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Abstract
In this paper, in order to serve credit risk management, we introduce a pricing model for a vulnerable
Bull Spread options in a Mixed Modified Fractional Hull-White-Vasicek stochastic volatility and
stochastic interest rate model. We use Milstein scheme to find the sample paths of asset price
and its volatility, and the sample paths of interest rates of asset price movement. We use the
double Mellin transform to obtain an analytical vulnerable bull spread call option formula and
an analytical vulnerable bull spread put option formula under fractional stochastic volatility and
fractional stochastic interest rates.
Keywords: Bull spread option; Hull-White-Vasicek model; Double Mellin transform.
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1 Introduction

Credit risk management is crucial for financial institutions (banks, insurance companies, mutual
funds and pension funds, etc.), but also for national or international regulatory institutions. Indeed,
within the framework of market surveillance and the risk of bankruptcy of financial institutions, the
bank for international settlements requires compliance (within the framework of the application of
the Basel III or Solvency II systems), that certain prudential rules are respected. Thus, hedging
financial risks through the use of financial derivatives is increasingly common. It is enough to see
the extension works of the option pricing models proposed by Black and Scholes [3], to understand
the growing interest in the valuation of derivative products. With regard to the risks of credit
default on the over-the-counter markets, some authors have, under certain assumptions, proposed
pricing models of vulnerable options. We must mention the recent occurrence of economic crises (for
example the subprime crisis in 2008), with, as a corollary, the increase in the probability of default
by certain financial institutions, companies or municipalities. Among the authors who have proposed
pricing models for vulnerable options, the holder of which is subject to the risk of default, in addition
to the work of Johnson and Stuly [12] where the first to substituted default risk in option pricing
and put forward a new definition called the vulnerable option, Klein [22] has derived an analytical
pricing formula which not only allows a correlation between the underlying asset of the option and
the default risk of the counterparty, but also for the writer of the option to have other liabilities in
the capital structure. Ammann [1] developed Klein’s credit risk model on the basis of a structural
approach. He finally obtained the explicit expression for the vulnerable option under the assumption
of interest rate and default intensity obeying a stochastic differential equation.

Other scholars like Chang and Hung [6] have also discussed this problem, while all the above
mentioned discussions are in the environment of geometric Brownian motion. Due to the inadequacies
of geometric Brownian motion in describing self-similarity and long-term dependence on stock prices,
fractional Brownian motion and mixed fractional Brownian motion are widely used in the valuation
of assets. Hu and Oksendal [16], Djeutcha et al.[10] developed the structural approach, respectively,
provided that the stock prices followed a mixed modified fractional Brownian motion and mixed
fractional Brownian motion and they proved that the correspondence with the fractional market and
the mixed modified fractional Black-Scholes market had no arbitrage effect for any Hurst parameter
greater than 1/2.
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For more literature on fractional Brownian motions and mixed modified fractional Brownian
motions, among others , we can refer to Oksendal [27], Djeutcha and Sadefo Kamdem [11] and
Djeutcha et al.[10]. But there is another problem that the Black-Scholes fractional market does not
have an equivalent martingale measure according to Sottinen and Valkeila [30]. Necula [26] applied
the quasi-martingale method to risk-neutral measurement. Huang et al. [17] obtained the explicit
expression for the price of the European option under the hypothesis of a Black-Scholes fractional
market. Su and Wang [29] and Li and Ma [24] derived the closed form formula of the price of the
vulnerable European option by the method of changing measures.

The constant volatility assumption of the Black-Scholes[3] model is unreliable, because in the
market volatility is in the form of a smile. Hence the need to introduce in the market stochastic
volatility models which give more realistic results in relation with the historical asset returns and
interest rate variation, compared to the classical Black-Scholes model. Pioneers in the field are:
Hull-White [18], Stein-Stein[28], Heston[15], Njamen et al.[13], Bakshi, Cao-Chen[2] and Schobel-
Zhu[31]. Each of these authors model the volatility of the underlying and propose models that
present analytical solutions and closed formulas for option pricing.

We therefore appeal to the class of stochastic volatility models and the pioneers in this field are
among these stochastic volatility models, the best known and studied is that of Hull-White. But, if
in the Hull-White model we consider the interest rate to be stochastic and follow the Vasicek model,
we can define a new kind of three-factor model. In general, these classes of three-factor models are
not studied in the literature, at least there is a lack of method to determine the analytical explicit
expression for the option hedging problem.

These competing models modeled the interest rate of the Black and Scholes model and authors
such as Vasicek [33], Dothan [8], Cox-Ingersoll-Ross [7], Djeutcha et al.[10], Yousouf et al.[34], Mo-
hamadinejad et al.[25] and Black-Derman-Toy [4] have worked on these models.

In this article, we will be using the double Mellin transform method as described in Ji-Hun and
Jeong-Hoon[19], so that we can derive the general pricing formula for the vulnerable bull spread
option under the stock price assumption, with the stock’s volatility obeying the Hull and White
diffusion model and the underlying interest rate obeying the Vasicek model which are driven by the
mixed modified fractional Brownian motion.

The competition over bull spread options pricing is more intense comparison with vulnerable
types. This is due to the uncertainty of the execution time in bull spread option and in result. The
vulnerable option is a kind of option with credit risk which refers to a risk that a borrower will
default on any type of debt by failing to make the required payments.

The bull spread option is an optimistic option strategy designed to take advantage of a moderate
rise in the price of a security or asset. If we replace in the European vulnerable option, the payoff
function of the European option with the payoff function of the bull spread option, we get a new
option called the vulnerable bull spread option.

Our paper looks at these two families of models (stochastic interest rate) and stochastic volatility).
But our motivation comes from the fact that we model the two families of models by assuming that
their random parts are described by mixed modified fractional Brownian motions in such a way that
our market is without arbitrage. The combination of the stochastic interest rate model (Vasicek[33])
and the stochastic volatility model (Hull-White[18]) allows us to define a three-factors model. This
new model has a double advantage in that, it can correctly price any bond unlike the one-factor
models mentioned above and can allow any options to be valued. In this paper, we will therefore
be talking about simulating of our model using Milstein’s discretization approach and proposing a
closed formula for the pricing of the particular case of vulnerable options and the bull spread option
using the double Mellin’s transform method.

Nammed MMFHWV model for "Mixed-Modified-Fractional-Hull-White-Vasiseck ", this new
model is a combination of the Hull and White[18] and the Vasicek[33] model. In this model, the
volatility process and asset model are not correlated, while the interest rate process and asset model,
the volatility process and interest rates process are correlated, with each other and they are controlled
by a distinct diffusion process. In MMFHWV model, the existence of the mean reversion process
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causes the adjustment of the volatility process and the interest rates behavior in the financial markets
and it is a benefit of the MMFHWV model. The rest of this paper is organized as follows. Section 2
gives the preliminaries and basic assumptions. In Section 3, we introduce the MMFHWV model. We
simulate the MMFHWV Model based on Milstein discretization. In section 5, we study the pricing
of a vulnerable bull spread option under the MMFHWV model and conclusions are presented in the
last section.

2 Preliminaries and Basic Assumptions

2.1 Preliminaries

In this subsection, we shall briefly review the definition and some main properties of the mixed
modified fractional Brownian motion, the double Mellin transform, we also recall the Hull-White
model and the Vasicek model. Fractional Brownian motion or Mellin transform have also been used
for option pricing in Djeutcha et al.[9], Thao[32], Sadefo Kamdem [21],Ji-Hun[19],Hull-White[18] and
Vasicek[33].

Definition 2.1. The double Mellin transform is defined by

Mxy(f(x, y), w1, w2) = f̂(w1, w2) =

∫ ∞

0

∫ ∞

0
f(x, y)xw1−1yw2−1dxdy (1)

where f(x, y) is a locally Lebesgue integrable function and w1 and w2 are complex numbers. Also, if
a < Re(w1), Re(w2) < b and if c1 and c2 are such that a < c1 < b and a < c2 < b, then the inverse
of the double Mellin transform is given by

f(x, y) = M−1
xy (f̂(w1, w2)) =

1

(2π)2

∫ a1+i∞

a1−i∞

∫ a2+i∞

a2−i∞
f̂(w1, w2)x

−w1y−w2dw1dw2 (2)

We have the following properties for derivative

Mxy(x
2∂f(x, y)

∂x2
, w1, w2) = w1(w1 + 1)f̂(w1, w2) (3)

Mxy(y
2∂f(x, y)

∂y2
, w1, w2) = w2(w2 + 1)f̂(w1, w2) (4)

Lemma 2.1. Ji-Hun and Jeong-Hoon[19]Given complex numbers α and β with Re(α) ⩾ 0, let

f(x) =
1

2πi

∫ a−i∞

a−i∞
f̂(w)x−wdw,

where f̂(w)x−w = eα(w+β)2. Then f(x) = 1
2

1√
πα

xβe
1
4α

(lnx)2 holds.

