 1.16). In a second time we construct a measure equivalence coupling between two
diagonal products (see Theorem 1.18). In both cases we compare the obtained couplings to
the constraints given by Theorem 1.1 and show that our couplings are optimal as precised
in Section 1.2. Before iooking at these results, we recall some material about quantitative
measure equivalence coupiings in Section 1.1 and connect it with the isoperimetric profiie

in Section 1.2.

11 Quantitative measure equivalence

Let us recall some material of [DKLMT20]. A measure-preserving action of a discrete count-
able group G on a measured space (X, p) is an action of G on X such that the map sending
(g,x) to g-x is a Borel map and p(E) = p(g- E) for all E C B(X) and all g € G. We will say
that a measure-preserving action of G on (X, ) is free if for almost every x € X we have

g-x =xif and only if g = eg.
Definition 1.1 ((DKLMTzo, Def. 2.3])

Let G and H be two countable groups. A measure equivalence coupling from G to H is a
quadruple (X, Xg, Xn, u) such chac:
« (X, ) is a standard measure space equipped with measure-preserving, commut-
ing, smooth, free actions of G and H,
« Xg (rcsp. Xu) is a fundamental domain of finite measure for the action of G
(resp. H) on X.
We say that G and H are measure equivalent if there exists a measure equivalence coupling
from G to H.
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As mentioned earlier, two lattices in the same 10cally compact group are measure equiv-
alent. Remark that our definition is asymmetric, we talk indeed of a coupiing from one
group to another. This asymmetry might be unsettling for now since it is called measure
equivalence but it will make sense when we will define the quantification of the coupling
(see Definition 1.5). Let us now introduce a stronger Cquivalcncc relation between groups

which comes from ergodic theory.

Definition 1.2

Let G and H be two finitely generated groups. We say that G and H are orbit equivalent
if there exists a probability space (X, u) and two measure-preserving free actions of G
and H on (X, ) such that for almost every x € X we have G -x = H-x. We call (X,p) an
orbit equivalence coupling from G to H.

We called this equivalence relation stronger than measure equivalence because orbit
equivalence implies measure equivalence. But the converse is not always true. To ensure
that two measure equivalent groups are orbit equivalent we need the two fundamental

domains X¢g and Xy to be equal. This is what we formalise below.

Proposition 1.3

Two countable groups G and H are orbit equivalent if and only if there exists a measure
equivalence coupiing (X, Xg,Xn, 1) from G to H such that Xy = Xg.

Although this orbit equivalence relation is stronger than measure equivalence, it does
not distinguish amenable groups. Indeed by the Ornstein Weiss theorem [OW&o, Th. 6]

below, all infinite amenable groups are in the same equivaience class.

Theorem 1.4 ([OW80])

All infinite amenable groups are orbit equivalent to Z.

To refine this equivalence relation and “distinguish” amenable groups we introduce a
quantiﬁed version of orbit and measure Cquivalcncc.

Recall that ifa finitely generated group G acts on a space X and if Sg is a finite generat-
ing set of G, we can define the Schreier graph associated to this action as being the graph
whose set of vertices is X and set of edges is {(x, s - x) |'s € Sx}. This graph is endowed with
a natural metric ds, fixing the length of an edge to one. Remark that if S§ is another

generating set of G then there exists C > 0 such that for all x e Xand g € G

1
Glse(697%) < ds, (x,9%) < Cdsg (%9 x).

@9-x @ Elements of Xy @ Other clements of the corresponding orbit

Figure 1: Definition of g e x
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Finally if (X, Xg, XH, 1t) is 2 measure equivalencc coupling from G to H we have a natural
action of G on Xy (see Figui‘e 1 for an illustration) denoted by e where for all x € Xjy and

g € G we define g e x to be the unique element of H - g - x contained in Xy viz.
{gex}=(H-g-x)NXyx.

To formulate this in terms ofcocyclcs, if o : GxX — His the cocyclc introduced in cq. (1.1)

then gex = «(g,x) - g x.

Definition 1.5 ((DKLMTz20, Def. 2.20])

Let @,% : Ry — Ry be two non-decreasing maps. We say that a measure equivalence
coupling (X, Xg, Xn, ) from G to H is ((p,il))—integmble ifforall g € G (respi h € H)
there exists ¢g > 0 (resp. cn > 0) such that both

J @(ldsH(g-x,gox)) du(x) and J lb(lds,s(h-x,hox)) dp(x)
X Xg Ch

Cg

are finite. We say that the coupling is L=-integrable if the map x +— ds,, (s - x,s ® x) is

essentially bounded. We say that an orbit equivalence coupling is (@, ))-integrable if it

is ((p,lb)—integrable as a measure equivalence coupling.

We introduce the constants ¢g and cy, in the definition for the integrability to be inde-

pendent of the choice of generating sets Sg and Sy.

Remark 1.6. Denote by |gls the length of g in G = (S). An equivalent manner to formulate
the above definition using cocycles is to replace ds, (g x,gex) and ds, (h-x,h ex) in the
integrals by loc(g, x)ls,, and [B(h,x)ls,, 1'espectively.

If o(x) = xP we will sometimes replace ) by L? and thus talk of (Lp,lb)—integrability
instead of (¢, )-integrability. In particular L means that no integrability assumption
is made. Finally7 note that every (Lm,tb)—integrable coupling is ((p,ll))—integrable for any
increasing map ¢ : R* — R*. When ¢ = we will say that the coupling is (p—integmble
instead of (¢, ¢)-integrable.

Example 17. Shalom proved in [Shaoy] that two quasi-isometric amenable groups are

L*°-measure equivalent.

Example 1.8. Delabie et al. obtained the following examples using a technique of tiling of
Folner sequences (see [DKLMT20, Section 6]).
1. Let n,m > 1. There exists an orbit equivalence coupling from Z™ to Z™ which is
(LP,L9)-integrable for all p < n/m and q < m/n.
2. Let m > 2. There exists an orbit equivalence coupling between Z and Z/mZ, Z that

is (exp, (pe)—integmble for all € > 0 where

B log(x)
el = o logpay e

3. There exists an orbit equivalence coupling between Z# and the Heisenberg group
Heis(Z) that is LP-integrable for all p < 1.

In the light of these last examples, a natural question to ask is whether there exists
obstructions for finding g-integrable couplings between two amenable groups, for a given
function ¢. A first answer —and thus a first obstruction— is given by the isoperimetric

profilc.
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1.2 From the isoperimetric profile to the inverse problem

We saw that these equivalence notions do not preserve coarse geometric invariants. How-
ever the quantified version defined above allowed Delabic et al. [DKLMT20] to get a
relation between the isoperimetric proﬁles of two measure equivalcnt groups which we

describe below. But first let us introduce some notations.

Notation 1.9. If f and g are two real functions we denote f X g if there exists some constant
C > 0 such that f(x) = 0(g(Cx)) as x tends to infinity. We write f~gif f X gand g X f.

Recall that if G is generated by a finite set S, the isoperimetric profile of G is defined as’

IA|
Ig(n):= sup -
(Al<n [0A

Remark that due to Felner criterion, a group is amenable if and only if its isoperimetric
profile is unbounded. Hence we can see the isoperimetric profile as a way to measure
the amenability of a group: the faster Ig tends to infinity, the more amenable G is. For
example the isoperimetric profile of Z verifies Iz(n) ~ n. A famous result of Erschler

[Erso3] gives the two following exnmples.

Examples 1.10.
« Letg>2and d > 1. 1f G:=7/qZ: 7% then Ig(n) = (log(n))'/4.
« If G:=27Z,7Z then Ig(n) ~log(n)/logolog(n).

The following theorem shows the monotonicity of the isoperimetric profile under mea-

sure (‘,qUiVﬁlﬁl’lCC

Theorem 1.11 ([DKLMTz0, Th.1])

Let G and H be two finitely generated groups admitting a (o, LO)—integrable measure
equivalence coupling. If @ and t/@(t) are increasing then

poly xX1Ig.

This theorem provides an obstruction for finding ¢-integrable couplings with certain
functions ¢ between two amenable groups. For example we can deduce from the pre-
ceding examples that there is no L' measure cquivalencc Coupling fromZ.:Z t0 Z2/27 . Z.

The above theorem lead Delabie et al. to ask the following question.

Question 112 ([DKLMT20, Question 1.2]). Given an amenable finitely generated group
G, does there exist a (Ig, Lo)—integrable orbit equivalence coupling from G to 2?

This interrogation contains actually two questions: first it asks whether Theorem 1.1 s
optimal when H = Z. We answer it positively in Theorem 1.16 for a large family of G and

investigate its genemlisation to any group H.

Question 1.13. Given two groups G and H is there a @-integrable measure equivalence

coupling from G to H such that Ig =~ ¢ o I}y?

As we will see, the couplings obtained with G = Z in Theorem 1.16 and the one given
by Theorem 1.18 answer the above Question 1.13 positivelyi
Second, the question of Delabie et al. raises the matter of the “inverse problem” —stated

here for any group G.

"We chose to adopt the convention of [DKLMT20]. Note that in [BZ21], the isoperimetric profile is defined
as /\G =1 /IG
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Question 1.14. Given a group H and a function ¢ does there exist a group G such that
there exists a (¢, L%)-measure equivalent from G to H?
When H = Z, we answered this question in [Esc22] for a large family of maps ¢.

Theorem 1.15 ([Esczz, Theorem 1.8])
For all non-decreasing function p : [1, +oo[— [1, +oo[ such that x/p(x) is non-decreasing,
there exists a group G such that

e Ig~po log;

« there exists an orbit equivalence coupling from G to Z that is (¢, exp op)-inte-

grable for all e > 0, where @ (x):=po log(x)/(log opo log(x))lﬂ.

This coupling however is only optimal up to a logarithmic error. Changing of quantifi-
cation technique, we propose here an answer with optirnal integrability both for H =7
(Theorem 1.16) or H a diagonal product (Theorem 1.18). We also refer to the paragraph
named “Couplings building techniques and optimality” (page 9) for a discussion on this

optimality.

1.3 Main results

In this article we show the two main theorems below and their following corollaries. Fig-
ure 2 sums up these results and provides an overview of the couplings known so far, in-
Cluding the ones from [DKLMT20, CDKT22]. First let
conti S
C:= {C: [1,+00) — [1,+00) G continuous, }

¢ and x = x/¢(x)non-decreasing

COUPLING WITH THE INTEGERS  The first result we prove provides an optimal
coupling with the group of integers with prcscribcd integrability. It therefore answers
Question 1.14 for H= 7.

Theorem 1.16

Letp € Cand k = 3. If (p(k™)k™ ™) e is summable, then there exists a group G such
that

e Ig=po log;

« There exists a (p o log, Lo)—integrable orbit equivalence coupling from G to Z.

We compare this result with Theorem 1.15 stated above and discuss advantages and

disadvantagcs OfCQCh construction on Page 9.

Optimality Recall that I7(x) ~ x. We know by Theorem 1.11 that for a coupling from
a group G to Z, the best integrability we can hope for is ¢ ~ Ig. The above theorem
thus shows that it is reached for a very large family of maps @. In particular it answers

Question 1.13 about optimality positively.

Remark on the hypothesis The assumption made on (p(k™)k~ ™), excludes groups with
isoperimetric profile Ig = log. In particular Question 1.13 is still open when G is a Lamp-
lighter group and H = Z.

Delabie et al. [DKLMT20] introduced a Way o compose couplings: given a measure
equivalence from G to Z and one from Z to some other group H we can construct a measure
equivalence from G to H. Moreover, its integrability will be close to the optimal one
suggested by Theorem 1.11 if the growth of Iy is close to the one of 1. This is the case
when H = 74,
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Corollary 1.17
Letp € € lec d € N* and k > 3. If (p(k™)k™™) ¢y is summable, then there exists a
group G such that
. Ig = polog;

« There exists a (p o log, LO)—integrable orbit equivalence eoupling from G to Z4.

A GENERAL PRESCRIBED COUPLING Our second main theorem concerns the ex-
istence of an optimal coupling between two groups whose isoperimetric profile is pre-
scribed. We first state the theorem in a deliberately vague way. Its formulation will be

prccised in Theorem 4.1.

Theorem 1.18

Let p, p € € with p moreover bijective. If

« there exits e > 0 such that fo p="(x) X x'¢;

« and if p does not grow too slowly;
then there exists two groups G and H such that Ig = p o log and Ity = p o log and there
exists a (p o p~', L%)-integrable measure equivalence coupling from G to H.

Remark on the hypothesis The assumption that pop~T(x) <X x!

~¢ guaranties that the
coupling goes from the bigger group to the smaller one. Since our aim is to check the opti-
rn:xlity of the inequality in Theorem 1.11 and since this inequality is true for concave maps,
it makes sense to work from the bigger group to the smaller one and not the other way
round. The hypothesis on the growth of p will be precised in Theorem 4.1. As we will
see, it will not be that restrictive and it is verified by maps as slow as p(x) = logo - olog

T times

for r € N. In particular, the above theorem applies to p(x) = x and gives the following

COTOllflI'y.

Corollary 119

Let p € €. If there exists € > 0 such that p(x) = x'~¢, then there exists a group G such
that
« Ig ~polog;
« there exists a measure equivalence coupling from G to Z/qZ 1 Z that is (p,L°)-
integrable.

We can deduce from the above result two corollaries. First define H := Z2 X5 Z where
21
A= .
1 1

Let p € €. If there exists € > 0 such that p(x) < x'7¢, then there exists a group G such

A is the matrix

Corollary 1.20

that
e Ig~po log;
« there exists a (p, L°)-integrable measure equvalence coupling from G to H.

Second consider k € N* and the Baumslag-Solitar group defined by

BS(1,k) =(a,b|a 'ba=1b¥).
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Corollary 1.21
Let p € €. If there exists ¢ > 0 such that p(x) < x'~¢, then there exists a group G such
that
- Ig =~ polog;

« There exists a (f, Lo)—integrable measure equivalence coupling from G to BS(1,k).

OVERVIEW Figure 2 sums up the known results on the integrability of coupiings be-
tween the different groups appearing in this article.

ii) composition

Iz ~polog

/ Orbit equivalence couplings > Couplings obtained in this paper

Measure equivalence couplings

¥

Couplings from Delabie et al.

LL Lamplighter group Z/qZ,Z < Couplings from Carderi ct al.

Figure 2: Overview of the mentioned couplings

COUPLINGS BUILDING TECHNIQUES AND OPTIMALITY We state in this arti-
cle two results giving couplings with Z with prescribed integrability: Theorem 1.15 from
[Esc2z2] and Theorem 1.16. Each of them has in fact its own interest; this what we propose
to discuss here.

Theorem 1.15 was obtained using a coupling building technique called “Folner tiling
shifts”. Instead of using sofic approximations it relies on Folner sequences defined recur-
siveiy: the n-th term is tiled by the (n — 1)-th term (see [DKLMT20] for more details).
This tiling technique —though inspiring— is not always usable to get orbit or measure
equivalence couplings. Indeed it requires that the two sequences must have at each step
the same cardinality, which is possiblc to achieve for a Coupling with the integers but
not necessarily for other groups. It was, for example, not possible to use it to obtain our
coupling between diagonal products (Theorem 4.1). Furthemore this technique does not
seem to produce couplings with optimal integrability. Whether it is our Theorem 1.15 or
Exnmp]c 1.8 from [DKLMT20], the intcgrabiiity is always optimal uptoa logarithmic error.

Hence we work here with Sofic approximations and the engineering deveiopped in
[CDKT22] instead. Tt allows us to obtain couplings with optimal integrability.

Note however that where Theorem 1.15 does not require any additional conditions on
p € @, Theorem 1.16 does. In particuiar it does not apply to p =~ id, and therefore excludes
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couplings from the Lamplighter group to Z. Hence Question 1.14 is still open for ¢ = log
as well as the existence of an optimal Coupling from the Lamplighter to Z.

So both techniques have their own advantages. Although the tiling process does not
produce optimal couplings, the proofs are technically simpler and —in contrast to the
Sofic constructions— the coupling is explicitz. While at the cost of more intricate demon-

strations, the Sofic technique we used here provides couplings with optimal integrability.

STRUCTURE OF THE PAPER  The tools we use to build and quantify couplings are
presented in Section 2. We start by reealling material from [CDKT22] about Sofic ap-
proximations and introduce the corresponding integrability criterion. In a second time
we construct useful Sofic approximations of Bricussel-Zheng’s diagonal products. We use
this machinerie to show Theorem 1.16 in Section 3, while Section 4 is devoted to the proof
of Theorem 1.18. The construction of the coupling with Z can be seen as in introduction
to the quite more technical proof of Theorem 1.18. Finally an appendix sums up neces-
sary material about diagonal products (appendix A) and decomposition in variable base
(appendix B). We strongly encourage readers unfamiliar with diagonal products to read the

aforementioned appendix A before reading Sections 2 to 4.

ACKNOWLEDGEMENTS [ would like to thank Romain Tessera and Jérémie Bricussel,
under whose supervision the work presented in this article was carried out. I thank them

for suggesting the topic, sharing their precious insights and for their many useful advices.

SOFIC APPROXIMATIONS

We start by recalling some results from [CDKT22] about Sofic approximations. These are
the tools needed to build couplings and quantify their integrability. Then we construct
Sofic approximations for diagonal products and compute some useful estimates of their
growth and diameter. We refer to appendix A for the definition and properties oi‘diagonal
product.

2.1 Sofic approximations

We recall here some material from [CDKT22]. In this paragraph G will be a finitely gen-
erated group endowed with a finite generating set Sg and (Gn)nen will be a sequence of
finite, directed graphs labeled by the elements of Sg. Let v > 0 and denote by () the set
of elements x € Gy, such that Bg,_ (x,7) is isornorphic to Bg(eg,r) scen as directed labeled

graphs, viz. G = {x € G, | B, (x,7) ~ Bg(eg,1)}.
Definition 2.1

We say that (Gn)new is a Sofic approximation if for every r > 0

lim lgl{l

n—oo |G|

=1.

Example 2.2. Any Folner sequence in an amenable group G is a Sofic approximation.

*We refer to [DKLMT20, Section 6] for the construction of the coupling

10
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In [CDKT22] Carderi, Delabie, Koivisto and Tessera provcd a condition for a measure

equivalence to be (¢, LO)—integmble using Sofic approximations.

Theorem 2.3 ([CDKT2z])

Let @: RT — R be anon-decreasing map. Let G and H be two finitely generated groups
with Sofic approximations (Gn)n and (Hn)n and let tn: Gn — Hn be an injective map
such chat

1. There exists C > 0 such that the image of 1, is C-dense for all n € I;

2. For everys € Sg there exists & > 0 such that

& x € G 1 doe, (1n (), tnx)) =7}
Lngo supZ @(81) T < oo; (2.1)
0 n

Ly

|
R
3. For every h € H there exists & > 0 such that

R Yye (G NHY 1d (W' (), w'(y-h) =7
dim sup ) (&) { N } oo (22)

r=0

then there exists a (¢, )-integrable measure equivalence coupling from G to H. More-

over if the maps L, are bijcctivc then there is a (o, w)—intcgrablc orbit cquiv:ﬂcncc cou-

pling from G to H.
In [CDKT22] the authors used this theorem to obtain the following cxamplc.

