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Abstract

In this paper, in order to serve credit risk management, we introduce a pricing model for a vulnerable
Bull Spread options in a Mixed Modified Fractional Hull-White-Vasicek stochastic volatility and
stochastic interest rate model. We use Milstein scheme to find the sample paths of asset price
and its volatility, and the sample paths of interest rates of asset price movement. We use the
double Mellin transform to obtain an analytical vulnerable bull spread call option formula and
an analytical vulnerable bull spread put option formula under fractional stochastic volatility and
fractional stochastic interest rates.
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1 Introduction

Credit risk management is crucial for financial institutions (banks, insurance companies, mutual
funds and pension funds, etc.), but also for national or international regulatory institutions. Indeed,
within the framework of market surveillance and the risk of bankruptcy of financial institutions, the
bank for international settlements requires compliance (within the framework of the application of
the Basel IIT or Solvency II systems), that certain prudential rules are respected. Thus, hedging
financial risks through the use of financial derivatives is increasingly common. It is enough to see
the extension works of the option pricing models proposed by Black and Scholes [3], to understand
the growing interest in the valuation of derivative products. With regard to the risks of credit
default on the over-the-counter markets, some authors have, under certain assumptions, proposed
pricing models of vulnerable options. We must mention the recent occurrence of economic crises (for
example the subprime crisis in 2008), with, as a corollary, the increase in the probability of default
by certain financial institutions, companies or municipalities. Among the authors who have proposed
pricing models for vulnerable options, the holder of which is subject to the risk of default, in addition
to the work of Johnson and Stuly [12] where the first to substituted default risk in option pricing
and put forward a new definition called the vulnerable option, Klein [22] has derived an analytical
pricing formula which not only allows a correlation between the underlying asset of the option and
the default risk of the counterparty, but also for the writer of the option to have other liabilities in
the capital structure. Ammann [1] developed Klein’s credit risk model on the basis of a structural
approach. He finally obtained the explicit expression for the vulnerable option under the assumption
of interest rate and default intensity obeying a stochastic differential equation.

Other scholars like Chang and Hung [6] have also discussed this problem, while all the above
mentioned discussions are in the environment of geometric Brownian motion. Due to the inadequacies
of geometric Brownian motion in describing self-similarity and long-term dependence on stock prices,
fractional Brownian motion and mixed fractional Brownian motion are widely used in the valuation
of assets. Hu and Oksendal [16], Djeutcha et al.[10] developed the structural approach, respectively,
provided that the stock prices followed a mixed modified fractional Brownian motion and mixed
fractional Brownian motion and they proved that the correspondence with the fractional market and
the mixed modified fractional Black-Scholes market had no arbitrage effect for any Hurst parameter
greater than 1/2.



For more literature on fractional Brownian motions and mixed modified fractional Brownian
motions, among others , we can refer to Oksendal [27], Djeutcha and Sadefo Kamdem [11] and
Djeutcha et al.[10]. But there is another problem that the Black-Scholes fractional market does not
have an equivalent martingale measure according to Sottinen and Valkeila [30]. Necula [26] applied
the quasi-martingale method to risk-neutral measurement. Huang et al. [17] obtained the explicit
expression for the price of the Furopean option under the hypothesis of a Black-Scholes fractional
market. Su and Wang [29] and Li and Ma [24] derived the closed form formula of the price of the
vulnerable European option by the method of changing measures.

The constant volatility assumption of the Black-Scholes|3] model is unreliable, because in the
market volatility is in the form of a smile. Hence the need to introduce in the market stochastic
volatility models which give more realistic results in relation with the historical asset returns and
interest rate variation, compared to the classical Black-Scholes model. Pioneers in the field are:
Hull-White [18], Stein-Stein|28|, Heston|15], Njamen et al.[13|, Bakshi, Cao-Chen|2| and Schobel-
Zhu[31]. Each of these authors model the volatility of the underlying and propose models that
present analytical solutions and closed formulas for option pricing.

We therefore appeal to the class of stochastic volatility models and the pioneers in this field are
among these stochastic volatility models, the best known and studied is that of Hull-White. But, if
in the Hull-White model we consider the interest rate to be stochastic and follow the Vasicek model,
we can define a new kind of three-factor model. In general, these classes of three-factor models are
not studied in the literature, at least there is a lack of method to determine the analytical explicit
expression for the option hedging problem.

These competing models modeled the interest rate of the Black and Scholes model and authors
such as Vasicek [33], Dothan [8], Cox-Ingersoll-Ross |7], Djeutcha et al.[10], Yousouf et al.[34], Mo-
hamadinejad et al.[25] and Black-Derman-Toy [4] have worked on these models.

In this article, we will be using the double Mellin transform method as described in Ji-Hun and
Jeong-Hoon[19], so that we can derive the general pricing formula for the vulnerable bull spread
option under the stock price assumption, with the stock’s volatility obeying the Hull and White
diffusion model and the underlying interest rate obeying the Vasicek model which are driven by the
mixed modified fractional Brownian motion.

The competition over bull spread options pricing is more intense comparison with vulnerable
types. This is due to the uncertainty of the execution time in bull spread option and in result. The
vulnerable option is a kind of option with credit risk which refers to a risk that a borrower will
default on any type of debt by failing to make the required payments.

The bull spread option is an optimistic option strategy designed to take advantage of a moderate
rise in the price of a security or asset. If we replace in the European vulnerable option, the payoff
function of the European option with the payoff function of the bull spread option, we get a new
option called the vulnerable bull spread option.

Our paper looks at these two families of models (stochastic interest rate) and stochastic volatility).
But our motivation comes from the fact that we model the two families of models by assuming that
their random parts are described by mixed modified fractional Brownian motions in such a way that
our market is without arbitrage. The combination of the stochastic interest rate model (Vasicek|33])
and the stochastic volatility model (Hull-White[18]) allows us to define a three-factors model. This
new model has a double advantage in that, it can correctly price any bond unlike the one-factor
models mentioned above and can allow any options to be valued. In this paper, we will therefore
be talking about simulating of our model using Milstein’s discretization approach and proposing a
closed formula for the pricing of the particular case of vulnerable options and the bull spread option
using the double Mellin’s transform method.

Nammed MMFHWYV model for "Mixed-Modified-Fractional-Hull-White-Vasiseck ", this new
model is a combination of the Hull and White[18] and the Vasicek[33] model. In this model, the
volatility process and asset model are not correlated, while the interest rate process and asset model,
the volatility process and interest rates process are correlated, with each other and they are controlled
by a distinct diffusion process. In MMFHWYV model, the existence of the mean reversion process



causes the adjustment of the volatility process and the interest rates behavior in the financial markets
and it is a benefit of the MMFHWYV model. The rest of this paper is organized as follows. Section 2
gives the preliminaries and basic assumptions. In Section 3, we introduce the MMFHWYV model. We
simulate the MMFHWYV Model based on Milstein discretization. In section 5, we study the pricing
of a vulnerable bull spread option under the MMFHWYV model and conclusions are presented in the
last section.

2 Preliminaries and Basic Assumptions

2.1 Preliminaries

In this subsection, we shall briefly review the definition and some main properties of the mixed
modified fractional Brownian motion, the double Mellin transform, we also recall the Hull-White
model and the Vasicek model. Fractional Brownian motion or Mellin transform have also been used
for option pricing in Djeutcha et al.|9], Thao[32], Sadefo Kamdem [21],Ji-Hun[19],Hull-White[18] and
Vasicek|33].

Definition 2.1. The double Mellin transform is defined by

Moy (£ (), wrswe) = Fluwn, ws) = /0 /0 F(,y)a y > dedy (1)

where f(x,y) is a locally Lebesgue integrable function and wy and we are complex numbers. Also, if
a < Re(w), Re(ws) < b and if ¢c1 and cy are such that a < ¢c; < b and a < ¢y < b, then the inverse
of the double Mellin transform is given by

- a1-+100 a2+1i00 A
f@,y) = My (f(wi,ws)) 2n)? / / f(wi,we)z™ "y~ dwidws (2)
a a

1—100 2—100

We have the following properties for derivative

May? LI 1 0y) = o + 1) Fwn, ) ®)
My 2D ) = (o + 1), ) )

Lemma 2.1. Ji-Hun and Jeong-Hoon|[19] Given complex numbers o and [ with Re(a) > 0, let

a—100
~

f(@) = — / Flw)edw,

where f(w):p_w = (W8’ Then f(z) = 7%1"6)6&(111‘%)2 holds.