Lemma 2.2. Ji-Hun and Jeong-Hoon[19] Let f and g be functions from Rn
+ into C. If f̂(w1, w2)

and ĝ(w1, w2) are the double Mellin transform of f(x, y) and g(x, y), respectively, given by

■̂(w1, w2) =

∫ ∞

0

∫ ∞

0
■̂(x, y)xw1−1yw2−1dxdy. (5)

Then the double Mellin convolution of f and g is given by inverse double Mellin transform of
f̂(w1, w2)ĝ(w1, w2) as follows

f(x, y) ⋆ g(x, y) = M−1
w1w2

(
f̂(w1, w2)ĝ(w1, w2);x, y

)
=

1

(2π)2

∫ ∞

0

∫ ∞

0
f
(x
u
,
y

w

)
g(u,w)u−1w−1dudw (6)
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Definition 2.2. Hull and White[18]The Hull-White model assumes that the underlying stock price,
St and variance Vt follow a Black-Scholes-type stochastic process. Hence, the Hull-White model is
represented by the bivariate system of stochastic differential equations (SDEs):{

dSt = µStdt+ StσsdBt,s,
dVt = µVtdt+ σvVtdBt,v.

(7)

Where EP [dBt,sdBt,v] = ρsvdt. B.,s and B.,v are the wiener processes; ρsv ∈ [−1; 1] is the correlation
between Wt,s and Wt,v.

The parameters of the model are given in Appendix A.1

Definition 2.3. Vasicek[33] The Vasicek model is a stochastic interest rate model and the corre-
sponding Stochastic Differential Equation (SDE) as follows,

drt = κ(θ − rt)dt+ rtσrdBt,r, (8)

where B.,r is the wiener process.

The parameters of the model are described in Appendix A.1.

Definition 2.4. Djeutcha et al.[9, 11]A Mixed Modified Fractional Brownian Motion process whose
parameters a, b, ε and H is a linear combination of Brownian Motion Bt and independent semi-
martingale process BH,ε

t , defined on a probability space (Ω, F,P) by:

MH,a,b,ε
t = MH,ε

t = aBt + bBH,ε
t , ∀(a, b) ∈ R∗

+ ×R+, t ∈ [0, T ]. (9)

Where H ∈]12 , 1[ is the Hurst parameter.

In this paper, our aim is to establish an extension of Hull-White model Eq.(7) and Vasicek model
Eq.(8), by exchanging in Eq.(7) and Eq.(8) the Brownian motion B.,s, B.,v and B.,r by the Mixed
Modified Fractional Brownian process defined by the following system:

MH1,ε
t,s = aBt,s(t) + bBH1,ε

t,s

MH2,ε
t,v = aBt,v(t) + bBH2,ε

t,v

MH3,ε
t,r = aBt,r(t) + bBH3,ε

t,r .

(10)

We suppose that: B.,s&BH1 ,B.,v&BH2 and B.,r&BH3 are independents.
From Thao[32], we also deduce that BH1,ε

s , BH2,ε
v and BH3,ε

r are three local martingale defined as
follows: 

BH1,ε
t,s =

∫ t
0 (t+ ε− s∗)H1− 1

2dBs∗,s

BH2,ε
t,v =

∫ t
0 (t+ ε− s∗)H2− 1

2dBs∗,v

BH3,ε
t,r =

∫ t
0 (t+ ε− s∗)H3− 1

2dBs∗,r.

(11)

From Eq.(10), we define 
dMH1,ε

t,s = adBt,s(t) + bdBH1,ε
t,s

dMH2,ε
t,v = adBt,v(t) + bdBH2,ε

t,v

dMH3,ε
t,r = adBt,r(t) + bdBH3,ε

t,r .

(12)

We know that 
dBH1,ε

t,s = ϕε
t,sdt+

(
a+ bεH1− 1

2

)
dBt,s

dBH2,ε
t,v = ϕε

t,vdt+
(
a+ bεH2− 1

2

)
dBt,v

dBH3,ε
t,r = ϕε

t,rdt+
(
a+ bεH3− 1

2

)
dBt,r.

(13)
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where 
ϕε
t,s =

∫ t
0 (H1 − 1

2)(t+ ε− s∗)H1− 3
2dBs∗,s,

ϕε
t,v =

∫ t
0 (H2 − 1

2)(t+ ε− s∗)H2− 3
2dBs∗,v,

ϕε
t,r =

∫ t
0 (H3 − 1

2)(t+ ε− s∗)H3− 3
2dBs∗,r.

(14)

By Letting χHi,ε =
(
a+ bεHi− 1

2

)2
, i = 1, 2, 3. Eq.(12) helps to define the following expressions:
dMH1,ε

t,s = ϕε
t,sdt+

√
χH1,εdBs∗,s,

dMH2,ε
t,v = ϕε

t,vdt+
√

χH2,εdBs∗,v,

dMH3,ε
t,r = ϕε

t,rdt+
√
χH3,εdBs∗,r.

(15)

2.2 Basic assumptions

In this subsection, we introduce the basic assumptions. Some of them are those of Djeutcha et al.[9].

(a) Consider the probability space (Ω, F,P) where F = (Ft)t⩾0 is a complete and right continuous
filtration generated by Ft = σ

{(
MH1,ε

t,s ;MH2,ε
t,s ;MH3,ε

t,s

)}
and P is a probability measure on Ω.

(b) The dynamic of stock price St and its volatility Vt are given by a Mixed Modified Fractional
Hull-WHite no-arbitrage model, namely :{

dSt = µStdt+ σsStdM
H1,ε
t,s ,

dVt = µVtdt+ σvVtdM
H2,ε
t,v .

(16)

where MH1,ε
.,s and MH1,ε

.,v are two Mixed Modified Fractional Brownian motions with Hurst
parameters H1, H2 ∈]12 , 1[.

(c) The evolution of interest rate rt is given by the Mixed Modified Fractional Vasicek no-arbitrage
model, namely :

drt = κ(θ − rt)dt+ rtσrdM
H3,ε
t,r . (17)

where MH3,ε
.,r is the Mixed Modified Fractional Brownian motion with Hurst parameter H3 ∈

]12 , 1[.

(d) The hurst parameters H1, H2 and H3 can be verified H3 > H2 > H1 >
1
2 .

(e) The correlation of the Mixed Modified Fractional Brownian motions MH1,ε
.,s and MH1,ε

.,v is given
by the following matrix defined from Eq.(15) as follows:

EP[dMHi,ε
t,s dM

Hj ,ε
t,s ] =


χHi,εdt, if i = j

ρsv
√

χHi,εχHj ,εdt, if i ̸= j, i, j = 1, 2.

ρsr
√

χHi,εχHj ,εdt, if i ̸= j, i, j = 1, 3.

ρvr
√

χHi,εχHj ,εdt, if i ̸= j, i, j = 2, 3.

(18)

Where √
χHi,εχHj ,ε = a2 + abεHi− 1

2 + abεHj− 1
2 + b2εHi+Hj−1, ∀i ̸= j. (19)

(f) The correlation coefficients ρsv, ρsr and ρvr are the parameters satisfying

ρ2sv < 1; ρ2sr < 1; ρ2vr < 1; ρ2sv + ρ2sr + ρ2vr − 2ρsvρsrρvr < 1. (20)
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3 The MMFHWV Model Framework

In the Mixed Modified Fractional Hull-White model Eq.(16), if we select the parameter µ as a
stochastic process(see Mixed Modified Fractional Vasicek model(16)), we obtain the Mixed Modified
Fractional Hull-White-Vasicek(MMFHWV) model defined system of trivariate fractional stochastic
differential equations (SDEs): 

dSt = rtStdt+ σsStdM
H1,ε
t,s ,

dVt = rtVtdt+ σvVtdM
H2,ε
t,v ,

drt = κ(θ − rt)dt+ rtσrdM
H3,ε
t,r .

(21)

Where MH1,ε
t,s ,MH2,ε

t,v , and MH3,ε
t,r are three correlated standard Mixed Modified Fractional Brownian

motions.
The stock price and variance follow the processes in Eq.(16) and the interest rate follow the

processes in Eq.(17) under the historical measure P also called the physical measure. For pricing
purposes, however, we need the processes for (St, Vt, rt) under the risk-neutral measure Q. In the
MMFHWV model Eq.(21), this is done by modifying each SDE in Eq.(16) and Eq.(17) separately
by an application of Girsanov’s theorem. The risk-neutral process for the MMFHWV model Eq.(21)
is defined by 

dSt = rtStdt+ σsStdM̃
H1,ε
t,s ,

dVt = rtVtdt+ σvVtdM̃
H2,ε
t,v ,

drt = κ∗(θ∗ − rt)dt+ rtσrdM̃
H3,ε
t,r .

(22)

With 
M̃H1,ε

t,s = MH1,ε
t,s + µ−r

σs
t

M̃H2,ε
t,v = MH2,ε

t,v + µ−r
σv

t

M̃H3,ε
t,r = MH3,ε

t,r + µ−r

σr

√
χH3,ε

t.

(23)

Where M̃H1,ε
t,s , M̃H2,ε

t,v , and M̃H3,ε
t,r are three correlated standard Mixed Modified Fractional Brownian

motions. Its correlation matrix is defined from Eq.(15) as follows:

EQ[dM̃Hi,ε
t,s dM̃

Hj ,ε
t,s ] =


χHi,εdt, if i = j

ρsv
√

χHi,εχHj ,εdt, if i ̸= j, i, j = 1, 2.

ρsr
√
χHi,εχHj ,εdt, if i ̸= j, i, j = 1, 3.

ρvr
√
χHi,εχHj ,εdt, if i ̸= j, i, j = 2, 3.