Example 2.4 ((CDKT22, Th. 6.1]). Let k > 3 and let H := Z? x5 Z where A is the martrix

There exists a (L, cxp)—intcgrablc measure Cquivalcncc coupling from Z/kZ . Z to H.

2.2 Sofic approximation of diagonal product

In this subsection we describe Sofic approximations of diagonal products. As we will see,
these approximations are actually Folner sequences.

In the following we denote by Aa diagonal product as defined in appendix A Verifying
hypothesis (H) page 51. In particular (kym)m and (Lin)m denote subsequences of geometric
sequences and we let k such that (k) is a subsequence of (k™). To condense the proofs

to come let

81:={((amd0)m,0) | am € Am}  82:={((bmdi, )m,0) [ bm € B }. (2.3)
Finally, recall that I(n) denotes the integer such that km) <n < k11
A FIRST SEQUENCE  In [Esc22, Prop. 2.13] we showed that (Fu)n defined in eq. (2.4)
below, is a Folner sequence for A. We refer to appendix A.2 for details on the range of an

clement.

Fn:={(f,t) € A| range(f,t) € [O,n— 1]} (2.4)



2 Sofic approximations

This sequence will be enough to obtain the integrability of the coupling with Z wanted
in Theorem 1.16, but not for the one of Theorem 1.18. We thus introduce a finer one.

A REFINED SEQUENCE  To show Theorem 1.18 we will need to control the speed at
which the cardinal of the Folner sets grows. More prccisely if (Fn)n denotes chis sequence,
we want it to verify C|Fn| < [Fni1] < C'1Fn] for some constants C, C’ > 0. Note that this
is not true for (Fu)n defined above. Indeed in F,.1, unlike in Fn, an element (f,t) can
take non-trivial values at 1, (n) for all m € [0, 1(n)]. This allows for many new elements in
Fri1. To counter this, the idea is thus to allow f/,,(n) to take non-trivial values for one m
at a time. Moreover since [, | can grow fast, we choose for all m a subset series (AJ"); of
I m such that CIA < A% | < CIAPY. This is what we formalize below and sum up in
Figure 3.
For all i € N* we define an integer Ny > 0 and a sequence (A})jeo,...n,) such thar

{{e}:/\})c/\%cmc/\}\,i =T ()
) ) ) 25
AL <IAL <2000 (Y € (0, Ny — T,
When i =0 define N := 1 and let A? :=T; ~ A x B.
Now for alln e N, all i € {0, ...,[(n — 1)} and j € {1, ..., N;} we define
te[0,n—1]
supp(fo), supp(fin) C [0,n —1] vyme{1,..,1i}
Fnij =1 (f,1) filn—1) e Al (2.6)
supp(fim) C [0,n —2] vyme{i+1,..,[(n—1)}
fl.=e Ym>I[n—1)

For an element (f,t) of Fy, 55, we represent the sets where f takes its values in Figure 3.

Values taken in...

m-

- Ao x Bo

Figure 3: An element of Fry 3 5.

Before proving that this sequence provides a Folner sequence, let us state some conven-
tions. For alln e N and i € {0, ..., [(n — 1)} we define

FriNet1 =Fnivrr o and Frmo1)41,0 = Fns1,0,1-

Proposition 2.5

Let (Fn)nen be the sequence defined inductively by Fo := Fy 0n, and for all n > 0 by
Fnt1 = Fm,i,j+1 where m,i and j are such that F,, = Fii5. Then (Fn)nen is a Folner
sequence of A.

12



2 Sofic approximations

Proof. Letn e N, let i€ [0,((n—1)] and j € [1,N;] and take (f,t) in Fp 1 ;.

If s = (0,1) then (f,t)s belongs to Fn,i,j if and oniy ift#£n—1. Similarly if s = (0,—1)
then (f,t)s € Fn 1 if and only if t # 0.

Now let s = ((am80)m,0) for some a € A. The action of s on (f,t) does not change the
value of the cursor, thus there exists some g such that (f,t)s = (g,t). For all x # t it verifies
go(x) = fo(x), moreover go(t) = fo(t)ao. Thus supp(go) = supp(fo). Now consider m > 0.
Then for all x # t we have g (x) = fim(x) and in particular gy (x) = fin(x). Furthermore

using the dccomposition given by Lemma A.6 and the above value of go(t) we get

gm(t) = fm(t)am = f/m(t)eéi (fO(t)) eﬁl(fo (t - km))ama
= fin (1)OM (fo(t)am) O (fo(t —km)),
= i ()07 (go (1)) OR(go(t —Km)).

By unicity of the decomposition we thus obtain gh(t) = f(t). Hence supp(ghn) =
supp(f) and gin(n—1) = fi (n—1) which belongs to A}. Thus (g, t) belongs to Fr i ;. The
case where s € 85 is very similar.

Thus OFn,ij =1{(f,t) € Fri,jlt € {0,n—1}} and in particular [0Fn,i31/[Fnijl ~ 2/n. Hence
(Fn)n is a Folner sequence. O

Remark 2.6. Note that (Fu)nen defined in eq. (2.4) is a subscqucncc of (Fn)nen. Indeed

using [Esc22, Lemma 2.12] we can prove that F,, == Frtin—1),Ny

n—1)°
2.3 Growth and diameter

Let us start by computing the number of elements in Fiiyj and give an estimate of the
growth of this Felner sequence.
Lemma 2.7

Letn € Nand i€ [0,[(n—1)] and j € [0,N;] and consider F ;5 as defined in eq. (2.6).
Then

N

n=1) , n—km—1
[Fri [T [Fm)
m=i

i—1
n—km
=ng" I [Mm]
m=1

In particular 2Fn il < [Fujijerl < 2g1Fn 4l

The last assertion precises the control we have on the growth of [y, 1 . It will be precious
when proving Theorem 1.18.

Proof. Let Fr i; as defined in eq. (2.6) and take (f,t) € Fy 3,5, then there are exactly n possi-
ble values of t. Moreover f is uniquely determined by fo and £, ..., f{,,_;, (see Lemma A.6).
But fg is supportcd on [0,n—1] which is set of cardinal n so there are Cxactly (IAHB\)n pos-
sible values for fo. Moreover if 0 < m < 1 then 4, is supported on [kn,n — 1] which has
n — ki elements, and on this interval it can take any values in Iy, so there are exactly

n—km
P

which contains n — 1 — k,, elements, thus we have ‘F’m

possibilities for . Similai‘ly for m > i the map i, is supported on [k, n — 2]
n—kmn—1 . .
choices for such a map.

Finally when m =1 the map f} is supported on [ki,n — ki] and
- for any x € [ki,n —k; — 1] all values of || can be taken by f;
+ f{(n—1) can take any value in Al

We thus have /\}

Ir{m—*~=1 possibilities for f;. Hence the first assertion.

13



2 Sofic approximations

Assume first that i < [((n—1) and j = Ny, then Fr,i,Ni+1 = Frjig1,1 and hence using also
eq. (255)
Froinl/Frong = AT € 12,24,

Similarly if j < Ni then [Fnij411/IFnil = l/\;“+1 l / l/\}l which belongs to [2,2q]. Finally if
i=1In—1)andj =Ny then F i j11 = Fny1,0,1. In that case

[Frija1l/ il = Frgr,0,1/[Friong = g(n 4+ 1)/m € (g, 2q].
Hence the wanted inequalities. O

We will use this last lemma to estimate the value of In[F i 5.

Proposition 2.8

There exists C, > 0 depending only on A such that In [Friil < Conlyn_1 foralln e IN.

Remark 2.9. Let us mention that a similar estimation was done in [Esc2z2] for the value
of In[Fen|. We refer to eq. (2.4) and Remark 2.6 for the definition of (Fn)nen and its link
with the sequence Fy 15, Most importantly, in the case of this precise subsequence, we
were also able to give a lower bound. Indeed if we define £(n) := (k™ — 1) then by [Esczz,

Prop. 4.3] there exists two constants Cz, C4 > 0 such that for all n € N,
Cs Knillg(n] < In [Fen| < C4Knl£(n].
We refer to the proof of Lemma 4.5 for a use of this precise lower bound.

Similarly the lemma below genemlises [Esczz, Lemma 4.4].

Lemma 2.10

There exists C; > 0 depending only on A such that for all n € N*,

m=1

(=1
In H T < Cinlyn_1y.

Proof. By cq. (A1) there exists ¢, ¢z > 0 such that In || < ¢l + ¢2, for all m. Then,

[(mn—1) ek [(n—1)
l]’l< H rin )g Z (nfkml lnlr/mla

m=1 m=1

[(n—1)
< ) (n—km)(cilm+ca),

m=1

But we can bound n — ky, from above by n and since (L )m is a subsequence of a geomet-
i [(n—1 ) . .
ric sequence the sum Zrl:;i " (1l + ¢2) is bounded from above by its last term up to a

multiplicative constant. That is to say: there exists C; > 0 such that

Mm

[(n—1)
(1
m=1

n—Kkm
< Cinlyn_1)y.

14



3 Coupling with Z

Proof of Proposition 2.8. Since /\} C IY, using Lemma 2.7 and Lemma 2.10 we get

[(n—T1) Nk
InfFn,jl <In (nqn H ‘F/m‘ ) <In(m) +nln(q) + Cinlyn_1).
m=1

Thus, there exists C, > 0 such that lann‘iJ\ < Conlyn_1)y. L]

COUPLING WITH z

This section is devoted to the proofofThcorem 1.16. In the following Awill be a diagonal
product as defined in appendix A and verifying (H) page 51. In particular its isoperimetric
profile is of the form I ~ p o log for some p € €. To prove Theorem 1.16 we actually show
that the diagonal product obtained from the isoperimetric profile p o log is the wanted
group G. The integrability of the Coupling is proved using the criterion of Theorem 2.3.
We thus start by defining Sofic approximations §n € A and H,, C Z and then define a
bijection 1, between them. For this we use the notion of decomposition in variable base of
an integer. All necessary material are recalled in appcndix B.1.

Now let us describe the idea of the bijection. Given (f,t) in §» we map f to an integer
decomposed in some variable base (b;); and decompose t is some constant base . The
image of (f,t) by tn, will be the integer produccd by intertwining the digits of these two
decomposition. We illustrate this in Figure 4 and refer to Section 3.1 for more details on
this interlncing.

In a second time we study the different components appearing eq. (2.1) giving the con-
dition for intcgrability. We thus investigate the behaviour of the value of . (f,t) under
the action of some generator s of A on (f,t). Then for some distance r > 0, we compute
the proportion of elements (f,t) in Gy, that the action of s sents 1, (,t) at distance r from
tn ((f,1)s). We conclude on the proof of Theorem 1.16 by showing that eq. (2.1) is verified.

3.1 Bijection between Sofic approximations

Recall that (Fn)new defined in eq. (2.4) is a Folner sequence (and hence a Sofic approxi-
mation) of A. Therefore, the following subsequence of (Fy)nen provides a Sofic approxi-
mation of A:

Gn=Fen ={(f,t) | range(f,t) C{0,..,k™ —1}}.

Let Ky, = [0,|Gn|—1] C Z and denote by £(n) the integer Vcrifying Kem) < k"1 <Kgm)+1.
Idea of the bijection Consider (f,t) € Gn. To construct our bijection we are going
to “encode” the information contained in f into an integer. We decompose it in some

variable base (b;); to be precised later and decompose t in base k. We then intertwine the

digits to obtain one integer from the two preceding ones (see Figure 4).

Gn H.C7Z

£ . X:bi_q1+b
Z;:] e >ooooooooooo» Z =1ty + Kxo+Kbot; + -
2o ikt

t
Figure 4: Definition of the injection

This is the gcncral idea, now let us describe the numbcring process of f.

15



3 Coupling with Z

Numbering process and blocs decompositon For the condition of eq. (2.1) to be verified,
we need the bijection to correspond to the geometry of the groups. That is to say: for some
s € 8a, we need iy (1) to be sent at a reasonable distance from u, ((f,t)s) in Z.

Recall (see Claim A.10) that f is uniquely determined by fo and () m. As we will see,
the main probiem is to number fo. So first assume for simplicity that Ais a 1ampiightcr
group and thus f =fo : Z — A x B. A naive way to encode the information contained in fo
is to map it to the integer Zf:g] fo(i)q™. But then the action of s € 87\{(0, 1)} will change
the value of the iamp fo(t) and thus the distance between 1, ((f, t)s) and 1 (f, 1) might
be quite large. Therefore, when encoding fo in an integer we need to start numbering it
from the cursor t and continue moving away from t (instead of starting from 0). This way
the action of a generator modifying the lamps will only change the corresponding integer
from a small value (see Lemma 3.6). Now, the action of s = (0,1) changes the value of the
cursor; it thus modifies the starting point of this numbering and hence disrupts (all) the
digits encoding fo. To counter this we define in Section 3.1.1 a numbering that depends on
the decomposition in base « of t. More precisely, if t = . tix' denotes the decomposition
in base « of t, we define a sequence of nested intervals (B;(1)); such that the lower and
upper bounds of B;(t) depends only on (t;)i>j. We then encode the information of fo
reading first the values taken by fo on Bo(t), then on B4 (t), etc. (see Figure 5). This way, if
tand t+1 differ on]y in their first ig digits then B;(t) and Bj(t+1) are the same intervals,
for all j > io. In other words: the reading window are the same and the encoded values
are consequently identical.

To obtain the encoding of an element (f,t) in a general diagonal product, we start by
number fo using the foregoing blocs dccomposition and then encode (f/n)m in an integer.

We refer to Figure 6 for an illustration.

We start by formalising our blocs decomposition in Section 3.1.1 below. We then define
our numbering of (f, ) and the injection t, in Section 3.1.2. We conclude by the proof of
the bijectivity of 1, in Section 3.1.3.

3.1 Bloc decomposition

Fix (f,t) € Gn and decompose t in base k as t = Zi:d tikt. In this paragraph we de-
fine the blocs or “reading windows” that will determine the encoding of fo. As described
previously, the idea is to define a sequence of nested intervals B;(t) such that if the decom-
position in base k of t and t + 1 differ oniy in their first iy terms, then the Corresponding

intervals Bi(t) and Bi(t + 1) are the same for all 1 > i,.

Lemma 3.1

Lett € [0,k™ — 1] and i € {0, ...,n} and define

n—1 n—I1
Bi(t) := Z‘th)’,thKj +rt—1].
j=1 j=1

The sequence (Bi(t))o<i<n thus defined verifies Bi(t) € Biq(t) foralli < n—1. In
particuiar
{t} = Bo(t) C Bi(t) C Bn(t) =[0,k™ —1],

and thus t belongs to B(t) for all i < n.

Remark 3.2. Remark that by definition diam (B;(t)) = k' — 1~ k! forall i < n.
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We represent in Figure 5 such a nesting of intervals for k = 3, n = 3 and t = 16 whose
decomposition is thus given by t=1+4+2-3+1-3%

By(t) = 19,17

| B By(t)\Bo(#) ] B2t)\Bi(®) By (t)\Ba(t)

Figure 5: Example of Bi(t) for k =3,n =3 and t = 16.

ProofofLemma 3.1, Let t € [0,k™ —1] and i € {0,...,n — 2} and let us prove that Bi(t) C

1, s - : .
Biy1(t). Remark that 70 t56) is greater than Y7, ;). Moreover, since
tikt < (k= 1)kt = ki — b

we thUS haVC

n—1 n—1 n—1
Y Ak —1 < (kT —k) + Y ki —T= ) e kT -
=t = j=it1
Hence the inclusion. O

Remark 3.3. By Remark 3.2 and the above lemma, we have |Bi(t)\Bi_; (t)| = k* —«*"'. In

particular the number of lamp configurations from Z to A x B supported on B; (t)\Bi_1 (t)
i—1

is griox
3.2 Global numbering
By the preceding remark we can define applications

Vot 1 {C: Bo(t) » AxB}— [0,q—1],

Vi1 vig {0 Bit\Bi1(t) 5 A x B} [O,q’(i*"i ' 71}.

such that these maps are bijections. From now on we assume fixed such bijections. Re-
mark that they actually depend on the value of t. When we do need to keep track of the

value of t we will denote vy instead of v n.

Claim 3.4. There exists a bijection

tn : {F/lsupp(fin) € [km, k™ — 1], Ym € [0, £(n)]} — {0) ISnl 1} '

anK“

17



3 Coupling with Z

Proof. Recall that G, = Fen. Consider (f,t) € Gn. The number of such possible f is equal
to the number of elements of G, divided by the number of possible cursor t, that is to
say |Gnl/k™. Recall moreover (see appendix A.1) that in a diagonal product f is uniquely
determined by fo and . Since supp(fo) C [0, k™ — 1] and fo can take all possible values on
that interval, we have <" possible values for fo. Similarly, for all m € [0, £(n)] the support
of 1, is in [k, k™ — 1] and }, can take all possible values on that interval. Hence

{FIsupp(fin) € [k, k™ — 1], ¥m € [0, £(m)I}| = [(f | 3t : (f,1) € Sn)l /q*",
= 1Gnl/(k™q"").

The information encoded by cach of the previous maps is represented in Figure 6.

Figure 6: Numbering inA

Using the maps defined above we are now able to encode in an integer the information
contained in f. Indeed we can consider the map sending f to the number

n
i—1 n
Vo (forme(0) + D_ Vi (fomiens ) @ + & pn(F).
im1
The above decomposition can be seen as the writing of the corresponding integer in the
variable base (q, ¢, ..., <" 7" ' max pn +1). We refer to appendix B.1 for more details
on variable base. The digits of the decomposition are given by the values of the vi,¢’s and
tn. Intertwining these digits with the ones of the decomposition of t in base k we obtain:

n—1 n
(1) :=vo (forme ) + ) tik'a® + > vie (fopm,ons, ,(0) K'q (1)
i—o fay 3.1

K" (7).

[t corresponds to the decomposition of 1, (f, ) in the variable base (B1); defined below.

Bo=g
viell,n] Bu=g< <"

Vie [],TI] 62171 =K

Ban+1 = max(pn) + 1.

Please note that the variable base depends on n but in order to reduce formalism we

chose to abuse notations and write B; instead of By ;.

18



3 Coupling with Z

3.1.3  Bijection

In order to obtain an orbit equivalence using Theorem 2.3 we need to prove that 1, is
bijective.
Proposition 3.5

For all n € N, the map tn defined in cq. (3.1) is a bijection from G,, = Fen to Hp =
[0,1Gn| —1].

