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Characterizing the interactions and dynamics of quantum mechanical systems is an essential task
in the development of quantum technologies. We propose an efficient protocol based on the estima-
tion of the time-derivatives of few qubit observables using polynomial interpolation for characterizing
the underlying Hamiltonian dynamics and Markovian noise of a multi-qubit device. For finite range
dynamics, our protocol exponentially relaxes the necessary time-resolution of the measurements
and quadratically reduces the overall sample complexity compared to previous approaches. Fur-
thermore, we show that our protocol can characterize the dynamics of systems with algebraically
decaying interactions. The implementation of the protocol requires only the preparation of product
states and single-qubit measurements. Furthermore, we develop a shadow tomography method for
quantum channels that is of independent interest. This protocol can be used to parallelize to learn
the Hamiltonian, rendering it applicable for the characterization of both current and future quantum
devices.

I. INTRODUCTION

Large quantum devices consisting of tens to hundreds
of qubits have been realized across various hardware ar-
chitectures [1–4] representing a significant step towards
the realization of quantum computers and simulators
with the potential to solve outstanding problems in-
tractable for classical computers [5, 6]. However, con-
tinued progress towards this goal requires careful charac-
terization of the underlying Hamiltonians and dissipative
dynamics of the hardware to mitigate errors and engineer
the desired dynamics. The exponential growth of the di-
mension of the state space of a quantum device with the
number of qubits renders this an outstanding challenge
broadly referred to as the Hamiltonian learning prob-
lem [7–35].

To tackle this challenge, previous approaches make
strong assumptions such as the existence of a trusted
quantum simulator capable of simulating the unknown
Hamiltonian [20, 21] or the capability of preparing par-
ticular states of the Hamiltonian such as steady states
and Gibbs states [23, 25, 26, 29, 36, 37], which may be
difficult for realistic devices subject to various decoher-
ence mechanisms.

Alternatively, several works [30–32] are built on the
observation that a Master equation describes the evo-
lution of any system governed by Markovian dynamics.
Through this, one obtains a simple linear relation be-
tween time derivatives of expectation values and the pa-
rameters of the Hamiltonian, jump operators and decay
rates (jointly referred to as the parameters of the Lind-
bladian L) governing the system. Furthermore, for finite
range interactions, these approaches can estimate the pa-
rameters of the Lindbladian to a given precision from a
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number of samples that is independent of the system’s
size [30–32].

A significant drawback of these approaches is that
the time derivatives are estimated using finite differ-
ence methods. Obtaining a good precision thus requires
high time resolution, which is experimentally challeng-
ing given the finite operation time of gates and measure-
ments. To estimate a Lindbladian parameter up to an
additive error ε, the system has to be probed at times
O(ε) apart and expectation values of observables have to
be estimated up to a precision of O(ε2), which translates
to an overall O(ε−4) sample complexity to estimate each
parameter.

In this article, we propose a novel protocol that allevi-
ates these daunting experimental requirements. Our pro-
tocol requires only a time resolution of O(polylog(ε−1))
representing an exponential improvement compared to
previous protocols and gives an overall sample complexity
to recover all parameters of a local n qubit Lindbladian
up to precision ε of O(ε−2polylog(n, ε−1)). We obtain
this by estimating time derivatives using multiple tempo-
ral sampling points and robust polynomial interpolation
[38]. Furthermore, we show how to use shadow process
tomography methods to estimate multiple parameters in
parallel. In particular, we address shortcomings of previ-
ous results [39, 40] in extending the framework of classi-
cal shadows to processes, a result that is of independent
interest. We also extend our analysis to long-range (alge-
braically decaying) interactions in the systems, obtaining
the first results for such systems to the best of our knowl-
edge. The necessary operations for our protocol are mea-
surements in Pauli basis on time-evolved product states
consisting of Pauli eigenstates. These minimal require-
ments make our protocol feasible for characterization of
both current and future quantum devices.
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FIG. 1. Sketch of the proposed protocol to estimate an un-
known Lindbladian, L, of a multi-qubit device. In the first
step of classical pre-processing, the interaction graph between
qubits is identified from the physical connectivity of the de-
vice. Then the unknown Lindbladian is written in a gen-
eral form using an operator basis of Pauli strings, {Pi} (see
main text) and a suitable set of initial states and observables,
{(ρj , Oi)} is chosen. In the second step of quantum process-
ing, a time trace of each element of the set is obtained from
evolution and measurement on the quantum device. In the
last step of classical post-processing, each time trace is fitted
to a low-degree polynomial to estimate the derivative of the
observable. From these, an estimate of the Lindbladian,Lest,
is obtained from the Master equation.

II. RESULTS

In order to use our protocol for an efficient character-
ization of a quantum device, two assumptions should be
fullfilled:

1. The quantum device implements an (unknown)
Markovian quantum evolution on n qubits de-
scribed by a time-independent Lindbladian, L.

2. We assume knowledge of the general structure of
the interaction graph of the device i.e. which qubits
are coupled to each other. Importantly, no assump-
tions are made regarding the exact strength or even
form of the couplings.

The first assumption ensures that the evolution of a
general observable, 〈O〉 is described by the Master equa-
tion, i.e. d

dt 〈O〉 = 〈L(O)〉. We note that the Lindbladian
captures both the Hamiltonian evolution and the dissipa-
tive dynamics of the device. Furthermore, the assump-
tion of time-independence applies to the run-time of the
experimental characterization.

The second assumption bounds the size of the estima-
tion task. If the interaction graph was completely un-
known, our protocol could, in principle, be applied but
would require the estimation of an exponentially grow-
ing number of general multi-qubit coupling terms as the
number of qubits increases. However, having prior knowl-
edge that, e.g. nearest neighbor couplings dominate in
the device, makes the estimation task tractable.