Lemma 2.2. Ji-Hun and Jeong-Hoon[19] Let f and g be functions from R’ into C. If f(wl,wg)
and g(wi,wsz) are the double Mellin transform of f(x,y) and g(x,y), respectively, given by

B(wr, w) / / (2, )21y L dady. (5)

Then the double Mellin convolution of f and g is given by inverse double Mellin transform of
fwy, we)g(wy,ws) as follows

fa) *g(ey) = Mgl (Fwiw)glu,ws)ia,y)
= (27T)2/0 /000 f (%, %) g(u, w)yu"tw™  dudw (6)
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Definition 2.2. Hull and White[18]The Hull-White model assumes that the underlying stock price,
Sy and variance Vi follow a Black-Scholes-type stochastic process. Hence, the Hull-White model is
represented by the bivariate system of stochastic differential equations (SDEs):

{ dS; = MStdt + StasdBt,&

AV, = pVidt + 0, VidBy . @

Where EF [dBy,sdBy ] = pspdt. B_s and B._,, are the wiener processes; ps, € [—1;1] is the correlation
between Wy s and Wi, .

The parameters of the model are given in Appendix A.1

Definition 2.3. Vasicek[33] The Vasicek model is a stochastic interest rate model and the corre-
sponding Stochastic Differential Equation (SDE) as follows,

d?“t = H(e — Tt)dt + T’tO'TdBt’r, (8)
where B, is the wiener process.

The parameters of the model are described in Appendix A.1.

Definition 2.4. Djeutcha et al.[9, 11]A Mized Modified Fractional Brownian Motion process whose
parameters a,b,e and H s a linear combination of Brownian Motion By and independent semi-
martingale process BtH’E, defined on a probability space (Q, F,P) by:

M = M = aB, + 0B/, V(a,b) € RE x Ry, t € [0,T]. (9)
Where H €]3,1] is the Hurst parameter.

In this paper, our aim is to establish an extension of Hull-White model Eq.(7) and Vasicek model
Eq.(8), by exchanging in Eq.(7) and Eq.(8) the Brownian motion B_g, B.,, and B_, by the Mixed
Modified Fractional Brownian process defined by the following system:

Mtflsl’g = CLBt’s(t) + bBt;{ql’E
MSE};Z"E = aBi,(t) + bB%f’€ (10)
Mt7r375 = CLBtJ(t) -+ bBt7T378.

We suppose that: B_,S&BHl,B,ﬂ,&BH2 and B,J&BH3 are independents.
From Thao|32], we also deduce that BHve gH2¢ 4nd B are three local martingale defined as
follows:

BIE = Yt + e — ") 2dBy.
BI2® = [t + - s "2dB,. , (11)
B® = [U(t+e— )" 3dB.,.
From Eq.(10), we define
AMF = adB; ,(t) + bd B/ *
thzf’E = adB,,(t) + deéIf;vE (12)
dM™*° = adBy,(t) + bdB/[™*~.

We know that

dB!"* = ¢ dt + (a+be'=2) dBy,
dB{* = ¢f dt + (a + be™2) dBy, (13)

dB!™° = ¢f .dt + (a + b33 ) dBy,.



where

asts:fot( — Pt +e— s 2dB
¢tv:fO(H2 %)(t"‘E_S )H2 2st U (14)
¢tr_ft 3= % t+5_5)H3 desr‘

2
By Letting x¢ = <a + bsHi_%> ;i =1,2,3. Eq.(12) helps to define the following expressions:

2.2

AME = 65 dt + /xTed B,
dMI2E — g5 dt + /X2 By, (15)
de;E*v = 65, dt + /XT3 d By .

Basic assumptions

In this subsection, we introduce the basic assumptions. Some of them are those of Djeutcha et al.|9].

(a)

(b)

(f)

Consider the probability space (2, F,P) where F' = (F})¢>0 is a complete and right continuous
filtration generated by F} = o { (Mt{il’s; ij’s; Mti?”e) } and P is a probability measure on (.

The dynamic of stock price S and its volatility V; are given by a Mixed Modified Fractional
Hull-WHite no-arbitrage model, namely :

{ dS; = pSidt + oy Sed M, 16)

AV = pVidt + O’v‘/;ngg)Z’s.
where ]\4_H1’E and M5, H1¢ are two Mixed Modified Fractional Brownian motions with Hurst
parameters Hy, Hy €]1,1].

The evolution of interest rate r; is given by the Mixed Modified Fractional Vasicek no-arbitrage
model, namely :

dry = K(0 — re)dt + roopdM/E. (17)

where Mﬁ{?”g is the Mixed Modified Fractional Brownian motion with Hurst parameter H3 €
I3 11

The hurst parameters Hy, Hy and Hs can be verified H3 > Hy > Hy > %

The correlation of the Mixed Modified Fractional Brownian motions M.gl’s and Mﬁl < is given
by the following matrix defined from Eq.(15) as follows:
xHioedt, if i =

xHoexHiedt, if i # j, 4,5 = 1,2.

EP [dM/" 2 an) = 18
Bl I= seV/ XHoexiedt, it i # 4, 1,5 =1,3. (18)
or N/ XHExHiedt, if i # j, i, j = 2,3.
Where
yHiexHie = q% + abs®i=2 4 abetims 4 WP ellitii=1 vy oL g (19)
The correlation coefficients pgy, psr and py, are the parameters satisfying
Paw < 105 < 155 < 13020 + Pl + e = 2050 P51 pur < 1. (20)



3 The MMFHWY Model Framework

In the Mixed Modified Fractional Hull-White model Eq.(16), if we select the parameter u as a
stochastic process(see Mixed Modified Fractional Vasicek model(16)), we obtain the Mixed Modified
Fractional Hull-White-Vasicek( MMFHWYV) model defined system of trivariate fractional stochastic
differential equations (SDEs):

dSy = rSydt + o, S;dM]E
Vi = riVidt + o, Vid M2, (21)
dry = k(0 — r)dt + rtarth[j?@.

Where Mf? < Mtjiz’s, and Mgg”e are three correlated standard Mixed Modified Fractional Brownian
motions.

The stock price and variance follow the processes in Eq.(16) and the interest rate follow the
processes in Eq.(17) under the historical measure P also called the physical measure. For pricing
purposes, however, we need the processes for (S, Vi, ;) under the risk-neutral measure Q. In the
MMFHWYV model Eq.(21), this is done by modifying each SDE in Eq.(16) and Eq.(17) separately
by an application of Girsanov’s theorem. The risk-neutral process for the MMFHWYV model Eq.(21)
is defined by

dSy = rSidt + o Sid M/,
dV; = rVydt + 0, V,d M7, (22)
dry = K*(0* — ry)dt + rtard]\ZT”E.
With
]/\Zt]il,s _ MHl, + u T
j\z:li)z,e _ ]ng7 + ,u r (23)

a7 Hs.e H3 u r
M3 = M3 4 7t.
t,r t,r o /XH?”E

Where ]\/ng1 < MM2# and M >¢ are three correlated standard Mixed Modified Fractional Brownian

t,v
motions. Its correlatlon matrlx is defined from Eq.(15) as follows:

xedt, if i =j
xHiextiedt, it i # j, i,5 =1,2.

QAT <N ) = .
A0y M, 5] porV/ XHoexisdt, if i j, 0,5 =1,3. .
XHi,EXijsdt’ if 7 ;é j’ Z’] = 2, 3.

Where the expression of \/xi¢xHi¢ is given by Eq.(19), and Q is the risk-neutral measure.
Using Eq.(15), the risk-neutral process for the stock price is

ds, = 8, { (r + boyds.,) dt + JS\/XHl’EdEt,S} . (25)
where _ B
Bio=Bio+—— ¢ (26)

Os\/ XHl €

The risk-neutral process for the variance of stock price is

avy =V, {(T + b0v¢§,v) dt + oyv XHZ’EdEt,v} . (27)
where -
By =By + -t (28)

OvV XHQ’a



The risk-neutral process for the interest rate is

dri = (K" (0" — 1) + 0,65,) dt + o,/ x"32dBy 1. (29)
where \
~ Tt
B, =B —t 30
t,r t,r + o, ,7XH3’5 ( )
with k* = k+ % and 0* = H’fiek, are the risk-neutral parameter and A the interest rate

e o
risk parameter which is given by Breeden|5].