Proof: Letn € N. By Lemma B.1 on the decomposition in variable base applied to (B1); the
map tn defined in q. (3.1) verifies min t, = 0 and maxt,, = K™q*" (max pn, + 1) — 1. Since
max pn, 4+ 1 =1[Gal/(k™q*") we obtain that the image of v, is included in 3, = [0,|Gn| — 11.

The injectivity of t, comes from the unicity of the decomposition in variable base (see
Lemma B.1). To prove the surjectivity, consider z € K, then we can dccomposc it in
base (Bi)i as z = [zo, ..., zan11lp. In particular zp; 7 € [0,q — 1] for all i € [1,n]. Define
t =3 ;z2i_1k" then t belongs to [0,k™]. Morcover since vy, and p, are bijections the
others coefficients determine f such chat (f,t) € G, verifies 1, (f, t) = z. ]

3.2 Quantification

Now that we have defined a bijection between our Sofic approximations we need to show
that eq. (2.1) is verified. So for (f,t) € 6!V and s € 8, we first bound the distance between
tn(f,t) and Ln((f, t)s). Then for a given > 0 we provide an estimate of the proportion of
elements in Gy, such that 1, (f,t) and Ln((f)t)s) are at distance r in K. Finally we show
that the aforementioned equation is verified.

3.2.1  Distance

Consider (f,t) € G, We compare in this section the distance in Z between 1, (f,t) and
tn ((f, t)s) for some s € §5. We will distinguish two cases depending on s = (0,1) or not.
If (f,t) belongs to A we denote by ' the sequence (fin)m—o,....e(n)-

ACTION ON THE LAMP  Letusstart by looking at a generator that modifies the lamp
configurations. So consider s € 8; U8, and let (f,t) := (f, t)s.

Lemma 3.6

For all s € 83 U8, and (f,1) € G we have [t (f,t) — tn ((F,1)s)] < q.

Proof. First recall that we showed in the proof of Proposition 2.5 that f = . Thus pn (f') =
un (F). Moreover fo differs from fo only at t. Since the cursors of (f,t)s and (f,t) are the

same we obtain

(Vi>0) Vi (form(ns 1) = Vi (o, ens, () -

Hence using eq. ('3.1) we get

i (£,8) =t ((F, )5)] = [vo,e (fo(t)) = vo,e (fo(1)]

N

q.
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ACTION ON THE CURSOR Now consider s = (0,1). Lett+ 1 := Z{:O] tikt be the
decomposition in base k of t + 1. Note that since (f,t) belongs to G5, it verifies t <n —1
and thus there exists i € {0, ...,n — 1} such that t; < k — 1. Therefore, we can define

o) =mini <n |ty <k—1} (3.2)

This index corresponds to the one of the coefficients t; that will absorb the carry when

we add one to t.

Lemma 3.7

For all (f,t) € g1 we have [t (fy 1) — ta(ft+ 1) < Ki"(”“q'(i"m“.
Let us start by showing the following useful claim.
Claim 3.8. Let t € [0,n — 2], then Bi(t) = Bi(t+ 1) for all i > io(t).

Proof of the claim. By definition of io(t) the decomposition of t + 1 in base « is given by
t+1:= (tiy (o —H]—G—Z?;l(t)ﬂ tikt. In particular t; =t for alli > ip(t). But Bi(t) dcpcnds

only on the value of (tj)j>i (see Lemma 3.1). Hence the claim. O
Proof of Lemma 3.7. By the above claim Bi(t) = Bi(t + 1) for all i > io(t). Hence
(Vi >i0(t) + 1) Vi (formonser0) = Vit (formi s ) -
Thus by eq. (3.1) we get
(£, 8) =t (£, )s)]

1o (1) )
< “VO,t (f()(t)) —Vo,t+1 (f()(t + ]))‘ + Z |t1 o J’Ei|Kqu|
i=0

io (1) +1
+

i ki1
K°q

Vit (Forse 0\ _y(0) = Viert (foip (e By (t41))
i=1
t)+1

Thus by Lemma B.1 we can bound ‘Ln(f,t) — Ln((f,t)s)‘ by above by ket +1 ino( -1

Hence the lemma. UJ

3.2.2  Enumeration

Consider v > 0. We now give an estimate of the number of elements (f,t) € G such
that 1, (f,t) and v, ((f,t)s) are at distance v in Z. With regard to the previous section, it
corrcsponds to dctcrmining the number of elements (f,t) € G, such that iy(t) = m.

Lemma 3.9

Letn € Nand (f,t) € ). Forallm € [0,n — 1]

H(f,t) € Gn [ KM < [ (6,0 = (F, 1+ 1) < k™1 q<" " H i~ (g™,

Proof. Let m € [0,n —1]. By Lemma 3.7

m

{16, € 9n 16mq™" < Junf,) = (£, £+ 1)) < €™+ g5} = ((£,6) € S [ Hoft) = ]

20



3 Coupling with Z

But requiring ip(t) = m forces to, ..., tm_1 to be equal to k — 1 and t,;, can only take k — 1
possible values. Thus there are (k — 1)xk*—m! possible values of t Verifying io(t) = m.
Finally there is no condition on f so we have |G |/k™ possible values for f, therefore

[{(£,1) € G [io(t) = m}| = IGnl(k — D= M=1 ~ |G k™,

3.2.3  Integrability
We can now prove that the conditions of integrability given loy Theorem 2.3 are verified.

Proof of Theorem 1.16. Let p € € and consider A the diagonal product with isoperimetric
profile In=po log as defined in appendix A3.2. Assume moreover that (p(k™)k™™) is
summable.

Consider G, and %, as defined in Section 3.1 above and v, the bijection defined in
eq. (3.1). Before looking at the integrability, note since v, is bijective Theorem 2.3 gives an
orbit equivalenee coupling. We need to show that cq. (2.1) is verified for ¢ = p o log.

Fix R > 0 and n € N. For all s € 84, we need to bound the following sum

{50 € 601 doe, (0, 1n((£,)-5)) =7}
ZRn ::Zpolog(r) EN

First consider s € 87\{(0,1)}. By Lemma 3.6 the distance between tn (f,t) and 1, ((f, ) - s)
is at most q for all (f,t) € §\). Using this last remark and then that for all r < min(R, q)
we can bound p o log(r) by above by p o log(q), we obtain

min(R,q) {(f) t) S 9l11) I dU'C“ (Ln(f) tlen((fvtl : S)) :T}
>:R,n = Z POlOg (T) |9 |
r=0 n
{60 € 501 dae, (), (16,8)-5)) < g}

< polog(q) = polog(q).

|G|

If's = (0,1) then using both Lemmas 3.7 and 3.9 we get that L,z is bounded (up to a
multiplicative constant) by Z:::]O po log (Km“ qu+1) k=™, But there exists C > 1 such
that

polog (Kmllqu+1) =p (k™ log(q) + mlog(k)) < p(Ck™).
Since p(Cx) < Cp(x) (see eq. (A.2)) we get that

n—I1 n—1

Z polog (Km+1 qu+1> Kk m<C p(k™) k™

m=0 m=0
By hypothesis (p (k™) k™), is summable, thus the above sum can be bounded by a con-
stant that does not depend on R nor n. Hence eq. (2.1) is verified.

By Theorem 2.3 the Coupling isa(po log, LO)—integrable orbit equivalencei L]

Let us now turn to the proof of Corollary 1.17. The idea is to compose the coupling from
A to Z just obtained with the one from Z to 74 given by the firse point of Examplc 1.8.
We refer to [DKLMT20, Sections 2.3 and 2.5] for more details on the construction of chis
composition and recall below the theorem we will use to obtain its integrability.
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4 Coupling between diagonal products

Proposition 3.10 ((DKLMTzo0, Prop. 2.9 and 2.26])
If (X1,11) (resp. (Xz,m2)) is a (@,L%)-integrable (resp. (1, L°)-integrable) measure
equivalence coupling from ' to A (resp. A to £), the composition of couplings gives
a (¢ o, L%)-integrable measure equivalence coupling from T to £. If both couplings are

orbit equivalence eouplings, then so is the composition.

We can now use it to prove our corollary on Z4.

Proof of Corollary 1.17. Let d € N*. Let p € € and let A be the diagonal product defined in
Proposition A.12, in particular it verifies In =~ p o log. Recall that by the first point of Ex-
amplc 1.8 there exists an orbit Cquivnlencc from Z to 74 that is (LP, Lo)—intcgrablc for all
p < d. Using the aforementioned composition of couplings, we can deduce from Propo-
sition 3.10 above that there exists a (p o log(-P), L°)-integrable orbit equivalence coupling
from A to Z4. Now if d > p > 1 by eq. (A.2)

polog(x) < p(plog(x)) < ppologx).

Since p(plog(x)) = p o log(xP) we thus have p o log(xP) = polog. When p < 1, using
Claim A.18 instead of eq. (A.2) we obtain a similar equivalence. Thus in both cases p o

log(xP) =~ p olog(x). Hence the corollary. ]

COUPLING BETWEEN DIAGONAL PRODUCTS

Our aim in this section is to show Theorem 1.18. We nctually show the more precise version
below (Theorem 4.1). In particular the meaning of the assumption that p “does not grow
too slowly” is formalised.

Let us set the framework of this Section 4. Recall that two sequences (ki )m and (Ln)m
induce a piccewise affine map p (see Lemma A.16) and a bijective piecewise affine map Pbij

(see Lemma A.19) such that the corresponding diagonal product A verifies In ~ p o 10g ~

Ppij © log.

s N

Framework (F)
1. K =3
2. (km),, and (km)m are subsequences of (k™)p;
3. (lm) and (Ly)m are subsequences of a geometric sequence;
4. A is the diagonal product determined by the two sequences (km) and
(Im) and p is corresponding the piecewise affine map;
5. A is the diagonal product determined by (km)m and (Lin)m and Phij 1S

the corrcsponding bijecfive piecewise affine map.

The following theorem precises the statement of Theorem 1.18.

Theorem 4.1
In the framework (F), if
« there exits ¢ > 0 such that po pL;; (x) <x1—¢
« and the sequence Ly, exp(—Llm—1) is summable
then there exists a (po pl:ij] ,L%)-integrable measure equivalence coupling from A to A.

We will discuss the hypothesis and detail the idea of che proofbut first let us give some

examples of diagonal products verifying the above conditions.
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4 Coupling between diagonal products

Example 4.2. If p(x) = x then k; = 400 and l; = 0 and A is the usual 1amp]ightcr group
over A x B. In particulnr it verifies the second assumption. We will use this to show

Corollary 1.19.

Example 4.3. Let p(x) := x'/0+%) In this case k= k™ and 1, = k*™ and the sequence
(L exp(=Llim—1))m is therefore summable. In particualr, it p(x) = x"/0+%) with & > o

then there exists a (L1)/(1+8) 10)_coupling from A to A.

Example 4.4. Similarly if p(x) = log(x)"/® then ki = k™ and 1, = exp(k*™). Such a
sequence (L )m verfies the second assumption. More generally if v > 1and p = logo --olog
with v logarithms, then kyy, = k™ and 1,,, = exp(--exp(k™)) with r Cxponcntials. Again

(Lm)m verfies the second assumption

We will discuss the hypothesis but first let us give the outline of the proof. We recall
that the idea of the latter —withour its technicities— is contained in the demonstration
of Theorem 1.16. We therefore strongly recommend to read Section 3 before entering into

the details of the present section.

IDEA OF THE PROOF  Similarly as in Section 3, the idea is to use Theorem 2.3. We
thus start by constructing appropriate Sofic approximations for the two diagonal prod—
ucts A and A. In Section 4.2 we define the injection between the aforementioned approx-
imations and finally show in Section 4.2 that this map satisfies eq. (2.1). Let us describe
the process in more details.

Our goal is to define G,, in A and H,, in A being two Sofic approximations and a C-
dense injection between Gy, and H,,, where C is a constant that does not depend on n. To
construct this injection we are going to “encode” the information contained in an element
of G, in two different integers, that is to say we are going to define an cmbedding from
G to Z2. This part is the analogue of the encoding described in Sections 3.1.1 and 3.1.2 for
the coupling with Z. Doing the same thing for elements of 3, we will obtain the wanted
injection from Gn to Hy, (see Figure 7). Then our goal would be to show that the injection

tn thus defined verifies eq. (2.1) with @ :=po pgl;

n
Sn - 72 < 9,
(F,1) —— (x,y) ~— (gyu)

Figure 7: Definition of the injection: first idea

This is the general idea, let us now describe the encoding process. An element (f,t)
of Gn or Hy, is composed of two informations: a lamp configuration f and a cursor t. A
first “naive” way to proceed to define the injection would be to associate to every lamp
conﬁgumtion f appearing in G, a hmp conﬁguration h that appears in Hy, and to each
cursor t of an element in G, a cursor u appearing in Hn. In doing so we would need K,

to verify
{gl13uez, (gu) e} > |{fI3teZ, (f,t) € Gn}. (4.1)

But by assumption on the isoperimetric profile, A is the “bigger group” hence for m large
enough the number of elements in T, is larger than the one of T},. Therefore for the same

support we have more possiblc lamp conﬁgumtions i 2 Z — Tt than we have of the form
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4 Coupling between diagonal products

gm : Z — T'. In other words, in order for (Hn)nen to be a Folner sequence of the form
(Fay,injn )nen that verifies eq. (4.1) above, we would need the sequence (dn)nen to grow
much faster than n. In these conditions the map sending a cursor t € [0,n] to a cursor
u € [0,dn — 1] would only reach a few cursors and the proportion of unreached cursors
would grow with n. Hence it would be impossiblc to obtain a C-dense injection with C
not depending on n.

This is why we build our injection in the following way: given an element (f,t) in Gy,
we use a part of the information contained in the lamp configuration and the cursor t to
define a cursor in A. The unused information contained in f is then used to define a lamp
configuration in H,. See Figure 8 for an illustration. The encoding process of this lamp
configurations into an integer is based on the same decomposition in nested intervals
developped in Section 3.1.1. We therefore refer to the lead paragraph of Section 3.1 for the
strategy of this "blocs decomposition”. We finally prove that the map v, thus defined is a
C-dense injection for some constant C.

Finally, the object of Section 4.3 is to prove that v, verifies eq. (2.1). To do so, we
first study the behaviour of 1, under the action of the generators of A: for s € Sz and
(f,t) € Gn, we give an estimate of the distance between 1, (f, t) and 1, ((f, t)s). This section
is the analogue of Section 3.2.1. Then, similarly as in Section 3.2.2, we compute for a given
distance r the proportion of elements in Gy, such that 1, (f, 1) is at distance r from u, ((f, t)s).

We conclude by showing that eq. (2.1) is verified.

HYPOTHESIS  As discussed in the introduction, the construction we make is suitable
fora coupling from the bigger group to the smaller one, that is to say from the group with
slower isoperimetric proﬁle to the one with faster isoperimetric proﬁle. This is what is
reflected in the condition on the growth of o p, .. We use it more precisely in the proof
of Lemma 4.5 and page 48, when checking the integrability condition.

The condition on (L) mew is only a technical assumption that could be avoided by con-
sidering another numbering process, more complex, subdividing the groups . How-
ever, as Examples 4.3 and 4.4 and Corollary 1.19 show, this summability condition is
verified by a 1argc family of diagona] products. Let us describe where we use it. First
consider (f,t) € G, and (g,u) = t(f,t) its image by the built injection. The action of
a generator on (f,t) might modify the value of go, 9}, ..., g in A for some m € N (see
Section 4.3.1 for more details). Denote Dy, = range(g,u), we can show that the dis-
tance between (g,u) and this modified element is then equivalent to Dnlm. Now the
proportion of such elements (f,t) in Gy, is asymptotically bounded by [T/ _;|71q~ P~ (see
Lemma 4.29). But [T/ ~ exp (lm—1). Hence for eq. (2.1) to be verified, we need the
sequence (Dnq Prly exp (lm*‘))mew to be summable. The hypothesis made on (lin)m
ensures this integmbility. We refer to pages 48 and 49 for the Corresponding computa-

tions using it.
41 Defmition of the Sofic approximation

Let Gy := Fen C A. In this subsection we build an injection from G, to Z2.

The idea summed up in Figure 8 and described in Section 4.1.2 is the following: we
encode a part of the information contained in the lamp configuration (in blue) to obtain
the first integer x and we use the cursor and a part of the lamp configuration (represented
in grey) to give the second integer y. In Section 4.1.3 we give an estimate of the possible
values of x. Indeed, this is the number we will use to define the lamp configuration in
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4 Coupling between diagonal products

A and obtain our injection. Thus when defining K, we need to ensure that this last set

contains enough possible lamp configurations to encode all possible values of x.

—

x,y) €72

)

0 k1 k2 7

TCUIMH

L e

Figure 8: Numbering inA

411 Numbering framework

Let dn € N and i, € [0,1(dn, — 1)] and j» € [0,N;, ] such that

Fan,inn—1] <19l < [Faninjnl- (42)

The ideal thing to do would be to define an injection from Gy, to Fq, 1,5, As we will
see at the end of this section, the numbering process we use requires that we consider
Fa,in,jn+1 instead of Fq i 5. (see page 28 for a discussion of such a necessity). But when
in =I({dn—1) and jn =Ni, —1 the Folner we will work with actually verifies Fa,injnt+l =
Fa,+1,0,0- In particular there are d, + 1 possible values for the cursor (and not d,,). So in
order to work with the right number of cursors we define
{dn ifjn < Ni, —Tand iy < [y — 1,

D, = (4.3)
dn +1 else.

Finally we define I,, € [0, (D, — 1)] and J,, < Np, such that FDo Iy g = Fdnin jntl-

As explained above we have to extract information from f and combine it with t to
define the cursor (denoted u) in A. Recall that if (,t) is in G, then t belongs to [0, k™ —
1]. 'The idea is thus to spiit the interval [0,D,] in subintervals of length K™ pius some
remainder interval of length less than k™. The extracted information from f will define
the subinterval in which our cursor u will be and t will give the position of u inside
that subinterval (see eq. (4.10)). Before defining u we expiicit how to extract the wanted
information from f and then how to define our integer encoding the remaining data of f.
Let us denote the Euclidean division of Dy, by k™ by

Dyn = Qnk™ + Ry 0 <R <k™ (4.4)

Lemma 4.5
If po pgi]? (x) = x'7¢ for some € > 0 then the sequence (Qn)n is unbounded. In particular
there exists ng > 0 such that for all n > ng

1. Qn 2 3;

2. Dp > dn > «™
So up to consider (Gn)nzn, instead of (Gn)nz0 we can assume without loss of generality
that Qn =3 for all n.