(24)

Where the expression of
√

χHi,εχHj ,ε is given by Eq.(19), and Q is the risk-neutral measure.
Using Eq.(15), the risk-neutral process for the stock price is

dSt = St

{(
r + bσsϕ

ε
t,s

)
dt+ σs

√
χH1,εdB̃t,s

}
. (25)

where
B̃t,s = Bt,s +

µ− r

σs
√

χH1,ε
t (26)

The risk-neutral process for the variance of stock price is

dVt = Vt

{(
r + bσvϕ

ε
t,v

)
dt+ σv

√
χH2,εdB̃t,v

}
. (27)

where
B̃t,v = Bt,v +

µ− r

σv
√
χH2,ε

t (28)
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The risk-neutral process for the interest rate is

drt =
(
κ∗(θ∗ − rt) + σrϕ

ε
t,r

)
dt+ σr

√
χH3,εdB̃t,r. (29)

where
B̃t,r = Bt,r +

λrt

σr
√

χH3,ε
t (30)

with κ∗ = κ+ λ

σr

√
χH3,ε

and θ∗ = κθ
κ+ λ

σr

√
χH3,ε

, are the risk-neutral parameter and λ the interest rate

risk parameter which is given by Breeden[5].
Using Eq.(25), Eq.(27) and Eq.(29), we propose the new model appointed Mixed-Modified-

Fractional-Hull-White-Vasicek(MMFHWV) model defined by the trivariate system of stochastic
diferential equations(SDEs) given in the following definition:

Definition 3.1. (MMFHWV model) In the Mixed Modified Fractional Hull-White model Eq.(25) and
Eq.(27), if we select the parameter µ as a stochastic process( see Mixed Modified Fractional Vasicek
model Eq.(29)), then we will obtain the new model appointed Mixed-Modified-Fractional-Hull-White-
Vasicek (MMFHWV) model and then, under the risk-neutral measure Q, the dynamics of St, Vt and
rt are given by the SDEs:

dSt = St

{(
r + bσsϕ

ε
t,s

)
dt+ σs

√
χH1,εdB̃t,s

}
,

dVt = Vt

{(
r + bσvϕ

ε
t,v

)
dt+ σv

√
χH2,εdB̃t,v

}
,

drt =
(
κ∗(θ∗ − rt) + σrϕ

ε
t,r

)
dt+ σr

√
χH3,εdB̃t,r.

(31)

where B̃t,s, B̃t,v and B̃t,r are three Brownian motions defined by Eq.(26), Eq.(28) and Eq.(30) respec-
tively; with κ∗ = κ+ λ

σr

√
χH3,ε

, θ∗ = κθ
κ+ λ

σr

√
χH3,ε

, are the risk-neutral parameters and λ the interest

rate risk parameter.

4 Simulation of MMFHWV Model

We often face some difficult problems which can’t be solved analytically. In these cases, simulation
methods are appropriate and really helpful. In order to simulate the asset price St at time t, the
volatility of asset price Vt at time t and the interest rate denote by rt at time t, we need sample
paths of asset price movement, sample paths of volatility of asset price movement and sample paths
of interest rates evolution.

The Milstein discretization can be used to approximate the asset path of the asset, the volatil-
ity path of the volatility and the interest path of the interest rate on a discrete time grid, see
Glasserman[14], Kloeden and Platen[23] and Kahl and Jackel[20].

Let Υ = {t1, t2, · · · , tN} be a partition on time interval [0, T ]; i.e. 0 = t0 < t1 < · · · < tN = T.
Then, we have

Sj+1 = Sj +
{(

rj + bσsϕ
ε
j,s

)
Sj∆t + σs

√
χH1,ε∆Bi,j

}
Vj+1 = Vj +

{(
rj + bσvϕ

ε
j,v

)
Vj∆t + σv

√
χH2,ε∆Bi,j

}
rj+1 = rj+1 +

(
κ∗(θ∗ − rj) + σrϕ

ε
j,r

)
∆t + σr

√
χH3,ε∆Bi,j ,

(32)

where Bi,j is a Brownian motion and we have the following formula:

Bi,j = Bi(tj+1)−Bi(tj), 0 ⩽ j ⩽ N − 1 and i = 1, 2, 3.

Moreover, ∆Bi,j ∼ N (0,∆t) and tj = j∆t.
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According to the Central Limit Theorem (CLT), we have ∆Bi,j = Zi

√
∆t, Zi ∼ N (0, 1) and we

obtain from Eq.(32)
Sj+1 = Sj +

(
rt + bσsϕ

ε
j,s

)
Sj∆t + Sjσs

√
χH1,ε

√
∆tZ1 +

1
2σ

2
s

√
χH1,εSj∆t

(
Z2
1 − 1

)
Vj+1 = Vj +

(
rj + bσsϕ

ε
j,s

)
Vj∆t + Vjσs

√
χH2,ε

√
∆tΨ1 +

1
2σ

2
v

√
χH2,εVj∆t

(
Ψ2

1 − 1
)

rj+1 = rj +
(
κ∗(θ∗ − rj) + bσrϕ

ε
j,r

)
dt+ σr

√
χH3,ε

√
∆tΨ2.

(33)

Where Ψ1 = ρsvZ1+
√
1− ρ2svZ2 and Ψ2 = ρsrZ1+

√
1− ρ2srZ3 are two correlated normal variables

generated by the Cholesky decomposition. We have
Sj+1 = Sj +

(
rt + bσsϕ

ε
j,s

)
Sj∆t + Sjσs

√
χH1,ε

√
∆tZ1 +

1
2σ

2
s

√
χH1,εSj∆t

(
Z2
1 − 1

)
,

Vj+1 = Vj +
(
rj + bσsϕ

ε
j,s

)
Vj∆t + Vjσs

√
χH2,ε

√
∆tΨ1 +

1
2σ

2
v

√
χH2,εVj∆t

(
Ψ2

1 − 1
)
,

rj+1 = rj +
(
κ∗(θ∗ − rj) + bσrϕ

ε
j,r

)
∆t + σr

√
χH3,ε

√
∆tΨ2.

(34)

The simulation of the MMFHWV model is given by the following algorithm.

Algorithm. MMFHWV model simulation.

1. Set ∆t = t
N .

2. For i = 1 to number of simulation.

3. Generate independent standard normal variables, Zj ∼ N (0, 1), j = 1, . . . , N .

4. Set Vj+1 = Vj +
(
rj + bσsϕ

ε
j,s

)
Vj∆t + Vjσs

√
χH2,ε

√
∆tΨ1 +

1
2σ

2
v

√
χH2,εVj∆t

(
Ψ2

1 − 1
)
.

5. Set Sj+1 = Sj +
(
rt + bσsϕ

ε
j,s

)
Sj∆t + Sjσs

√
χH1,ε

√
∆tZ1 +

1
2σ

2
s

√
χH1,εSj∆t

(
Z2
1 − 1

)
.

6. Set rj+1 = rj +
(
κ∗(θ∗ − rj) + bσrϕ

ε
j,r

)
∆t + σr

√
χH3,ε

√
∆tΨ2.

7. End For.

In fig.1, 2 and 3, we illustrate changes in the value of stock path, volatility of the stock’s path and interest
rate path under modified Hurst parameter. The result indicate that:

• By increasing the value of H1,(see Fig.1), the value of the stock price is reduced

(a) H1 = 0.75 (b) H1 = 0.80 (c) H1 = 0.85 (d) H1 = 0.90

Figure 1: The Stock price paths under MMFHWV model with S0 = 115, V0 = 0.01, r0 = 0.9, κ =
0.2, θ = 0.2, σ = 0.8.

• By increasing the value of H2,(see Fig.2),the value of the volatility decrease and more, quickly conver-
gence to zero.

• By increasing the value of H3,(see Fig.3, the value of the Interest rate increase.

8



(a) H2 = 0.75 (b) H2 = 0.80 (c) H2 = 0.85 (d) H2 = 0.90

Figure 2: The volatility paths under MMFHWV model with S0 = 115, V0 = 0.01, r0 = 0.9, κ =
0.2, θ = 0.2, σ = 0.8.

(a) H3 = 0.75 (b) H3 = 0.80 (c) H3 = 0.85 (d) H3 = 0.90

Figure 3: The Interest rate paths under MMFHWV model with S0 = 115, V0 = 0.01, r0 = 0.9, κ =
0.2, θ = 0.2, σ = 0.8.

5 Value of the call option under the MMFHWV model using the
double Mellin transform

5.1 Bond price formula
In this subsection,we first give the pricing formula of a zero coupon bond in the mixed modified fractional
Hull-White Vasicek interest rate model.

Let P (t, r, T ) denote the price of a default-free zero-coupon bond with the nominal value 1 unit of money
at time T. By the Feynman-Kac formula, we have the following pricing formula.