Using Eq.(25), Eq.(27) and Eq.(29), we propose the new model appointed Mixed-Modified-
Fractional-Hull-White-Vasicek MMFHWYV) model defined by the trivariate system of stochastic
diferential equations(SDEs) given in the following definition:

Definition 3.1. (MMFHWYV model) In the Mized Modified Fractional Hull-White model Eq.(25) and
Eq.(27), if we select the parameter p as a stochastic process( see Mized Modified Fractional Vasicek
model Eq.(29)), then we will obtain the new model appointed Mized-Modified-Fractional-Hull- White-
Vasicek (MMFHWYV) model and then, under the risk-neutral measure Q, the dynamics of S, Vi and
ry are given by the SDEs:

dS; = S; 3 (r+bosds ) dt + Uswdét,s} ;
AV, = Vi { (r + boyd5,) dt + o, \/Wdﬁt,u} , (31)
dry = (k*(0* —r¢) + 0,05,.) dt + o VXH2dBy,.

where Et,s; Etﬂ, and Et’r are three Brownian motions defined by Eq.(26), Eq.(28) and Eq.(30) respec-
tively; with k* = Kk + A 9= wh , are the risk-neutral parameters and A the interest
ory/xH8 ¢ it ——e—

or\/ X ’

rate risk parameter.

4 Simulation of MMFHWYV Model

We often face some difficult problems which can’t be solved analytically. In these cases, simulation
methods are appropriate and really helpful. In order to simulate the asset price S; at time ¢, the
volatility of asset price V; at time ¢ and the interest rate denote by 7; at time ¢, we need sample
paths of asset price movement, sample paths of volatility of asset price movement and sample paths
of interest rates evolution.

The Milstein discretization can be used to approximate the asset path of the asset, the volatil-
ity path of the volatility and the interest path of the interest rate on a discrete time grid, see
Glasserman|14], Kloeden and Platen[23] and Kahl and Jackel[20].

Let Y = {t1,t9, -+ ,tn} be a partition on time interval [0,T]; i.e. 0 =1ty <t1 <--- <ty =T.

Then, we have

Sj+1 = Sj + <T’j + b05¢§7s SjAt + 05/ XH17€ABI'J’
Viter = Vi + {1y +bowd5, ) ViAL + oo/ xT22AB; (32)
Tj+1 = Tj41 + K,*(H* - ’l“j) + 0r¢§7r) Ay + o/ XH?“EABLJ',

where B; ; is a Brownian motion and we have the following formula:
BiJ’ = Bi(tj—‘rl) - Bi(tj),O <] < N —1andi= 1, 2,3

Moreover, AB; ; ~ N(0,A;) and t; = jA;.



According to the Central Limit Theorem (CLT), we have AB; ; = Z;\/Ay, Z; ~ N(0,1) and we
obtain from Eq.(32)

Sj-‘rl = Sj + {7+ b05¢§,s SjAt + SjUS\/ XHl’E\/ A7 + %O’?\/ XHl’ESjAt (212 - 1)
Visn=Vj+ (rj+bosg5 ) ViA + Viosy/ xH2e /AT + %ag\/XH%aV}At (\I/% — 1) (33)
Tjit1 =7T;+ (H*(e* - rj) + va'(b;,r) dt + o, V XHB’E\/E\IJQ'
Where W1 = ps,Z1 + /1 — p2,Z2 and Wy = pg.Z1 + /1 — p2,Z3 are two correlated normal variables
generated by the Cholesky decomposition. We have
Sjr1 =S5+ (11 + 0565 ) SiAr + Sjos/ XMV Zy + 5023/ xTE8 A (27 - 1),
Visr = Vi + (1 + 00565 ) ViAr + Vios/ XH2e /B0y + gop /X H2E VA (0 - 1), (34)
Tit1 =75+ (’%*(0* - rj) + bar¢§7r) At + o V XH3’€\/E‘I’2-

The simulation of the MMFHWYV model is given by the following algorithm.

Algorithm. MMFHWYV model simulation.

¢
For ¢ = 1 to number of simulation.

Generate independent standard normal variables, Z; ~ N (0,1),5 =1,...,N.
Set ‘/j_;_l:Vj‘F(T’j‘l‘bO's(;S;’)VAt+VO'g\/ HQEF\D1+2 TV X H2€VA[»( )
5. Set Sj+1 = Sj + (7”,5 + bdsgﬁ;}s) SjAt + SjO'S\/XHl’E\/Ezl + 50'5\/XH1*ESjAt (212 — ].) .

6. Set rjq1 =r;+ (ﬁ*(&* —rj)+ bo,«qu,r) A; + o/ xH3E /AT,
7. End For.

L e

In fig.1,2 and 3, we illustrate changes in the value of stock path, volatility of the stock’s path and interest
rate path under modified Hurst parameter. The result indicate that:

e By increasing the value of Hy,(see Fig.1), the value of the stock price is reduced

| TNRN TRRR T

) Hy =0.75 ) Hi = 0.80 ) Hi =0.85 ) Hi = 0.90

Figure 1: The Stock price paths under MMFHWYV model with Sy = 115,V = 0.01,7g = 0.9,k =
0.2, =0.2,0 =0.8.

e By increasing the value of Hs,(see Fig.2),the value of the volatility decrease and more, quickly conver-
gence to zero.

e By increasing the value of Hs,(see Fig.3, the value of the Interest rate increase.



(a) Hy = 0.75 (b) Hy = 0.80 (d) Ha = 0.90

Figure 2: The volatility paths under MMFHWYV model with Sy = 115,V5 = 0.01,7g = 0.9,k =
0.2, =0.2,0 =0.8.

(a) Hs = 0.75 (b) Hs = 0.80 (c) Hs =0.85 (d) Hs =0.90

Figure 3: The Interest rate paths under MMFHWYV model with Sp = 115,V5 = 0.01,r9 = 0.9,k =
0.2,0 =0.2,0 =0.8.

5 Value of the call option under the MMFHWYV model using the
double Mellin transform

5.1 Bond price formula

In this subsection,we first give the pricing formula of a zero coupon bond in the mixed modified fractional
Hull-White Vasicek interest rate model.

Let P(t,r,T) denote the price of a default-free zero-coupon bond with the nominal value 1 unit of money
at time T. By the Feynman-Kac formula, we have the following pricing formula.

Theorem 5.1. In the fited MMFHWYV model, the price of a zero-coupon bond at time t is given by:
P(r,r,T) = A(r)e 507, (35)
with 7 =T — t.A(7) and B(7) are given by

Hg,e 2

A(T) = €Xp { 3[{,2(7"‘1’%(67"73(7';];)01‘2;* (e*ﬁ*ffl)) } - fOT H*e*(T - Z)B(Z)dz (36)
B(r) = ==~

o*

Proof of Theorem 5.1. We recall that the no-arbitrage price at time t of the bond with the nominal value
1 is given by
Pt,r,T) =T |e” I rads|p, — 7’)} < T. (37)

with the final condition P(T,r,T) = 1. Then by using the Mized modified Fractional Feynman-Kac formula,
the solution of P(t,r,T) satisfies the following PDE problem

orP 1y ,0?P oP
_ s€ * 0* — _ P =
ot TN g TR0 G —rP =0 (38)
The affine term structure solution of Eq.(38) is given by
P(r,r,T) = A(T)e  B™ 71 =T —¢ (39)

with If we substitute Eq.(39) into Eq.(38), we derive the following ordinary differential equation:

Lz(ﬂ — K*0*B(1) + %XH“’EUEBZ(T) =0 (40)
-



and

B
4B(T) _ v B(r)y+1=0 (41)
dr
The resolution of Eq.(41) gives
1—e T
B(t)= —— 42
(=122 (12)

and the resolution of Eq.(40) can be expressed in terms of B(7) to give the value of A(T)

5.2 Pricing for Bull Spread Option under MMFHWYV model

We recall that, if we use the traditional probabilistic method such as the Monte Carlo method to solve system
given by Eq.(31), for Bull Spread options, that method produce interesting result, but it could requires a
long time, depending on the complexity of calculations. However, in this section, using the double Mellin
transform, we obtain a closed form formula for the option price, that is credible for both the accuracy and
efficiency.