Using the knowledge of the interaction graph, one can
expand the Lindbladian in an operator basis, {σi} con-
structed from tensor products of single-qubit Pauli matri-
ces and the identity. Such an expansion is always possible
since this basis amounts to a Hilbert-Schmidt orthogonal
set of traceless Hermitian operators spanning the entire
vector space. Estimating the set of expansion coefficients
{αi} gives an estimation of L and thus a full characteri-
zation of the system.

It is well known that the Master equation for the
time derivative of the expectation value of a local
observable O at time t = 0 for a given initial state
ρ of the system gives us a linear equation for the
expansion coefficients [30–32]. We use this to estimate
the expansion coefficients going through three stages
of classical pre-processing, quantum processing, and
classical post-processing.

Classical pre-processing
After expanding L in an operator basis, the following

steps are performed.

1. Find a suitable complete set, {(ρj , Oi)} of multi-
qubit product states (ρj) and observables (Oi) for
which the Master equation involves only a few se-
lected expansion parameters of the Lindbladian for
each element of the set. The set is complete in the
sense that all expansion coefficients can be found
by solving the Master equations for all elements in
the set. As we show below, such a set can readily
be found by considering initial states where only a
few qubits are initialized as different eigenstates of
the Pauli matrices while the remaining qubits are
prepared in the maximally mixed state I/2.

2. Calculate the expectation values appearing on
the right hand side of the Master equations
d
dt tr [ρjOi] = tr [ρjL(Oi)] for all elements in the set
{(ρj , Oi)}. Since both the initial states and the ob-
servables are products, this can be done efficiently.

Quantum processing
In order to solve for the expansion coefficients {αi}, we

also need the values of the time-derivatives appearing on
the left hand side of the Master equations, i.e. d

dt tr [ρjOi].
These are estimated using the quantum device in the
following way.

1. The quantum device is prepared in initial state ρj
and evolved for a time tk ∈ {t0, t1, . . . , T} after
which the observable Oi is measured.
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2. The above procedure is repeated for each element in
the set {(ρj , Oi)} for all evolution times tk to obtain
estimates of 〈Oi(tk)〉j = tr [ρj(tk)Oi] where ρj(tk)
is the state of the system having evolved for time
tk from the initial state ρj . We note that the single
qubit mixed states can be simulated by sampling
eigenstates of the Pauli matrices at random.

Classical post-processing
The final part of the characterization involves estimat-

ing d
dt tr [ρjOi] from the experimentally obtained time

trace of 〈Oi(tk)〉j and solving for the expansion coeffi-
cients {αi}. This involves

1. Fit the time trace of 〈Oi(tk)〉j with a low-
degree polynomial in the time, pi,j(t) and estimate
d
dt tr [ρjOi] as d

dtpi,j(t)|t=0. This is done for each
element in the set {(ρj , Oi)}.

2. Solve the set of linear equations from the Master
equations d

dt tr [ρjOi] = tr [ρjL(Oi)] with respect to
the expansion coefficients ({αi}). This is possible
since d

dt tr [ρjOi] has been estimated from the poly-
nomial fits and all expectation values appearing in
tr [ρjL(Oi)] have been calculated leaving the αi’s
as the only unknown parameters.

Following the steps above, a complete characterization
of the underlying Hamiltonian and dissipative dynam-
ics of the quantum device as given by the Lindbladian
is obtained. The two key steps of the protocol are the
choice of the set {(ρj , Oi)} and the polynomial interpo-
lation used to obtain estimates of the time derivatives.
Below, we outline the details of both steps, show how
shadow tomography methods can be used to parallelize
the procedure, and provide rigorous guarantees on the
precision of the protocol. Importantly, we show that
Lieb-Robinson bounds on the spread of correlations in
the system can be used to ensure robust polynomial fit-
ting of the time traces of expectation values allowing for
an exponential relaxation of the temporal resolution com-
pared to finite difference methods rendering the protocol
feasible for near-term quantum devices.

A. Choosing the set of initial states and
observables

The first step in the classical pre-processing is to ex-
pand L in an operator basis constructed from tensor
products of single-qubit Pauli matrices and the iden-
tity. The right hand side (rhs) of the Master equation
d
dt tr [ρjOi] = tr [ρjL(Oi)] can be expanded as a sum of
single Pauli matrices and their products. Our goal is to
isolate the unknown expansion coefficients. To this end,
we consider an initial state of the form

ρ
(i,j)
k,l =

(I + σ
(i)
k )

2
⊗

(I + σ
(j)
l )

2
⊗ ρN−2, (1)

where the i’th and j’th qubit are prepared in eigenstates
of the Pauli matrices while the state of the remaining
N − 2 qubits, ρN−2, is assumed to be the maximally
mixed state.

For a state of the form in Eq. (1) the rhs of the Master
equation (see above) can be simplified greatly depending
on the choice of the observable O. This is due to the
properties of the Pauli matrices namely that they have
vanishing trace and that

σkσl = δklI + iεklmσm, (2)

where δkl is the Kroenecker delta function and εklm is the
Levi-Civita symbol. From this, it follows that if a single

qubit Pauli observable (O = σ
(i)
m ) is chosen, then only the

single qubit terms of the rhs of the Master equation in-
volving the i’th qubit will have non-vanishing trace and,
using the relation in Eq. (2), the different single qubit
Pauli expansion coefficients (the coefficients of terms in
the expansion that only involves single qubit Pauli ma-
trices) can be isolated.

After isolating the single qubit expansion coefficients,
the expansion coefficients related to two-qubit Pauli

terms (σ
(i)
m ⊗σ(j)

n ) can be isolated by choosing observables

of the form O = σ
(i)
m ⊗σ(j)

n in a similar manner. This pro-
cedure can be iterated to isolate higher and higher order
expansion coefficients by considering observables involv-
ing more and and more qubits.

In the supplemental material, we provide a detailed
derivation of how all expansion parameters can be iso-
lated for a general Hamiltonian with terms coupling from
two to k qubits and arbitrary single qubit dissipation
terms. We note that already for two qubit dissipation
terms, deriving linear combinations of initial states and
expectation values that allow us to isolate different pa-
rameters is quite cumbersome and we do not do this ex-
plicitly. However, from a numerical point of view this is
a trivial task. Indeed, as remarked before, each pair of
Pauli strings gives us access to a linear equation for the
different parameters of the evolution.