Theorem 5.1. In the fixed MMFHWV model, the price of a zero-coupon bond at time t is given by:

P (τ, r, T ) = A(τ)e−B(τ)τ , (35)

with τ = T − t.A(τ) and B(τ) are given by A(τ) = exp

{
χH3,εσ2

r

2κ2(τ+ 2
κ∗ (e−κ∗τ−1)− 1

2κ∗ (e−κ∗τ−1))

}
−
∫ τ

0
κ∗θ∗(T − z)B(z)dz

B(τ) = 1−e−κ∗τ

κ∗

(36)

Proof of Theorem 5.1. We recall that the no-arbitrage price at time t of the bond with the nominal value
1 is given by

P (t, r, T ) = E
[
e−
∫ T
t

rsds|rt = r)
]
, t < T. (37)

with the final condition P (T, r, T ) = 1. Then by using the Mixed modified Fractional Feynman-Kac formula,
the solution of P (t, r, T ) satisfies the following PDE problem

∂P

∂t
+

1

2
χH3,εσ2

r

∂2P

∂r2
+ κ∗(θ∗ − r)

∂P

∂r
− rP = 0. (38)

The affine term structure solution of Eq.(38) is given by

P (τ, r, T ) = A(τ)e−B(τ)τ , τ = T − t (39)

with If we substitute Eq.(39) into Eq.(38), we derive the following ordinary differential equation:

dA(τ)

dτ
− κ∗θ∗B(τ) +

1

2
χH3,εσ2

rB
2(τ) = 0 (40)

9



and
dB(τ)

dτ
− κ∗B(τ) + 1 = 0 (41)

The resolution of Eq.(41) gives

B(τ) =
1− e−κ∗τ

κ∗ (42)

and the resolution of Eq.(40) can be expressed in terms of B(τ) to give the value of A(τ)

5.2 Pricing for Bull Spread Option under MMFHWV model
We recall that, if we use the traditional probabilistic method such as the Monte Carlo method to solve system
given by Eq.(31), for Bull Spread options, that method produce interesting result, but it could requires a
long time, depending on the complexity of calculations. However, in this section, using the double Mellin
transform, we obtain a closed form formula for the option price, that is credible for both the accuracy and
efficiency.

The bull spread option is an optimistic option strategy designed to take advantage of a moderate rise in
the price of a security or asset. Its payoff function is defined as follows:

l(ST ) =
[
(ST −K1)

+ − (ST −K2)
+
]
. (43)

The vulnerable option is a kind of option with credit risk which refers to a risk that a borrower will default
on any type of debt by failing to make the required payments.Its payoff function is defined as follows:

m(ST ) =
[
(ST −K)+

] [
1{VT⩾γ∗} + 1{VT<γ∗}

(1− α)VT

γ

]
, (44)

where
α

denotes the dead weight costs associated with bankruptcy expressed as a percentage of the value of the assets
of the counterparty, the constant parameter D denotes the default boundary. The parameter γ∗ may be less
than D due to the possibility of a counterparty continuing its operation even while VT < γ. In the event of
a credit loss, only the proportion (1−α)VT

γ of the nominal claim is paid out by the counterparty.
As aforementioned case for vulnerable bull spread option, expiring at time T , with the strike price K1

and K2, the payoff function is given by

h(ST , VT )) =
[
(ST −K1)

+ − (ST −K2)
+
] [
1{VT⩾γ∗} + 1{VT<γ∗}

(1− α)VT

γ

]
, (45)

with γ∗ is a critical value such that a credit loss occurs if the value of the option writer’s assets and the
no-arbitrage price of the option is given by

U(t, s, v, r) = E∗
[
e−
∫ T
t

rsdsh(ST , VT )|St = s, Vt = v, rt = r)
]
. (46)

By the non-arbitrage assumptions, the corresponding MMFHWV PDE of U(t, s, v, r) according to the Feynman-
Kac formula of bull spread option.

In this paper, we consider U = U(S, V, r, T − t) as the common arguments in financial mathematics imply
that if the option value function U is sufficiently smooth then under the MMFHWV model, it satisfies the
partial differential equation given in the following theorem.

Theorem 5.2. Under the MMFHWV model, the option value function U satisfies in the domain:

Ω = {(S, V, r, t) : 0 < S < +∞, 0 < V < +∞,−∞ < r < +∞, 0 < t < T} , (47)

the following partial differential equation is given by:

∂U

∂t
+

1

2
χH1,εσ2

ss
2 ∂

2U

∂s2
+

1

2
χH2,εσ2

vv
2
t

∂2U

∂v2
+

1

2
χH3,εσ2

r

∂2U

∂r2

+ ρsvσsσvsv
√
χH1,εχH2,ε

∂2U

∂s∂v
+ ρsrσsσrs

√
χH1,εχH3,ε

∂2U

∂s∂r

+ ρvrσvσrv
√
χH2,εχH3,ε

∂2U

∂v∂r
+ r

(
s
∂U

∂s
+ v

∂U

∂v

)
+ κ∗(θ∗ − r)

∂U

∂r
− rU = 0 (48)

with the terminal condition U(T, s, v, r) = h(s, v) and χHi,ε = (a+ bεHi− 1
2 )2,i=1.2.3.

Proof of Theorem 5.2. The proof of this result is found in Appendix A.2
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5.3 Option price formula
In this subsection, we use the approach of Ji-Hun and Jeong-Hoon[19] to derive a price formula of a vulnerable
bull Spread option under the Mixed-Modified-Fractional-Hull-White-Vasicek model by using the double mellin
transform.

We observe that the payoff function h of a vulnerable bull spread call option is not bounded, we require to
modify h by define a sequence of function hn such that each hn is bounded and lim

n−→∞
hn(s, v, r) = h(s, v, r).

They are given by 

hn(s, v, r) = h1
n(s, v, r)h

2
n(s, v, r)

h1
n(s, v, r) =

{
(s−K1)− (s−K2), ifK2 ⩽ K1 < s < n
0, otherwise

h2
n(s, v, r) =

{
1, ifγ∗ ⩽ v < n
(1−α)v

γ , otherwise

(49)

Setting Un(T, s, v, r) by

Un(T, s, v, r) = E
∗
[
e−
∫ T
t

rsdsh(ST , VT )|St = s, Vt = v, rt = r)
]
. (50)

We observe that, Un(t, s, v, r) satisfies Eq.(48) with the terminal condition Un(T, s, v, r) = hn(s, v).
The price U(t, s, v, r) is given by taking the limit U(t, s, v, r) = lim

n−→∞
Un(t, s, v, r) Let Ûn(t, w1, w2, r)

be the double Mellin transform of Un(t, s, v, r). Using Eq.(2),the expression of the inverse double Mellin
transform of Un(t, s, v, r) is given by

Un(t, s, v, r) =
1

(2π)2

∫ a1+i∞

a1−i∞

∫ a2+i∞

a2−i∞
Ûn(t, w1, w2, r)s

−w1v−w2dw1dw2 (51)

By applying Eq.(51) into Eq.(48), we obtain

− ∂Ûn

∂τ
+

[
1

2
χH1,εσ2

sw1(w1 + 1) + ρsv
√

χH1,εχH2,εσvσsw1w2 +
1

2
χH2,εσ2

vw2(w2 + 1)− r(w1 + w2 + 1)

]
Ûn

+
1

2
χH3,εσ2

r

∂2Ûn

∂r2
+
(
κ∗θ∗ − κ∗r − ρsr

√
χH1,εχH3,εσsσrw1 − ρvr

√
χH2,εχH3,εσrw2

) ∂Ûn

∂r
= 0 (52)

with τ = T − t and Ûn(0, w1, w2, r) = ĥ(w1, w2) which is the Mellin transform of hn(s, v).
Let

Ûn(τ, w1, w2, r) = exp

{(
1

2
χH1,εσ2

sw1(w1 + 1) + ρsv
√
χH1,εχH2,εσvσsw1w2 +

1

2
χH2,εσ2

vw2(w2 + 1)

)
τ

}
× f̂n(τ, w1, w2, r). (53)

Then, Eq.(52) is transformed into the following PDE for f̂n.

− ∂f̂n
∂τ

+
1

2
χH3,εσ2

r

∂2f̂n
∂r2

+
(
κ∗θ∗ − κ∗r − ρsr

√
χH1,εχH3,εσsσrw1 − ρvr

√
χH2,εχH3,εσvσrw2

) ∂f̂n
∂r

− r(w1 + w2 + 1)f̂n = 0 (54)

with f̂n(0, w1, w2, r) = Ûn(0, w1, w2, r) = ĥ(w1, w2).
To solve Eq.(54), we let

f̂n(τ, w1, w2, r) = ĥ(w1, w2)Q(τ, w1, w2)e− L(τ)(w1 + w2 + 1)r. (55)

We have the terminal condition f̂n(0, w1, w2, r) = ĥn(w1, w2).
Substituting Eq.(55) into Eq.(54), we obtain the following ODEs:

∂Q

∂τ
+
((

κθ(T − τ)− ρsr
√
χH1,εχH3,εσsσrw1 − ρvr

√
χH2,εχH3,εσvσrw2

)
L(τ)(w1 + w2 + 1)

)
Q

−
(
1

2
χH,εσ2

rL
2(τ)(w1 + w2 + 1)2

)
Q = 0 (56)

∂L

∂τ
+ κL− 1 = 0 (57)
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where Q(0, w1, w2) = 1 and L(0) = 0.
Then, by solving Eq.(56), we have

Q(τ, w1, w2) = exp

{
χH3,εσ2

r

2κ2

(
τ +

2

κ∗

(
e−κ∗τ − 1

)
− 1

2κ∗

(
e−2κ∗τ − 1

))
(w1 + w2 + 1)2

}
+ exp

{(
ρsr
√
χH1,εχH3,εσsσr

κ∗ w1(w1 + w2 + 1) +
ρvr
√
χH2,εχH3,εσvσr

κ∗ w2(w1 + w2 + 1)

)
(τ − L(τ))

}

− exp

{∫ τ

0

(w1 + w2 + 1)κ∗θ∗(T − ν)L(ν)dν

}
and

L(τ) =
1− e−κ∗τ

κ∗ . (58)