The bull spread option is an optimistic option strategy designed to take advantage of a moderate rise in
the price of a security or asset. Its payoff function is defined as follows:

I(St) = [(Sr — K1)t — (Sr — Ka2)*]. (43)

The vulnerable option is a kind of option with credit risk which refers to a risk that a borrower will default
on any type of debt by failing to make the required payments.Its payoff function is defined as follows:
11—« VT
m(Sr) = [(Sr = )] | Lvis) + Ly L (a4)
where
@

denotes the dead weight costs associated with bankruptcy expressed as a percentage of the value of the assets
of the counterparty, the constant parameter D denotes the default boundary. The parameter v* may be less
than D due to the possibility of a counterparty continuing its operation even while Vp < . In the event of
a credit loss, only the proportion U=IVD 4 the nominal claim is paid out by the counterparty.
As aforementioned case for vulnerable bull spread option, expiring at time 7', with the strike price K;
and Ko, the payoff function is given by
(S Vi) = [(Sr = K1) = (57 = Ko)*] [Lunsey + Ly T2

with v* is a critical value such that a credit loss occurs if the value of the option writer’s assets and the
no-arbitrage price of the option is given by

(45)

Ul(t,s,v,r)=TE" [e_ I T dSh(Sr Vi)|Sy = 5, Vi = v, 1 = r)} ) (46)

By the non-arbitrage assumptions, the corresponding MMFHWYV PDE of U (¢, s, v, r) according to the Feynman-
Kac formula of bull spread option.

In this paper, we consider U = U(S,V,r, T —t) as the common arguments in financial mathematics imply
that if the option value function U is sufficiently smooth then under the MMFHWYV model, it satisfies the
partial differential equation given in the following theorem.

Theorem 5.2. Under the MMFHWYV model, the option value function U satisfies in the domain:
Q={(S,V,r,t):0< S <400,0<V < +00,—00 <71 < 400,0<t <T}, (47)

the following partial differential equation is given by:

U 1 g 520U 1 g 5 ,0°U 1 . ,0°U
ot TN O g X iy T X gy
02U 02U
+ pspOsoysvY/ xH1E 20 + psrOs0psy/ x e Hae
0s0v 0sor
02U oUu U U
+ PorOy0rU V XH27EXH3’EM + r <885 + Ual)) + KZ*(G* - r)E - TU = 0 (48)

with the terminal condition U(T,s,v,7) = h(s,v) and x7¢ = (a + befi=2)2 i=1.2.3.
Proof of Theorem 5.2. The proof of this result is found in Appendiz A.2
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5.3 Option price formula

In this subsection, we use the approach of Ji-Hun and Jeong-Hoon[19] to derive a price formula of a vulnerable
bull Spread option under the Mixed-Modified-Fractional-Hull-White-Vasicek model by using the double mellin
transform.

We observe that the payoff function h of a vulnerable bull spread call option is not bounded, we require to
modify h by define a sequence of function h,, such that each h,, is bounded and nli_r)noohn(s, v, 1) = h(s,v,r).

They are given by

hn(s,v,1) = (s7v7r) 2(s,v,7)
hl(s,v,r) = (s — K1) — (5_K2) ifKo < Kp<s<n
nAT 0, otherwise (49)
Lifv*<v<n
his(s,0,m) = 4 (1o , otherwise
5
Setting U, (T, s,v,r) by
Un(T,s,0,1) =FE" |e” I Tsdsh(ST,VT)|St =s,Vi=v,r =1)|. (50)

We observe that, U, (t, s,v,r) satisfies Eq.(48) with the terminal condition U, (T, s,v,r) = hy,(s,v).
The price U(t,s,v,r) is given by taking the limit U(¢,s,v,r) = lim U,(t, s,v,r) Let Uy, (¢, wy,ws,r)
n—oo

be the double Mellin transform of U,(¢,s,v,r). Using Eq.(2),the expression of the inverse double Mellin
transform of U, (¢, s,v,r) is given by

a1 +100 az+i00 A
U, (t,s,0,7) / / n(t, w1, wa, r)s~ o2 dw dwsy (51)
271— a;—1i00 as—100

By applying Eq.(51) into Eq.(48), we obtain

oUu, [1 1 N
- 87' |:2XH17€0-2w1 (wl + 1) + PsvV XHI’EXHQ’EO-UO-swle + 2XH2’60-2w2(w2 + 1) - T(wl + w2 + 1):| Un

1 82U, ou,
+ oxfo? + (n*ﬂ* — KT = par VXX T2 0 00w1 — pury/ XHQ’EXH3’EUT7~UQ) =0 (52)

2 Ir o2 or

with 7 =T —t and [7'n(07 wy, Wa,T) = E(wl, wg) which is the Mellin transform of h, (s, v).
Let

~ 1 1
Un (7, w1, ws,7) = exp { <2XH1 E0'2101(101 + 1) + poo vV X TrEx 220, 05w wo + 2XH2 80'21U2(w2 + 1)) 7'}

~

X fo(T, w1, wa,T). (53)

Then, Eq.(52) is transformed into the following PDE for .
0fa | 1 f, i i o,

— % + = Hs 50_72 fzn + (K,*Q* P Dsr XH176XH37€USO-Tw1 — Por XHQ’sXH?”sO'@O",-UJz) ﬂ

T or T
—r(wy+wy+1)f, =0 (54)

with fn(O,wl,wg,T) = ﬁn(O,wl,wQ,r) = ﬁ(wl,wg).
To solve Eq.(54), we let

Fu(rwr,wa, 1) = h(wi, w)Q(7, wy, wa)e — L()(w1 + ws + 1)r. (55)

We have the terminal condition ]?n(O7 Wy, W, T) = En(wl, wa).
Substituting Eq.(55) into Eq.(54), we obtain the following ODEs:

0
7Q + ((KJH(T - 7-) — PsrV XHl’EXH3’EO'sO'Tw1 - PurV XHQ’sXH3’80'1;O'rw2> L(T)(wl + we + 1)) Q

or
— (;XH’EafLQ(T)(wl + wy + 1)2) Q=0 (56)

g—LJmL—l_o (57)
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where Q(0,wy,w2) =1 and L(0) = 0.
Then, by solving Eq.(56), we have

Hsz,e 2
_ X 7oy 2 —K*T 1 —2Kk*T 2
Q(7,wy,wy) = exp{ 52 (T + pe (e — 1) ~ 5 (e - 1)) (wy +wy + 1)
. Hiy,eyHszeq . X Hs,eqy Hsz,e
1 exp { <pa'r VvV X X 050y PorV X X OyOp wg(wl T+ 1)> (7_ _ L(T))}

pr wy(wy +we + 1) + e

— exp {/Or(wl + wy + 1)K (T — V)L(I/)du}

and
L(r) = ———. (58)

Then, from Eq.(53), we obtain

ﬁn(T, wy, wa,r) = iAzn(wl, wa) €xp { (N(T)(w1 + wg + 1)2)}

1
+ exp { (2XH1 “o2wi(wr + 1) + psp v/ xT0ex 28 + XH2 co2wa(wy + 1)) }
+ exp { <psr V XHI’EXHEHEUSUT Pur\/ XHz’SXHB’SJvUr

wl(wl +w2 —+ 1) —+

wg(wl + wa + 1)) (T — L(T))}

K* K*
—exp{M(7) + L(7)r(w; + w2 + 1)} (59)
with N(7) and M(7) are given by
x"sco? —K*T 1 (,—2"r
N(r) =5 m) (T +Z (e —1) = 5= (e - 1)) (60)
M(T) = fo kO(T )L( Ydv
We have s bine a2+zoo
U (7, s,0,7) @ / / I (w1, w2)e T(rwswa,r) g=ws gy =ws gy, duyy, (61)
7T a1 —100 ag—100

where j(T, wy, we,T) is given by

~ 1
J (1, wi,we, ) = N(7) (w1 +ws +1)% + <2XH2 “owy(wy + 1) + pey v/ X e x 25 + XH2 “orws(ws + 1)) T

+ (psr V XHQ’EXHS’EUsUr Por\/ XHz’EXHS’EJvUr

K* K*

wl(wl +’U}2 —+ 1) —+

w2(w1 “+ wo + 1)) (T — L(T))
— (M(7) + L(7)r) (w1 +wy + 1). (62)

We define the following expression to use to compute U, (7, s,v,r)

L[ G [ [T (A ()} —wn s
A, S’U’T):W/ e~ w2 / By (w1, we)e s~ dwy | v 2 dws. (63)

1—100 2—100

Now, the term J (1, w1, we,r) have the following quadratic form of w; and we obtain

1 a1+ioco a2+zoo/\ _ 2
A(r,8,0,7) = / eClmwam) { / B (w1, ws )e AT (T)}swldwl} 0”2 day (64)

(27T)2 1—100 2 —100

Wlth 5(7_) = w, + Z(T)+§2%'():’)§(T)U)2 7Where

Hy, EXH3 sE

A(T) = N(1) + xHreolr 4 LrVX 27 (1 — L(1))
B(r) = 2N(7) + pouy/Xox T2 +( PV LV X EU“‘”)(T—L(T))

(1)

il

N(t)— M(1)— L(1)r.
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and

_ 1 (A + B + Bl

C(T,’U]Q,T‘) = 71 2(7—) +N(T)(’U)2+].)2
1 ur Haey Hs,e vO0r
+ xR (wd 4 wy)r 4 VT T ()

2
— M(r)(wy +1) — L(7)(wa + 1)r.