After collecting enough equations to ensure that the
linear system is invertible, the precision with which we
need to estimate each expectation value to ensure a re-
liable estimation of the parameters is controlled by the
condition number of the matrix describing the system of
linear equations. As both estimating the condition num-
ber and solving the linear system can be done efficiently,
we conclude that estimating dissipative terms acting on
a constant number of qubits does not posses a significant
challenge from a numerical perspective.

A desirable feature for a Hamiltonian learning protocol
is that the state preparation and measurement steps are
simple, parallelizable and even independent of the param-
eter being estimated. In this paper, we propose a varia-
tion of the classical shadows protocol of [41] for process
tomography that achieves that and is of interest on its
own. Given a quantum channel Φ acting on N qubits, our
protocol estimates overlaps of the form 2−n tr

[
P amΦ(P bl )

]
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for Pauli strings P am, P
b
l . Here P am refers to the m’th

Pauli string in the collection of Pauli strings that differ
from the identity on at most ωa sites. Note that esti-
mates of such overlaps is all that is required as input
for our Hamiltonian learning algorithm. By only requir-
ing the preparation of random product Pauli eigenstates
and measurements in a random Pauli bases, our protocol
only requires O(3wa+wbε−2 log(K1K2)) samples to esti-
mate such overlaps up to error ε for K1K2 pairs of Pauli
strings of weight at most wa and wb respectively. For
local Hamiltonians on a lattice, using this protocol gives
a logarithmic in system size sample complexity to deter-
mine all parameters of the evolution.

B. Robust polynomial interpolation

As described above, a key step in our learning algo-
rithm is to obtain information about the time-derivatives
of observables at t = 0. For this, we rely on robust poly-
nomial interpolation. Accordingly, based on expectation
values 〈Oi(tk)〉j for a set of times tk we want to extract a

polynomial pi,j(t) such that swe can estimate d
dt tr [ρjOi]

as d
dtpi,j(t)|t=0. For this approach to work, we have to

be able to control the degree of the polynomial pi,j(t) in
order to give an upper bound on the number of sampling
points tk for which we will have to determine 〈Oi(tk)〉j
experimentally. In the following, we briefly outline how
such a guarantee on the degree of pi,j(t) can be obtained
and refer to Append. D for a detailed proof.

Our argument proceeds in two steps. Firstly, we estab-
lish that the expectation value 〈O(t)〉 of a local observ-
able O that evolves under a Lindbladian LB restricted to
some sub-region B up to some time tmax, can indeed be
approximated up to error ε by a degree-d polynomial,
where d depends linearly on the size of B, tmax and
log(ε−1). Hence, for the second step of our argument,
it remains to show under which circumstances, we can
restrict the evolution of the Pauli-strings P am we identi-
fied in the previous step to a local generator. The main
insight here is that for finite range (or sufficiently quickly
fast decaying) interactions, the dynamics of any local ob-
servable O exhibits an effective light cone quantified by a
Lieb-Robinson bound (LRB) [42–47]. The LR-bound in
turn allows us to restrict the Lindbladian on the full sys-
tem to a generator coupling only systems in the vicinity
of the support of O, where the size of this shielding region
only grows linearly with tmax. Hence, bringing these two
arguments together, we can first employ the LR-bound
to restrict the dynamics to a sub-region around the sup-
port of the Pauli-string, P am, and then approximate the
corresponding evolution on that finite region up to er-
ror ε by a polynomial of degree O

[
poly(tmax, log(ε−1))

]
.

Now, making use of the techniques from Ref. [38], we
can extract the first derivative of this polynomial from

measurements at O
[

polylog(ε−1)
]

different times tk.

III. NUMERICAL EXAMPLES

To investigate the performance of our protocol for ex-
perimentally relevant parameters, we performed numeri-
cal simulations of a multi-qubit superconducting device.
We consider a system with tunable couplers similar to the
Google Sycamore chip [1]. This design relies on a can-
cellation of the next-next-nearest coupling between two
qubits through the direct coupling with a coupler [48, 49].
We consider a generic system consisting of a 2D grid of
qubits with exchange coupling between nearest neigh-
bors. The dynamics are described through a Lindblad
equation with the effective two-qubit Hamiltonian for
each neighboring qubit pair (i, j) [48, 49]

Hij =
∑
k=i,j

1

2
ω̃kσ

(k)
z +

[
gigj
∆ij

+ gij

]
(σ

(i)
+ σ

(j)
− +σ

(i)
− σ

(j)
+ ) (3)

for i 6= j = 1, . . . , n and a dissipation term D(i) acting on

the i’th qubit and having jump operators σ
(i)
− , σ

(i)
+ (gen-

eralised amplitude damping) and σ
(i)
z (pure dephasing).

Here ω̃j = ωj +
g2
j

∆j
is the Lamb-shifted qubit frequency,

gi is the coupling between the i’th qubit and the cou-
pler, and gij is the direct two-qubit coupling. We have
assumed that ∆j = ωj − ωc < 0 where ωc (ωj) is the
frequency of the coupler (j’th qubit) and have defined
1/∆ij = (1/∆i + 1/∆j)/2. By adjusting the frequen-
cies of the coupler and the qubits, the effective qubit-
qubit interaction can be cancelled up to experimental
precision. Typical qubit frequencies are around 5 − 6
GHz [1]), while ∆ ∼ −1 GHz, gij ∼ 10 − 20 MHz, and
gj ∼ 100 MHz [48, 49]. In our simulation, we assume
that all qubit frequencies and couplings have been char-
acterized up to a precision of 100 kHz using standard
characterization techniques [1] and consequently, that all
couplers have been tuned off with the same precision i.e.
gigj
∆ij

+ gij ∼ 100 kHz. Considering a layout of 16 qubits

(see Fig. 4 for the interaction graph), we randomly sam-
ple all qubit frequencies and qubit-qubit interactions ac-
cording to Gaussian distributions with zero mean and
standard deviation of 100 kHz.