Then, from Eq.(53), we obtain

Ûn(τ, w1, w2, r) = ĥn(w1, w2) exp
{(

N(τ)(w1 + w2 + 1)2
)}

+ exp

{(
1

2
χH1,εσ2

sw1(w1 + 1) + ρsv
√
χH1,εχH2,ε +

1

2
χH2,εσ2

vw2(w2 + 1)

)}
+ exp

{(
ρsr
√
χH1,εχH3,εσsσr

κ∗ w1(w1 + w2 + 1) +
ρvr
√
χH2,εχH3,εσvσr

κ∗ w2(w1 + w2 + 1)

)
(τ − L(τ))

}
− exp {M(τ) + L(τ)r(w1 + w2 + 1)} (59)

with N(τ) and M(τ) are given by{
N(τ) =

χH3,εσ2
r

2(κ∗)2

(
τ + 2

κ∗

(
e−κ∗τ − 1

)
− 1

2κ∗

(
e−2κ∗τ − 1

))
M(τ) =

∫ τ

0
κθ(T − ν)L(ν)dν

(60)

We have

Un(τ, s, v, r) =
1

(2π)2

∫ a1+i∞

a1−i∞

∫ a2+i∞

a2−i∞
ĥn(w1, w2)e

Ĵ(τ,w1,w2,r)s−w1v−w2dw1dw2 (61)

where Ĵ(τ, w1, w2, r) is given by

Ĵ(τ, w1, w2, r) = N(τ)(w1 + w2 + 1)2 +

(
1

2
χH2,εσ2

sw1(w1 + 1) + ρsv
√
χH1,εχH2,ε +

1

2
χH2,εσ2

vw2(w2 + 1)

)
τ

+

(
ρsr
√
χH2,εχH3,εσsσr

κ∗ w1(w1 + w2 + 1) +
ρvr
√
χH2,εχH3,εσvσr

κ∗ w2(w1 + w2 + 1)

)
(τ − L(τ))

− (M(τ) + L(τ)r) (w1 + w2 + 1). (62)

We define the following expression to use to compute Un(τ, s, v, r)

Λ(τ, s, v, r) =
1

(2π)2

∫ a1+i∞

a1−i∞
eC(τ,w2,r)

[∫ a2+i∞

a2−i∞
ĥn(w1, w2)e

{A(τ)ξ2(τ)}s−w1dw1

]
v−w2dw2. (63)

Now, the term Ĵ(τ, w1, w2, r) have the following quadratic form of w1 and we obtain

Λ(τ, s, v, r) =
1

(2π)2

∫ a1+i∞

a1−i∞
eC(τ,w2,r)

[∫ a2+i∞

a2−i∞
ĥn(w1, w2)e

{A(τ)ξ2(τ)}s−w1dw1

]
v−w2dw2 (64)

with ξ(τ) = w1 +
A(τ)+B(τ)+B(τ)w2

2A(τ)
,where


A(τ) = N(τ) + 1

2χ
H1,εσ2

sτ +
ρsr

√
χH1,εχH3,εσsσr

κ∗ (τ − L(τ))

B(τ) = 2N(τ) + ρsv
√
χH1,εχH2,ε +

(
ρsr

√
χH1,εχH3,εσsσr

κ∗ +
ρvr

√
χH2,εχH3,εσvσr

κ∗

)
(τ − L(τ))

B(τ) = N(τ)−M(τ)− L(τ)r.
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and

C(τ, w2, r) = −1

4

(
A(τ) +B(τ) +B(τ)w2

)2
A(τ)

+N(τ)(w2 + 1)2

+
1

2
χH2,εσ2

v(w
2
2 + w2)τ +

ρvr
√
χH2,εχH3,εσvσr

κ∗ (τ − L(τ))

− M(τ)(w2 + 1)− L(τ)(w2 + 1)r.

We observe that A(τ) ⩾ 1
2

∫ τ

0
(σs − σrL(ν))

2dν, we deduce that A(τ) > 0, for all τ > 0, according Lemma
2.1, we have

1

2πi

[∫ a2+i∞

a2−i∞
e{A(τ)ξ2(τ)}s−w1dw1

]
=

1√
πA(τ)

s
A(τ)+B(τ)+B(τ)w2

2A(τ) e
− 1

4A(τ)
(ln s)2

.

Therefore, Eq.(64) becomes

Λ(τ, s, v, r) =
e
− 1

4A(τ)
(ln s)2

2
√
πA(τ)

s
A(τ)+B(τ)

2A(τ)
1

2πi

∫ a1+i∞

a1−i∞
eC(τ,w2,r)s

B(τ)w2
2A(τ) v−w2dw2. (65)

In the Eq.(65), the integrand have a quadratic form of w2 as follows

1

2πi

∫ a1+i∞

a1−i∞
eC(τ,w2,r)s

B(τ)w2
2A(τ) v−w2dw2

= exp

−

(
B3(τ) +

B(τ)

2A(τ)
ln s
)2

4B1(τ)− B
2
(τ)

4A

−
(
A(τ)−B2

)2
4A(τ)


× 1

2πi

∫ a1+i∞

a1−i∞
exp


(
B1(τ)−

B
2
(τ)

4A(τ)

)w2
2 +

B3(τ) +
B(τ)

2A(τ)
ln s

2B1(τ)− B
2
(τ)

2A(τ)

2
 v−w2dw2, (66)

where  B1(τ) = N(τ) + 1
2χ

H2,εσ2
vτ +

ρvr

√
χH2,εχH3,εσvσr

κ∗ (τ − L(τ))

B3(τ) = − B(τ)

2A(τ)

(
A(τ) +B2(τ)

)
+B1(τ) +B2(τ).

By setting {
σ̂2
s(t) = χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(t) + χH3,εσ2

rL
2(t)

σ̂2
v(t) = χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(t) + χH3,εσ2
rL

2(t).
(67)

We have
A(τ) = 1

2

∫ τ

0
σ̂2
s(ν)dν

B1(τ) =
1
2

∫ τ

0
σ̂2
v(ν)dν

B(τ) =
∫ τ

0

[
ρsv
√
χH1,εχH2,εσsσv + σrL(ν)(ρsr

√
χH1,εχH3,εσs + ρvr

√
χH2,εχH3,εσr) + χH3σ2

rL
2(ν)

]
dν.

(68)
While the correlation coefficients ρsr and ρvr are constants satisfying Eq.(20), then B1(τ)− B

2
(τ)

4A(τ)
> 0 is

satisfied for τ > 0. From Lemma 2.1 applied to Eq.(66), we have

1

2πi

∫ a1+i∞

a1−i∞
exp


(
B1(τ)−

B
2
(τ)

4A(τ)

)w2
2 +

B3(τ) +
B(τ)

2A(τ)
ln s

2B1(τ)− B
2
(τ)

2A(τ)

2
 v−w2dw2

=
1

2

√
π
(
B1(τ)− B

2
(τ)

4A(τ)

) exp

− 1

4
(
B1(τ)− B

2
(τ)

4A(τ)

) (ln v)2
 v

B3(τ)+
B(τ)

2A(τ)
ln s

2B1(τ)−B2(τ)

2A(τ) (69)
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Therefore, using Eq.(65), Eq.(66) and Eq.(69), we obtain the following explicit of Λ(τ, s, v, r) which is given
by

Λ(τ, s, v, r) = exp

−

(
B3(τ) +

B(τ)

2A(τ)
ln s
)2

4
(
B1(τ)− B

2
(τ)

4A(τ)

) −

(
A(τ)−B(τ)

)2
4A(τ)


× s

A(τ)+B(τ)+B(τ)w2
2A(τ) v

B3(τ)+
B(τ)

2A(τ)
ln s

2

(
B1(τ)−B2(τ)

4A(τ)

)

× e
− 1

4A(τ)
(ln s)2

2
√
πA(τ)

e

− 1

4

(
B1(τ)−B2(τ)

4A(τ)

) (ln v)2

2

√
π
(
B1(τ)− B

2
(τ)

4A(τ)

) . (70)

Now the expression of Un(τ, s, v, r) is obtain by using the Mellin convolution result given by Lemma 2.2, since
ĥ(w1, w2) and eĴ(τ,s,v,r) are the double Mellin transforms of hn(s, v) and Λ(τ, s, v, r), respectively.

By using Eq.(45), Eq.(61) becomes

Un(τ, s, v, r) =

∫ ∞

0

∫ ∞

0

hn(u,w)Λ(τ,
s

u
,
v

w
, r)u−1w−1dudw

= ek̂
∫ n

γ∗

∫ n

K1

eϕ̂1(u) (u−K1) ϕ̂2(u,w)
1

u

1

w
dudw − ek̂

∫ n

γ∗

∫ n

K2

eϕ̂1(u) (u−K2) ϕ̂2(u,w)
1

u

1

w
dudw

+ ek̂ δ̂

∫ γ∗

0

∫ ∞

K1

eϕ̂1(u)w (u−K1) ϕ̂2(u,w)
1

u

1

w
dudw − ek̂ δ̂

∫ γ∗

0

∫ ∞

K2

eϕ̂1(u)w (u−K2) ϕ̂2(u,w)
1

u

1

w
dudw.

with

k̂ = −1

4

(
A(τ)−B(τ)

)2
A(τ)

,

where 
δ̂ = 1−α

γ

ϕ̂1(u) = − 1
4

(
B3(τ)+

B(τ)

2A(τ)
ln s
)2

B1(τ)−B2(τ)

4A(τ)

,

and

ϕ̂2(u,w) =
( s
u

)A(τ)+B(τ)

2A(τ)
( v

w

)B3(τ)+
B(τ)

2A(τ)
ln( s

u )

B1(τ)−B2(τ)

4A(τ)

× e
− 1

4A(τ)
(ln( s

u ))
2

2
√

πA(τ)

e

− 1

4

(
B1(τ)−B2(τ)

4A(τ)

) (ln( v
w ))

2

2

√
π
(
B1(τ)− B

2
(τ)

4A(τ)

) .

