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Tug of War games and PDEs 
on graphs with applications 
in image and high dimensional data 
processing
Hamza Ennaji *, Yvain Quéau  & Abderrahim Elmoataz 

The aim of this note is to revisit the connections between some stochastic games, namely Tug-
of-War games, and a class of nonlocal PDEs on graphs. We consider a general formulation of Tug-
of-War games which is shown to be related to many classical PDEs in the continuous setting. We 
transcribe these equations on graphs using ad hoc differential operators and we show that it covers 
several nonlocal PDEs on graphs such as ∞-Laplacian, game p-Laplacian and the eikonal equation. 
This unifying mathematical framework allows us to easily design simple algorithms to solve several 
inverse problems in imaging and data science, with a particular focus on cultural heritage and medical 
imaging.

Local and nonlocal partial differential equations (PDEs) play a central role in the mathematical analysis and 
modelling of phenomena arising in physics, biology, economics, image and signal processing, computer vision, 
etc. Nonlocal PDEs compare favourably to the classical ones, thanks to their ability to preserve geometric and 
repetitive structures. Yet, the numerical approximation of classical PDEs, based on finite differences (FD), finite 
elements (FE) or finite volumes (FV) has a certain limitation especially when the computational domain is irregu-
lar or is a graph with arbitrary topology. Consequently, designing new methods for processing and analyzing 
data on graphs has been the object of many works. We mention among others1–7 where the authors propose the 
adaptation of many continuous PDEs and variational models such as the total variation flow, mean curvature 
flow and Hamilton-Jacobi equations to the framework of graphs. Naturally, this made discretizing and solving 
PDEs on graphs and networks gain attention and interest due to numerous applications in imaging, computer 
vision and machine learning, where data are given in the form of graphs or functions defined on graphs (see 
Fig. 1). Examples of such applications include, but are not limited to, segmentation, filtering, semi-supervised 
clustering, and classification.

In such settings, data points are vertices of the graph and are connected by edges if sufficiently close in a cer-
tain ground metric. Using discrete vector calculus1,8,9, one defines finite difference operators which are analogous 
to the differential operators in the continuous setting. This mimetic approach allows recovering many tools and 
results in the discrete level. This has been applied, e.g., for the ∞-Laplacian, the eikonal equation and the mean 
curvature flow8,10,11. Yet, each particular application requires resorting to a particular PDE, hence such approachs 
remain difficult to manipulate for non-experts.

On the other hand, the approximation of PDEs has recently taken advantage of the emergence of techniques 
based on deterministic or stochastic games such as the Tug-of-War (TOW) game related to the ∞-Laplacian12,13 
and the p-Laplacian14. In particular, this formalism has been considered for studying the existence and regularity 
of a class of PDEs15. The main tool to make a link between the TOW games and PDEs is the dynamic program-
ming principle (DPP): at each step of the game, the value function at some point can be obtained by summing 
up all the possible outcomes.

The main contribution of this paper is to propose general dynamic programming equations related to general 
TOW games, both in static and time-dependent case (c.f. Eqs. (5)–(6)). Using discrete calculus on graphs, we 
show that these equations are related to PDEs on Euclidean graphs, then we extend this to general weighted 
graphs c.f. (10). In particular, this allows us to extend the results of the preliminary work16 by covering both 
elliptic and parabolic PDEs as well as their game interpretation on general weighted graphs which we interpret as 
nonlocal TOW games. Moreover, we give the main arguments ensuring the existence and uniqueness of solutions 
to (10). Then, we will present in “Simple algorithms for inverse problems” section a few simple algorithms based 
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on averaging operators which can be designed to solve inverse problems in image, 3D points clouds and data 
classification based on the transcriptions of such equations on graphs. In “Applications” section, we will provide 
numerical examples to illustrate the proposed method on real-life problems arising from cultural heritage and 
medical imaging, before drawing our conclusions in “Discussion” section.

From TOW to PDEs on graphs
TOW games and continuous PDEs.  Let us briefly recall the notion of TOW as introduced by Peres and 
Sheffield14. The TOW game is a two player random turn zero-sum game played on a domain � ⊂ R

N with a 
running payoff function h : � → R and a payoff function g defined on ∂� . A token is placed at an initial posi-
tion x0 ∈ � and each player can move the token to a new position in an ǫ-neighborhood of the current position 
(typically, an open ball Bǫ(xk) if the token is at position xk ), for a fixed step size ǫ > 0 . A fair coin is tossed, if 
player I wins, the token is moved to the position xIk , otherwise to the position xIIk  . The process continues until the 

token reaches some position xf ∈ ∂� . In that case, the game stops and player I ’s payoff is g(xf )+ ǫ2
f−1
∑

i=1
h(xi) . 