K-]*

We observe that A(7) > £ [ (05 — 0, L(v))?dv, we deduce that A(7) > 0, for all T > 0, according Lemma
2.1, we have

az+ico A(M+B(D)+B(Nw 1 2
21 : [/ e{A(T)EQ(T)}Swldw1:| — #S 2A(T) 26_4Z(T)(1n5) .
T L/az—ico TA(T)
Therefore, Eq.(64) becomes
p— 71 3 2 — y =
e am(l““’) A+B() 1] a1+i0c0 T wa,r) B(wy
AT, s,u,1) = ———=5 2400 — e~ W) g 2A) T2 dws. (65)

2¢/7A(T) 2mi J a1 —ioo

In the Eq.(65), the integrand have a quadratic form of wy as follows

1 a1+ico ﬁ(:)w,z
oo ec(T,UJQJ")SiZA(T) V™2 duwy
™

a1 —100

- 2
(Bs(r) + 5 s)  (A(r) - Bo)’

4By(7) - 20 4A(7)

=expq —

2

. . B(1)
1 a1+100 32 Bg (7’) + = . 111 S
W) w? + 240 v dwy, (66)

X — expd | Bi(r) - — ©
21 oy < 25, (r) - £

where

Bi(r) = N(r) + bxeeor 4 oV X X 50u0r (o (1))

Bs(r) = — 29 (A(7) + By(7)) +Bl(:)+32(7).

T 2A(r)

B

By setting
53 (t) = X202 + 2p5r /X EX o 20,00 L(t) + xS0 L2 (1) (67)
35(75) — XHQ,EU?) + 2Pvr /XHQ,EXHg,EO—UO-TL(t) + XH?,;EO.zLQ(t).

‘We have

A(r) =3 [y 2(v)dv

Bi(r) = éjﬁ 72(v)dv

B(T) = foT Psv XHl’EXHQ’EUsO'v + UTL(V)(PST V XH1’€XH3’8(7$ + Purv XHQ’EXH‘"”EUT) + XHQSUEIP(V)} dv.

(68)
-2
While the correlation coefficients pg, and p,,, are constants satisfying Eq.(20), then By (1) — fAE:; > 0is
satisfied for 7 > 0. From Lemma 2.1 applied to Eq.(66), we have
) . B(r
1 a1 +ico 32 (1) ) Bs(1) + 22((7_)) Ins
T exp By (T) i — W2 dwy
T Jay—ico 4A(T) 2B, (7’) — QBZE:;
Ba(m)+ fz((% Ins
1 1 - B2
= exp{ — — (Inv)? > (O (69)




Therefore, using Eq.(65), Eq.(66) and Eq.(69), we obtain the following explicit of A(7,s,v,r) which is given
by

(Bstr)+ 22 ws) (A0 -B()

A(T,s,v,7) = exp

o

/N
s
it
)
N~—
s+]

N

O

N—

i

h N

—~

2

¢ s
AW+ B+ B(r)wy 2(BI(T)7§2(7)>
X S 2A(T) v

1
_y_B(1)
e 4A(’F (In s) e 4(51() 47“))
X . (70)

A B(r
0 2y (-5
Now the expression of Uy (7, s,v,r) is obtain by using the Mellin convolution result given by Lemma 2.2, since

h(wl, ws) and ¢7(m5.9.7) are the double Mellin transforms of h n(s,v) and A(r, s, v, 1), respectively.
By using Eq.(45), Eq.(61) becomes

Un(T,s,v,1) = / / B (wy w) A (T, f,
0 0 U
1

:e%/ /“e@wmu_xnaxwuo —me—e‘/ [ - o) ol ), uds
K, K> ww

-1

,ryu w  dudw

S\e

—I—ek5/ / w(u— K1) dau, w)f—dudw—eké/ / eh1 () w (u— Ka) qbg(u w)f—dudw
K1 K2
with )
- 1(An -B0)
4 A7) ’
where —~
§ = 1=
! ( B(r) )
~ B3(1)+—="21Ins
8w =~y BrEg )
GRS e
and
_ — B$(T)+2A(( )) ln(i)
N gy AHBD) T
P2 (u,w) = (a o E) I

_ 1 (1n(£))2
2 T
R LI <) R

TA(T) 2\/7T (B1(T) _ EE:;) .

By setting U(7,s,v,r) = lim U,(7,s,v,r), it follow that

n—oQ

U(r,s,v,r) //huw

—e// W (u— K1) do(u, w)f—dudw—e// d’l(") Kg)ag(u,w)lldudw
K, Ko uw

e ~ —~ s - ~ 11
—|—ek6/ / e¢1(“)w(u—K1)¢2(u7w)f—dudw—ek5/ / e Wy (u — Ky) ¢ (u, w) = —dudw
0 JK; 0 JK» uw

uw

) u ™ dudw

:\tm
S\@

= UM, s,0,7) + Vl(T, 8,0,T). (71)

‘We deduce that
Ul(r,s,v,7) = U1, s,0,7) + V(7 80,71), (72)
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with

Vl(’]’,s,’U,T) = ‘71(7333’037') _Vl T,S,’L},’f'),
where
_ . rn n
UI(T,s,vJ‘)—ek/ / e (u — K1) ¢o(u, w) = —dudw
v JKy
U (1,5,0,71) = eE/ / e? (W (4 — Ky) ¢ (u, w) —— dudw
v+ JKs
and

(77)

(78)

The explicit calculation of Ul (7, s,v,7) and V(7,s,v,7) of Eq.(72) leads to the following analytic closed form

formula of the price of vulnerable bull spread call option.
By letting U(t, s,v,r) = CallBullSpread(t, s,v,r), we have:

Theorem 5.3. The price of Bull Spread vulnerable call option denote by CallBullSpread(t, s,v,r) with the

Mized-Modified- Fractional- Hull- White- Vasicek model,defined by Eq.(46), is explicitly given by

CallBullSpread(t, s,v,1) = sN(ﬁl,ﬁg,f)—KlP(t,r,T))N(/b\l,gg,f)
— sN(@1,a2,€) + K2B(t, 7, T)N (br, b, €)
~ t, T SN ~
+ v (s}%/\/(q,cz,—f)—KlN(dl,d2>—§)>
~ t o~ o =~ 5
— v (s%/\/(017627 —&) + KoN (dy, da, —f)>

with € = __B@ ___ yhere

2y/A(7)B1(T)
In (Kil) —InP(t,r,T)+ 3 [y (XHMEO-‘? + 2pgr /X T8 20 0, L(V) + XH3,503L2<V)) dv

\/foT (XHI’EUE + 2psr/ XHI’EXHS’EJSUTL(V) + XHS’EJ%LQ(V)) dv

~

a; =

~ In (7%) —InP(t,r,T) - % OT (XH27EU12; + 2ppr/ x5 50,00 L(v) + XH37EU£L2(V)) dv

by —
1 \/foT (XH2’503 + 2ppr/ X2 3500 L(v) + XH3’£U%L2(V)) dv
26 [ G2 (v)dv ] <XH17503 + 2psrv/ X2 x 050, L(v) + XH?”EU?LQ(V)) dv
\/foT (XH%EUg + 2pur/ X2 s 0y 0 L(V) + XH3’50%L2(V)> dv
In (ﬁ) ~InP(t,r,T) - 5 [y (XHl’EUE + 205/ X2 X H3 00, L(v) + XH3’503L2(1/)) dv
Qs =
\/fOT (XHlvscrf + 2per/ XT3 20,0, L(v) + XH37€O',%L2(I/)) dv
o () ) L (a2 AT L) 3oL