In addition to the Hamiltonian evolution, we also in-
clude dissipative dynamics in our numerical simulation.
We include quasi-static random frequency shifts of the
qubits leading to effective dephasing with a characteris-
tic timescale of T ∗2 ∼ 150 µs as well as pure dephasing
resulting in a transverse relaxation on a timescale T2 ∼ 60
µs representing state of the art coherence times [1, 49].
Finally, we include longitudinal relaxation of the qubits
through an amplitude damping channel on the time scale
of T1 ∼ 60 µs. We refer to Appendix C for a more de-
tailed discussion and Table III for the sampled parame-
ters of our simulation.
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FIG. 2. The median quality of recovery of of one 2-qubit cou-
pling using our method and those based on numerical deriva-
tives [30–32] as a function of the initial time. We assumed
that the total time of the experiment is fixed. That is, we let
the initial time times the total number of samples for each
time step to be a constant (107 for this plot). For each initial
time, we simulated 1000 instances of the recovery protocol,
always adding shot noise with the same standard deviation
to the data. The dots correspond to the median quality of
recovery, whereas the lower and upper end correspond to the
25 and 75 percentile. We ran the simulation on a system with
16 qubits.

In Fig. 2, we plot the average estimation error as a func-
tion of the temporal resolution set by the value of the
initial time step, t0. For this plot, we only included the
Hamiltonian evolution in the numerical simulation to-
gether with quasi-static random frequency shifts of the
qubits. This was to lower the run time of the simulation
allowing us to investigate the performance for a broad
range of initial times. We assumed the total run time of
the experiment was fixed such that t0 × S is constant,
where S is the number of samples. From the figure, we
clearly see the improved scaling of our protocol of the
estimation error with the time-step size compared to us-
ing a finite difference method [30–32]. Besides already
performing better at the time resolution for moderate
values of the initial time, we see that after a threshold
initial time around 10−0.7, the performance is not limited
by the initial time, only the shot noise. In contrast, the
finite difference method still require smaller initial times
to improve on the error with the same shot noise.

We also investigated the robustness of our method with
respect to shot-noise for a fixed time resolution. For these
simulations, we again only included the Hamiltonian evo-
lution together with quasi-static random frequency shifts
of the qubits to have a practical run time of the simu-
lation. From Fig. 3 we see that for a fixed time reso-
lution of 30 ns our protocol results in an average esti-
mation error that improves linearly with the shot-noise
down to an error below 10−4. This is in contrast to finite
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FIG. 3. Median quality of recovery of one 2-qubit coupling us-
ing our method and those based on numerical derivatives [30–
32] as a function of the standard deviation of the shot noise.
The initial time for this estimate is 30 ns and here we also
generated 1000 instances of the noise with a given standard
deviation. The plot shows the median quality of the recovery
and the 25 and 75 percentiles. We see that the quality of the
recovery for the interpolation decays approximately linearly
with the shot noise. For the numerical derivative, we see two
regimes: first a linear decay of the error until a shot of noise
of order 10−3. After that, the error plateaus and does not
improve even with smaller shot noise. This is because for nu-
merical derivative methods, at this point the dominant error
source comes from the choice of initial time. Importantly, we
see that interpolation consistently provides better estimates
than the numerical derivatives method.

difference methods, where the estimation error plateaus
around 10−3 since it becomes limited by the time reso-
lution. This is a clear effect of the exponential improve-
ment of our protocol w.r.t. the time resolution compared
to finite difference methods.

Finally, we performed a full numerical simulation in-
cluding also the pure dephasing and amplitude damping
noise as described above and estimated the σXσX cou-
plings between the qubits. As shown in Fig. 4, we obtain
reliable estimates of all 22 couplings demonstrating how
our method allows the estimation of specific terms in the
Lindbladian despite the dynamics being governed by the
full (dissipative) Lindbladian. For simplicity, we did not
explicitly estimate the single qubit Hamiltonian parame-
ters and the Lindbladian decay rates.

For all estimations above, we fitted to degrees 1−7 and
picked the one with the smallest average error. We note
that, although the robust interpolation methods of [38] in
principle require random times, we performed numerical
experiments with deterministic times on systems with 16
qubits.
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FIG. 4. Error in recovery of σXσX couplings of a quan-
tum systems with a geometry similar to the Sycamore pro-
cessor usign numerical derivatives and interpolation. Note
that while we only plot the estimation of the Hamiltonian
couplings, the numerical simulation included the full Lind-
bladian including both dephasing due to quasi-static random
frequency shifts of the qubits, pure dephasing and amplitude
damping noise. The initial time for each coupling was 0.1 µs
in the simulation. Note that interpolation consistently out-
performs numerical derivatives, sometimes by several orders
of magnitude.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have proposed a novel Hamiltonian
learning protocol based on robust polynomial interpola-
tion that has rigorous guarantees on the estimation er-
ror. Our protocol offers an exponential reduction in the
required temporal resolution of the measurements com-
pared to previous methods and a quadratic reduction
in the overall sampling complexity for finite range in-
teractions. Our protocol only requires the preparation
of single qubit states and single qubit measurements in
the Pauli bases making it suitable for characterization of
both near term and future quantum devices.

Furthermore, the recovery of multiple parameters can
be highly paralelized by resorting to a variation of clas-
sical shadows to quantum channels we introduce here.
Besides being a protocol of independent interest, we be-
lieve our work constitutes the first application of classical
shadows to process tomography.

Our method allows for the characterization of a general
local Markovian evolution consisting of a unitary Hamil-
tonian part and a dissipative part. While we have only
explicitly considered single qubit dissipation here, we be-
lieve that our protocol is also valid for general multi-qubit
dissipation as outlined above but leave the explicit anal-
ysis of this to future work. We have also analysed the
performance of our protocol for algebraically decaying
interactions which we believe to be the first results for
Hamiltonian learning of such systems. The convergence
of our method can be ensured for interactions decaying
faster than the dimension of the system. We note, how-
ever, that improved bounds on the locality of such sys-
tems might improve this result in the future.