Since the game is zero-sum, player I will try to maximize the payoff while player II will try to minimize it. For 
this game, the DPP reduces to

Moreover, it is shown12 that the limit of uǫ as ǫ → 0 solves the normalized ∞-Poisson equation

where the normalized infinite Laplacian is given by �N
∞u = |∇u|−2�∞u , �∞u =

∑

i,j
∂iu ∂iju ∂ju.

There exist several variants of this game. A first example consists in playing the previous game with a certain 
probability β ∈ [0, 1] , such that the token is moved to a position xIk or xIIk  with probability β , and to a random posi-
tion in Bǫ(x) with probability 1− β . This version is called the TOW with noise17,18, and it is connected to the DPP

with 

. Moreover, setting β = p−2
p+N  , p ≥ 2 , and defining the normalized p-Laplacian according to 

�N
p u = 1

p |∇u|2−pdiv(|∇u|p−2∇u) , the limit as ǫ → 0 of uǫ solves the following p-Laplace equation:

(1)











uǫ(x) =
1

2

�

sup
y∈Bǫ (x)

uǫ(y)+ inf
y∈Bǫ (x)

uǫ(y)
�

+ ǫ2h(x) in �,

uǫ(x) = g(x) on ∂�.

(2)
{

−�N
∞u(x) = h(x) in �,

u(x) = g(x) on ∂�,

(3)

(4)
{

−�N
p u(x) = h(x) in �,

u(x) = g(x) on ∂�.

Figure 1.   Examples of N-dimensional graphs, and of data processing problems which can be applied to them. 
(a) A 2D grid graph representing a color image, and the 2D segmentation of this image; (b) a 3D triangular 
graph representing a colored point cloud, and the 3D segmentation of this point cloud; (c) a ND point could 
graph constructed from a database of cells, and the data clustering of this graph. All these problems can be 
tackled using the same unified mathematical framework described in the present paper.
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This variant generalizes the classical TOW game, in the sense that (3) comes down to (1) when β = 1 , and simi-
larly, (4) comes down (at least formally) to (2), as lim

β→1
p = lim

β→1

2+βN
1−β

= ∞.
General TOW game: Now, let us consider an even more general version as follows. Assume that each player 

chooses a position with probabilities α and β , respectively, and that the game position moves with a uniform 
probability γ , with α+β

2 + γ = 1 . In this case, the DPP reads

This game can even be extended to the case where the probabilities α , β and γ depend on both time and position 
(t, x) ∈ [0,T] ×� := �T , where T > 0 . Therein, the value function of the game satisfies

In the particular case where α(x, t) = β(x, t) , we obtain a space and time-dependent extension of (3). Moreover, 
setting α(x, t) = β(x, t) = p(x,t)−2

p(x,t)+N  and γ (x, t) = N+2
p(x,t)+N  , p ≥ 2 , the game is related to a normalized p(x, t)-

Laplace equation19:

which generalizes (4). However, the interpretation of (5) and (6) in terms of PDEs, in the most general case where 
α , β and γ are only required to satisfy α+β

2 + γ = 1 , is less straightforward. In the next paragraph, we prepare 
the main ingredients for this interpretation, which will also help us transcribing TOW games and the related 
PDEs to the framework of graphs.

Reminders on differential operators on graphs. 
Definition 1  (Weighted graph) A weighted graph G = (V , E ,w) is a collection of vertices V , edges 
E ⊂ V × V and edges weights w : V × V → R with w(x, y) > 0 if (x, y) ∈ E and w(x, y) = 0 otherwise. 
We assume that G is finite (i.e., V consists of a finite number of points), simple (i.e., without 
loops and multiple edges), connected and undirected, that is w(x, y) = w(y, x) if (x, y) ∈ E . We 
write x ∼ y if (x, y) ∈ E and we denote by I(x) := {y ∈ V : x ∼ y} the set of neighbors of x.

Given a function u : V → R , we recall the definition of its gradients.