To prove this lemma we rely on the properties of Pbij and p showed in appendix A.3.
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4 Coupling between diagonal products

Proof. By Remark 2.9 and eq. (4.2)

C3k™ Me(n) < IniGnl < InfFq

wininl-

| is bounded

by above by C2dn (4, —1). Noting that d,, is smaller than 2(d, — 1) we obtain

But by Proposition 2.8 there exists some constant C, > 0 such that In[Fq

nHlinyin

~ 2xC
K'le(n) < C 2 (dn — 1) Uan—1)-
3

Now recall that by definition of [ we have k4, 1) < dn —1 < ky(a,—1)11. Hence by
Lemma A6 we have p((dn — 1, —1)) = dn — 1. Thus by Lemma A9

Using first that p(k™lg(n)) = k™ and second that p € € and thus verifies eq. (A.2) we obtain
K™ = p(k o)) < max{l, 2C2k/C3}p o pp ! (2(dn — 1))
But recall that o pg]]] (x) < x'¢. Hence k™ < (d,, — 1)'¢ and thus using eq. (4.4)
€S A< (Qu o 1) e,

Therefore k™ < (Qn+1)"~¢. Since the left term tends to infinity, so does Qn. Inparticular

there exists ng such that Qn =3 foralln > ngy and

Dn>dn 2 Quk™—12>23k™—1>«".

412  Numbering in A

Consider (f,t) € G, and let us describe our encoding process. The first goal is to encode
the information contained in f in an integer. The idea is very similar to the one used in
Section 3.1 What Ch:mges here is that we are going to extract some information from f
and use it to define the cursor in the second diagonal product A.

Recall chat (f, t) is uniquely determined by the value of t, of fo and (fin ) m>1. Similarly as
in Section 3.1 lect = Z?:_J tik® be the dccomposition in base k of t. Define for t € [0, k™ —1]
and i € {0, ...,n}:

n—1 n—1
Bi(t) := [Z thj,thKj +Ki—]:| . (4:5)
=t =

The conclusions of Lemma 3.1 apply to (@i(t))i. In particular we can define as before the

following bijections:

Yo {C:@o(t)anB}ﬂ[O,q—ﬂ,

Vi1 9 {c: B \Bi (1) —>A><B} - [o,qK”K‘*‘ —1]

fin < {FSUPp (Fin) € [Ren, k™ — 1], ¥m e [0,2(n)]} — [o, i 71} ,

anK“

Recall that Figure 6 represents the information encoded by each of these maps.
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4 Coupling between diagonal products

As explained above, we need to extract information from f to define our cursor in A.

To that end we denote the Euclidean division of fin (f') by Qn by

I:Ln(f/) = En(f/)Qn + Pn(f/) 0< Pn(f/) < Qn. (46)

The value of Py, is the part that will be used for the cursor. Let us now define a variable
base (Bi)i and express our numbering in it (see appendix B for details on variable base).

Please note that the variable base depends on n but in order to reduce formalism we

chose to abuse notations and write b; instead of by, ;. In this base we thus write

In(f,1) =V ( ol (¢ ) li ( 01B: (t)\Bs 1(t)) b1 Do (49)
- Bo.

+ En(f,t)bn

Remark 4.6. Remark that this base differs from (p); defined page 18 only from the last
coefficient. In particular by by = g~ for all 1 € [0,n]. The difference between the last

coefficients comes from the extraction made in eq. (4.4).

We saw in Claim 3.4 that fi, was surjective onto [0, max fin — 1], but it doe@ not neces-
sarily imply that (En, Pn) is surjective onto the product [0, max(En)] x [0, Qn — 1]. Indeed
unless max fi, Cquals (max(En) + 1)Qn —1, some elements of {max(E, )} x [0, Qn —1] mlght
not be reached. This is what the next lemma specifies and what will lead to the definition
of My, given in eq. (4.17).

Lemma 4.7

The map sending (f,t) to (t,9n(f, t), Pn(f)) is a bijection from Gy, to the set

0, k™ — 11 ( [0, max(En) — 1] x [0,Qn — 1]
u [qK“ mnX(En),max(én)} x [0, max fin, — Qn max EnD .

Proof. Let us first prove the injectivity. If (t,9n(f,t), Pn(f)) equals (t',9.(g,t"), Pn(g’)
then P (') = P(¢') and t = t". Thus By(t) = B;(t') for all i and by unicity of the decom-
position in variable base (see Lemma B.1)

Vo (fouéom> = Yo (90\'1%0&)) Vi (foﬁ%itt)\@i mw) =Vi (90|i%itt)\'3i mw)-

and En(f) = En(g’). In particular fin(f) = fin(g’) and thus £ = g’, by bijectivity of fin.
Similarly the bijectivity of the ¥;’s implies that o coincide with go on

UU( t\Bi1 )):[O,K“—l].

Hence f = g and thus the injectivity.
Now let t € [0,k™ —1]. Recall that fi,, is bijective onto [0, max fi,]. Using eq. (4.6)
we obtain that QnE+Pis smaller than max i, for all P < Qn and all E < max(E,). In
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particular for all such E and P there exists f such that i, (f') = EQ,,+P. Nowif E = max(E,,)
then there exists f such that i, (f) = EQ, + P if and only it P < maxv, — Qu maxE,.
Now, since the ¥¢; and fin, are bijections, Lemma B.1 implies that the image of 9. (-, t)
is the interval [0, max9,]. Consider x in this interval and write [xo, ..., Xn+1]5 its decom-
position in base (by)i. If x < q*" max(E,) then x41 < max(E,). In particular by the
above study of im(fi,) for all P € [0,Qn — 1] there exists f' such that fin (f') = xnQn + P,
that is to say Po(f') = P and En(f) = xn. If x > q*" max(E,) a similar argument as above
gives that for all P smaller than max¥,, — Q,, maxE,, there exists ¥ such that E,.(f) = E
and P, (f') = P. Finally, in both cases there exists fo such that x; = ¥4 (fo\ih(t)\@iq (t))
for all i. The element (f,t) thus defined verifies 8, (f,t) = x and P, (f') = P. Hence the
surjectivity. ]

Now that we encoded the informationina integer we will have to do the reverse process
in A, that is to say we will have to convert this integer into a 1amp conﬁguration in A. We
thus have to give an estimate of the amount of lamps we need to encode all the possible
values of 9,,. This is the object of the next paragraph.

413 Bounds

In order to obtain the number oflamps in A needed to encode the information contained
in 9, (f, ), we need to estimate the maximal value taken by 9.

Why such a need? The “ideal” Folner set used to define #;, would have been Fq, 5, 5.
but the encoding process we chose does not allow us to work with this set. Indeed assume
for example that [Fa. in,jn! =19nl In that case we could —theoretically speaking— find a
bijection between these two sets. But to obtain such a map we would need to extract the
optimal quantity of information from the lamps f to define the cursor u in A. What we
actual]y do when deﬁning our map 9, is that we take a liccle “coo much” information from
the lamp configuration f to define the integer 9, (f, t) and thus we left “not enough infor-
mation to be used to define the cursor in A. Hence when defining our wanted embedding
from G, to Fa,, i.,j., not all the cursors in [0,d,, — 1] will be reached (see Section 4.2.1)

and we will need a lictle more hmp Conﬁgurations than the possible ones in Fq to

nyinsin
encode all the values of §,,. What Lemma 4.8 shows is that Fg, i, j,+1 contains enough
lamps configurations to allow us to encode the values of 9, in it.

Thus our aim in chis paragmph is to prove the following lemma.
Lemma 4.8

For n large enough

Faningn-1]/Dn < max Sn(f1) +1 < [Faninjur1|/Dn.
(f,t)€Gn

But before proving the above statement, let us bound the value of by, 41 = max(E,) + 1.

Lemma 4.9

For n large enough

‘Fdn»in>jn+]
Dng<"

‘Fd",in,jn—1 ‘

< max(En) + 1 <
anK“ mJX( T'L)+
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Proof. Letn € N*. By eq. (4.6) we have Ey, = [ fin/Qn], thus Ey < fin/Qn < En + 1. Since
max(fin) = |9nl/(k™q%") we hence have
max(En) € =——— < max(En) + 1. (4.8)

Let us show the left inequality of the lemma. Using the lower bound given by cq. (4.2)
and then eq. (4.4) we get,

Gl iFdn,i",jnqi iFan,iTl,jnq‘
max(En) +12 Qnkng > Qg > Drqe”

, hence using the

/(K" Qng<") + 1.
Now using the euclidean division given by eq. (4.4) we get Dn/(Qnk™) < 1+ 1/Qn, thus

Now for the upper bound. By eq. (4.2) we know that G| < iFdnyinyjn

left part ofeq. (48) we get that max(E,) +11is less or Cqual to ‘Fd

nslns)n

- iFd“,in,jn iFd“,imjn

L <7(1+i)+1
~ KnanKh ~ anK\’l Qn .

Using that Q,, is unbounded (Lemma 4.5) we obtain that for n large enough max(E,)+1 <

max(E,) + 1

2 iFdn\i—nvjni /(Dng*"). So up to consider (Gn)n=n for some N > 0, we can assume that this

is true for all n. We obtain the lemma using Lemma 2.7. O]

We can now prove that we need at most ‘Fdn)iTnjn+1 /Dy, to encode the information

contained in the integer 9y (f, t).

Proof of Lemma 4.8. . By eq. (4.7) and Lemma B.1 we have max(§,) +1 = H?:oi b;. Now
recall (see Remark 4.6) that T, bi = ¢". Hence, max(d,) + 1 = (maxE, +1)q*". We

conclude using the bounds given in Lemma 4.9. [

Now remark that ‘deimjnﬂ ‘ /Dy, is exactly the number of possible lamp configura-

tions for elements in F4 +1. Hence by the above lemma we can define an Cmbcdding

nslnsin

from [0, max 9] to the set of lamp configurations of elements in Fq, i, 5, +1-
We define

Kn = Fap in,jn+1 = Do 10 J0- (4.9)
and now have to define and injection between G, and K.

Remark 4.10. Note that [Kn| ~ |Gl Indeed by eq. (4.2) we have |G| < ‘Fdn < 1Kl

yIny)n

Moreover using twice Lemma 2.7, we obtain

IKnl < 2q iFdn,in,jn‘ < 4q? iFdn,in,jnqi < 4¢?|Gnl-

42 Injection between Sofic approximation

Letn € N and recall chat §n, = Fen and Ky, = Fa, 1, j.+1. The purpose of this section is to
define an injection t, from Gy, to K. Moreover we want that injection to be C-dense for
some C > 0. Let (f,t) € G, and denote by (g,u) the image of (f,t) by tn. We first explicit
the definition of the cursor u, then turn to the definition of g and conclude by showing
that v, thus defined is injective and C-dense.
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4.2 Cursor

Recall that the Euclidean division of D, by K™ is given by Dn = Qnk™+Ry. As explained
in the last section, the idea is to split [0, Dy, — 1] in subintervals of length k™ (plus some
remainder interval of length less than k™) and to use Py, to define the subinterval in which
the cursor u will be and use t to give the position of u inside that subinterval. In other
words we would like to set u(f,t) = P, (f')k™ + t, but such a definition of the cursor u
would leave the Ry -last cursors of [0, Dy, — 1] out of im(t,). The injection would thus not
be C-dense. To counter this we distribute the unreached cursors inside the last subinterval
(sce Figure 9 for an illuscration).
Lett € [0,k and P € [0, Qn, — 1]

Pk™ +t itP<Qn—1, (4.102)
w:=u(P,t) { Pk™ + 2t iftP=Q,—Tandt <R, (4.10b)
Pk™+ R, +t itP=Q,—Tandt>R,. (4.100)

We represent in Figure 9 the possible values of u when Qn =4 and R, = 3.

@, k" reached cursors

R,, unreached cursors

Figure 9: Possible values for u when Dy, = 4x™ + 3.

Claim 4.11. Let P € [0,Qn — 1], let t € [0,«™ — 1] and u be as defined in eq. (4.10). Then
u(P,t) € [0,D, —1]. In particular u (Pn(f),t) € [0,Dn — 1] for all (f,t) € Gn.

Proof. First recall that we always have t < k™. Now if P < (Q, — 1) then
u(P,t) =Pk +t < (Qn—1Dk"+ k™ —1< Dy
IfP=Q,—1and t < R, then
u(Pyt) = (Qn — k™ +2t < (Qn — k™ + Ry + k™ —1=Qnk™ + Ry, =Dyy.
Finally in the last case we getu(Pyt) = (Qn—1Kk"+Rn+t < (Qn—1)k"+Ry+«k" =Dy. LI

422 Numbering in A

For now we have an integer 9. (f,t) and a cursor u(Pn(f’),t) defined above. Our goai is
£o associate to én(f, t)a lamp conﬁguration sequence g in A supporred on [0,D,, —1]. For
cach value of u(f, t) we are going to define a map between the set of lamp configurations
contained in X,, and the interval [0, |X,|/Dn — 1].

To do so we will define a numbering based on the same idea as the bloc decomposition
defined in Lemma 3.1. We thus want to define a nested sequence of intervals B; depending
on the cursor u(Py (f),t) —that is to say depending on P (') and t— such that |By| ~ «,
the last interval of the sequence is [0, D, —1] and B; verifies Claim 3.8. The idea would thus
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be similar to the one used in the definition of (B;) and presented in Figure 5. However,
in this present case two difficulties arise and lead to a more technical definition. First the
interval [0, Dy, —1] is bigger than [0, k™ —1] so we will need more than n+1 nested intervals
and as we will see in eq. (4.13) we will have to be careful when defining B; for i > n. Second,
we will have to deal with the fact that some of the cursors are not reached by u. In order
to first give the idea of the process we thus start by defining the nested intervals assuming
that R, = 0 (see paragraph below). Then in a second time (see paragraph “Concrete blocs

decomposition”) we detail how to set these nested intervals in the general case.

IDEAL BLOCS DECOMPOSITION  Let us first assume that Ry, = 0 that is to say Dy, =
Qnx™. Then all cursors in [0, Dy, — 1] are reached by u. We start by defining

vie [0o,n] Bi(P,t):=Px™+ Bi(t). (4.11)

That is to say B{(P,t) Corrcsponds to the nested sequence of intervals Bi(t) shifted by
P«™. In particular By, (P,t) = [Px™, (P + 1) k™ — 1]. We now have to define the bigger blocs
B} in order to cover the entire interval [0, Dy, — 1]. Before detailing the definition let us
explain the idea. If P was equal to Qn — 1 (the biggest possible value of Py,) then B, (P, t)
would be the interval (Qn—T)k™, Qnk™—1]. Which can also be written as [D,, —«™, D —1],
since Dy, = Qnk™. To obtain the next terms of the sequence B} (represented in Figure 102)
we could then consider B(P,t) = [Dy, — k', Dy, — 1] that is to say [(P + 1)k™ — k!, D, — 1.
Now if we Ty to extend this definition to smaller values of P, the left bound of this last
interval might be negative (see illustration in Figure 10b). In that case we thus set the

lower bound to 0 and the upper bound to k* — 1 (see eq. (4.13)).

B(t)
I
0 Qnk™
B! o(t)

3 Bl () 3

B (1) }

[ 1 |
!:: i " - - ! A ]

0 Pn(f)x™ (Pn (F)+ 1) k™ (Qn — k™ Qnk™

(b)P<Qn—1
Figure 10: Example of nested intervals for different values of P.
Now for the formal definition. Let p,, € N be such that
kP~ < Dy < kPr (4.12)

let B, (Pyt) :=[0,Dn — 1] namcly B, (Pyt) :=[0,Qnk™—1] and set foralli € m+1,pn —1]

5P - {[(P+1)K“Kl;(P+1)Kn1] iFP+1 >k, 1)

[0,k" —1] else.

31



4 Coupling between diagonal products

Lemma 4.12

The sequence (B} (P, t)); defined by egs. (4.11) and (4.13) verifies B (P, t) C B!
all i < py. In particular

(P, t) for

i+1

{Pk™ + t} = By (P, t) C BL(P,t) C B}, (Pyt) = [0, Qnik™ —

Proof Recall that Bo(t) = {t}. Thus By(f,t) = {Pk™ + t} by eq (4 11). Since we assumed
= 0 we get Dy = Qnk™ and thus B}, (P,t) = [0,Qnk™ — 1]. Let us now prove that
B’(P t) € B, (P,1) for alli < pn.
« Ifi<n the inclusion comes Lemma 3.1
« If i = n then B, (P,t) = [Px™, (P + 1)k™ — 1. If (P +1) < « then in that case
B! 4 (P,t) = [0,k™"" —1]. Since Px™ is positive and by the last assumption (P+1)x™

n+1

is smaller chan « we thus obtain the inclusion.

For the second case, first remark that k™ — k™! < 0 and thus (P + 1)k™ — ™+ is

smaller than Px™. Hence when (P+1) > k we get

BL(Pyt) = [Pnk™, (P+1)k™ —1]
CIP+)K™ =™ (P+1)k™—1] =B (P, t).

« Assume thati>n. If (P4 1) > 1™ then (P + 1) > «*™ and thus

Bi(P,t) = [Pk™ — k', (P+1)k™ —1]
ClP+1)k =k (P+1)k™—1] =Bl ,(P,1).

If (P+1) < k7" then B, (P, t) = [0,«*" —1]. Then cither (P + 1) < k"™ thus
B1(P,t) = [0, k' — 1] and the inclusion comes immcdintc]y, or (P4+1) > «* ™. In this
case (P4 1)k™ — k' is positive, moreover since (P + 1) is assumed to be smaller than
k171 we have (P + 1)k™ < k1. That is to say

B (P,t) = [(P+ 1)k — kb, (P+1)k™ — 1]
C [0,k —1] =B, (Py1).

O]

CONCRETE BLOCS DECOMPOSITION  We turn now to the general case where Ry,
might be greater than zero. We first define in Lemma 4.13 2 surjective mapx from [0, D, —1]
to [0,Qnk™ — 1] and then use it to define our blocs B;(P,t) in [0, Dy, — 1] as the preimages
of the “ideal” blocs B! (P, 1).

Figure 11 represents the map x and Lemma 4.13 formalizes its definition.

Lemma 4.13

Consider v € [0,D,, — 1].
« Ifv=u(P,t) for some (P,t) € [0, Q,—1]x[0, k™ —1] then define x(v) := P, (F/)k™+t.
o Ifv¢gim(u) then (v—1) eim(u) :md we define x(v) == x(v—1).