V. METHODS

Here we detail and formalize our results regarding the
estimation error guarantees of our protocol. In partic-
ular, we detail the use of Lieb-Robinson bounds on the
spread of correlations in the system to bound the error.
Furthermore, we outline the shadow tomography method
for the parallization of the measurements.

A. Derivative estimation

Define f(t) = tr
[
etL(O)ρ

]
and LB to be the Lind-

bladian truncated to a subregion B of the interaction
graph. Our protocol consists of first estimating f(ti)
up to an error O(ε) for random times t1, . . . , tm. The
curve of f(t) is then fitted to a low-degree polynomial
p, and p′(0) is taken as an estimate for the derivative
f ′(0) = tr [L(O)ρ]. Below we prove the accuracy and ro-
bustness of this method. The first step is Theorem V.1,
which establishes under what conditions f(t) is indeed
well-approximated by a low-degree polynomial.

Theorem V.1. Let L be a local Lindbladian on a D-
dimensional lattice. Moreover, let tmax, ε > 0 and OY be
a 2-qubit observable, such that ‖OY ‖ ≤ 1, holds. Then
there is a polynomial p of degree

d = O
[
poly(tmax, log(ε−1))

]
, (4)

such that for all 0 ≤ t ≤ tmax:∣∣tr [etLV (OY )ρ
]
− p(t)

∣∣ ≤ ε, (5)

and p′(0) = tr [G(OY )ρ], holds.

The main technical tool required for the proof are Lieb-
Robinson bounds (LRB) [42–47], which ascertain that



7

the dynamics of local observables under a time evolu-
tion with a local Lindbladian have an effective lightcone.
More precisely, we need

‖(etLB − etLV )(OY )‖ ≤
c1 exp(−µdist(Y, V \{B}))(evt − 1), (6)

to hold for constants c1, µ and v, where dist() is the dis-
tance in the graph.

From the LRB we can show that the dynamics is well-
approximated by a low-degree polynomial. We leave the
details of the proof to Sec. D in the supplemental material
and only discuss the main steps here. The general idea
of going from the LRB to the low-degree polynomial is
to truncate the Taylor series of the evolution under LB
for B large enough and take that as the approximating
polynomial. As the derivatives of the evolution under LB
only scale with the size of the region B, this allows us to
show that the Taylor series converges quickly.

Now that we have concluded that the expectation value
is well-approximated by a small degree polynomial, we
continue to show that we can reliably extract the deriva-
tive from approximations of the expectation values for
different t. This is formally stated in the following theo-
rem.

Theorem V.2. Let L be a Lindbladian on a D-
dimensional regular lattice. Suppose we can measure the
expectation value of two-body Pauli observables on Pauli
eigenstates in the time interval [t0, tmax] under L for t0
as

t−1
0 = O

[
polylog(ε−1)

]
(7)

and tmax = 2 + t0. Then, measuring the expectation val-
ues at

m = O
[

polylog(ε−1)
]

(8)

random times up to precision O(ε/polylog(ε−1)), is suf-

ficient to obtain an estimate â
(m1)
α1,α2 of a

(m1)
α1,α2 satisfying∣∣âm1

α1,α2
− am1

α1,α2

∣∣ = ε. (9)

This yields a total sample complexity of S =
O
(
ε−2 polylog(ε−1)

)
.

Of course, the same results also hold for the parameters

a
(m1)
α1 and those of L(m1). Importantly, Theorem V.2

bypasses both requiring small initial times and O(ε−4)
sample complexities.

To go from Thm. V.1 to Thm. V.2 we first need to
establish that we can robustly infer an approximation
of p from finite measurement data subject to shot noise.
Subsequently, we need to show that it will also allow us to
reliably estimate p′(0). Let us start with approximating
p.

a. Robust polynomial interpolation: We will resort
to the robust polynomial interpolation methods of [38]
to show Thm. V.2. We review their methods in more de-
tail in [50, Sec. E]. But they depart from the assumption
that we get m (randomly sampled) points x1, . . . , xm ∈
[t0, tmax] and y1, . . . , ym ∈ R. In our setting, the xi cor-
respond to different times and the yi to approximations
of the expectation value of the evolution at that time.
Furthermore, the yi satisfy the promise that there exists
a polynomial p of degree d and some σ > 0 such, that

yi = p(xi) + wi, |wi| ≤ σ, (10)

hold, for strictly more than half of the yi. The rest might
be outliers. In our setting, the magnitude of σ corre-
sponds to amount of shot noise present in the estimates
of the expectation values.

The authors of [38] then show that by sampling
m = O(d log(d)) points from the Chebyshev measure on
[t0, tmax], a combination of `1 and `∞ regression allows
us to find a polynomial p̂ of degree d that satisfies:

max
x∈[t0,tmax]

|p(x)− p̂(x)| = O(σ). (11)

Although the details of the `1 and `∞ interpolation
are more involved and described in Sec. E of the sup-
plemental material, a rough simplification of the proce-
dure is the following. First, we find a polynomial p1

of degree d that minimizes
∑
i |p1(xi) − yi|. After find-

ing p1 we compute the polynomial p∞ that minimizes
maxi |p∞(xi)−(yi−p1(x1))|. We then output p̂ = p1+p∞
as our guess polynomial. Note that finding both p1 and
p∞ can be cast as linear programs and thus can be solved
efficiently [51].

By combining this result with Thm. V.1, we robustly
extract a polynomial that approximates the curve t 7→
tr
[
etL(OY )ρ

]
up to O(ε) for t ∈ [t0, tmax]. Indeed, we

only need to estimate the expectation value f(ti) up to ε
for enough ti and run the polynomial interpolation.