Definition 2  (p-eikonal operators) 
The discrete upwind nonlocal weighted gradients of u are defined by

where ∂±y u(x) =
(√

w(x, y)(u(y)− u(x))
)±

, a+ = max(a, 0) and a− = max(−a, 0).
Its Lp norm is defined as

Definition 3  (Laplacian operators on graphs) 

1.	 The 2-Laplacian on graph is defined by 

2.	 The ∞-Laplacian on graph is defined by 

3.	 For 2 ≤ p < ∞ , the game p-Laplacian on graph is defined by 

(5)

(6)

(N + p(x, t))∂tu(x, t) = �N
p(x,t)u(x, t)+ h(x, t),

∇±
w u(x) = (∂±y u(x))Ty∈V ,

�∇±
w u(x)�p =











maxy∈I(x)
��

w(x, y)(u(y)− u(x))±
�

for p = ∞

�
�

∇±
w u

�

(x)�p =
�

�

y∈I(x)
w(x, y)p/2

�

u(y)− u(x)
�±

�

1
p

for 1 ≤ p < ∞.

(�w,2u)(x) =
∑

y∈I(x) w(x, y)u(y)
∑

y∈I(x) w(x, y)
− u(x).

(�w,∞u)(x) =
1

2

(

�∇+
w u(x)�∞ − �∇−

w u(x)�∞
)

.

(�G
w,pu)(x) =

p− 2

p
�w,∞u(x)+

2

p
�w,2u(x).
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Connections between TOW games and PDEs on Euclidean graphs.  We are now ready to introduce 
the transcription of the TOW games (5) and (6) in terms of PDEs on graphs. Let us consider an Euclidean graph 
G = (V , E ,w) with V = � ⊂ R

N and a weight function

Then, using Definition 2, we easily get

Plugging (7) in (5), we obtain the following interpretation of the generalized TOW game (5) in terms of a PDE:

where �α,β ,γ u(x) = α
2 �∇

+
w u(x)�∞ − β

2 �∇
−
w u(x)�∞ + γ�w,2u(x).

Similarly, in the case of the time-dependent TOW game (6), we obtain the following parabolic PDE:

As can be seen in Table 1, by taking different values of α,β and γ in the TOW games (5) and (6), we are able to 
recover different well-known PDEs on graphs. In order to apply this unifying mathematical framework to real-
world imaging or data processing problems, it only remains to have at hand a practical way to discretize such 
PDEs, on graphs which are not necessarily Euclidean. This is discussed in the next paragraph.

Extension to General Weighted Graphs.  We have seen that on Euclidean graphs, PDEs of the form (8) 
are related to some classical TOW games. A natural question that one may ask is what can be said in the case of 
general weighted graphs, e.g., images or 3D point clouds, where the weights are not induced by a metric. To this 
end, let us consider a general weighted graph G = (V , E ,w) , and recall20 the following notations for nonlocal 
dilation, nonlocal erosion and nonlocal mean, respectively:

which come down to the classical morphological dilation, erosion and mean when w ≡ 1 . Indeed, in this case

Then, defining the following nonlocal averaging operator:

Equations (8) and (9) can be rewritten as

This rewriting provides a practical way to discretize such nonlocal PDEs on general weighted graphs, as it suffices 
in practice to implement the nonlocal mathematical morphology operators above.

For a complete presentation, let us say few words about the existence and uniqueness of a solution of equa-
tions of the form (10). In the elliptic case, existence of solutions can be proved using fixed point arguments and 

w(x, y) =
{

1 if |x − y| ≤ ǫ,
0 otherwise .

(7)
max
y∈I(x)

u(y) = �∇+
w u(x)�∞ + u(x),

min
y∈I(x)

u(y) = u(x)− �∇−
w u(x)�∞.

(8)−�α,β ,γ u(x) = h(x),

(9)∂tu(x, t) = �α(x,t),β(x,t),γ (x,t)u(x, t)+ h(x, t).

NLD(u)(x) = �∇+
w u(x)�∞ + u(x) = u(x)+ max

y∈I(x)

(

√

w(x, y)(u(y)− u(x))+
)

,

NLE(u)(x) = u(x)− �∇−
w u(x)�∞ = u(x)− max

y∈I(x)

(

√

w(x, y)(u(y)− u(x))−
)

,

NLM(u)(x) = u(x)+�w,2u(x) =
∑

y∈I(x) w(x, y)u(y)
∑

y∈I(x) w(x, y)
,

NLD(u)(x) = max
y∈I(x)

u(y), NLE(u)(x) = min
y∈I(x)

u(y), and NLM(u)(x) =
∑

y∈I(x) u(y)

card(I(x))
.