\/foT (XHZ’EUIQ; + 2pur v/ XHZ’EXHS’EUUUTL(V) + XHS’EU%Lz(V)) dv
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and

() ~WPERT) 47 (W02 4 200N 00, L) £ X502 E() ) d

a; =
\/foT (XHZ’EUE + 2psr /XX 30500 L(v) + XHB’EJ?LQ(V)) dv
=~ 111 (’YL) IHP t r, T ) fO ( He, ‘o 2 + 2101)7" VvV X H2’€XH3’60'1)0'7"L(V) + XHs’EUELZ(V>> dy
by =
\/foT (XHQ’EUE + 2pur /X 2Ex 52000, L(v) + XHa’EUELZ(V)) dv
26 [7 3200 J7 (7502 + 2/ TR0, (1) X202 L20)) do
_l’_
\/foT (XHQ’%'% + 2pur v/ XX f0y0, L(v) + XH37503L2(V)) dv
. In (K ) InP(t,r,T) - 5 [y ( Hieg2 4 2p ./ xHrex 20,0, L(V) + XHB’EofLQ(V)) dv
ag =

\/foT (202 + 20 AT T E 0, L(v) + X2 02L2 (1)) dv
~ In (7 ) InP(t,r,T) - 5 [ ( Ho252 4 2p,,\/xH2exHs e 0,0, L(v) + XH3’50,2_L2(1/)) dv

by =
\/IOT (12202 + 200 XX E 0,0, L(v) + X o202 L2 (1)) d
In (K—) In P(t,r,T) + 3 f7 ( g2 + 2, /X HexHoc 0,0, L(v) +XH3’EU?L2(V)) dv
c1 =

\/foT (31102 + 2000 /XX 20, L(v) + X Mo202L2(v) ) dv
26 7 320w [ (X402 + 200 T, L) 4 X702 120) )

Jr

\/fi; (1102 + 20y /XT X 20, L(v) + X Mo202L2(v) ) dv

tn () =0 P T) 4+ 3 7 (0% 4 2,0 AT 20,0, L) + X402 L2(0) ) do

Cy = —

\/IOT (XHz’ECT% + 2pur v/ XHQ’EXH3’601}JTL(V) + XH3’603L2(V)) dv
2 [y By [§ (#2202 + 200 AT X2 0,0, L(v) + X P02 12 () ) d
\/ i (#2202 + 200 TS0, L) + X2 02L2(0) ) di

o In (K ) InP(t,r, T) — 3 J7 ( Hi2g? 4 9p /e Hico o, L(v) +XH3’EJ$L2(V)> dv
N \/ Iy (XH1202 4 2pee /XX 20,0, L(v) + X192 0212(v) ) d
26 f7 52(w)dv [ (X502 4 2por XX 20,0, L) + X502 L2(0) ) d
n
VI (202 4 200 T 0,0, L) 202 L2(0))

N In (’YL*) —InP(t,r,T) + % fOT ( Hoe52 4 2p,,\/xH2ex st 0,0, L(V) + XH3,60.72_L2(V)) dv
dy = —
VI (02 4 200 T, L) 22 L2(0))
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~ () PR T+ b T (X0 4 200 NN 0,0, L) + P02 LA W) ) d
\/foT (11502 + 240 XTT X 20, L(v) 4 X0 202 L2(v) ) dv

2¢ [, 32(v)dv [ ( 2252 4 2p,\/xH2exHsco,0,L(v) + XH3’503L2(1/)) dv
+

(94)
\/foT (XH“EU? + 2psp/ X1 x 32050, L(v) + XHB’EafLQ(V)) dv
() S WPERT) ] T (X0 4 2o N0, L) 4 X R L0) ) do
Cy = —
\/fOT (XHQ’EO% + 2pur/ XH2E 320 0. L(v) + XH3750',2.L2(1/)) dv
25 fT Ag f (XH2 o2 + 2pvr vV X Hz’EXH3’EU1;UrL(V) + XH37503L2(1/)) dv
(95)
\/fo (172502 + 2y XX E 0,00 L) + X202L2(v) ) i
~ In (K ) In P(t,r,T) - 5 [, (XHl’g 2 4 2p /XX 3 20,0, L(v) +XH3’EJ$L2(V)) dv
dy =
\/fOT (XHI’EUE + 2psr v XHI’EXH3’EUSU7’L(V) + XHS’EUZLQ(V)) dv
2¢ IT Ag fT ( Hae g2 vt 2p0r Hz’EXHS’EUUUTL(V) + XHS’EUgLQ(V)) dv
(96)

VI (202 4 200 T 0,0, L) 202 L2(0))

~ I (7) — I P(t,r,T) + 1 [T ( Haeg2 4 9p, /X TaixTscg,o,L(v) + XHS’EafLQ(V)) dv
dy = — (97)

\/foT (XHI’EUE + 2per/ X T0Ex T8 20,00 L(v) + xHB’EJELQ(V)) dv

Proof of Theorem 5.3. The proof of this result is found in Appendiz A.3

In the case of a vulnerable bull spread put option with Hull-White-Vasicek volatility and interest rates
model using Mixed Modified Fractional Brownian Motion, the option pricing formula is given by the following
result:

Theorem 5.4. The price of Bull Spread vulnerable put option denote by PutBullSpread(t,s,v,r), with
the Mized-Modified-Fractional-Hull- White- Vasicek volatility and interest rates model, defined by FEq.(46), is
explicitly given by

PutBullSpread(t7s,v,7“) = —SN(—617627§) —|—K1P(t,7” T))N(_/b\lj)\%g) (98)
+  sN(=ay, a0, &) — KoP(t,r,T))N(=by, by, €)
+ S’U ( ,SP(( %)N( 017027 §)+K1N((§1,&\2,§)) (99)

_ Sv( SP(( :)F)N( 25, g)—KzN(—EAl,QE,—f)) (100)

o~ o~

where a17a27b1,bQ,Cl,CQ,dl,d27617027d17(/i\2,£ and p(t,T) are given by Theorem 5.3.

We deduce that the bull Call spread reduces the cost of the call option, but it comes with a trade-off.
The gains in the stok’s price are also capped, creating a limited range where the investor can make a profit.
Traders will use the bull call spread if they believe an asset will moderately rise in value.

6 Conclusion

As an extension of Hull and White [18] and Vasicek[33] models, this paper proposes a new three-factor
pricing model for vulnerable European options incorporating spreads and interest rates whose movements
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are governed by mixed modified fractional stochastic differential equations. The dynamics of the short-term
interest rate is represented implicitly by a fractional stochastic process of the price of zero-coupon bond.
Under our original assumption, we have obtain the bond price closed form formula. We have discretize the
stochastic process with Milstein discretization scheme and we have showed the sample paths of asset price
movement, the sample paths of volatility of asset price movement and the sample paths of interest rates of
asset price movement. Furthermore, we exploit Mellin’s transform techniques to derive a closed-form solution
for vulnerable Bull Spread options model, which is simply calculated using the standard normal cumulative
distribution function so that pricing and coverage of vulnerable European options can be calculated accurately
and quickly.

The applications of our results are numerous, in particular to for a realistic credit risk measurement (see
Johnson and Stuly [12]) and Klein[22]) and Amman[1].

A Appendix

A.1 Notations

w the drift of the process for the stock and for the variance;

e 0, is the volatility of the stock price;

e 0, is the volatility of the variance;

e k the mean reversion speed for the interest rate;

e () the mean reversion level for the interest rate;

e 0, the volatility of the interest rate;

e 1 the drift of the process for the stock and for the variance;

e Sy > 0 is the spot asset price;

e V5 > 0 is the initial (time zero)level of the variance;

e 1o > 0 is the initial (time zero)level of the interest rates;

e @ is a Risk neutral probability measure and IP is a probability measure;
e S, is the dynamic stock price,V; is its volatility and r; is its interest rate;
e P(t,r,T) is the default price of a zero-coupon bond maturing at time 7" with the nominal value 1;
e U is the price of the bull spread vulnerable option at time ¢;

e N is the central distribution function of the normal distribution, (0, 1);

o M _{?’5 and M_{{fﬁMﬁ” are three Mixed Modified Fractional Brownian motions with Hurst parameters
Hy, Hy, Hj €]3,1];

e ¢ is the adjustment coefficient between the times of cotations on the financial market;

e ~* is a critical value such that a credit loss occurs if the value of the option writer’s assets;

e K and K5 are the strike of the bull spread option;

e p(t,T) is the price at time 0 < ¢t < T of a zero coupon with maturity 7.