Note that Eq. (11) only allows us to conclude that
p − p̂ is small. However, we are ultimately interested in
the curve’s derivative at t = 0, as the derivative con-
tains information about the parameters of the evolution.
For arbitrary smooth functions, two functions being close
on an interval does not imply that their derivatives are
close as well. Fortunately, for polynomials the picture
is simpler. A classical result from approximation theory,
Markov brother’s inequality [52], allows us to quantify
the deviation of the derivatives given a bound on the
degree and a bound like Eq. (11). Putting these observa-
tions together, we arrive at Thm. V.2. The details of the
proof are given in Sec. E of the supplemental material.

B. Generalizations of Thm. V.2

We also generalize Thm. V.2 in two directions. First,
we extend the results to interactions acting on k qubits
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instead of 2. As long as the noise is constrained to acts
on 1 qubit and k = O(1), this generalization is straight-
forward. Indeed, we only need to measure an observable
that has the same support as the Pauli string and does
not commute with it, as it is then always possible to find
a product initial state that isolates the parameter. Gen-
eralizing to noise acting on more than one qubit makes
it more difficult to isolate the parameters of the evolu-
tion as described in the main text. In that case, it then
becomes necessary to solve a system of linear equations
that couples different parameters. Although our method
still applies, analysing this scenario would require pick-
ing the observables and initial states in a way that the
system of equations is well-conditioned and we will not
discuss this case in detail here.

Second, another important generalization is to go be-
yond short-range systems. Although we have only stated
our results for short-range systems in Thm. V.2, our tech-
niques apply to certain long-range systems. As this gen-
eralization is more technical, we leave the details to Ap-
pendix E and constrain ourselves to discussing how the
statement of Thm. V.2 changes for more general interac-
tions.

Only one aspect of the precious discussion changes sig-
nificantly for long range interactions: how the r.h.s. of
Eq. (6) generalizes. More precisely, let us assume that
for some injective function h : R→ R with h(x) = o(1),
we have

‖(etLB − etLΓ)(OY )‖ ≤
h(dist(Y, V \{B}))(evt − 1). (12)

For instance, for short-range or exponentially decaying
interactions, h will be an exponentially decaying func-
tion. Then we can restate Thm. V.2 in terms of h−1. As
we show in Thm. F.1 in Appendix F, for a precision pa-
rameter ε > 0 and evolution on a D-dimensional lattice,
assume that we pick the initial time as

t0 = O

(h−1

(
ε

2(e2.5v − 1)

)D
log(ε−1)

)−2
 .

Furthermore, assume that we estimate the expecta-
tion value of local observables up to precision O(ε) at

Õ
[(
h−1

(
ε

2(e2.5v−1)

))D
log(ε−1))

]
points. Then we can

estimate each parameter up to an error of

O

ε(h−1

(
ε

2(e2.5v − 1)

)D
log(ε−1)

)2
 , (13)

through, the same procedure as in the local case. Note
that the error in Eq. (13) only tends to 0 as ε → 0 if

h−1
(

ε
2(e2.5v−1)

)D
log(ε−1) = o(ε−1), holds, i.e. the func-

tion h must decay fast enough. In Sec. G of the sup-
plemental material, we discuss examples of systems with

algebraically decaying interactions for which this is satis-
fied. For instance, for potentials that decay like r−α with

α > 5D − 1 we obtain that h−1(ε) = O(ε−
1

α−3D ), holds.
We summarize the resulting resources in Tab. VI in the
supplemental material.

But the message of bounds like (13) is that it is still
possible to obtain bounds on the error independent of the
system’s size beyond short-range systems. However, this
comes at the expense of requiring higher precision and
sampling from more points.

Another important observation is that the assumption
that we know the structure of the interactions exactly is
not required. Indeed, our method is robust to Hamilto-
nian perturbations of the model as long as the resulting
evolution still satisfies a LR bound. For instance, suppose
that there actually is a non-negligible interaction between
qubits i and j that is not accounted by our model. As
long as the resulting time evolution still satisfies a LR
bound, our results still hold. As the linear equation to
isolate any parameter is independent of that parameter,
we can still apply our techniques in this setting.

C. Parallelizing the measurements

So far we have only discussed how to obtain the es-
timate of one parameter of the state from experimental
data in an efficient manner. However, it is possible to
parallelize the measurement and ensure that we can ob-
tain experimental data to estimate all parameters simul-
taneously.

To that end, we resort to a classical shadow process
tomography method. Although some papers in the lit-
erature already discussed classical shadows for process
tomography [39, 40], their proofs unfortunately contain
a shortcoming. These previous approaches where based
on applying the classical shadows protocol to the Choi
state of the underlying evolution and importing existing
classical shadow tomography results for states [41]. Un-
fortunately, this proof method produces a prefactor in
the sample complexity that is exponential in the system
size and was missed in previous works. Fortunately, we
give an alternative proof in Sec. H for process shadow
tomography that does not require the Choi state and by-
passes this issue. In addition, our result also improves
the sample complexity of previous results.

More precisely, we show that given a quantum channel
Φ, Pauli strings P a1 , . . . , P

a
K1

that differ from the identity

on at most ωa sites and Pauli strings P b1 , . . . P
b
K2

that
differ from the identity on at most ωb sites, it is possible
to obtain estimates êm,l of 2−n tr

[
P amΦ(P bl )

]
satisfying

|2−n tr
[
P amΦ(P bl )

]
− êm,l| ≤ ε

for all m, l with probabillity at least 1− δ from

O(3ωa+ωbε−2 log(K1K2δ
−1)) (14)
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samples. More precisely, the protocol of shadow process
tomography requires preparing Eq. (14) many different
random initial product Pauli eigenstates and measuring
them in random Pauli bases. This makes it feasible to
implement it in the near-term. We discuss it in more
detail in Sec. H of the supplemental material, as this
protocol may be of interest beyond the problem at hand.