Then x : [0,Dyn [0, Quk™ — 1] is a well defined surjective map. Moreover for
any interval I C 0, Qn — 1] the pre-image X~ (1) is also an interval and it verifies
Ix (D] < 21

Proof. 1f'v € im(u) there exists a unique (P,t) € [0,Qn — 1] x [0, k™ — 1] such that u(P,t) =
v.Morcover, since P bclongs to [0,Qn — 1] and t to [0,k™ — 1] then Px™ 4+t bclongs to
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4 Coupling between diagonal products

R,, unreached cursors
0 K" 2K™ (@n — )K" I VL D,
| | | | | | | | | | | | | | | | | | | r
B A A A &
| | | \ | \ | 1 1 I
| | | \ I 1 I | 1 ’
I I I \ 1 1 ! 1 1 !
I I I \ / 1 ’ 1 ’ 1
! ! I vy . h / /
| | | % ' , ’ /
X | | l h ;o J
| | | " / S
| ! ! / y R
! ! | / ’
| | | /’ L, P
| | | / ’ B _-7
¥ | | | i | | | ¥ | | | I ¥ £ s r
T T T T I T T T I T T T I T T T T
K" 2K™ (Qn — 1)K 4R"™

Figure 11: Map x

[0, Qnk™—1]. Hence x is well defined. Itis also surjective. Finally considery € [0, Qnx™—1]
then x~'(y) contains either 1 or 2 consecutive elements in [0, D,, — 1. Thus [x~'(I)| < 2]1|
and x~'(I) is an interval, since x preserves the order. O

We now define B;(P,t) as the pre-image of the ideal bloc B} (P,t). The fol]owing lemma

comes immediately from Lemmas 4.12 and 4.13.

Lemma 4.14
Let (P,t) € [0,Qn — 1] x [0,k™ — 1] and consider the sequence (B}(P,t)); as defined by
cgs. (4.11) and (4.13). Let

Vie [0,pn]  Bi(P,t):=x"" (Bi(P,1).

The sequence (Bi(P,t)); thus defined verifies Bi(P,t) C Biyq(f,t) for all i < p,. In
particular
U(P,t) € fBO(Pyt) - Bl(P)t) - Bpn (Pat) = [Oa D, — ”)

and thus u(P, t) belongs to B (P, t) for all i < pa.

Remark 4.15. Lemma 4.13 implies that «* < [B;(P, t)] < 2«! for all i.

NUMBERING  Let us now define our numbering. The strategy is quite similar to the
one used in Section 4.1.2 page 17, except that here the variable base used to associate a
number to a lamp configuration depends on the value of the cursor u(Py(f),t) = v.
Now consider (g,v) such that v belongs to the image of wuand let P € [0,Q, — 1] and
t € [0,«™ such that u(P,t) = v. Remark that for all i € [1,p, + 1], the number of maps
of the form ¢: Z — A x B supported on Bi(P,t)\Bi_1(P,t) is equal to q/F+(Pt\Bir (1),

Hence we can define app]ications

Vo,pt : {C: Bo(Pyt) = A x B} — [0,q—1],
Vie [,pnl  vips : {C: Bi(Pyt)\Bi1(P,t) = A x B} — [0, B (P tN\Bea (POl _q]

such that these maps are bijections. Please note that the above maps depend on the value
of Pand t, if we do not need to keep track of the values of P and t we will denote v; instead
Vi,p,t O simplify the notations.

We now have to number (gm)men,i(Dn—1y- Let us first make a general remark on
FD, 1. We refer to Figure 12 for an illustration. Recall that (Dy, — 1) is defined as
[(Dp—1) =max{m : k;, <Dnp—1} In particu]ar (see Section 4.2.2) if‘k[(Dn,]) =D,—1and
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4 Coupling between diagonal products

(g,t) belongs to Fp, then 9l 1) 18 supported on {kp, —1)}. Thereforeif I, < ((Dy, —1),
an element (g,t) of Fp, 1,5, verifies Iip, 1) = € Thus g is only determined by go and
(ghm)m<t(Dn—1)—1. We thus define

(Dn—1)=1 ifkyp, 1) =Dn—1and I, < [(Dy — 1),
. (4.14)

(D —1) else.

0 13} k2 k3 Dy
AN
Kip,-1) =Dn —1 Kip,—1) =Dn—1
(a) FDn fOT k[(D“—U = Dn —1 (b) FDn»In‘]n fOT In < [(Dn — ])
Figure 12: Comparison of Fp, and Fp  1,.,;, when kyp, 1) =Dn —1

We thus are actually going to number (gi)m<m,. But we will need a more refined
numbering than the one defined in Section 4.1.2.

Why refine the numbering? Consider (f,t) in G, and denote (g,u) := ,(f,t). While
the action of a generator s on (f, t) only changes the value of fo(t) or of the cursor, we will
see in Section 4.3.1 that it can modify numerous digits of 9, (f,t). Hence it can modify
the image (g, u) by the values of g’ and not just go. When it happens, if we encode the
information of g’ in one digit as in Section 4.1.2 then the best bound we can obtain on
the distance between (g,u) = ,(f,t) and , ((f,t)s) will be diam (3€,). Furthemore we
can show that the proportion of such elements is about q~P». Hence when checking the
condition given by eq. (2.1) we will obtain an unbounded sum since diam (X,,) is much
bigger than gP». To overcome this, we refine the numbering such that the more terms
we modify in g’ (and thus the more the distance grows), the more the proportion of such
clements decreases.

By a similar proof as the one of Claim 3.4 we can show that for all m € [1,1I, — 1], there

exists a bijection
tm o {Rm: Z = Thsupp(hin) C [km, Dy — 11} — [0, [T [PrFm — 1]
Similarly for the I, — th element we have a bijection

supp(hi, ) € ki, ,Dn —1]

S hn: Z =T
ML {m | andhf (Dn—1) €A

} - [0,|rr'n|D"_k1"_1 ’/\}:’ — 1] .

Finally for all m € [I, + 1, My], there exists a bijection
Hm : {Rm: Z = T supp(hin) C [km, D — 2]} — [0, [Ty [Prkm =1 — 1]

We represent in Figure 13 the numbering defined so far.

Let us now define the variable base (bi,p,t)i. We reproduce the idea used in che defini-
tion of (b;); with two Changes: first [Bi (P, t)\Bi_; (P, t)] depends on P and t so we cannot
replace it by its numerical value as we did for by, second the numbering of ' contains here
more than one term.
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4 Coupling between diagonal products

Figure 13: Numbering inA

bo,p,t =bo =
Vi€ []’pn] bipt = qIBi(P,t)\B{,1 (f,1)]
vme 1,1, —1] by, +mpt =bp,rm = |rfln|D"7k'“
by, +1n,Pt = bps1, = |r1/n|D"717k‘“|/\}’;|

Vm c [In + ]) Mn] banrmvP»t = bDner = |r1/TL|D"717km

Remark that TT" bip e = qP and thus this product does not depend on (P, t). Before

dcﬁning our map 9, let us show some useful result about the base we just introduced.

Lemma 4.16

For all P € im(P,) and all t € [0, k™ — 1] let (bi,p )i be the base defined above.

« For all i < py, it verifies bip,t = bopt € [q"i, qz"i]. Moreover for all j € [1,1—1]
o ﬂ C
unzKl g bk,P,t g qZKlfK) .
k=

« Ifi=7p, then bip,t - bo,p,t = qPr and for allj € [1,1—1] we have biptbjp =
D,—2«J
q .
« Foralli > p, we have bip ¢~ bopr = qPm exp(li_p, ) and for all j € [1,1 — 1] we

have bi‘pyt bj?p‘t > qD“_ZK] CXp(li,pn ).

Proof. First consider i < py. By Lemma 4.13 B;(P,t) contains at most 2|B}(P, )| elements
and at least |B{(P,t)| elements. But |B{(P,t)| = k!, the first assertion of the lemma thus
comes by noting that bi,p,t = bo,p,t 1S equal to q‘gi(P‘t”. For the second assertion, re-
mark that by p ¢ by p¢ equals /B (P\B 1 (PO Moreover by Lemma 4.14 the interval
Bj_1(P,t) is included in B; (P, t) thus [B; (P, t)\B;_1 (P, t)| is equal to [B;i(P,t)| —[Bj_1 (P, t)].
Hence the first point.

Ifi=pn then|Bi(P,t)| = Dy, and a similar argument as above implies that bip - bo,p,t
equals qP~ and by p ¢ by py > qP~—2¢ forallj e [1,1—1].

Finally if i > p,, note that by p ¢ = bjp ¢ is greater than by p by, p.¢ = bop,t. But note
that by eq. (4.14), for all m < M,, we have k;, < Dy —1. Therefore for all Pn<i<pn+Mn

bip,e = \r{,pn\D“q_k"*p“ z i, I ~exp(liop, ).

Hence by p,cbp, p.t = bo,p,t is greater than exp(li—p,)qP». The last assertion is similarly
obtained by bounding by, p.¢ = bi,p by below by gPr—2«". O]
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4 Coupling between diagonal products

In the base (bi‘p,t) we thus write

1=0,..,pn+M

pn—1
B (g, ul(Py) :=vo (goim,(p,0) + D Vi (G0, (P ons, ,(P0)) biot e bopt
i=1
. (4.15)
+ )t (gim) Dripa,pyt = boyp i
m=1

Lemma 4.17
Let 9y as defined in eq. (4.15). For all v € im(u) the map 9,(:,v) is injective and its

image is exactly the interval [0, max(9,,)].

Proof. Assume that there exist g, h such that 9, (g,v) = 9. (h,v) and let P and t such that
v =u(P,t). Then 9,.(g,v) and 9, (h,v) share the same decomposition in base (bi,p,t) that
is t0 say pm(ghm) = pn(hi) for all m, and vo(gos,(p,t)) = v(hose(p,t)) and similarly for
the vi’s. Since all the pm and vi’s are bijections we thus get that go = ho and ¢’ = 1.

Hence g = h. The second part comes from Lemma B.1 npplicd to the base (bi,p,t)i- O]

4.2.3 Injection

So far we can define a map that sends an element (f,t) in A to (S, (F,t),u(f,t)) in Z2.
For v € im(u) we can also consider the map that sends (g,v) € A to (9n(g,V),v) € Z2
A first idea to define our injection 1, : G — K, would be to compose the first map
with the inverse of the second (see also Figure 7). But doing so would lead to a non-C-
dense injection. Indeed, the image of 9, is strictly included in the one of 9,, and more
precisely the elements in im(9,,) that are not reached by 9, are the greatest values.That is
to say some values of 1, might not be reached. Hence translating 1‘3,1 into a sequence of
lamp conﬁgumtions ginA might not give us all the possible values for g’. But if such a
(g,w) € Ky, is not reached then it might differ from the nearest element in im(1,) by a
value of gy, . Such an element will be far away from the reached one, since changing a
lamp of g, Trequires a lot of multiplications by generators.

In order to obtain the density we thus need to spread the unreached values across the
interval im(9,,). This is the aim of the next paragraph.

SPREADING  Let usdiscuss the idea the definition. Since our goal is to spread the values
of {0, ..., max(9,,)} accross the intervall [0, max(9,, )], the ideal map to consider would be the
one sending x to max(9,))/ max(d,)x (represented in Figure 14a). But we also want the
values taken by this sprcading map to be integers. Since the quotient max(dn))/ max(dn)
is not necessarily an integer, the aforementioned values do not necessarily belong to IN.
This is why we define a,, := max(ﬁn)/max(f}n)w and consider instead a piecewise affine
map that approaches the above linear one and gives integers values (sce Figure 14b).
Lemma 4.18

Let n € N. There exists a piecewise affine map s,: [0, max9n] — [0, max9,] which is

(q®)-Lipschitz and verifies

« sn(x) e N, for all x €{0, ..., maxd,};

. 5n(max§n) = maxd,.

The map we are going to construct is the one described in Figure 14b.

Before showing the above lemma let us bound the value of ay,.
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Y= 1]11‘X(‘911]/‘1]1‘X(571)X y= nnlx(\‘},\)/n‘ulx[én)x

maxd, — maxd, —

5 T 5 =4

. y=(a—T1)x

4 T 4_-

3__ 3 =4

2 T 277

Tr 1 ///y ax +b

J
| | | | g
0 T T T — 0 ; ; . —
0 maxd, 0 max 9,
im (én) im (5,1>

(a) Linear map for max(9,))/ max(d,) = 1.5 (b) Affine approximation with a =2

Figure 14: Affine approximation

Claim 4.19. Letn € Nand a, == [max(ﬁn)/max(én)—‘. Then 1 < an < ¢3.

Proof of the claim. Using eq. (4.15) which gives the definition of 9;, and Lemma B.1 we ob-

tain max(d,) = [K.|/Dn — 1. Since |XK,,] is Cqual to |[Fa _1l, the lower bound of the

nslnsin

claim comes immediately from Lemma 4.8. Morecover by Lemma 4.8

max én(f, t) 2 ‘Fdnyinyjn_1 ‘ /Dn — ].
(f,t)€Gn
Hence using these two observations, then bounding very roughly [Fq, i, j.—11 — Dn by

below by [Fa

_11/2 and ﬁna]ly using Lemma 2.7, we get

nslnsin

max(dn) _ [Kn| D, [Faninn1]

_— < — —
maX(‘Sn) Dn ‘Fdnyin yn—1 ‘ - Dn ’Fdn;iny]-n*] ’ - Dn

)

< 2YFainin 1|/ [Famstnsin—1);

<2x(29)%
Hence a, <4q2+1< g5 O
Proof of Lemma 4.18. First let by, := max(dy) — an max 9, and remark that it belongs to N.

(an —1)x  ifx < —b,
Sn X )
anx + b, ifx > —b.

Now let

By definition sy is an-Lipschitz and hence by Claim 4.19 it is (q®)-Lipschitz. Moreover,
since by, an, and (a, — 1) are integers then s, maps any integer to an integer. Fina]ly we

can check easily that s, (max8,) = max 9. OJ

We can now define the “spreading” version of 9,

§n[f, t) :=5n 0 On (f, 1). (4.16)
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INJECTIVITY AND DENSITY  Let us now define the Sofic approximation we want
to work with in A. We saw in Lemma 4.7 that the image of the map sending (f,t) to
(t,9n(f, 1), Pn(f")) was not necessarily the product [0, k™ — 1] x [0, maxdn] x [0,Qn — 1]. It
might indeed be smaller. The unreached part of this last product might lead to a large
area of unreached elements in %, preventing the injection from Gy, to K, to be C-dense.
We Consequently define a new sofic approximation 3, included in K, but not containing
the aforementioned unreached elements.

Hn =K\ {(Q,V) € Kn (4.17)

19n(g) = 5n (qK“ maX(En))
x(v) = k™ [max (fin) — Qn max (En) + 1]

Lemma 4.20

The set Hy, defined in eq. (4.17) is a Folner set of A.

Proof. Using that sy, is (q)-Lipschitz and that max(d,) < g% max(E,) 4+ q<" — 1 we get

fon (0" max(En),max(én))” < *[[a" max(En), max (sn)H < g3q~".
Hence §
H(Q’V) S VS [mixﬁ(rﬁ) —gixri;)()tzn) 1] H
<10, D = 1+ {[on (@ max(Ey), max(3n) ) |
gan3+K".

Recall (see eq. (4.9)) that K, = Fp Using the value of [X,| given by Lemma 2.7,

nslnyJne

we get that Dng3**" /|| tends to zero, thus X, minus some set of at most D g3+*"

clements is still a Folner sequence. O

Let us now define the C-dense injection.

Lemma 4.21
Let tn : Gn — Hn be the map such that v, (f,t) == (g, u(Pn(f),t)) where u is defined
in eq. (4.10) and g verifies Dn(f,t) = On (g,u(Pn(f),t)). Then there exists a constant
C > 0 such that 1, is injective and C-dense for n large enough.

Proof. Letus first show that v, is well defined, that is to say: for all (f,t) € Gy, there exists a
unique g such that (g, u(Pn(f'),t)) belongs to H,, and verifies Sn(f,t) =on (g, u(Pn(f),1)).
Recall that 1§n = s, 09, and that x is defined in Lemma 4.13.
« Let (f,t) € Gn. By Lemmas 4.17 and 4.18 (1) belongs to [0, max9y]. Thus there
exists g such that (g, u(Py(f), 1)) belongs to X, and Sn(f,t) = on (g, u(Pn(f),1)).
« By choice of g, i 8. (f,1) < sn (q" max(E,)) then 9, (g, u(Pn(f),t)) is also strictly
smaller than s, (¢*" max(Ey)) and thus (g, u(Pn(f),t)) belongs to 3.
+ Recall that s, is increasing, thus 9, (f,t) is greater than g% max(E,) if and only if
Sn(f 1) is greater than s, (q*" max(Ey)). Therefore if 8. (f,1) > sn (g*" max(En))
then Lemma 4.7 implies that P, (f') equals at most max(fin) — Qn max(E, ) and thus

X (u (Pn(f/)yt)) < K™ (max(fin) — Qn max(En) +1) = 1.
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Hence (g,u (Pn(f),t)) belongs to Hy, by eq. (4.17).
« Finally if there exists g such that Bn(ft) = dn (g,u(Pn(f),t)) then it is unique
since 9y (+,v) is injective for any v in the image of u (see Lemma 4.17).
Let us now prove the injectivity of t,. Let (f,t), (h,v) € Gy such that 1, (f,t) = t(h,v).
Then u(f,t) = u(h,v) and if we denote g the element such that (g, u(f,t)) = . (f,t) we
thus get 9(f,t) = 9n (g, u(f, 1)) = J(h,v).
« Ifu(f,t) = u(f,v) then x ou(f,t) = x o u(f,v) and thus

(Pa(f)—Po(K) k™ =v—t.

But 0 < t,v < k™, the above equation thus leads to t =v and P, (') = P (R).

+ Letusnow prove that f = W. Since sy, is a piecewise affine map then ﬁ(f, t) = @(h,v)
implies that 9, (f,t) = 9. (h,v). In particular the coefhicients of the decomposition
of 9 (h,v) in base (b:), are equal to the one of the decomposition of 9. (f,1). In
other words

Fealfyt) = Vus(hyv) and  En(f) = En(h). (4.18)

But by the last claim P, () = Pn(h) thus fin(f) = fin(h'). Since fin is bijective it
implics that f = h'.
« Moreover the fact that t equals v implies that for all i € [0,n]

Bi(t) = Bi(v),
In particular ¥¢; is defined on the same set as ¥,,;. Combining this with the bijec-
tivity of these maps and cq. (4.18) we thus get that fo = ho.
Since f (resp. h) is uniquely determined by fo (resp. ho) and (resp. h’) we thus have
f = h. Hence the injectivity of t,.