By setting U(τ, s, v, r) = lim
n−→∞

Un(τ, s, v, r), it follow that

U(τ, s, v, r) =

∫ ∞

0

∫ ∞

0

hn(u,w)Λ(τ,
s

u
,
v

w
, r)u−1w−1dudw

= ek̂
∫ n

γ∗

∫ n

K1

eϕ̂1(u) (u−K1) ϕ̂2(u,w)
1

u

1

w
dudw − ek̂

∫ n

γ∗

∫ n

K2

eϕ̂1(u) (u−K2) ϕ̂2(u,w)
1

u

1

w
dudw

+ ek̂ δ̂

∫ γ∗

0

∫ ∞

K1

eϕ̂1(u)w (u−K1) ϕ̂2(u,w)
1

u

1

w
dudw − ek̂ δ̂

∫ γ∗

0

∫ ∞

K2

eϕ̂1(u)w (u−K2) ϕ̂2(u,w)
1

u

1

w
dudw

= U1(τ, s, v, r) + V 1(τ, s, v, r). (71)

We deduce that
U(τ, s, v, r) = U1(τ, s, v, r) + V 1(τ, s, v, r), (72)
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with

U1(τ, s, v, r) = Ũ1(τ, s, v, r)− U
1
(τ, s, v, r) (73)

V 1(τ, s, v, r) = Ṽ 1(τ, s, v, r)− V
1
(τ, s, v, r), (74)

where

Ũ1(τ, s, v, r) = ek̂
∫ n

γ∗

∫ n

K1

eϕ̂1(u) (u−K1) ϕ̂2(u,w)
1

u

1

w
dudw (75)

U
1
(τ, s, v, r) = ek̂

∫ n

γ∗

∫ n

K2

eϕ̂1(u) (u−K2) ϕ̂2(u,w)
1

u

1

w
dudw. (76)

and

Ṽ 1(τ, s, v, r) = ek̂ δ̂

∫ γ∗

0

∫ ∞

K1

eϕ̂1(u)w (u−K1) ϕ̂2(u,w)
1

u

1

w
dudw (77)

V
1
(τ, s, v, r) = ek̂ δ̂

∫ γ∗

0

∫ ∞

K2

eϕ̂1(u)w (u−K2) ϕ̂2(u,w)
1

u

1

w
dudw. (78)

The explicit calculation of U1(τ, s, v, r) and V 1(τ, s, v, r) of Eq.(72) leads to the following analytic closed form
formula of the price of vulnerable bull spread call option.

By letting U(t, s, v, r) = CallBullSpread(t, s, v, r), we have:

Theorem 5.3. The price of Bull Spread vulnerable call option denote by CallBullSpread(t, s, v, r) with the
Mixed-Modified-Fractional-Hull-White-Vasicek model,defined by Eq.(46), is explicitly given by

CallBullSpread(t, s, v, r) = sN (â1, â2, ξ)−K1P (t, r, T ))N (̂b1, b̂2, ξ) (79)

− sN (̂̂a1, ̂̂a2, ξ) +K2B(t, r, T ))N (̂̂b1,
̂̂
b2, ξ)

+ δ̂v

(
s

p(t, T )

P (t, r, T )
N (ĉ1, ĉ2,−ξ)−K1N (d̂1, d̂2,−ξ)

)
(80)

− δ̂v

(
s

p(t, T )

P (t, r, T )
N (̂ĉ1, ̂̂c2,−ξ) +K2N (

̂̂
d1,
̂̂
d2,−ξ)

)
(81)

with ξ = B(τ)

2
√

A(τ)B1(τ)
where

â1 =
ln
(

s
K1

)
− lnP (t, r, T ) + 1

2

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL
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)
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(82)

b̂1 =
ln
(

v
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− lnP (t, r, T )− 1

2
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√
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√
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(83)

â2 =
ln
(

s
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− lnP (t, r, T )− 1

2
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dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2
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(84)

b̂2 =
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and

̂̂a1 =
ln
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√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2
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Proof of Theorem 5.3. The proof of this result is found in Appendix A.3

In the case of a vulnerable bull spread put option with Hull-White-Vasicek volatility and interest rates
model using Mixed Modified Fractional Brownian Motion, the option pricing formula is given by the following
result:

Theorem 5.4. The price of Bull Spread vulnerable put option denote by PutBullSpread(t, s, v, r), with
the Mixed-Modified-Fractional-Hull-White-Vasicek volatility and interest rates model, defined by Eq.(46), is
explicitly given by

PutBullSpread(t, s, v, r) = −sN (−â1, â2, ξ) +K1P (t, r, T ))N (−b̂1, b̂2, ξ) (98)

+ sN (−̂â1, ̂̂a2, ξ)−K2P (t, r, T ))N (−̂̂b1, ̂̂b2, ξ)
+ δ̂v

(
−s

p(t, T )

P (t, r, T )
N (−ĉ1, ĉ2,−ξ) +K1N (−d̂1, d̂2,−ξ)

)
(99)

− δ̂v

(
−s

p(t, T )

P (t, r, T )
N (−̂̂c1, ̂̂c2,−ξ)−K2N (−̂̂d1, ̂̂d2,−ξ)

)
(100)

where â1, â2, b̂1, b̂2, ĉ1, ĉ2, d̂1, d̂2, ̂̂c1, ̂̂c2, ̂̂d1, ̂̂d2, ξ and p(t, T ) are given by Theorem 5.3.

We deduce that the bull Call spread reduces the cost of the call option, but it comes with a trade-off.
The gains in the stok’s price are also capped, creating a limited range where the investor can make a profit.
Traders will use the bull call spread if they believe an asset will moderately rise in value.

6 Conclusion
As an extension of Hull and White [18] and Vasicek[33] models, this paper proposes a new three-factor
pricing model for vulnerable European options incorporating spreads and interest rates whose movements
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are governed by mixed modified fractional stochastic differential equations. The dynamics of the short-term
interest rate is represented implicitly by a fractional stochastic process of the price of zero-coupon bond.
Under our original assumption, we have obtain the bond price closed form formula. We have discretize the
stochastic process with Milstein discretization scheme and we have showed the sample paths of asset price
movement, the sample paths of volatility of asset price movement and the sample paths of interest rates of
asset price movement. Furthermore, we exploit Mellin’s transform techniques to derive a closed-form solution
for vulnerable Bull Spread options model, which is simply calculated using the standard normal cumulative
distribution function so that pricing and coverage of vulnerable European options can be calculated accurately
and quickly.

The applications of our results are numerous, in particular to for a realistic credit risk measurement (see
Johnson and Stuly [12]) and Klein[22]) and Amman[1].

A Appendix

A.1 Notations
• µ the drift of the process for the stock and for the variance;

• σs is the volatility of the stock price;

• σv is the volatility of the variance;

• κ the mean reversion speed for the interest rate;

• θ the mean reversion level for the interest rate;

• σr the volatility of the interest rate;

• µ the drift of the process for the stock and for the variance;

• S0 > 0 is the spot asset price;

• V0 > 0 is the initial (time zero)level of the variance;

• r0 > 0 is the initial (time zero)level of the interest rates;

• Q is a Risk neutral probability measure and P is a probability measure;

• St is the dynamic stock price,Vt is its volatility and rt is its interest rate;

• P (t, r, T ) is the default price of a zero-coupon bond maturing at time T with the nominal value 1;

• U is the price of the bull spread vulnerable option at time t;

• N is the central distribution function of the normal distribution,N (0, 1);

• MH1,ε
.,s and MH2,ε

.,v ,MH3,ε
.,r are three Mixed Modified Fractional Brownian motions with Hurst parameters

H1, H2, H3 ∈] 12 , 1[;

• ε is the adjustment coefficient between the times of cotations on the financial market;

• γ∗ is a critical value such that a credit loss occurs if the value of the option writer’s assets;

• K1 and K2 are the strike of the bull spread option;

• p(t, T ) is the price at time 0 < t < T of a zero coupon with maturity T .

A.2 Proof of Theorem 5.2

Let U = U(s, v, r, t) be the price of a bull spread option and Π denotes the value of the portfolio at time t.
We have

Π = U − n1s− n2v − n3P (101)

The variation of the portfolio is defined by

dΠ = dU − n1ds− n2v − n3dP (102)
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By applying the fractional Ito’s lemma to Eq.(102) as well as choosing

n1 =
∂U

∂s
; n2 =

∂U

∂v
; n3 =

∂U
∂r
∂P
∂r

, (103)

to eliminate the stochastic noise contained in the dS, dV and dr respectively. We obtain

dΠ =
∂U

∂t
dt+

1

2

∂2U

∂s2
(ds)2+

1

2

∂2U

∂v2
(dV )2+

∂2U

∂s∂v
(dsdV )+

∂2U

∂s∂r
(dsdr)+

∂2U

∂v∂r
(dV dr)−n3

[
∂U

∂t
dt+

1

2

∂2U

∂r2
(dr)2

]
(104)

with (dSt)
2, (dVt)

2 (dr)2, dStdVt, dStdr dVtdrtare given respectively by

(dSt)
2 = χH1,εσ2

ss
2dt

(dVt)
2 = χH2,εσ2

vv
2dt

(drt)
2 = χH3,εσ2

rdt

dStdVt =
√

χH1,εχH2,εσsσvsvρsvdt

dStdrt =
√

χH1,εχH3,εσsσrsρsrdt

dVtdrt =
√
χH2,εχH3,εσvσrvρvrdt.