The shadow process tomography protocol is ideally
suited for our Hamiltonian learning protocol. Indeed,
note that to learn k-body interactions, we only required
the preparation of initial states ρl that differ from the
maximally mixed state on k qubits and measure Pauli
strings Pm supported on at most k qubits. Further-
more, for a system of n qubits in total, there are at most
16k
(
n
k

)
≤ 16knk such states or Pauli strings. We conclude

that we can estimate all required expectation values for
a given time step using

O(9kε−2k log(nδ−1))

samples. As our protocol requires estimating expecta-
tion values at a total of polylog(ε−1) time steps, we can

gather the data required to recover all the O(n) parame-
ters of the evolution from O(ε−2polylog(n, ε−1)) samples
through the shadow process tomography protocol when-
ever k = O(1).
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Appendix A: Selecting States and Observables to Isolate Parameters

Any Hamiltonian can be written as

H =
∑
m1

∑
α1

a(m1)
α1

σ(m1)
α1

+
∑
m1,m2

∑
α1α2

a(m1,m2)
α1α2

σ(m1)
α1

σ(n)
α2

+ . . . (A1)

≡
∑
m1

∑
α1

a(m1)
α1
H(m1)
α1

+
∑
m1,m2

∑
α1α2

a(m1,m2)
α1α2

H(m1,m2)
α1α2

+ . . . ,

where Roman indices identify the subspace on which the operator acts, and Greek indices identify the Pauli operator,
e.g. α = x. No assumption about the dimension or structure of the hermitian Hamiltonian is needed for this
expansion to be valid. For a Markovian noise environment, the evolution of a quantum system ρ0 is described by a
Master equation of the form

dρt
dt

∣∣∣
t=0

= −i[H, ρ0] +

n∑
m=1

3∑
µ,ν=1

D(m)
µ,ν (σ(m)

µ ρ0σ
(m)
ν

†
− 1

2
{σ(m)

ν

†
σ(m)
µ , ρ0}), (A2)

where H is the Hamiltonian describing the evolution of the system, L
(m)
µ,ν are the elements of the Lindblad matrix,

expressed in an operator basis consisting of the different combinations of single-qubit Pauli matrices {σ}. Multiplying
it from the right hand side on an observable O and taking the trace, we can write

d

dt
tr [ρtO] |t=0 = −i

∑
m1

∑
α1

a(m1)
α1

tr
[
[H(m1)

α1
, ρ0]O

]
− i

∑
m1m2

∑
α1α2

a(m1m2)
α1α2

tr
[
[H(m1m2)

α1α2
, ρ0]O

]
− . . .

. . .−i
∑

m1...mk

∑
α1...αk

a(m1...mk)
α1...αk

tr
[
[H(m1...mk)

α1...αk
, ρ0]O

]
. . . (A3)

+
∑
m

∑
µ,ν

D(m)
µν tr

[
(σ(m)
µ ρ0σ

(m)
ν

†
− 1

2
{σ(m)

ν

†
σ(m)
µ , ρ0})O

]
.

Let us introduce the notation

B(m1,...,mk)
α1,...,αk

(ρ0, O) ≡ −i tr
[
[H(m1...mk)

α1...αk
, ρ0]O

]
. (A4)

To isolate {a(m1)
α1 , a

(m1m2)
α1α2 , . . . } we observe the N qubit state with the following density matrix

ρ(i,j)
τi,τj = ρ(i)

τi ⊗ ρ
(j)
τj ⊗ ρN−2, τ = {1, 2, 3} (A5)
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where the i and j are the Pauli qubits, namely ρ
(i,j)
τi,j = (I + σ

(i,j)
τi,j )/2, and ρN−2 is the density matrix of all other

qubits, which we set to be maximally mixed. Using σασβ = δαβI + iεαβγσγ , we can find the following relations

B(i)
α1

(ρ(i,j)
τi,τj , O) =

1

2

(
εα1τiγ

(
tr
[
(σ(i)
γ ⊗ I)O

]
+ tr

[
(σ(i)
γ ⊗ σ(j)

τj )O
]))

, (A6)

B(j)
α1

(ρ(i,j)
τi,τj , O) =

1

2

(
εα1τjζ

(
tr
[
(I ⊗ σ(j)

ζ )O
]

+ tr
[
(σ(i)
τi ⊗ σ

(j)
ζ )O

]))
, (A7)

B(ij)
α1α2

(ρ(i,j)
τi,τj , O) =

1

2

(
εα1τiγ

(
δα2τj tr

[
(σ(i)
γ ⊗ I)O

]
+ tr

[
(σ(i)
γ ⊗ σ(j)

α2
)O
])

(A8)

+ εα2τjη

(
δα1τi tr

[
(I ⊗ σ(j)

η )O
]

+ tr
[
(σ(i)
α1
⊗ σ(j)

η )O
]))

,

where O is acting on (i, j) qubits. Selecting O = σ
(i)
ξi
⊗ σ(j)

ξj
, we can rewrite the latter matrix element as follows

B(i)
α1

(ρ(i,j)
τi,τj , σ

(i)
ξi
⊗ σ(j)

ξj
) = 2εα1τiγδξiγδξjτj =


2εα1τiγδητj if ξi = γ, ξj = η,

2εα1τiγ if ξi = γ, ξj = η, η = τj ,

0 else

, (A9)

B(j)
α1

(ρ(i,j)
τi,τj , σ

(i)
ξi
⊗ σ(j)

ξj
) = 2εα1τjζδξjζδξiτi =


2εα1τjζδκτi if ξj = ζ, ξi = κ,

2εα1τjζ if ξj = ζ, ξi = κ, κ = τi,

0 else

,

B(ij)
α1α2

(ρ(i,j)
τi,τj , σ

(i)
ξi
⊗ σ(j)

ξj
) = 2

(
εα1τiγδξiγδξjα2

+ εα2τjηδξiα1
δξjη

)
=


2
(
εα1τiγδηα2 + εα2τjηδγα1

)
if ξi = γ, ξj = η,

2εα1τiγδτjα2
if ξi = γ, ξj = η, η = τj ,

0 else

,

where η, γ ∈ {x, y, z}. Selecting other observable O = σ
(i)
ξi

, we can rewrite (A6)-(A8) differently as

B(i)
α1

(ρ(i,j)
τi,τj , σ

(i)
ξi

) = εα1τiγδξiγ =

{
εα1τiγ if ξi = γ,

0 else
, B(j)

α1
(ρ(i,j)
τi,τj , σ

(i)
ξi

) = 0, (A10)

B(ij)
α1α2

(ρ(i,j)
τi,τj , σ

(i)
ξi

) = 2εα1τiγδα2τjδξiγ =

{
2εα1τiγδα2τj if ξi = γ,

0 else
.