A.2 Proof of Theorem 5.2

Let U = U(s,v,r,t) be the price of a bull spread option and IT denotes the value of the portfolio at time ¢.
We have
M=U-nys—nov—ngP (101)

The variation of the portfolio is defined by

dIl = dU — nids — ngv — n3dP (102)
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By applying the fractional Ito’s lemma to Eq.(102) as well as choosing

ou U @
=g ne = ﬂ3=gj, (103)
or

to eliminate the stochastic noise contained in the dS, dV and dr respectively. We obtain

10%U 82U 0*U 0*U oU 10%U 5
(‘3561} (dst)Jrasar (der)Jr@v@r (dVdr)—n T —dt + = 592 (dr)
(104)

o, 10°U

with (dS;)?, (dV;)? (dr)?, dS;dV;, dSidr dVidriare given respectively by

(dS,)? = e a2s2dt

(dV,)? = Hz’e 2,24t

(dry)? —XHJ’EUEdt

A8V, = /T 20,0, 50psudt (105)
dSidry = \/x"rexHse0,0,.8p,dE

dVidry = \/ xHzexyHse g 0,0p,dL.

Substituting Eq.(105) into Eq.(104), we have
e { [ e
2 2
+ {WUSJUSUPS” 9s0v + XHI’ XHS’EJSUT‘SpsT% + XHZ’EXHS’EUUUT'UPUT%} dt (106)
I )

On the other hand, it is known that the return for any risk-free portfolio should be r. Hence, the variation

value of the portofolio is

dlly =r (U — Sa—U - va—g — n3P> dt (107)

By substituting Eq.(106) and Eq.(38) into Eq.(107) gives
{%Ltr n BXHl,sUQSz%sIZJ éXHz < 23 U”dt
+ { V xHvexH2 e, Uq;SUPeum + v/ xHrexHseo, Urspsr% + XH27€XH37EU'UUT‘IUp'UT%} dt (108)
—ng [()U + Lxftee ?%}{] o= (rU —rsZ —rvZ —rngP).

In the above statement Eq.(109), we use Eq.(38) and the value of n3 given by Eq.(103) to obtain

U 1 92U 1 92U 1 02U
o T gx ol 28 -+ XH2’503%28 T +ox"e 38 >

2 2
+ PsvOs04,SVYy XHI’EXHZ’6 o + PsrOs0rSV XHI’ XH3 € o
0s0v 9s0r
2
—|—pwovarv\/XH275XH3’Ea—U +r sa—U +va—U + k¥ (0" —r)a—U —rU=0 (109)
ovor Os ov or

A.3 Proof of Theorem 5.3
A.3.1 Expression of U!(r,s,v,r)
o Expression of U L(r, s,v,7).We begin to take changes of variables
In($)
2A(r (110)

y = ln( )
V2B

xr =

=

and

(111)




We have:

Ul(T7 S7U7r)
_ 2
. e Balr) + 2o )
1 By (1) 7 ( 3(7) V2A(T)
=5 o e" exp ) m (z)
™ T _ .
Ba(r) — 2A(1) (%) m() Ba(7) 4A(7)
o 1
V2B1(7) \/24A(7)
= Br(7) | By(r) + 22 x] T
< exp A(T) + B(T) Yy I(T) |: 3(7-) 2A(7) e—%aﬂ 2 31(7)*145;((:)) Y dmdy
-2
24(r) V2 [Bi(r) - 2]
B ~ T
"o 1(T)§2<T> / / o {k R —Ea @ yQ)}
Bur) = 31 () () Bi(m) = 37
2B1(7) \/2A(T)
= By(r) + ) }
— A(T)+ B 1 [ V/2A(7)
X exp —1/2A(7) + (r) — () _ 3 =0 (1)
214.(’7—) Bl( ) - 47(7_)
72 J—
X exp LAY €12(7)33(T) Bi(7) zLBZ(T) X B(r) xy p dzdy
T B (T -
V2 [Bin) - G+ 5 5 72 /anme
ZA(7)
? Bl(T])gz( ) / / exp{k—2 1(T)§2( )(x2+y2)
m B 7__77' Bl(T)— > (T
77350 () wie) 24
2B1(7) \/2A(T)
— B 5@ }
— A(r)+B(r) 1 [ 3(r) + V2A(r)
X exp 2A(T) + — ~3 ) (1)
2A(T) Bi(r) — TA(r)
2 J—
X exp A" §12(T)B3(T) 1(1) — ZLBZ(T) B{) xy ¢ dxdy
T B (1 —
V2 [Bl (1) - 432273} Bl(T)—(E)KZET)) " 2VAMBD)
2A(T
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According to Lemma 2.2, From Eq.(72), we let

~1 oo o0 R
G s =g | [ [ ewtko g Pty
2m Bi(r) — B (r) 2 Bi(7) B ()
2A(T) 1;1(%) ln( 7 ) 2A(T)
2B1 (1) \/2A(r)
T 5 [33(7) + B0 }
x expq [ —1/24(7) + Alr) tB(T) - % 322?(;) —X(7)
2A(7) Bi(r) - E0
) _
» yv/ BT Ba(7) DU BV (s B O
W) = T30 By (r)- B0 (T)Bi(7)
2A(T

where

\/2B1 (1) (114)

‘We obtain

:1

U (1,s,v,7) = 3D e 2§I2y2+y1)dx dyll, (115)

[%W / /
where

tn () =Pl T) 4+ 4 7 (Y2402 4 20y AT X o200, L(0) + X Ho 02 L2 (1) ) d

a, =

\/foT (3102 + 2p00 /X XT3 20,0, L(Y) + X o202 L2(v) ) dv
. In (7> I P(t,r,T) - 2 0 (XHhE 2+ 2PSTWJSUTL(V) +XH3’EU$L2(V)> dv
ag =

\/foT (#1202 + 2000 XN E 00, L(v) + X202 L2 () ) d
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and according always to Lemma 2.2, we also let

~92 o o A 1 .,
Ve / expy k=g 1(22(7)( 2+ y?)
2K(T) ln(%) 1n(%) Bl (T) — QZ(T)
2610 VZA(r)
A B By(r) + 22
— A(T) + B(t 1 [ A ()
omy | TV v i o 2 B (7) - 3(7)
2A(T) By (1) 2
2 —
Bi(7)B
X exp y@ 3(T i () fA(T) 7B(7) oy b dody
vz [B () 42(1)] -2 e () 2\ JAm)Bi(7)
2A(1)

V2B1(7) /2A(T)
where ¢ _
(1) = o5 [+ ) (y + )],
= _A(M)+B(1)
2A(r) '
d=_ Bl(T)+§(T)_
231(7‘)

By also using the transformation of variables given by Eq.(114), we have
1 b1 b2 %(Ig—ngzszryg)d d (116)
— e20-e z2dys

= ) InP(t,r,T) - 5 [ ( 252 4 9p /X T2 xHs20,0,.L(v) +XH3’€O'72.L2(1/)) dv
VI (12202 + 2o/ T, L)+ X <0312(0))
2¢ fOT 2(v)dv fOT ( Hieg2 4 9p /X HexHse0,0,L(v) + XH3’EO‘3L2(V)) dv
+
VI (75502 + 2pur AN 0, L)+ 00503 120) )
In (’v ) InP(t,r,T) - 3 [ (XH2 02 4 2pye/xH2 X 3200, L(V) + XHS’EU,?LQ(V)) dv
I (12203 + 2o/ T, L)+ X2 <0312(0))

Combining, Eq.(115) and Eq.(116), the value of U(t, s,v,r) given by Eq.(75) becomes

~2
U (’T,S,U,T) = Klp(taTaT)

S
X
—
=
~
2

by =

~ ~ ~2
Ul(t, s,v,7) = U (t,s,0,7)+ U (t,8,0,7)
sN (@102, €) — Ky P(t,7,T))N (b1, bs, €).