NLA(u) :=
α

2
NLD(u)+

β

2
NLE(u)+ γNLM(u),

(10)u(x)−NLA(u)(x) = h(x), and ∂tu = NLA(u)(x)− u(x)+ h(x),

Table 1.   A large class of PDEs on graphs recovered from (8)–(9), which are obtained by taking particular 
parameter values in the TOW games (5)–(6).

TOW game parameters Elliptic PDE Parabolic PDE

α = γ = 0 and β = 1 Eikonal equation: �∇−
w u(x, t)�∞ = h(x) ∂t u(x, t) = �∇−

w u(x)�∞ + h(x, t)

α = β = 1 and γ = 0 ∞-Laplacian: −�w,∞u(x) = h(x) ∂t u(x, t) = �w,∞u(x, t)+ h(x, t)

α = β = 0 and γ = 1 Laplace equation: −�w,2u(x) = h(x) ∂t u(x, t) = �w,2u(x, t)+ h(x, t)

α = β = p−2

p  and γ = 2
p

Game p-Laplace equation: −�G
w,pu(x) = h(x) ∂t u(x, t) = �G

w,pu(x, t)+ h(x, t)
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uniqueness relies on standard comparison results. While in the parabolic case, this can be done exploiting some 
properties shared by the averaging operators defined above. To this end, let us recall the following definition

Definition 4  (21) A continuous function A : Rm → R is said to be an averaging operator if

•	 A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1,
•	 A(tx1, . . . , txm) = tA(x1, . . . , xm) for all t ∈ R,
•	 A(t + x1, . . . , t + xm) = t +A(x1, . . . , xm) for all t ∈ R,
•	 A is nondecreasing with respect to each variable.

As an example, let us check these properties for the nonlocal mean operator. First, let us write 
NLM(u)(x) = A(u(y1), . . . , u(ym)) where we assume that (yi)mi=1 are the neighbours of x. We clearly have 
A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1. Moreover, we have, for t ∈ R

and

Finally, since the weight function is positive, we deduce that A is nondecreasing. This shows that NLM is as aver-
aging operator in the sense of Definition 4. One can proceed similarly for NLD and NLE , and as a consequence, 
NLA is itself an averaging operator as a combination of averaging operators. To go further, let us assume for 
simplicity that h ≡ 0 , then u solves

if and only if u solves the integral equation

where, again we denote NLA(u)(x, s) = A(u(y1, s), . . . , u(ym, s)) and u0 : V → R is a given function. Then, the 
existence and uniqueness of solutions to (11) can be obtained using a fixed point arguments on the operator Kg 
as done in22 for the case of trees.

To conclude this section, let us remark that just as their counterparts on Euclidean graphs, nonlocal PDEs 
on general weighted graphs can also be interpreted in terms of TOW games. To simplify the presentation, let us 
take α = β = 1 and γ = 0 , i.e., we are considering the equation −�w,∞u = h(x) . Then, using Definitions 2–3, 
we easily see that this equation can be rewritten as20

where P(x, y, z) =
√

w(x,y)√
w(x,y)+

√
w(x,z)

 . Now, think about the same configuration as the classical TOW game but 
with nonlocal neighbours, i.e., the token’s displacement takes place in I(xk−1) = {x ∈ V : w(x, xk−1) > 0} ∪ {xk−1} 
instead of ǫ-balls with weight-dependent probabilities as follows. If the player I wins the toss, the token will move 
to a position xIk with probability P(xk−1, x

I
k , x

II
k ) , and to a position xIIk  with probability 1− P(xk−1, x

I
k , x

II
k ) . This 

can be interpreted as a nonlocal TOW game, whose value function satisfies (12).
To summarize, so far we have established a unifying mathematical framework based on the TOW games (5) 

and (6), which allows one to recover a series of well-known PDEs on graphs, as depicted in Table 1. We have 
then extended this analogy to nonlocal PDEs on general weighted graphs, and shown that they could be imple-
mented in a simple manner by resorting to nonlocal mathematical morphology operators. In the next section, 
we describe a few simple algorithms for inverse problems, which follow directly from this theoretical discussion.