Now let us show the density. Let (h,v) € H,. We need to distinguish two cases de-
pcnding on whether v bc]ongs to im(u) or not.
« Since v € [0,D,, — 1] there exists P € [0,Q, — 1] and t € [0, k™ — 1] such that x(v) =
Pk™ +t.
« If v e im(u) (resp. v ¢ im(u)) denote by [yo, ..., Yp,+m,Jb the decomposition in
base (bi,p,t)i of 9. (h,v) (rcsp. ¥, (h,v+1)). Now by Lemma 4.5 ifnis largc Cnough7
Dy, > k3 hence bo p ¢, by,p and by p ¢ are well defined. Moreover q = 6 (see page 51)

and « > 3, hence for all such n we always have

2
bo,p,tb1,pib2p e =q% = ¢° > ¢

So up to consider (Sny+n)nen instead of (Gn)n for some n; > 0, we can assume
that the above inequality is true for all n. Now, since sy, is g3-Lipschitz, Lemma B.6
implies that there exists x € im(d,) such that x; = yj for all j > 2 where x =
[X0y oty Xpn+M, Jb denotes the decomposition of x in base (bi,p 1)i.

+ Since (h,v) belongs to 3, then by cq. (4.17) the triple (t, P,sn' (x)) belongs to the
set defined at the end of Lemma 4.7. The aforementioned lemma thus implies that
there exists (f,t) € G, such that Po(f) = P and 9.(f,t) = sn'(x) that is to say
I o (f,t) =x.

« Let (g,u(f,t)) = 1.(f,t) and assume first thac v belongs to the image of u. Then
u(f,t) = v by definition of x the first point. Moreover by definition of the num-
bering 9., and since x; = yj for all j > 2, the lamp configuration h differs at most

from g from the values tho‘gz(v). But B, (v) is an interval containing the cursor
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4 Coupling between diagonal products

v and which contains at most 2x? elements. Thus by Proposition A.22 the distance
between (g,v) and (h,v) is bounded by 2k? up to some multiplicative constant.
Now if v ¢ im(u), by a similar argument we can show that (g,u) and (h,v+1) are at
distance at most 2k? and thus (g,u) and (h,v) are at distance at most 22 + 1 from
one another.

This shows that v, is C-dense for C equals to 2% + 1. Hence the proposition. O

43 Quantification

Now that we have defined the injection between our Sofic approximations we need to
show that eq. (2.1) is verified. Although some technicalities appear in the details of the
computations, the strategy is quite similar to the one used in Section 3.2. So for (f,t) € G,
and s € Sz we first bound the distance between 1, (f,t) and Ln<(f,t)5). Then for a given
r>0we provide an estimate of the proportion of elements in G, such that ,(f,t) and

tn ((f, t)s) are at distance r in A. Finally we show that eq. (2.1) is verified.

431 Distance

Lets € 85 and (f,t) € 6!V, Our aim in this section is to bound by above the distance
between 1, (f, 1) and Ln((f,t)s). We will distinguish two cases dcpcnding ons = (0,1) or
not. But first let us introduce some notations. As in Section 3 let t = Z;:Ol t;k* be the
decomposition in base k of t. If (f,t) belongs to G4 then t < n— 1 and thus there exists
i €{0,...,n— 1} such that t; < k — 1. Therefore, as in eq. (3.2) we can define

o) :=minfi<n|ty<k—1L (4.19)

Recall chat chis index corrcsponds to the one of the coefficient t; that will absorb the carry
when we add one to t. In other words, the decomposition of t + 1 in base « is given by
t+ 1 = (tiy(r) + 1)K ® +Zi§il>(t) tikt. In particular we can obtain the following analogue
of Claim 3.8.

Lemma 4.22

Let P € [0,Qn — 1] and t € [0, k™ —1]. Then B;(t) = Bi(t + 1) and B;(P,t) = B (P, t) for
all i > io(t).

Proof. The first assertion comes from Claim 3.8. Now for the second one. Since B(P,t) is
the preimage by x of BL(P,t) we only have to show that B! verifies B} (P,t) = B/ (P,t +1).
This equality is true if i > n, since the definition given in eq. (4.13) of B{(P,t) does not
depend on t. When i € [io(t) + 1,nl, it is given by the first assertion and eq. (4.11). Hence
the lemma. ]

Now define
(4.20)
In this section we denote P := Py (f). Recall that (bip,¢)ic(o,p.+M, is the base defined

in the box page 34 and denote by (xi)i (rcsp. (yi)i) the dccomposition of x (rcsp. y) in
base (bi,p,¢)i. In other words using the notation introduced in appendix B these sequences
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4 Coupling between diagonal products

Vcrify X = [X0y ey Xpo Mo lbp o and y = [yo, ... yYpn+Mnlbp ;- Fina]ly for i in [0, pn + M,

define

jpa, i) i=min{j>i|x; <bjpe—1}. (4.21)

Proposition 4.23

Let (f,t) € Gn, let x and jp ¢ be as above and

ip.t(x,2) if s € 8 U8z or (s =(0,1) and io(t) =0)
m =
ipt(x,0(t) +1) if s =(0,1) and io(t) > 0.

If m < py then d (1 (f, 1), L ((f,1)s)) < 6k™.
Ifm > pn +1 then d (tn (£, 1), 1 ((f,1)s)) < Dnlm—p,.

Strategy of the proof The injection t, is defined using the two maps 9, and 9,, which
transform lamp configurations into integers. In order to estimate the distance between
tn(f,t) and 1, ((f, t)s) we thus need to understand how the action of s modifies these inte-
gers and in particular how it acts on their decompositions in base (bi,p,¢)i. Henceina first
paragraph we bound the difference between the 9(f,t) and 3 ((f, t)s) (see Lemma 4.24). In
the second one we use this bound to compare the decompositions in base (b p,¢); of these

two integers (sec Claim 4.27) and conclude with the proof‘of the above proposition.

FROM LAMPS TO INTEGERS  For all this section let () := (f,t)s. The aim in this

paragraph is to ShOW thC lcmma bClOW.

Lemma 4.24

Let s € 84 and io(t) as in eq. (3.2). Denote P := Py, (f'), then

A A boby p b ifse8us —(0.1) and in(t) = 0

bo,p,e = big()r1,p,e  else.

Before proving the lemma, let us prove some useful results. Recall that fiy, is defined in
Claim 3.4 and Py, and E,, are defined in eq. (4.6).

Claim 4.25. Recall that (f,1) := (f, t)s. These elements verify fin (f') = fin (f).

In particular P.(f) = Pn(~’) and E,(f) = En (f~’).

Proofofthe claim. 1f s = (0,1) then s only modifies the cursor of (f,t). That is to say f = f.
Hence the first equality.

If's = ((ado)m,0) for some a € A, then fi, = fiady for all m > 0. In particular for all

x # t it verifies T (x) = fim (). Using Lemma A6 at x =t we obtain

fn(t) = fn(t)a = Fr()0n (fo(t)) OF (fo(t —km))a,
= (1) (82 (fo(t))a) B8, (folt — km)).
By uniqueness of the decomposition we thus get 1, (t) = f1(t). Hence fi = fin for all
m > 0 and thus fin (f') = fin (f). Finally the case when s = ((b8,, )m,0) for some b € B is

identical to the one above. In all cases, the second part of the lemma comes immediatly

from eq. (4.6). O
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4 Coupling between diagonal products

Let us now study the behaviour of the blocs Bi(1) and the maps (vi);. Note that if
s=(0,1) thent=t+1.

Claim 4.26. If s € 8; US;

(vi>0) W (fo@i(t)\%i,1 (t)) =i (fo@im\i&H (t)) :

If s = (0,1) then Bi(t) = Bi(t + 1) for all i > io(t) and chus

(Vi>1o(t)) V3 (fowf‘sim\i%i mt)) =i (foﬁ%i(tm\@i mm))-

Proof of the claim. Let i > 0. If s belongs to 81 U8, then t = t. But Bi(t) depends only
on the value of i and T thus B;(t) = Bi(t). Moreover fo(x) = fo(x) for all x # t. But by
Lemma 3.1 the set Bi(t)\B;_1(t) does not contain t, thus fo restricted to this last set is
Cqual to fo restricted to it. Hence the first assertion.

Let us now treat the case when s = (0,1). By Lemma 4.22 for all i > i5(t) we have
Bi(t) = Bi(t +1). Finally, since s = (0,1) then f = f and in particular fo = fo. Hence the

second assertion. O
We can now prove the first lemma.

Proof of Lemma 4.24. First suppose that s € 8; US,. By Claims 4.25 and 4.26 and using the
definition of 9, given in eq. (4.7), we get

‘f)n(f, t) —1§n ((f, ’[)S)‘ = ‘{/O(fo\i%a(t)> —\70(?0‘@0(”)‘ <q.
Now recall that 8, = sn 0 9, where s, is a q>-Lipschitz map, thus
P, 8) = 9n((f,5)] < a*a.

But « is greater than 3 thus ¢* < qKz. Moreover by Remark 415 |B2(P,t)] is greater than
k2 for all P and t, since boby ptbap ¢ = 2PVl we thus obtain

[Bn(f,1) = S ((F,8)s)| < q < bobypbape.
Assume now that s = (0,1). By Claims 4.25 and 4.26 and definition of 9.
[Pn(F,1) =D (£, 1)5)]
=[vo (foméo(tm) —Vo (fom”som)

ip (t)

+ D [{’i (fowiut+1)\%-l,1(t+n> —Vi (fo@i(t)\%ﬁ(t))} bi—q -+ bol.

i=1

But Vo takes its values in [0, q — 1], thus [Vo(fy5, 11 1)) = Vo(fo 5, 1)) < g—1. Similarly, for
all i € [1,1p(t)] we have

Vi (fmi%i(tm\i%ifl (m)) Vi (fovBim\'BH (t))‘ shi—1,

thus
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4 Coupling between diagonal products

But §n = s, 09, where s, is a q3—Lipschitz map thus
[0 (£,0) = 3 ((£,8)s)] < 9%Bi, (1) - o

Ifio(t) = 0 then q3by (1) = bo = q>bo = qq. By the same argument as in the above case
we obtain that g3bg < bob1p,ib2,p,¢. Hence the resule for ig(t) = 0.
To prove the case when ig(t) > 0 we only have to show that q3by, () =+ bo is smaller

cio ()

than biy(t)+1,p,¢t - bo,pt. First recall (see Remark 4.6) that Bio(t) by = q . And since

Kio(t)+1

ip(t) < m < pn we can use Lemma 4.16 and obrtain that q < biy(t)41,p,t 7 bo,p -

Now remark that since ip(t) > 0 and k > 3 we have kto () 43 < klo(®+1 Thys

(t)

lsn(f)t)_é\n((f)t)s)‘ < @*biy(1) - bo < ¢3q<"°

ig(t)+1
< gf < biy(t)+1,p,e - bo,p it

O]

FROM INTEGERS TO LAMPS  Letusnow prove Proposition 4.23. Let (g,v) = tn(f, 1)
and (h,w) := ,((f,t)s). Recall that by definition of the injection u, we have 9(g,v) =
§(f, t) and 9(h,w) = §((f, t)s). In particular, by Lemma 4.24

bob b ifse8 U8, or(s=(0,1) and io(t) =0
|19[g,v)—19(h,w)<{ 0b1,p, b2 p ¢ 1US; or (s = (0,1) and i(t) = 0)

o,p,t = big(r)r1,p,e  clse.

First, applying Lemma B.5 to the result of Lemma 4.24, we deduce the following asser-

tion.

Claim 4.27. Letx and y as defined by eq. (4.20) and for all 1 > 0 let jp,e(x,1) as defined in
eq. (4.21). Denote P = P (f').

If's € 8 U8, orif (s=(0,1) and ip(t) = 0) then x; = y; for all j > jp ¢(x,2).

If's =(0,1) and io(t) > 0 then x; =yj for all j > jp ¢(x,10(t) + 1).

We can now bound the distance and prove Proposition 4.23.

Proof of Proposition 4.23. Consider s € §5 and (f,t) € Gn. Let x as in eq. (4.20) and jp ¢ as in
eq. (4.21) and recall that (g,v) := 1, (f,t) and (h,w) = Ln((f,t)s). Define

jpoe(x,2) ifse 8 U8, or (s=(0,1) and ig(t) = 0),
jipi(xi0(t) +1)  else.

Let us first recall that if's € 8;U8; then P = P, (') = Py (f) and thus By (P, t) = Bi(Pn (f'), 1)
for all i. If's = (0,1) then note that m > io(t) by definition of jp r. Thus i > io(t) for all
i > mand by Lemma 4.22 we have B;(P,t) = Bi(Py, (f’), f)foralli>m. In particular v and

w both belong to B;(P, t). Moreover by Claim 4.27 we know that x; = y; for all j > m.

We distinguish 2 cases depending on the value of m.
+ Assume first that m < pn. Since x5 = y; for all j > m, using the expression of
n given in eq. (4.15) we get pil(g}) = wi(h}) for all i and vj(gos, (008, 5 (,0) =
Vi(hO\Bi(f,{)\isi,1 (ﬁ{]) forallie [m+ 1,pnl. In other words h and g differ at most
from the value Of‘go and hy on the interval B,, (P, t). Hence using Proposition A.22
we obtain

d((g,u), (h,v)) < 3diam (B (P,1)). (4.22)

Tl’lC ﬁISt part Of thC pI‘OpOSitiOl’l thCI’l comes from Rcmark 4.15.
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4 Coupling between diagonal products

+ Now assume that m > py, + 1. By the same argument as above we get that pi(g}) =
wi(h!) for alli > m —py. Then by the second part of Proposition A.22 we get

dA((g>u)v (h)v)) < Dnlm—p“- (423)

Hence the second part of the lemma.

4.3.2 Enumeration

Let s € 8§4. Our goal is now to estimate the number of elements (f,t) in G, such that
tn sends (f,t)s at distance r from (f,t) in A for a given distance v > 0. As suggested by
Proposition 4.23 it depends on the value of the map jp . We first study the action of
generators in 81 U 83 and then the action of s = (0,1). Recall that x(f,t,s) is defined in
eq. (4.20) and jp ¢ in eq. (4.21).

ACTION ON THE LAMP CONFIGURATION  Letus study the case when s is a gener-
ator that modifies a hmp that is to say when s belongs to 8; US,.

Lemma 4.28

Lets € 8 U8, and X3, == {(f,t) €9 e (x(f,,8),2) = m}.
If m < 2 then [X$,] = 0.

If2 <m < py then X5 X [Knlg =" .

If m =p, + 1 then |X$%,| X [Knlg Pr.

[fm > pn + 1 then X5 < 1Knlg P exp (—lm1-p,.)-

Proof First note that by definition ofjp,t we have jpt(z,2) > 2 for all z. Thus X3, is empty
if m < 2. Now assume that m > 2. Recall that x(f, t,s) belongs to {ﬁn(f, t), 9 ((f, t)s)} by
eq. (4.20). Hence
Xin {0 €S [jp, o (Bn(0,2) =m |
(4.24)
U {(f, 0 €90 ip e (Bn((6,05),2) = m} .

Let us denote Y§, := {(f, t) e g . P ()t (§n(f, t),2) = m{ and bound the value of Y5, .
Consider t € [0,k™ — 1] and P € [0,Qn — 1], using first Lemma 4.7 then the fact that

Sn [O,max(én)} is contained in [0, max®,] we obtain

H(f,t) € Gn | Pul®) =P, jp e (Bn(f,1),2) :m}‘ <

{z € [0, max 9,] ’jp,t (5n(z),2) = m}‘

<

{z € [0, maxd,] ‘ jpi(z,2) = m}’
Rccnlling that max9,, =|X,|/Dn and app]ying Lemma B.7 to the base (bi,p,t)i we get

H(f,t) € Gn ‘ Po(f)=P andjpyt@n(f’t))z) = m}‘

<

{2 [0,1%61/Dn 1] [ip.(,2) = m}‘

<K l/Drn(bm_1 Pt bS,P,t)q .
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4 Coupling between diagonal products

By Lemma 4.16 the product bz p b1 p,¢bo belongs to [q%, q><"]. Hence by 1p b3 py
is equivalent to by_1,p,t = bo,pt. We thus now need to bound by above the value of
|Kn|/Dn(bin—1,p,¢ = bo,p,e) ' We apply Lemma 4.16 and distinguish three cases depending
on the value of m.

« If m < pn then [Knl/Dn(bm_1,p,t = bop,e) ' < q 5" ' [Knl/Dn.

« Ifm=p,+1then [Knl/Dn(bm_1,p,t = bop,c) " =q Pr|Knl/Dn.

« Ifm>pn +1 then [Knl/Dn(bm_1,p,c = bop,e) " X ¢ exp(—lim—1-p,)IKnl/Dn.
So first assume that m < py, noting that k™Qy < Dy, we get

Vi< Y S ‘{(f,t) € G [Pu(f) = P and jp,. (B (£,1),2) = mH
P€[0,Qn—1] te[0,k™—1]

/N

> g Knl/Da,

P€(0,Qn—1] te[0,xk™—1]

= Q1‘L'<nc‘]7|<‘“71 [Knl/Dn

< [Knlg™" "
Applying the same argument to the right most set of eq. (4.24) we can also bound its
number of elements by [K,q~*™ " and thus get X5 | < 21Knlqg =" ' ~ [Knlq*

the other values of m, replacing ¢=%™ ' in the above inequalities by the corresponding
-1

m—1

. For

value of (bym_1 Pibope) ! we obtain the lemma.

O]

ACTION ON THE CURSOR Let us now treat the case when s = (0,1). Recall that
according to Proposition 4.23 the case when io(t) = 0 is slightly different from the one

where i(t) > 0. Let us define

L [{muesiom =0 joih s, 2) =mpifi=o,
T muesl ol =1, jo(x(fyts), i+ 1) =m) ifi>o.

Our goal is to give an upper bound to the number of elements in Uy Z,, ;.

Lemma 4.29

When s = (0,1) let X3, :== U{‘;OT Zy i Then

K™ ifm<n+1,

K. |k 2k —k
< | e \
|9, KT g 2K P ifm=p,+1.

m—1

ifn4+1<m<pn,

IKnlk g2 " Prexp (—ln1-p,) ifm>pn+1.

But first let us bound the number of elements in Zy, ;.

Claim 430. If m < 2 then |Z,, ;| =0 for all . If m > 2 then |Z,, ;| =0 for alli > m—1 and
forallo<i<m-—1

KK itm=1+2,

m—1

KK |g2e e ifi+2<m<pn,

|Zm,i| .\< . i1 -
KUK nlg?< " Pn ifm=p,+1,

KK |g2e P exp(—lm—1-p,) ifm>pn+1.
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Proof of the claim. Recall that by definition of jp ¢ it verifies jp¢(z,i+1) > i+ 1 for all i.
Soif m<2theni+1>m—1foralli> 0and therefore Zm i is empty. Similarly it is also
empty forallm >2and alli>m—1.

Now assume that m > 2 and 0 < i < m—1 (we will treat the case i = 0 separately). Fix
Pe[0,Qn—1] and t € [0, k™ — 1] such that iy(t) = 1. By a similar argumentation as the one
used to prove Lemma 4.28 we get

‘{(f,t) € Gn | Pulf) =P, jpu(Bnlf,0),i+1) = m}‘

< )

{ze [0, max 9] ‘jp,t(z,i—f— 1) =m}
<

1K l/Dn(bm—1,p¢ = bita,pe) "

zKi+1 7K“‘71

If m < pn, Lemma 4.16 implies that (by—1,p,¢ = bis2,p,c) " is less or equal to g
Note furthermore that the number of t in [0, k™ — 1] verifying io(t) = 1 is less than k™.