Therefore,we have:

U(t,s,v,7) = sN (@1, a2, &) — K1 P(t, 7, T))N (by, ba, €) (117)

71 ~
e Expression of U (t,s,v,7). We make the same transformation used to have the value of U (¢, s,v,)

and then, we changes the value of 11 (z) by n2(z) = (e*z"sﬁ - Kg). We deduce that, the expression
of second term T (t,s,v,r) given by Eq.(76) is defined as follows:

Tt 5,0,1) = SN (31,39, €) — Ko P(t, 7, T))N (b1, s, ) (118)

22



with

In (7> InP(t,r,T)+ 3 fo ( Hieg2 4 2p ./ XHrexHseo,0,.L(V) +XH3’€03L2(V)> dv

ay = (119)
\/foT (XH“EU? + 2psr/xHrEx 050, L(v) + XHS’EUELQ(V)) dv
~ In (VL) InP(t,r,T) =5 [y ( H2252 4 2p,\/xH2ex 3o ,0,L(v) -‘rXHS’EO'?LQ(V)) dv
by =

\/IOT (XHz’EUg + ZPUTWO—UJTL(V) + XHB”EO’%IP(V)) dv
25 fT Ag fT ( H176 2 + 2/)57"\/WJSUTL(V) + XH37EO-$L2(V)) dv
+

(120)
Vh (XH2=503 20 XX, L) + X2 L2 (1) ) d
()~ WP T) = L (02 4+ 2 N0, L) + X0 L2 0) ) d
az = (121)

\/IOT XHl’Eag + 2psr v/ XHl’sXH3’sO'st"L(V) + XHS"EO'?«LQ(V)) dv

; In (,%) In P(t,r,T) - 5 [, (XH” 2+ 2ppe\/ X H2e 3200, L(v) +XH37503L2(V)) dv 122)
g =

\/IOT (XHQ’SU% + 2pur v/ XH2’EXH3’EO'UUTL(V) + XHS”EO'?«LQ(V)) dv

Therefore, combining Eq.(117) and Eq.(118), Eq.(73) gives:

Ut 5,0,7) = sN (@1, @, €) — Ko P(t, 7, T)N (b, b, €) — sN (31, 3, €) — Ko P(t, 1, T))N (b1, b, €) (123)

A.3.2 Expression of V(1 s,v,7)

e Expression of 171(7', s,v,7) The expression of 171(7', s,v,7) of Eq.(77) becomes

) _
B B: B B
X exp y@ o Bi(r) 1(7) 4A(T) = Ty iy
V2 [Bl (r) - 42(:)] ; %2(7) 7) 2\ A(T)Ba(7)
B =530
tn( 5% )
2B1(7) 0o
vk, By () / / exp %71 Bi(7) (@2 +y?)
2 B’(r) 2B.(7) B*(r)
2A(T) 00 ln(%) ! 2A(T)
2A(7)
= Bs(r) + 2L }
— A B 1 [ A(r
X exp —4/2A(T) + ) t () _ 3 §22(i)) x —3(T)
2A(T) Bi(r) - e)
—92 —
X exp y\/iTET))Bg(T) 5 <P - fzm x me zy o dedy.  (124)
V2 {31(7) - 42(1)} T h e ™ 2\/Am)Bi)
2A(7)
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Then, following the same procedure as for Ul (1,s,v,7), and using the following transformation defined
by:
B(r)+A+B

T3 =o+ — \/ﬂ

~ —B(T)+Bl(7)+B
Y3 =y + V2B (125)
—B(1)—-A+B
_ Vi
—B(1)+B1(7)

LRV e

the expression of ‘71(7, s,v,1) is given by:

Ta=2x+

&1 oo
Vir,s,0r) = Suse~ BD+B() o %1 = // e (53—2553§3+§§)d§3d?73
) .
_ SusKie BB Py iy // e (E§_2£E4g4+ﬁ)df4d§4
= 5o (D N 26 — KN -1 -)). (126)
where
 In (7) InP(t,r,T)+ 3 fo ( Hieg2 4 9p /e 30,0, L(v) +XH3’EO‘$L2(U)) dv
¢ =
1 \/foT (XHI’EUE + 2psr/ xrex a0 0, L(v) + XH3’503L2(V)) dv
L Jy 320w [ (X202 4 200 XX 2000, L) + X202 L2 (v) ) dv (127
\/fo X502 + 20 T 0,0, L) + X202 L2(0))
I (7) I P(t,rT)+ & J7 ( H2252 4 9p, /X HriyHseg, o, L(v) +XH3’EU$L2(V)> dv
o = _
2 ¢ Iy (X220 + 200/ AT X 2,0, L(v) + 31202 L2(v) ) o
2 [y o2(v)dv ) ( H2262 4 2p,,\/x 2= x5 0,0, L(V) + XHS’EagLQ(I/)) dv (125)
\/ Iy (32202 + 2000 /X T X2 0, L(v) + XHo20212(v) )
and
P In (7) In P(t,r,T) — 2 o (XHl’E 2 4 2p5r\/masarll(y) + XH3’503L2(1/)> dv
L=

\/ Ji (315202 4 2pur XX 0,0, L(0) + X202 L2 (1)) di
26 f7 62w)dv [ (X202 4 2pur XX 2,0, L)+ X502 L2(0) ) d

_l’_

\/foT (XHI’EUE + 2psp/ x e x 3200, L(v) + XHWU?LQ(V)) dv

In (;’—*) —InP(t,r,T)+ 5 [y ( H2e52 4 9p,\/xH2exH32 0,0, L(V) + XH3,503L2<V)) dv
\/foT (XHI’EUE + 2psr v XHI’EXHg’EasJTL(V) + XHS’Easz(V)) dv

(129)

B=-

(130)

24



e Expression of v (1,8,v,7). The expression of 71(7, s,v,7) of Eq.(78) is obtained by following the

same procedure as for IN/I(T, s,v,7). Then, the expression of V' (7,s,v,r) is given by:

%(T)-‘,—B(T) T 152 (E§—2553§3+§§)d.’f3d@'3

2w\/@//

7' (1,8,0,7) = —duse”

d100

2w\/@//

+ S\USKze—E(T)—f—B(T) I 1§2 (5§_2£E4§4+ﬂ2)d54d§4

p(t7T> PN = = =
= —v|——"—7— — — KON (dy, —da, — . 131
U(P(t,T,T)N(Ch C27£) 2-/\/( 1, 2 é-) ( )
Where
~ In (7) In P(t,r,T)+ 5 [y ( Hieg2 4 2p ./ xHrex 20,0, L(v) +XH3’EJ$L2(V)) dv
Cc1 =

\/foT (XH“%? + 2p5r/ X Ex 050, L(v) + xH«*vEUELQ(V)) dv
25]7 AE fT <XH2,€ 2 +2pvr / HZ’EXHS’EUUO'TL(V) +XH3’€03L2(1/)> dv

Jr

\/fOT (le»Eaf, + 2psr/ XHVE X 3200 L(V) + XH3’EO'EL2(Z/)> dv

(132)

~

n (’YL) lnP(t T T + fO ( Hz#‘i 5 +2pv7 VvV X Hz’EXHS’EO'vO'T'L(V) +XH3780$L2(V)> dv

&=
\/IOT (XH2,5012) + 2pur V XHz’EXH3’EUUUTL(V) + XH3’EU%L2(V)) dv
26 J7 82w [ (x40 4 200, XTENTE S0, L(v) 4+ X202 LA(v)) d
(133)
\/fo XH2207 4 2pyr/ X2 x 200 L(v) + XH?"EU?LQ(V)) dv
and

~ In (7) InP(t,r,T) — 5 fo ( Hieg2 4 2pgr\/WasorL(y) +XH37503L2(1/)> dv
VI (0202 4 200 AT T, L) 4 x50 120))
26 [ 72 (0)dv J] (X152 + 2pur/ XX, L(0) + X502 L2 (0) ) do

N
V5 (30202 + 2 AT 0, L) + X020 L2(0))

~ (wi) — I P(t,r,T)+ 1 [T ( 2262 4 2py/X T x 20,0, L(v) + xHSon?LQ(u)) dv

(134)

dy = —
\/foT (XHI’EUE + 2psr v/ XHI’EXHg’EUsUTL(V) + XHS’EU%Lz(V)) dv
(135)
By combining Eq.(126) and Eq.(131), Eq.(74) gives:
p(t, T . ~ -~
Vl(T7S,’U77’) = 6 (P(i T %)N(Clv 6275)_K1N(d17_d27_£)>
~ v (P(Et ’r %>N(017 ~03,€) — KN (dy, —da, f)) . (136)

By using Eq.(123) and Eq.(136), Eq.(72) gives the expression of U(t, s,v,).
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