Simple algorithms for inverse problems
In this section we give simple algorithms based on the transcription of the TOW game on graphs, which will be 
used to solve a few inverse problems. As we shall see, the main features of these algorithms are their simplicity 
and ease of implementation, and the fact that many tasks can be achieved just by taking particular values of the 
TOW game parameters α,β and γ.

A(tu(y1), . . . , tu(ym)) =
∑m

j=1 w(x, yj)(tu(yj))
∑m

j=1 w(x, yj)
= t

∑m
j=1 w(x, yj)u(yj)
∑m

j=1 w(x, yj)
= tA(u(y1), . . . , u(ym)),

A(t + u(y1), . . . , t + u(ym)) =
�m

j=1 w(x, yj)(t + u(yj))
�m

j=1 w(x, yj)
= t

�m
j=1 w(x, yj)u(yj)
�m

j=1 w(x, yj)

=
1

�m
j=1 w(x, yj)



t

m
�

j=1

w(x, yj)+
m
�

j=1

w(x, yj)u(yj)





= t +
�m

j=1 w(x, yj)u(yj)
�m

j=1 w(x, yj)
= t +A(u(y1), . . . , u(ym)).

(11)∂tu = NLA(u)− u in V and u(x, 0) = g in V ,

Kgu(x, t) =
∫ t

0
es−tA(u(y1, s), . . . , u(ym, s))ds+ e−tu0(x),

(12)u(x) = max
y∈V

(

min
z∈V

(

P(x, y, z)u(y)+ (1− P(x, y, z))u(z)
)

)

,
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Unified interpolation for image and high dimensional data processing.  We have seen that we are 
able to recover a bunch of local and nonlocal PDEs on graphs. We will use this as a methodology to solve several 
interpolation problems in image processing and machine learning. In particular, in the next section we will show 
examples in medical imaging and in cultural heritage corresponding to problems on graphs using PDEs of the 
form (8) to (9) with particular attention on colorization, inpainting and data classification. To do so we consider 
a subset A ⊂ V consisting of vertices with the missing information. To simplify the presentation suppose that 
h ≡ 0 . Then, many problems we encounter in image processing and computer vision can be recast in the form 
of interpolation problems, i.e., one seeks constructing new values starting from known values, which amounts 
to solve the Dirichlet problem

where g : ∂A → R is the boundary data which depends on the considered application. To solve (13), the strategy 
is the following. We first consider the associated evolution problem:

with some initial value u0 : A → R chosen suitably for each application. As usual, (14) is solved using a Euler 
discretization by taking ∂tu ≈ un+1−un

�t  , where un(x) = u(x, n�t) . Then (14) can be approximated via the fol-
lowing iterations:

Taking �t = 1 and �α,β ,γ = NLA(u)− u , we get a nonlocal average filter consisting of convex combination of 
the nonlocal, dilation, erosion and mean terms introduced in (10):

Thus, Problem (13) can be approximated via the iterative scheme (15) which consists of simple algebraic opera-
tions. This makes the approach convenient for users with no deep knowledge on PDEs to solve interpolation 
problems. Notice that this can also be applied to parabolic variants of (13).

Unified segmentation and data clustering.  For segmentation and data clustering, we make use of an 
adaptation of the eikonal equation on graphs. First, let us say that in this case one could make use of the itera-
tive scheme (10) with α = γ = 0 and β = 1 to solve the eikonal equation, however, for faster computations, it is 
preferable to use a monotone algorithm where we have an explicit formula for the solution10. Let G = (V , E ,w) 
be a weighted graph and consider the following eikonal equation:

with S0 ⊂ V the set of initial seed vertices. Using the operators defined in Definition 2, Eq. (16) becomes

Then, setting C = h(x), ki =
√

1/w(x, y) , ai =
{

f (yi) : yi ∈ I(xi)
}

 and n = Card(I(x)) , Eq. (17) becomes

whose unique solution is explicitly given by

which gives rise to a Dijkstra-like algorithm. Then, for semi-supervised graph clustering, this algorithm is 
extended by enabling label propagation on a general weighted graph (see10, Algorithm 2]). To recapitulate the 
process, we denote by L = {l1, · · · , ln} the set of labels and by S0 = ∪n

i=1S
0
i  the set of seeds, i.e., each S0i  is a set 

of vertices marked by a label li . Then, we mark each vertex x ∈ V with a label li provided x is closer to a vertex 
of S0i  than other vertices of S0 which decomposes the graph into n clusters. Each label li is induced by a front Fi 
initialized at ∂S0i  , and the final configuration Sf  is given by the set of vertices reached by Fi until it is stopped 
by the boundary of the domain or by another front. Note that this is a particular case ( p = ∞ ) of the method 
to solve the eikonal equation with Lp norm10 . For p = 2 , it is worth mentioning that the obtained scheme on 

(13)
{

−�α,β ,γ u = 0 in A,
u = g on ∂A,

(14)







∂tu = �α,β ,γ u in A,
u = g on ∂A,
u|t=0 = u0 in A,







u0 = u0 in A,
un+1 = un +�t�α,β ,γ u in A,
un+1 = g on ∂A.