Using these two remarks and then cthat Q. k™ < Dy, we get
g ) &

|Zm,i| <
Pel0,Qn—1]t, ip(t)=1

< Z Z |g<’.n|/an2Ki+17Kn171

Pel0,Qn—1]t, ip(t)=i

i i1 em—1
< Quk™ HKnl/Dng?s " —x

i1

{(6,0) € 9 [Palf) =P io(t) = 1 Buf,0),2) =m |

Km—]

< Kii|g<n|q2K

1_gm—1

For the other values of m, replacing g
1

in the above inequalities by the corre-
sponding value of (bm_1,p ¢ = bo,p,t) " we obtain the claim for i > 0.
Fina]]y when 1 = 0, rcplacing bit2,p,t by bz p,¢ in the argument above, we obrtain the

SCCOl’ld part Of tl’lC Cl:lim. OJ

Proof of Lemma 4.29. We can now use the above claim to bound Z?;o] |Zm il Firstifm <2
then [X5,| =0 by Claim 4.30.

Now assume that m < n+ 1 then Claim 4.30 implies

m—2 m—3
X, = Znir il X k- (Mm=2)|K K|k tg2e =
| m|— | n+l,1|ﬂ K | n|+ ‘ n‘K q

i=0 i=0

m—2
- K—(m—2)|g<n| + ‘Kn‘q—nﬁ“*1 Z K—iq2K1+] .
i=0

But the sum on the right is equivalent to its last term, namely k™3¢?<™ *. Recall more-

<1

m—1

over that k > 3 thus 2k™ 2 is strictly smaller than k™! and hence q“miz*K

Thus

X5l kM2 g0 kM3 2R TR 5,

< (
# Ki(miz)w{n‘ + Km73|g<:n| ~ K7m|g<n|-
<

Assume now thatn+1 < m < py. Then any i € [0,n — 1] verifies i + 2 < m thus using

Claim 4.30 we get

n—1 n—1 - ,
Xl = ) 1Zmal X ) Kl g2 e
i=0 i=0
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As before, the sum Z 0 |<_‘qZK bcing equivalent to its last term we obrtain that [X§,|

m—1

is equlvalent to K|k g2k K . Similarly it m=p, +1 Claim 4.30 implies that

n—
—\< Z K71|Kn|q2K‘+]7D" - Kfn‘j{n‘qZanDn'
i=0

Finally if m > p,, + 1 a similar proof gives

n—I1

< et P e (1)

i=0

~ K MK lg2 " TP exp (—lm—1—p,.) -

433 Integrability

To goal of this subsection is to prove Theorem 1.18 and its prcciscd version Theorem 4.1.
We prove that the sequences (Gn)n and (Hn)n defined before verify the condition of
eq. (21) with ¢ = po pgij‘.
and then the case when s = (0,1).

To do so we first treat the case when s belongs to 81 U 8,

Proof of Theorem 4.1. Consider A and A verifying the conditions (F) page 22 and assume
that the sequence 1y, exp(—ln—1) is summable and that there exists ¢ > 0 such that po
Pf,i; (x) S x!e

Let (Gn)n and (Hn)n as defined respectively in Section 4.1 and eq. (4.17) and consider
s € Sa. Let us show that eq. (2.1) is verified for ¢(x) :=po pgij‘.

Let R > 0 and let n € N and m € [0,pn + My]. By Proposition 4.23 if (f,t) belongs to
Xs, then

d (tn(F, 1), 1 ((F,1)s)) < {Km 1€m<p”
Dnlm—p, ifm=pn+1.

In particular if we denote by r:= d (1 (f, 1), ta ((, t)s)) we obtain that ¢(r) < @ (k™) when
m < pn and @(1) X @(Dnlm_p, ) for m > pn + 1. Hence

{(f 8) € 61 doc, (tn(f, ), n((F,1)-5)) =1}

2o EN

=0 (425)
Pn s |X]sjn+1| pPnt+Mn | ‘

o(x |9 TolPn) =g + > @(Dntmfpn)| -
m:O n n m=pn+1 n

We are going to study two different cases, depending on whether s = (0,1) or not and

study each of the three terms above separately.
FIRST CASE

Letn € N and R > 0 and first assume that s € 8§; US,. We use Lemma 4.28 to bound
IX$al, Remark 4.10 to simplify the quotient [Xy|/|Sn| and the assumption made on @. If
2<m< pn We obtain

X5l [Knlg—""
< gmy—_——~1
Gl O g

(k™) < plem)gT g i ge
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Note that this last term is a summable sequence. Moreover if m < 2 then [X8,] is Cqual to

zero, hence
Pn

QK™)X5l/IGn] X Y k=g

m=0 m=2

Wl’lert‘, the 135]: term is a constant thﬁt dOCS not depend on n nor on R. Slmll.lrly fOr 311
m = pn+2

X3 [Knlg~Prexp (—lm_1— N
Xl < (Dl ) Kl P (1),
|G |G

~ @(Dnlm—pn)q D exXp ( m—1 pn)
< Dnlmp, d 7" oxXp (—lm1-p,) -

¢ (Dnlin—p,)

But Dn/qP" < 1 and by assumption the sequence ln_p, exp (—lm—1-p, ) is summable,

hence
PrntMa

Z © (Dnlm,pn ‘9 | Zl exp (—lm—1) < +o0.

m=pn+2

The right most sum being a constant that does not depend on n nor on R.

If m =pyn + 1 then using also eq. (4.12) we get

XS
@ (kPm) : réﬁ\” S kP17 gmPn S Prg <™ 1.

Hence QH thI'CC terms OfthC lCﬁI SidC Oqu. (425) can bC bOUl’ldCd by a constant th:{t dOCS

not depend on n nor on R and thus eq. (2.1) is verified for s € 8; U 8,.
SECOND CASE

Assume now that s = (0,1). Using Lemma 4.29 and Remark 4.10 we get

m ifm<n+1,

Xl _ T Lo ifn+1<m<pn,

|9n\ K g2<" D ifm=pn+1.
g2 Dnexp (lme1opy ) ifM>pa 1.

Thus for all m < n+ 1 we have @(k™)|X5,1/|Gn] X k™08 =™ = =M Byt (k&™) is a
summable sequence, we can thus bound by above the value of Z:;:o ©(K™) X5 /1Gn| by a
constant that does not depend on n nor on R.

Now for all n +1 < m < pn we have @(k™)|X5.1/|Gn| X k™08 g2<" <"1 Let us
prove that this last term is summable and give a bound Whlch does not depend onn. Note
first thatk >3 and m—n—1>1 imp]y that 2 — k™ =T < 0. Therefore

I —em—1 n 2—gm—1—n g_gm—1—n _gm—T1-—m
q =(q*") <q ~q . (4.26)
Thus
Pn . Pn ; + oo
ey n_,m o m n om
§ gm(1—¢) anK K < Z KM n Z m+l < +o0.
m=n+2 m=n-+2 m=1

Note that the right most sum does not depend on n nor on R.
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4 Coupling between diagonal products

Assume that m > p,, + 2. Using cq. (4.4) we obtain D, k™™ < Q. Furthermore recall
that Q > 3 thus 2 — Q,, < 0 and hence by a similar argument as in eq. (4.26) we get
q?<"7Pn < q27Qn ~ . Hence

PntMn
D> ¢ (Dulmp,) Xil/IGn]
m=pn+2
PntMn
4 Z Dnlmfpn KianKniDn cxp (7lm*lfpn)
m=pn+2
Pn+Mn
<Qua @ ) lnp.oxp (<ln1p,)-
m=pn+2

By Lemma 4.5 (Qn)n is unbounded thus Qnq=9" can be bounded uniformly on n by a
constant and by assumption ly_p, exp(—lin—1-p, ) is summable. Hence the above last
term is bounded by a constant not depending on n nor R.

Finally assume that m = p,, +1. Using a similar argument as above to estimate the value

of D,,q2*" ~Prnk™™ we obtain
(p(Dnll llX;n+1 l/lgnl % Dnll KinquniDn —N< aniinl .

This last term can thus also be bounded by a constant. Hence the three terms in eq. (4.25)
are bounded by constants that do not depend on n nor on R. Thus eq. (2.1) is verified for
s=(0,1).

CONCLUSION

By Theorem 2.3 We obtain that their exists a (¢, LO)—intcgrablc measure cquivalcncc cou-
pling from A to A. ]

Let us conlude by the proofs of our two last corollaries.

Proof of Corollary 1.20. Let p : [1,400[— [1,4o00[ such that p and x/p(x) are non-decreasing
and assume that there exists e > 0 such that p(x) < x'~¢. Consider G := A the associated
cliagonal product. By Corollary 1.19 there exists a (p, LO)—intcgrablc measure cquivalcncc
coupling from G to the lamplighter group (A xB):Z. By Example 2.4 there exists a measure
cquivalcncc coupling from (A x B), Z to H that is (L, cxp)—intcgrablc. It is thus (P, exp)-
integrable for all increasing map ¥ : Ry — Ry In particular if ¢ = id we can compose
the couplings and obtain by Proposition 3.10 a measure equivalence coupling from G to H
that is (p, LO)—intcgrablc. Hence the corollary. ]

We show Corollary 1.21 similarly, composing the coupling from Corollary 1.20 with the
one in Theorem 4.31 (see below).

Theorem 4.31 ([DKLMTzo, Th. 8.1])

For all k > 2, their exists an orbit cquivalcncc coupling from Z/kZ , Z to BS(1,k) that
is (L*, exp)-integrable.
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Appendices

DIAGONAL PRODUCTS

In order for this article to be self contained, we repeat here the introduction to diagonal
product made in [Esc22, Section 2] and complete it with a finer estimate of the metric in
Proposition A.22. This section recall necessary material from [BZ21] concerning the defi-
nition of Brieussel-Zheng’s diagonal products: we give the definition of such a group, recall
and prove some results concerning the range (see Definition A7) of an element. Finally
we present in appendix A3 the tools needed to recover such a diagonal product starting

with a prescribed isoperimetric profile and compute useful estimate on the metric.

Aa  Definition of diagonal products

Recall that the wreath product of a group G with Z denoted G Z is defined as G, Z :=
BmezG X Z. An element of G Z is a pair (f,t) where f is a map from Z to G with finite
support and t belongs to Z. We refer to f as the lamp configuration and t as the cursor.

A1 General definition

Let A and B be two finite groups. Let (T )men be a sequence of finite groups such that each
I'm admits a generating set of the form A, UB, where A, and B, are finite subgroups
of Ty, isomorphic respectively to A and B. For a € A we denote ay, the copy of a in Ay,
and similarly for Bn,.

Fina]]y let (ki) men be a sequence of‘intcgcrs such that k41 = 2k for all m. We define
Am =Tm 1 Z and endow it with the generating sct

San = {(id, 1} U{(and0,0) | am € An} U {(bm8i,,0) [bm € Am ).

Definition A1

The Bricussel—Zheng’s diagonal product associated to (Im)men and (km)men is the sub-
group A of ([T, 'm) 1 Z generated by

5a:={((id) 1)} U{((@mB0)r0) Ta € AL U{ (BB, )r0) [0 € B

The group A is uniqudy determined by the sequences (Mn)men and (k) men. Let us
give an illustration of what an element in such a group looks like. We will denote by g

the sequence (gm)men-

Example A.2. We represent in Figure 15 the element (g, t) of A verifying

(9>t) = ((gm)meN)t) = ((amEO)va)((bmékm)m)o) (O>3)a

when k, = 2™. The cursor is represented by the blue arrow at the bottom of the figure.
The only value of gy different from the idcntity is go(0) = (ap, bo). Now if m > 0 then the

J

only values of gy, different from the identity are gm (0) = am and gm (km) = bm.
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ng aT\ | L‘H
l
g2 az by :
! |
g1 ag A b : :
90 (a0,b0) | | |
| \ | \ | |

S N P Pa— P

Cursor

Figure 15: Representation of (g,t) = ((amd0)m,0) ((bmdx,, )m,0)(0,3) when ky, =2™.

Aa.z  The expanders case

In this article we will restrict ourselves to a particular fgmiliy ofgroups (T mew called
expanders. Recall that (Ny)men is said to be a sequence of expanders if the sequence of
diameters (diam (T ))men is unbounded and if there exists ¢y > 0 such that for all m e N
and all n < |Ml/2 the isoperimetric proﬁlc verifies Ir,, (n) < co.

When talking about diagona] products we will always make the following assumptions.
We refer to [BZ21, Example 2.3] for an explicit example of diagonal product verifying (H).

-

Hypothesis (H)

- q:=]AxB|=6;

e (km)m and (Lyn)m are sub—sequences of geometric sequences.

© Kmi1 =2k for all me N;

* (Mm)men is a sequence of expanders such that I, is a quotient of A xB
and there exists ¢ > 0 such that diam (") < clyy for all m e N;

« ko =0 and Ty = Ay x By;

o (({Am, B\ = Am x Biy where (([Am, Bm])) denotes the normal
closure of [Am, Bml.

Recall (see [BZ21, page 9]) that in this case there exist ¢y, ¢ > 0 such thag, for all m

cilm —c2 < ]1’1|rm\ <cilim +ca. (A1)

Finally we adopt the convention of [BZz21, Notation 2.2] and allow k., to take the value
+00. In this case A, is the trivial group. In particular when k; = 400 the diagonal product

A corresponds to the usual lamplighter (A x B): Z.

A3 Relative commutators subgroups

For all m € N let 0 : Ty — (([Am, Bml))\m = A x By be the natural projection. Let
07 and 85, denote the composition of 8,, with the projection to Ay, and By, respectively.
Now let m € N and define My, := (([Am, Bml)). If (gm, t) belongs to Ay, then there exists

aunique ghy : Z — Iy such that gm = ghnOm(gm).

Example A 3. Let (g,3) be the element described in appendix A.1.1. Then the only non-
trivial value of 80(go) is 00(go(0)) = (ap,bo). If m > 0 then the Only non trivial values
of O (gm) are O (gm(0)) = (am,e) and O (gm(km)) = (e,bm). Finally for all m we have

g = id since there are no commutators appearing in the decomposition of (g, 0).
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Example A.4. Assume that ky,, = 2™ and consider first the element (f,0) of A defined by
(£,0) := (0,—k1) ((amd0)m,0) (0, k7). Now define the commutator

(9,0) = (f)O) : ((bmékm)mvo) : (f)0)71 . ((b:nlékm)m)o)

and let us describe the values taken by g and the induced maps 0., (gm) and gjn (see Fig-
ure 16 for a representation of g). The only non-trivial commutator appearing in the values
taken by g isgi(kq) which is equal to a; by aﬂbﬂ. In other words go is the identity7 thus
8o = id. Moreover when m = 1 we have 67 = id and the only value of g} (x) different from
cis gj (ki) = arbya; by (on a blue background in Figure 16). Finally if m > 1 then gy, is
the idcntity thus 0,, = id and g}, = id.

92 wa, =e boby ' =e
e
91 arbia;'b;

Jdo (ng(ln 1 ,bobg D)
0>~ 0 7

(ee)
| | | | |
Lo F I, =2 '3 I, =4

?

Cursor

Figure 16: Representation of (g,0) defined in Example A4
Let us study the behaviour of this decomposition under product of lamp configurations.

-1
Claim A5, If g, fm @ Z — Ty then (gmfim) = ghnOm(gm)fim <9m(9m)) .

Proof Since gm = O (gm)gim and i, = 01 (fin ) fi We can write

Imfm = g/mem(gm)'fgnem(fm) = gqnem(gm)f/mem(gm)ilem(gm)em(fm)~

But 0,1 (gm)0m (fim) takes values in A, x By, and I, is a normal subgroup of Ty thus the

map I Om (gm ) FmOm(gm) " takes values in I",,. Hence the claim. O

Combining Lemma 2.7 and Fact 2.9 of [BZ21], we get the following result.

Lemma A.6
Let (g,t) € A. Forallm € Nand x € Z we have g (x) = g (%)% (9o (x))08, (go (x —km))-

In particular the sequence g = (gm) ey is uniquely determined by go and (gh) e

In the next subsection we are going to scc that we actuaﬂy need only afinitc number of

elements of the sequence (gin)men to characterize g.

A2 Range and support

In this subsection we introduce the notion ofl”ange of an element (g,t) in A. We denote

by 71, : A — Z the projection on the second factor.

Definition A7

If w = s7 ... 51 is 2 word over Sp we define its range as

range(w) = {7’[2 <ﬁ sj> [i= 1,...,n} .
j=1

52



A Diagonal products

The range is a finite subinterval of Z. 1t represents the set of sites visited by the cursor.

Definition A.8

The range of an element 6 € A is defined as the minimal diameter interval obtained as
the range of a word over Sa representing .

When there is no ambiguity we will denote range(8) the diameter of this interval.

Example A.9. Let (g,0) € A such that range(g,0) = [0,6], that is to say: the cursor can

only visit sites between 0 and 6. Then the map g can “write” elements of A, only on

sites visited by the cursor, that is to say from 0 to 6, and it can write elements of B, only

from km to 6 + k. Thus go is supported on [0, 6], since ko = 0. Moreover, commutators

(and hence elements of T"1,) can only appear between k., and 6, thus supp(g'm) € [k, 6].
Such a (g,0) is represented in Figure 17 for ky, = 2™.

gm () belongs to...

B s 0o B e [ o

0 ky ky 7 ks kn

Figure 17: An element of A

Recall that gim : Z — T If m < ((6), then gim(x) belongs to Ay, if x € [0,km — 1], it belongs to 'y
if x € [kin, 6] and to By, if x € [7,6 + ki) and equals e elsewhere. If m > [(6) then g (x) belongs to
Am if x € [0,6] and to By, if x € [km, 6 + kin] and equals e elsewhere.

Let us now recall a useful fact proved in [BZ21]. For all n € N we denote by I(n) the

integer such that Kin) <M < Kym)41-

Claim A.10 ([BZ21, Fact 2.9]). An element (g,t) € A is uniquely determined by t, go and

the sequence (gﬁn)mg(mnge(g)t)).

Example A.11. Consider again (g,0) € A such that range(g,0) = [0,6], which was illus-
trated in Figure 17. Since k3 = 8 > 6, the element (g,0) is uniquc]y determined by the
data go (that is to say, the values read in the bottom line) and the values of g for i =1,2
(namely, the value taken in the blue area). Figure 18 represents the aforementioned char-

acterizing data.