(105)

Substituting Eq.(105) into Eq.(104), we have
dΠ =

{
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[
1
2χ

H1,εσ2
ss

2 ∂2U
∂s2 + 1

2χ
H2,εσ2

v
∂2U
∂v2

]}
dt

+
{√

χH1,εχH2,εσsσvsvρsv
∂2U
∂s∂v +

√
χH1,εχH3,εσsσrsρsr

∂2U
∂s∂r +

√
χH2,εχH3,εσvσrvρvr

∂2U
∂v∂r

}
dt

−n3

[
∂U
∂t + 1

2χ
H3,εσ2

r
∂2U
∂r2

]
.

(106)

On the other hand, it is known that the return for any risk-free portfolio should be r. Hence, the variation
value of the portofolio is

dΠt = r

(
U − s

∂U

∂s
− v

∂U

∂v
− n3P

)
dt (107)

By substituting Eq.(106) and Eq.(38) into Eq.(107) gives
{

∂U
∂t +

[
1
2χ

H1,εσ2
ss

2 ∂2U
∂s2 + 1

2χ
H2,εσ2

v
∂2U
∂v2

]}
dt

+
{√

χH1,εχH2,εσsσvsvρsv
∂2U
∂s∂v +

√
χH1,εχH3,εσsσrsρsr

∂2U
∂s∂r +

√
χH2,εχH3,εσvσrvρvr

∂2U
∂v∂r

}
dt

−n3

[
∂U
∂t + 1

2χ
H3,εσ2

r
∂2U
∂r2

]
. =

(
rU − rs∂U

∂s − rv ∂U
∂v − rn3P

)
.

(108)

In the above statement Eq.(109), we use Eq.(38) and the value of n3 given by Eq.(103) to obtain

∂U

∂t
+

1

2
χH1,εσ2

ss
2 ∂

2U

∂s2
+

1

2
χH2,εσ2

vv
2
t

∂2U

∂v2
+

1

2
χH3,εσ2

r

∂2U

∂r2

+ ρsvσsσvsv
√
χH1,εχH2,ε

∂2U

∂s∂v
+ ρsrσsσrs

√
χH1,εχH3,ε

∂2U

∂s∂r

+ ρvrσvσrv
√
χH2,εχH3,ε

∂2U

∂v∂r
+ r

(
s
∂U

∂s
+ v

∂U

∂v

)
+ κ∗(θ∗ − r)

∂U

∂r
− rU = 0 (109)

A.3 Proof of Theorem 5.3

A.3.1 Expression of U1(τ, s, v, r)

• Expression of Ũ1(τ, s, v, r).We begin to take changes of variables
x =

ln( s
u )√

2A(τ)

y =
ln( s

w )√
2B(τ)

.
(110)

and 
η1(x) =

(
e−xσs

√
τ −K1

)
Σ(τ) =

B2
3(τ)

4

[
B1(τ)−B2(τ)

4A(τ)

] . (111)
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We have:

Ũ1(τ, s, v, r) (112)

=
1

2π

√√√√ B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

∞∫
ln( v

γ∗ )√
2B1(τ)

∞∫
ln( s

K1
)√

2A(τ)

ek̂ exp

−1

4

(
B3(τ) +

B(τ)√
2A(τ)

x

)2

B1(τ)− B
2
(τ)

4A(τ)

 η1(x)

× exp


A(τ) +B(τ)√

2A(τ)
x+

y
√

B1(τ)

[
B3(τ) +

B(τ)√
2A(τ)

x

]
√
2
[
B1(τ)− B

2
(τ)

4A(τ)

]
 e−

1
2x

2

e

− 1
2

B1(τ)

B1(τ)−B2(τ)

4A(τ)

y2

dxdy

=
s

2π

√√√√ B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

∞∫
ln( v

γ∗ )√
2B1(τ)

∞∫
ln( s

K1
)√

2A(τ)

exp

k̂ − 1

2

B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

(x2 + y2)



× exp


−

√
2A(τ) +

A(τ) +B(τ)√
2A(τ)

− 1

2

[
B3(τ) +

B(τ)√
2A(τ)

]
B1(τ)− B

2
(τ)

4A(τ)

x− Σ(τ)


× exp


y
√
B1(τ)B3(τ)

√
2
[
B1(τ)− B

2
(τ)

4A(τ)

]
+ B1(τ)

B1(τ)−B2(τ)

2A(τ)

×B1(τ)−
B

2
(τ)

4A(τ)
× B(τ)

2
√

A(τ)B1(τ)
xy

 dxdy

× K1

2π

√√√√ B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

∞∫
ln( v

γ∗ )√
2B1(τ)

∞∫
ln( s

K1
)√

2A(τ)

exp

k̂ − 1

2

B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

(x2 + y2)



× exp


−

√
2A(τ) +

A(τ) +B(τ)√
2A(τ)

− 1

2

[
B3(τ) +

B(τ)√
2A(τ)

]
B1(τ)− B

2
(τ)

4A(τ)

x− Σ(τ)


× exp


y
√
B1(τ)B3(τ)

√
2
[
B1(τ)− B

2
(τ)

4A(τ)

]
+ B1(τ)

B1(τ)−B2(τ)

2A(τ)

×B1(τ)−
B

2
(τ)

4A(τ)
× B(τ)

2
√

A(τ)B1(τ)
xy

 dxdy. (113)
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According to Lemma 2.2, From Eq.(72), we let

˜̃
U

1

(τ, s, v, r) =
s

2π

√√√√ B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

∞∫
ln( v

γ∗ )√
2B1(τ)

∞∫
ln( s

K1
)√

2A(τ)

exp

k̂ − 1

2

B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

(x2 + y2)



× exp


−

√
2A(τ) +

A(τ) +B(τ)√
2A(τ)

− 1

2

[
B3(τ) +

B(τ)√
2A(τ)

]
B1(τ)− B

2
(τ)

4A(τ)

x− Σ(τ)


× exp


y
√

B1(τ)B3(τ)
√
2
[
B1(τ)− B

2
(τ)

4A(τ)

]
+ B1(τ)

B1(τ)−B2(τ)

2A(τ)

×B1(τ)−
B

2
(τ)

4A(τ)
× B(τ)

2
√
A(τ)B1(τ)

xy

 dxdy

= s


1

2π
√
Σ∗

∞∫
ln( v

γ∗ )√
2B1(τ)

∞∫
ln( s

K1
)√

2A(τ)

exp

{
− 1

2Σ∗

[
(x+ a)2 + (y + b)2

]
+

ξ

2Σ∗

[
(x+ a)(y + b)

]}
 .

where 

Σ∗ = 1− ξ2,

a = A(τ)−B(τ)√
2A(τ)

,

b = B(τ)−B1(τ)−B(τ)√
2B1(τ)

,

−1 < ξ < 1.

Using the following transformation of variables,

x1 = x+ A(τ)−B(τ)√
2A(τ)

,

y1 = y + B(τ)−B1(τ)−B(τ)√
2B1(τ)

,

x2 = x− A(τ)+B(τ)√
2A(τ)

,

y2 = y − B1(τ)+B(τ)√
2B1(τ)

.

(114)

We obtain

˜̃
U

1

(τ, s, v, r) = s

[
1

2π
√

1− ξ2

∫ â1

−∞

∫ â2

−∞
e

1
2(1−ξ2)

(x2
1−2ξx2y2+y2

1)dx1dy1

]
, (115)

where

â1 =
ln
(

s
K1

)
− lnP (t, r, T ) + 1

2

∫ τ

0

(
χH2,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν

â2 =
ln
(

s
K1

)
− lnP (t, r, T )− 1

2

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν
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and according always to Lemma 2.2, we also let

˜̃
U

2

(τ, s, v, r) =
K1

2π

√√√√ B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

∞∫
ln( v

γ∗ )√
2B1(τ)

∞∫
ln( s

K1
)√

2A(τ)

exp

k̂ − 1

2

B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

(x2 + y2)



× exp


−

√
2A(τ) +

A(τ) +B(τ)√
2A(τ)

− 1

2

[
B3(τ) +

B(τ)√
2A(τ)

]
B1(τ)− B

2
(τ)

4A(τ)

x− Σ(τ)


× exp


y
√

B1(τ)B3(τ)
√
2
[
B1(τ)− B

2
(τ)

4A(τ)

]
+ B1(τ)

B1(τ)−B2(τ)

2A(τ)

×B1(τ)−
B

2
(τ)

4A(τ)
× B(τ)

2
√
A(τ)B1(τ)

xy

 dxdy

=
K1P (t, r, T )

2π
√
Σ∗


∞∫

ln( v
γ∗ )√

2B1(τ)

∞∫
ln( s

K1
)√

2A(τ)

exp

{
P (t, r, T )− 1

2Σ∗

[
(x+ c)2 + (y + d)2

]
+ q(τ)

}
 .

where 
q(τ) = ξ

2Σ∗

[
(x+ c)(y + d)

]
,

c = −A(τ)+B(τ)√
2A(τ)

,

d = −B1(τ)+B(τ)√
2B1(τ)

.