(15)











u0 = u0 in A.,

un+1 = NLA(un) in A,

un+1 = g on ∂A.

(16)
{

�(∇−
w u)(x)�∞ = h(x) in V \ S0,

u = 0 on S0,

(17)max
y∈I(x)

(

√

w(x, y)max(0, u(x)− u(y))
)

= h(x).

max
i

( (x − ai)
+

ki

)

= C,

x∗ = min
i=1,··· ,n

(ai + kiC),
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a n-dimensional grid in Rn reduces to the celebrated Osher-Sethian scheme which can be solved using a Fast 
Marching method (FMM)23.

Applications
In all the sequel, we are given a graph G = (V , E ,w) constructed as described below. We will provide examples 
of nonlocal inpainting, colorization, semi-supervised segmentation using the iteration (15) as well as the Fast 
Marching-like algorithm described above.

The results of this section will mainly concern applications on cultural heritage and medical imaging. Cul-
tural heritage applications will essntially focus on scenes taken from the Bayeux Tapestry. The Tapestry is a 
unique record of the Norman conquest of England and the battle of Hastings. It is an eleventh-century medieval 
embroidery of 70m long and 50cm tall, which has been digitized during a project gathering the City of Bayeux, 
the University of Caen-Normandy, the CNRS and the GREYC. The tapestry is of main interest to historians, 
archaeologists as well as textile researchers which makes all the methods and applications we propose useful 
since the tapestry in accessible to researchers only in a short period of the year. Concerning medical imaging, 
we shall focus on computer-aided cytology. Cytopathologists usually have to study the morphology and texture 
of cytoplasm and nuclei as imaged in microscopy to make a diagnosis decision. This task can be tedious since 
every slide supporting sample contains millions of cells and the presence of infected cells is rare. The use of PDEs 
on graphs for computer-aider cytology has been shown to be efficient for segmentation and semi-supervised 
classification of cells24. All the results concerning cytology are produced using the database of the Cherbourg 
University Hospital. A software called PdESigraph is available upon request and will be accessible online soon. 
It contains all the necessary material for non-mathematicians to construct the appropriate graphs and apply the 
presented algorithms for the different inverse problems.

Construction of graphs.  The first step is to construct an appropriate graph for the given data to apply the 
obtained algorithms. There are several well-known techniques to construct a weighted graph from a given dis-
crete data set depending on whether the data is unorganized or structured. For unstructured data, we can men-
tion ǫ-neighbourhood graphs where we connect two elements x, y ∈ V by an edge if d(x, y) ≤ ǫ for some ǫ > 0 , 
where d is some distance on G . We also find the k-nearest neighborhood graph (k-NNG) where each vertex is 
connected with its k nearest neighbours with respect to the distance d (this will give rise to directed graphs due 
to the nonsymmetry of this neighborhood relationship, however undirected graph can still be obtained using a 
modification in the construction25).

Structured data (e.g., images, meshes), can naturally be described by grid graphs. In the case of images, each 
pixel is connected by an edge to adjacent vertices. Region adjacency graphs (RAG) were also designed for images 
where vertices correspond to image regions and edges are obtained by considering an adjacency distance. This can 
be generalized for other data, where a region Ri is defined as a set of vertices such that V = ∪iRi and ∩iRi = ∅ . 
Then, Ri and Rj are adjacent if there exists x ∈ Ri , y ∈ Rj such that x ∼ y (see Fig. 1).