A.3  From the isoperimetric profi]c to the group

We saw how to define a diagonal product from two sequences (K )m and (). In this
section we recall the definition given in [BZ21, Appendice B] of a Brieusscl—Zheng’s group
from its isoperimetric profile. We conclude on some useful results concerning the metric
of these groups.
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0 9] k2 7

Figure 18: Data needed to characterized g such chat range(g) C [0, 6] when kp, =2™

A3 Defmition of A

Recall chat in the particular case of expanders (see appendix A12) a Brieussel—Zheng’s
group A is uniquely determined by the sequences (km)men and (L) men (Where 1y, corre-
sponds to the diameter of Ty,). Thus, starting from a prescribed function p, we will define
sequences (K )men and (L )men such that the corrcsponding Averifies I ~po 10g. First,
let
C:= {p :[1,400) — [1,400) p continue, ) } .
p and x — x/p(x)non—decreasmg

Equivalcntly this is the set of functions p satisfying

(vx,c 2 1) p(x) < plex) < cp(x). (A.2)

So let p € €. Combining [BZ21, Proposition B.2 and Theorem 4.6] we can show the fol-
10wing result (remember that with our convention the isoperimetric profﬂe considered

in [BZ21] corresponds to 1/1,).
Proposition A.12

Let k,A > 2. For any p € € there exists a subscqucncc (Km)men Of (K™)nen and a
subsequence (Lm)men Of (A™)nen such that the group A defined in appendix A 1.2 verifies
Ia(x) = polog.

Example Aa3 ([BZ21, Example 45]). Let a > 0. If p(x) := x"/(**) then the diagonal
product A defined by km = k™ and 1, = k¥™ verifies [n ~po log.

m

Example A.14. If p = log then the diagonal product Z defined by ki = k™ and 1,,, = k*
verifies [n = po log. More gcncrally if r > 1 then the diagonal A defined by km = k™ and
Ll = expo--exp(k™) verifies In ~po log for p(x) = logo -0 10g.

T rumes T times

Recall that we allow ky, to take the value +oo (see below eq. (A.1)).

Examplc Aas. If p(x) = x then the diagonal product defined by l,, = 1 for all m and
km = +oo for all m > 1 verifies A = (A x B): Z and I =~ log.

A3.2 Technical tools

Now let us recall the intermediary functions defined in [BZ21, Appendix B] and some of
their properties.

Let p € € and let  such that p(x) = x/f(x). The construction of a group corresponding
to the given isoperimetric proﬁle P olog is based on the approximation of f by a piecewise
linear function f. For the quantification of orbit equivalence, many of our computations
will use f and some of its properties. We recall below all the needed results, beginning
with the definition of f.
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Lemma A.a6

Let p € € and f such that p(x) = x/f(x). Let (km) and (1;) given by Proposition A.12
above and A the corresponding diagonal product. The function f defined by

f(x) == (A.g)

kn?+1 if‘X € [km+1 lm>km+1lm+1]>

_ {lm i£x € Kol Kot 1 Ly

verifies f ~ f. In particular the map p defined by p(x) = x/f(x) verifies p ~ p.

Example A.17. If p(x) = x then f(x) = 1 leads to 1, = 1 for all m and k., = 400 for all
m > 1. In this case A= (A x B), Z.

Remark that both f and p belong to €. In particular they verify eq. (A.2), which is only

true when ¢ and x are greater than 1. When ¢ < 1 we get the following incquality.
Claim Aa8. If0 < ¢’ < Tand x’ > 1/¢ then ¢/p(x’) < p(c'x').

Proof. 1£0 < ¢’ < 1 then 1/¢’ > 1, thus we can apply eq. (A.2) with ¢ = 1/¢’ and x = ¢/x to

obtain p(x') = p (L¢'x') = plex) < cplx) = Lp(c'x)). ]

c/
A3.3  Inverse map

In order to prove Theorem 1.18 we will need to consider the inverse of a map p € €. But
such p is not ncccssarily bijcctivc: for Cxamplc the map p € C defined by Lemma A.16 is
constant on the intervals [k 1lm, Kmt1lns1]. We show here that there exists a bijective
map pp; € C such that Pbij ~ P-

Lemma A.19

Let 1/2> 8 > 0 and p € €. There exists a bijective piccewise affine map py;; such that
Pyij ~ P ~ p. Moreover it p(x) =y for somey > 1 then x < pl:ij‘ (2y).

The defiition of Ppij 1 summed up in Figure 19.

Km+1

K 8 -~ -——

| L - |
T T 1 T
0 Kmtlm1t Kmlno Kmlm! Km+1lm

(K — 5)lm (K + )l

Figure 19: Definition of Pbij

Proof. Consider p € € and p the induced piecewise affine map defined in Lemma A.16. In
particular p ~ p. Define Pbij such that Pyij(x) = p(x) for all x € [ (km + 8) L, (Kmi1 — 8) L]
and such that py,; coincide on [(km41 —8) lin, (km1 +8) Lm1] with the affine map verify-
ing
(Km+1—8) lin = P ((Km+1 —8) lin) = (km+1 —8)
(Km+1 +8) lint1 9 P (K1 +8) bint1) = (k1 +98).
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Then for all x € [kmy1lm — 8, Kmi1lmaet + 0]

PLij (%) = B(X)| < B (kms1 +8) Lms1) = B (K1 —8) L) = 28.

Hence py; (x) — p(x)| < 28 for all x. Since p(x) tends to infinity we thus get Phij ~ P-
Finally assume that p(x) =y > 1. Then by the above estimates Pbij (x) belongs to [y —
8,y +38]. Since py; is increasing inc implies x < pgﬁ] (y +98). Buty + & < 2y, hence the last

assertion. OJ

A.3.4 Metric

We recall here some useful material about the metric of A and refer to [BZ21, Section 2.2]

for more details. First, let (x) := max{x, 0}.

Definition A.20

Forj e Z and m € N let T == [jkmn/2, (j + 1km/2 = 1]. Let f : Z — Ty The essential
contribution of f, is defined as

En(fm) ==km > max ([fm (x)lr, — 1), .

The following proposition sums up [BZ21, Lemma 2.13, Proposition 2.14).
Proposition A.21
For any 6 = (f,t) € A we have

[(range(d))
(£, 6)la <500 > [(fmyt)lan,

m=0

[(fmst)la, <9 (rﬁngc(fm,t) + Em(fm)) .

For some of the proofs we will need more specific estimates. These needed results are

summed up in the fbllowing proposition.

Proposition A.22

Let D > 0 and consider (f,t), (g,u) € A such that their range is included in [0, D].
« Let I C [0,D] a subinterval of [0, D] containing t and u. If‘fg = forallj>1and
fo(z) = go(z) for all z € Z\I then

dA ((f)t)a (9»“)) g Sdl‘lm (I) .
» Leti>1.1ffj = gf for all j > i, chen

dA ((fa t)a (gau)) —\< D]'l

Proof Let us first introduce some notations. Recall that Aj is gcncmtcd by SA; defined

page 50. For an element s € 85, we define

(0,1) if s=(0,1)
§:= ¢ ((ambo)men,0)  if's = (a;80,0)
((bm5km)meN yO) i{:S = (békj,O).
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Now let D > 0 and consider (f,t), (g,u) € A such that their range is included in [0, D].

« First consider J an interval containing 0 and let (h,0) € A such that h/,, = id for all
m > 1and hy,(x) = 0 for all x ¢ J. Recall that Ay = (A x B) 1 Z thus |(ho,0)[a, <
3diam (J). Now decompose (ho,0) as a product (ho,0) = s1 = S|(ny,0) With s; € 8a,
and consider §; as defined above. Then (h,0) = 85 - §j(n,,0) by Lemma A.6. Thus
[(h,0)]a < |(ho,0)la, < 3diam (]).

+ Let I'be a subinterval of [0, D] containing both t and u and assume that } = g for
allj > 1and fo(z) = go(z) for all z € Z\I. Then (f,t)~'(g, t) verifies the assumptions
of the previous point with ] = I—t. In particular ] has same diameter as I. We thus
obtain the first assertion of the lemma noting that (f,t)~"(g, u) = (f,t) (g, t) (0, u—
t) and ju—t| < diam ().

Now for the second assertion.

+ Leti>1and (h,0) € A such that hf = id for all j > i. Let us first bound [(hy, 0)la,,

for all m <i. Using Definition A.20 we get

Enm(hm) < kndiam () [ij = T N range(hm, ) # @

But the range of (hm, t) is contained in [0, D] thus 1'ight most set contains at most

2D /km + 2 elements. Hence, by Proposition A.21

(R, O)|Am <9 (r’»mgﬁ(hm, 0) + Emhm)
< 9(D 4+ diam (Ty) km (2D /km + 2)) ~ Dl

Now let (hin0) = s1,m = sm,, be a decomposition of (hfy,0) in a product of mini-

mal lenght of generators sim € 8a,,. Note that Lemma A.6 implies |(hiy,0)[a,, ~

|(hin, 0)la,, - For each generator sq m consider the corresponding 8 1 € 84 and de-
note (h(™)0) = [T; $i,m. Since hiy(x) is a product of conjugate of commutators
(by definition of Tf,) the element (h{™),0) verifies R — nand hj(m) = id for
all j # m (see for Figure 16 for an illustration). Therefore using the hypothesis that
hiy, = id for all m > i and the decomposition given in Lemma A.6 we can show that

(h') O) = ngi Hll\ir]n gi,m- 'Ihus

i i i
(1, 0)la < 1(ho,0)lag + Y 1M, 0)la, X D I(him,0)la,, = ) Dl

m=0 m=0 m=0

Since (L )m is a subsequence of a geometric equence this last term is equivalent to
Dl;.

» Now assume that f} = g§ for all j > i. As for the first assertion of the lemma, we
apply the result of the last point to (h,0) = (f,t)~"(g,t) and conclude noting that
lu—v| <D.

O
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B Variable base

VARIABLE BASE

We compute here some results concerning the decomposition of an integer in some fixed
or variable base. We start by showing the existence and uniqueness of such a dccomposi—
tion, then study the behaviour of this composition under addition and conclude on some

counting result.

B.1  Decomposition in variable base

If g € N*, we know chat any integer can be uniquely written in base q. We extend here
such a definition for a “variable” base. Consider (b;)ien a sequence of integers greater or
equal to 2.

Lemma B.a

For all x € N there exists a unique sequence of integers (x;)ien such that

i—1
(ieN)O<xi<bi—T1 and x=) x]]b;.

iEN  j=0

Moreover x belongs to0 {0, ..., [Ti—o bi — 1} if and only if x; = 0 for all i > n.

Prooﬁ Consider x € N and let us procccd to the cuclidean division of x by bo: there exist
do € N and 0 < xp < bg such that x = xo + boqo. Now for all i € N define inductively qi+1

and xi,1 such that
0<xis1 <biyr and gy =xip1 + biv1qisr.

Since (qi)ien is a strictly dccrcasing sequence of integers, there exists n € N such that
gi = 0 for all i > n. Thus, by definition of the sequence, we also getxy =0 for all i > n.

Hence,

X:X0+boqo:Xo+bo[X] +b1q1)

=x0 +bo(x1 +b1(- (an_1 +bn_ran) =) = in Hbj

Hence the existence. For the uniqueness, consider (x}); to be another such sequence, then

Xo — Xy =bo <Zx Hb _ZX‘Hb )
=0 j S0 joi
Thus b divides xo — x§. But xo,%} € {0, ..., bo — 1} thus xo — x}, = 0. Iterating this process,
we show that x; = %] for all i. Hence the unicity.
Final]y, let M e Nandi> M. Ifx; > 0thenx > Hi]\io b;. On the contrary if x; =0 for
all i > n then

M

M—1
<(bo—N+bo(br =1 +=+bu—1 ][ o5=]]b—
=0

j=0 j
M
Thus x € {0, ..., [ 1= bi — 1} ]

Example B.2. If b; = q for all i we obtain the usual decomposition in base g.
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B Variable base

An analogue result can be obtained for a finite sequence (bo, ..., bp) by allowing the last

coefhicient to be greater than b.

Corollary B.3
Let M = 0 and by, ..., by be integers greater or equal to 2. For all x € N there exists a
unique sequence ofpositivc integers (xi)ogi<m such that x; < by —1foralli < M and
x=YMox H};; b;. Moreover x belongs to {0, ..., [Ti~ o by — 1} sor some m < M if and

only if x; =0 for all i > n.
We will denote [xo, ..., xmlb the integer x such that x = Z?io Xi H;;: b;.

Example B.4. Consider by =2, by =5,b; = 8. If x =100 then x = [2,0,12]y.

B.2 Addition in variable base

Let M > 0 and (bi)o<i<m be a sequence of positive integers. Our goal in this subsection
is to study the behaviour of the decomposition in base (b;); under addition.
M . . L
Let x,y € [0,]]io bi — 1] and write their decomposition in base (bi)1<j<m as x =

(X0, .y Xmlp and y = [yo, ..., ymlv respectively.

Lemma B.5

Let x and y be as above. Let k € [0,M] and define jo(x, k) := min{j > klx; < bj — 1}.
Assume that x is smaller than y. If y —x < bg - by then Xj =VYj for all j > jo(x, k).

Let us describe the idea of this result. First note that the definition of j, implics that
xi = by — 1 for all k < 1 < jo(x,k). Now if y — x < by = by, then there exist zo, ...,z such
that z; < by — 1 for all i and y — x = [zo, ..., z]p. Posing the addition of x with [zo, ..., zi]
(see Figure 20 below) we see that it can modifiy xo, ..., xx and create a carry of 1 that can
only be absorbed by Xjo - Indeed for all k < i < jo(x, k) the carry of 1 will Changc xi =bi—1

in 0 and induce a carry of 1 on the next term.

XM+ o+ X411 Xjo+ bjo—1—1 +=+ by =T+ xet -+ x0
+ Zy T o Z9
= xmt Xt X F 1+ 0 +t 0+ Ykt =+ Yo

Figure 20: Addition and behaviour of the carry

Proof. We proceed by contradiction. Assume that there exists m > jo(x, k) such thatym, #

xm and let mg := max{m > jo(x, k) | ym # xm}. Then, by definition of my
mo—1 i—1

Y—%x=(Ym, = Xmo)bmo—1bo + Z (Y1 —x1) Hbj- (B.1)

i=0 j=0
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B Variable base

Let us use this dccomposition to prove thaty—x = bg - by. First remark that for all j € N,
since x; and Yj belong to [0,b; — 1] we have y; —%j; = —(b; —1). Moreover, by definition of

jo(x, k) we also have yj, (x,x) — Xjo (x,k) = —(bjo (x,x) — 2). Thus

mo—1 i—1
Z (ykixk) bj z 7(bjo(X,k) 72)b]o(xk ~bo — Z (by —1)bi_q - bo,
=0 j=0 i€{0,.;mo—TNjo
mo—1
=bj,x)-1bo— Y (bi=1)bi1bo
i=0

=bj, (x,k)—1 = Do — (bmg—1 b0 —1).

Moreover we assumed y > x, thus ym, —xm, > 1 and hence using eq. (B.1) and the above
inequality
Y —X = bmy_1bo 4 bj,(x,k)—1 b — (bme—1 o —1),
= bj,(x,k)=1 "+ bo + 1.
But by definition of jo it verifies jo(x, k) > k. Since we assumed y — x < by - bo, we thus
obtain the wanted contradiction. Hence x; = yj for all j > jo(x, k). O

Let us conclude this section on some density result.

Lemma B.6

Lets: N — N. Let i € [0,M] and consider 0 < ¢ < bg - by. If s is c-Lipschitz, then for
all y in [0, H;\io b; — 1] there exists x € im(s) such that x; = yj for all j > 1.

- . . M - .
Proof. Let us assume that there exists y in [0, [[=ob; —1] such that for all x € im(s) there
exists j > i such that xj is different from Yj. Then for such an x € im(s),

j—1

x—yl=]]bx> ku>c

k=0

That is to say for all x € im(s) we have [x —y| > ¢. In particular, considering x; := min{x €
im(s) | x1 >y} and x; := max{x € im(s) | x2 <y} we get that [x; —x2| = [x1 —yl+Ix2—y| > ¢
which contradicts the fact that s is c-Lipschitz. Hence the lemma. ]

B.3 Enumeration

As above, let M > 0 and (bi)o<i<m be a sequence of integers greater or equal to 2 and
denote the decomposition of x in base (b;) as x = [xo,...,xmlo. Recall that jo(x, k) :=
min{j > klx; < b; — 1}. For each integer m we give an estimate of the number of elements
x in [0, bm = bo — 1] verifying jo(x, k) = m.

Lemma B.7

Let m € [0,M]. If k > m then {x € [0, by +bo — 1] | jo(x,k) = m}is empty. If k < m then

[{x € [0,bpm = bo =11 | jolx, k) = m} ~ [Hb} —1 b))

Proof. First note that by definition of jo it verifies jo(x, k) > k. In particular if jo(x, k) = m
then m > k. Hence the first assertion.

60



bibliography

Now assume that k < m. By definition of jo if jo(x,k) = m then x; = b; — 1 for all
jeli+1l,m—1] (the interval being possibly empty wheni=m—1) and Xjo (x,k) belongs to
[0, b5, (x,k) — 2. In other words, for each j € [k+ 1, m — 1] there is only one possible choice
for the digit x; and there are by, — 1 possible choices for xy,. For allj ¢ [k+1,m] the digit

xj can take any of the bj possible values, thus
{x € [0,bn ~bo — 1] |jo(x,k) = m}| = by = b1 (bm — 1)by - bo.

Since (by, — 1) ~ by, we thus obtain the lemma. O
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NOTATIONS INDEX

=, = See notation 1.9.

IX| Cardinal of the set X.

oF Boundary of the set F.

Bi(t), Bi(f,t) Boxes used in the blocs decomposition (see Lemmas 3.1 and 4.14).
A See Definition A.1.

A See appendix A.1.

Fn A Folner sequence of A (see eq. (2.4)).

F. A Folner sequence of A (see Proposition 2.5).

g The sequence of maps (gm)men-

g’ The sequence of maps (g )m=o-

gm See appendix A.13.

G, Sofic approximation of A.

G The set {x € Gn | Bg, (x,7) = Bg(eg, 1)}

" Normal closure of [A,,, Byl

i0(t) Defined by io(t) :=min{i <n|t; < k—1} (see cq. (3;))
Ig Isoperimetric proﬁle of G.

tn Injection from §;, to Hn.

/\} See eq. (2.5).

Lq Lamplightcr group (A x B): Z.

[(n) Integer such that Kin) SN < Kin)41-

£(n) Integer such that kem) < k™ —1<Kgm)t1, e £n) =[(k™—1).
range(f,t) See appendix A.2.

Sg A generating set of the group G.

0 (fm) Natural projection of i, on Ay, (see appendix A.1.3).
0% (fm) Natural projection of i, on By, (see appendix A.1.3).
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