By also using the transformation of variables given by Eq.(114), we have

˜̃
U

2

(τ, s, v, r) = K1P (t, r, T )

[
1

2π
√
1− ξ2

∫ b̂1

−∞

∫ b̂2

−∞
e

1
2(1−ξ2)

(x2
2−2ξx2y2+y2

2)dx2dy2

]
(116)

where

b̂1 =
ln
(

v
γ∗

)
− lnP (t, r, T )− 1

2

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν

+
2ξ
∫ τ

0
σ̂2
s(ν)dν

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

b̂2 =
ln
(

v
γ∗

)
− lnP (t, r, T )− 1

2

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν

Combining, Eq.(115) and Eq.(116), the value of Ũ1(t, s, v, r) given by Eq.(75) becomes

Ũ1(t, s, v, r) =
˜̃
U

1

(t, s, v, r) +
˜̃
U

2

(t, s, v, r)

= sN (â1, â2, ξ)−K1P (t, r, T ))N (̂b1, b̂2, ξ).

Therefore,we have:

Ũ1(t, s, v, r) = sN (â1, â2, ξ)−K1P (t, r, T ))N (̂b1, b̂2, ξ) (117)

• Expression of U
1
(t, s, v, r). We make the same transformation used to have the value of Ũ1(t, s, v, r)

and then, we changes the value of η1(x) by η2(x) =
(
e−xσs

√
τ −K2

)
. We deduce that, the expression

of second term U
1
(t, s, v, r) given by Eq.(76) is defined as follows:

U
1
(t, s, v, r) = sN (̂̂a1, ̂̂a2, ξ)−K2P (t, r, T ))N (̂̂b1,

̂̂
b2, ξ) (118)
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with

ˆ̂a1 =
ln
(

s
K2

)
− lnP (t, r, T ) + 1

2

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(119)

ˆ̂
b1 =

ln
(

v
γ∗

)
− lnP (t, r, T )− 1

2

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν

+
2ξ
∫ τ

0
σ̂2
s(ν)dν

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(120)

ˆ̂a2 =
ln
(

s
K2

)
− lnP (t, r, T )− 1

2

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(121)

ˆ̂
b2 =

ln
(

v
γ∗

)
− lnP (t, r, T )− 1

2

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν

(122)

Therefore, combining Eq.(117) and Eq.(118), Eq.(73) gives:

U1(t, s, v, r) = sN (â1, â2, ξ)−K2P (t, r, T ))N (̂b1, b̂2, ξ)−sN (̂̂a1, ̂̂a2, ξ)−K2P (t, r, T ))N (̂̂b1,
̂̂
b2, ξ) (123)

A.3.2 Expression of V 1(τ, s, v, r)

• Expression of Ṽ 1(τ, s, v, r) The expression of Ṽ 1(τ, s, v, r) of Eq.(77) becomes

Ṽ 1(τ, s, v, r) =
δ̂vs

2π

√√√√ B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

ln( v
γ∗ )√

2B1(τ)∫
∞

∞∫
ln( s

K1
)√

2A(τ)

exp

k̂ − 1

2

B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

(x2 + y2)



× exp


−

√
2A(τ) +

A(τ) +B(τ)√
2A(τ)

− 1

2

[
B3(τ) +

B(τ)√
2A(τ)

]
B1(τ)− B

2
(τ)

4A(τ)

x− Σ(τ)


× exp


y
√
B1(τ)B3(τ)

√
2
[
B1(τ)− B

2
(τ)

4A(τ)

]
+ B1(τ)

B1(τ)−B2(τ)

2A(τ)

×B1(τ)−
B

2
(τ)

4A(τ)
× B(τ)

2
√

A(τ)B1(τ)
xy

 dxdy

× δ̂vK1

2π

√√√√ B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

ln( v
γ∗ )√

2B1(τ)∫
∞

∞∫
ln( s

K1
)√

2A(τ)

exp

k̂ − 1

2

B1(τ)

B1(τ)− B
2
(τ)

2A(τ)

(x2 + y2)



× exp


−

√
2A(τ) +

A(τ) +B(τ)√
2A(τ)

− 1

2

[
B3(τ) +

B(τ)√
2A(τ)

]
B1(τ)− B

2
(τ)

4A(τ)

x− Σ(τ)


× exp


y
√
B1(τ)B3(τ)

√
2
[
B1(τ)− B

2
(τ)

4A(τ)

]
+ B1(τ)

B1(τ)−B2(τ)

2A(τ)

×B1(τ)−
B

2
(τ)

4A(τ)
× B(τ)

2
√

A(τ)B1(τ)
xy

 dxdy. (124)
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Then, following the same procedure as for Ũ1(τ, s, v, r), and using the following transformation defined
by: 

x̃3 = x+ −B(τ)+A+B√
2A

ỹ3 = y + −B(τ)+B1(τ)+B√
2B1(τ)

x̃4 = x+ −B(τ)−A+B√
2A

ỹ4 = y + −B(τ)+B1(τ)√
2B1(τ)

,

(125)

the expression of Ṽ 1(τ, s, v, r) is given by:

Ṽ 1(τ, s, v, r) = δ̂vse−B(τ)+B(τ)

 1

2π
√

1− ξ2

ĉ1∫
∞

∞∫
ĉ2

e
− 1

1−ξ2
(x̃2

3−2ξx̃3ỹ3+ỹ2
3)dx̃3dỹ3



− δ̂vsK1e
−B(τ)+B(τ)

 1

2π
√
1− ξ2

d̂1∫
∞

∞∫
d̂2

e
− 1

1−ξ2
(x̃2

3−2ξx̃4ỹ4+ỹ2
4)dx̃4dỹ4


= δ̂v

(
p(t, T )

P (t, r, T )
N (ĉ1,−ĉ2, ξ)−K1N (d̂1,−d̂2,−ξ)

)
. (126)

where

ĉ1 =
ln
(

s
K1

)
− lnP (t, r, T ) + 1

2

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

+
2ξ
∫ τ

0
σ̂2
s(ν)dν

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(127)

ĉ2 = −
ln
(

v
γ∗

)
− lnP (t, r, T ) + 1

2

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν

−
2ξ
∫ τ

0
σ̂2
s(ν)dν

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(128)

and

d̂1 =
ln
(

s
K1

)
− lnP (t, r, T )− 1

2

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

+
2ξ
∫ τ

0
σ̂2
s(ν)dν

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(129)

d̂2 = −
ln
(

v
γ∗

)
− lnP (t, r, T ) + 1

2

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(130)
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• Expression of V
1
(τ, s, v, r). The expression of V

1
(τ, s, v, r) of Eq.(78) is obtained by following the

same procedure as for Ṽ 1(τ, s, v, r). Then, the expression of V
1
(τ, s, v, r) is given by:

V
1
(τ, s, v, r) = −δ̂vse−B(τ)+B(τ)

 1

2π
√
1− ξ2

̂̂c1∫
∞

∞∫
̂̂c2
e
− 1

1−ξ2
(x̃2

3−2ξx̃3ỹ3+ỹ2
3)dx̃3dỹ3



+ δ̂vsK2e
−B(τ)+B(τ)

 1

2π
√
1− ξ2

̂̂
d1∫
∞

∞∫
̂̂
d2

e
− 1

1−ξ2
(x̃2

3−2ξx̃4ỹ4+ỹ2
4)dx̃4dỹ4


= −δ̂v

(
p(t, T )

P (t, r, T )
N (̂ĉ1,−̂̂c2, ξ)−K2N (

̂̂
d1,−

̂̂
d2,−ξ)

)
. (131)

Where

̂̂c1 =
ln
(

s
K2

)
− lnP (t, r, T ) + 1

2

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

+
2ξ
∫ τ

0
σ̂2
s(ν)dν

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(132)

̂̂c2 = −
ln
(

v
γ∗

)
− lnP (t, r, T ) + 1

2

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν

−
2ξ
∫ τ

0
σ̂2
s(ν)dν

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH2,εσ2

v + 2ρvr
√
χH2,εχH3,εσvσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(133)

and

̂̂
d1 =

ln
(

s
K2

)
− lnP (t, r, T )− 1

2

∫ τ

0

(
χH1,εσ2

s + 2ρsr
√

χH1,εχH3,εσsσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

+
2ξ
∫ τ

0
σ̂2
s(ν)dν

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(134)

̂̂
d2 = −

ln
(

v
γ∗

)
− lnP (t, r, T ) + 1

2

∫ τ

0

(
χH2,εσ2

v + 2ρvr
√

χH2,εχH3,εσvσrL(ν) + χH3,εσ2
rL

2(ν)
)
dν√∫ τ

0

(
χH1,εσ2

s + 2ρsr
√
χH1,εχH3,εσsσrL(ν) + χH3,εσ2

rL
2(ν)

)
dν

(135)
By combining Eq.(126) and Eq.(131), Eq.(74) gives:

V 1(τ, s, v, r) = δ̂v

(
p(t, T )

P (t, r, T )
N (ĉ1,−ĉ2, ξ)−K1N (d̂1,−d̂2,−ξ)

)
− δ̂v

(
p(t, T )

P (t, r, T )
N (̂ĉ1,−̂̂c2, ξ)−K2N (

̂̂
d1,−

̂̂
d2,−ξ)

)
. (136)

By using Eq.(123) and Eq.(136), Eq.(72) gives the expression of U(τ, s, v, r).
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