As for the weight function w, it is generally computed via a similarity map s : E → R
+ , so that w(x, y) = s(x, y) 

if (x, y) ∈ E and 0 otherwise. In general we take

The choice depends on the application and can be, for example, either geometric (i.e., depending on the distance 
between pixels) or photometric (i.e., depending on the image or a characteristic vector). The role of similarity 
maps is to assign values close to 1 to similar vertices and values close to 0 to nonsimilar ones. For further derails 
and other constructions see e.g.,26. Let us stress that the choice of the parameter σ in (18) can be done globally 
or locally, i.e., by assigning to each vertex a parameter σx depending on the application. For images, we generally 
make use of patches as follows. Pick some vertex x ∈ V and consider a square C(x, n) of size n2 centred at x. Then 
P(x) =

(

u0(y)
)T

y∈C(x,n) is called a patch centred at x. Using this definition, one can define a similarity map via 
s(x, y) = exp

(

−�P(x)−P(y)�22
σ 2

)

 . This notion can be extended to the case of 3-dimensional points clouds27.

Nonlocal inpainting.  Inpainting is a virtual restoration processes. It consists in reconstructing a damaged 
or incomplete part of an image. Most of the proposed algorithms to perform this task are based on PDEs and 
variational formulations28,29. Nonlocal approaches for image inpainting have been widely considered since the 
work on nonlocal filtering30. This approach was particularly successful for the treatment of textured images, for 
which local methods had many limitations. To formulate the problem within our framework, we consider A ⊂ V 
the set of vertices with missing data and prescribe boundary condition on ∂A via a function g : ∂A → R

c , with 
c the number of color channels of the image ( c = 3 in the examples below). We apply the iterative scheme (15) 
with α = β = 1, γ = 0 , i.e., the ∞-Laplacian is used for the inpainting of 2D images and 3D point clouds from 
scribbles giving reference colors.

In Fig. 2a we use our approach for the virtual restoration of a 2D image of King Edward taken from the Bayeux 
Tapestry. A part of this scene was damaged due to wax stains caused by candles when the Tapestry was at the 
cathedral. As one sees, the proposed algorithm allows “virtually restoring” the part which has been damaged.

2D‑3D colorization.  Colorization consists in adding colors to monochromatic or colorless images. It can be 
particularly helpful in cultural heritage and movie industry applications, or in conjunction with 3D acquisition 
techniques. Colorization of monochromatic images is based on the intensity channel to determine similarities 
between pixels and proceed to color diffusion from scribbles. For 3D data, the intensity channel is missing and 

(18)s(x, y) = 1, s(x, y) = exp
(−d(u0(x), u0(y))

σ 2

)

, or s(x, y) = (d(u0(x), u0(y))+ 1)−1.
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one needs to proceed differently. An optimization-based approach was proposed for 3D meshes colorization31 
relying on similarities between mesh vertices via the spin image descriptor32. Yet, this approach seems not suit-
able for 3D point clouds as they have no intrinsic connectivity. On the other hand, formulating 3D colorization 
as an interpolation problem allows us exploiting the simple nonlocal averaging iterations (15), starting from a 
few user-specified color scribbles.

For 2D images, we apply our schemes to recover the original colors (at least vivid ones) of the Bayeux Tapestry. 
This is done using a ”reflection” trick as follows. In fact, the colors in the exposed side of the Tapestry tend to 
bleed and fade over time due to sunlight, humidity and reaction with chemicals such as oxygen, ozone etc. Colors 
such as blue, red, orange, dark green and brown are more susceptible to this. Since the backside of the Tapestry 
is less exposed, one can guess the original colors from the yarns in the back of the embroidery. We exploit this 
to use appropriate seeds for the colorization process. This is illustrated in the right column of Fig. 2b where we 
find the initial image, image with seeds and the colored images where the seeds are take from the left column of 
Fig. 2b. The top row in Fig. 2c illustrates virtual colorization of a 3D model representing the ”Betrayal of Judas”33 
using the proposed scheme (more particularly, the ∞-Laplacian). A detailed comparison between the obtained 
results (with different values of α,β and γ ) and an alternative approach31 can be found in a dedicated paper20. 
The bottom row in Fig. 2d illustrates the colorization of a 3D model from the chimney of the old Abbaye du voeu 
at Cherbourg34 and in particular, we see that the method can be applied to change colors.

Semi‑supervised segmentation and data clustering.  Image segmentation consists in partitioning 
images into multiple regions to make them easier to analyse. In particular, one wishes to detect objects such as 
roads in satellite images, tumors in medical imaging, etc. As for data clustering, it consists in splitting data into 
different families of objects sharing similar properties, such as infected cells in a medical database, etc. All these 
tasks can be achieved using the eikonal Eq. (16), with h ≡ 1 and labels propagation as described before. One 
of the advantages of this formulation is that it allows segmentation on any graph representing images. In the 
examples below, we use a 4-adjacency grid graph to build an image partition. The obtained region map is then 
turned into a RAG. To allow labels growing beyond local neighbors, each vertex neighbor is extended by a k-NN 
based on mean color value.

In the following examples, we perform segmentation using superpixels decomposition which allows reducing 
image complexity by regrouping pixels in a region map while preserving contours. This can be done by dilating 
a regular grid of seeds by the label propagation method using the eikonal equation10 in such a way to preserve 
the local structure of the image. This is illustrated in Fig. 3, left, where we show the segmentation of 2D and 3D 
scenes from the Bayeux Tapestry.

Figure 4a shows how our framework can be used for segmenting medical images. In fact, each image can 
contain various objects to be segmented. In particular, nuclei are numerous and not adjacent, but some are still 
concentrated in some regions and are separated by the cytoplasm or the background. This suggests considering 
nuclei as a first class and the background and cytoplasm as the second class. The nonlocal graph structure is 
needed to allow labels grow beyond local neighbours. To this end, the eikonal equation is used twice: first, for 
the superpixel decomposition, and then for segmentation. Thanks to this approach, only few seeds are needed 
to perform efficient segmentation of images containing multiple and non-adjacent objects to detect. Another 
application we can consider is indexation. In fact, after segmenting cells using the eikonal equation, we get a 
database of cells which can be represented in the form of a graph. The top of Fig. 4b illustrates some abnormal 
cells that will be used as seeds. Then, using the eikonal equation one can compute the distance map and thus, find 
the closest cells to the abnormal cells, as illustrated in the bottom of Fig. 4b where we can see 16 cells amongst 
the database that are the closest to the seeds.

We conclude this section by applying our approach to semi-supervised classification of cells in a cytological 
slide into normal and abnormal classes. We first perform segmentation using the eikonal equation as discussed 
above to extract nuclei. We used 10% seeds on a dataset of 3956 cells extracted from a cytological slide divided 

Figure 2.   Virtual restoration and colorization. (a) 2D restoration (original images, images with areas to be 
restored indicated in red, and restoration results). (b) 2D colorization, where the left column represents the 
backside of a scene from the Bayeux Tapestry, and the second column represents the initial image, the image 
with seeds, and the colored result. (c, d) 3D colorization, with input models on the left and colored ones on the 
right.
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by the cytologists into 4 classes where nuclei are described by characteristics concerning the form, surface, color, 
and the texture of cells, etc. Then we perform label propagation using the eikonal equation (with p = 1, 2 ) on 
a nearest neighbour graph as described in the previous section. This gives the result illustrated in Fig. 5 which 
are promising since we get 98.47% classification accuracy for p = 1 and 98.27% for p = 2 . These algorithms are 
present in the Antarctic software, which was developed during the phd thesis of X. Desquenes35 to provide an 
accessible support to pathologists for the classification and the segmentation of cytological slides. The software 
comes with a database of millions of cells and allows pathologists to create and modify characteristics.

Figure 3.   Semi-supervised segmentation of the Bayeux Tapestry. Left: superpixel-based segmentation of a 
single scene (initial image, image with seeds, image partition with supervertices using a regular grid of seeds, 
and segmentation result). Right, first and second rows: segmentation of the foreground on 2D images (initial 
image and segmentation result). Right, third row: 3D point cloud segmentation (from left to right: initial image, 
image with initial labels, segmentation result).

Figure 4.   Applications in medical imaging. (a) Semi-supervised segmentation of cell images (from left to right: 
images with initial labels, superpixel segmentation and segmentation results. (b) Indexation using the eikonal 
equation (top: abnormal cells used as seeds; bottom: some indexed cells from the database).
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Discussion
In this note, we revisited the notion of tug-of-war games and related PDEs on graphs. We showed that the tran-
scription of such games on graphs allows recovering a bunch of nonlocal elliptic and parabolic PDEs on graphs. 
We used this observation as a unified methodology to solve interpolation problems. This gives rises to simple 
algorithms for image and high dimensional data processing. We illustrated this approach by examples from 
cultural heritage and medical imaging. In future work we are planing to consider other real life applications and 
compare results with the related works. In addition, the continuum limit of the considered PDEs, as the number 
of vertices goes to infinity, will be investigated in depth.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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