Next, selecting O = σ
(j)
ξj

, we can rewrite (A6)-(A8) as

B(i)
α1

(ρ(i,j)
τi,τj , O) = 0, B(j)

α1
(ρ(i,j)
τi,τj , σ

(i)
ξi

) = εα1τjζδξjζ =

{
εα1τjζ if ξj = ζ,

0 else
, (A11)

B(ij)
α1α2

(ρ(i,j)
τi,τj , σ

(j)
ξj

) = 2εα2τjηδα1τiδξjη =

{
2εα2τjηδα1τi if ξj = η,

0 else
.

For k ≥ 2 we can write the general matrix element:

B(m1,...,mk)
α1,...,αk

(ρ(i,j)
τi,τj , O) =

1

2

(
εαiτiγ

(
tr
[
(σ(1)
α1
⊗ · · · ⊗ σ(i)

γ ⊗ · · · ⊗ σ(j)
αj ⊗ · · · ⊗ σ

(k)
αk

)O
]

(A12)

+ δαjτj tr
[
(σ(1)
α1
⊗ · · · ⊗ σ(i)

γ ⊗ · · · ⊗ I(j) ⊗ · · · ⊗ σ(k)
αk

)O
] )

+ εαjτjη

(
tr
[
(σ(1)
α1
⊗ · · · ⊗ σ(i)

αi ⊗ · · · ⊗ σ
(j)
η ⊗ · · · ⊗ σ(k)

αk
)O
]

+ δαiτi tr
[
(σ(1)
α1
⊗ · · · ⊗ I(i) ⊗ · · · ⊗ σ(j)

η ⊗ · · · ⊗ σ(k)
αk

)O
] ))

,
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where O is acting on (1, . . . , k) qubits. Let O = σ
(1)
ξ1
⊗ · · · ⊗ σ(k)

ξk
, holds. Then we can rewrite (A12) as follows

B(1,...,k)
α1,...,αk

(ρ(i,j)
τi,τj , σ

(1)
ξ1
⊗ · · · ⊗ σ(k)

ξk
) ≡ −iT r

(
[σ(1)
α1
⊗ · · · ⊗ σ(k)

αk
, ρ(i,j)
τi,τj ](σ

(1)
ξ1
⊗ · · · ⊗ σ(k)

ξk
)
)

= 2k−1(εαiτiγδα1ξ1 . . . δγξi . . . δαjξj . . . δαkξk + εαjτjηδα1ξ1 . . . δαiξi . . . δηξj . . . δαkξk) (A13)

=

{
2k−1(εαiτiγδηαj + εαjτjηδγαi) if ξi = γ, ξj = η, ξ1,...,k = α1,...,k,

0 else
.

From this result, for k = 3 we get

B(i,j,l)
αiαjαl

(ρ(i,j)
τi,τj , σ

(i)
ξi
⊗ σ(j)

ξj
⊗ σ(l)

ξl
) = 2(εαiτiγδγ,ξiδαjξj + εαjτjηδαiξiδηξj )δαlξl . (A14)

To isolate {D(m)
µν } we recall the assumption that ρN−2 is the density matrix of the maximally mixed state. Then

the Lindblad part of the equation (A3) for an observable O = σ
(i)
ξi
⊗ σ(j)

ξj
is

Dkµν(ρ(i,j)
τi,τj , σ

(i)
ξi
⊗ σ(j)

ξj
) ≡ D(k)

µν tr

[((
σ(k)
µ ρ(i,j)

τi,τjσ
(k)
ν −

1

2
{σ(k)

ν σ(k)
µ , ρ(i,j)

τi,τj}
))

(σ
(i)
ξi
⊗ σ(j)

ξj
)

]
(A15)

=


D

(i)
µν(2iεµνγδγξi + 2δντiδµξi − 3

2δµνδξiτi)δτjξj if k = i

D
(j)
µν (2iεµνγδγξj + 2δντjδµξj − 3

2δµνδξjτj )δτiξi if k = j

0 else

.

Let us substitute the conditions (A9) in (A15). We get the following results:

Diµν(ρ(i,j)
τi,τj , σ

(i)
ξi
⊗ σ(j)

ξj
) = D(i)

µν(2iεµνγ + 2δντiδµγ −
3

2
δµνδγτi)δτjη if ξi = γ, ξj = η, (A16)

and

Djµν(ρ(i,j)
τi,τj , σ

(i)
ξi
⊗ σ(j)

ξj
) = D(j)

µν (2iεµνγδγη + 2δντjδµη −
3

2
δµνδητj )δτiγ if ξi = γ, ξj = η. (A17)

However, for an observable O = σ
(i)
ξi

the Lindblad part of the equation (A3) is the following

Dkµν(ρ(i,j)
τi,τj , σ

(i)
ξi

) ≡ D(k)
µν tr

[((
σ(k)
µ ρ(i,j)

τi,τjσ
(k)
ν −

1

2
{σ(k)

ν σ(k)
µ , ρ(i,j)

τi,τj}
))

(σ
(i)
ξi

)

]
(A18)

=


D

(i)
µν(2iεµνγδγξi + δντiδµξi − 3

2δµνδξiτi + δµξiδτiν) if k = i

0 if k = j

0 else

.

Substituting the conditions (A10) in (A18), we get

Diµν(ρ(i,j)
τi,τj , σ

(i)
ξi

) = D(i)
µν(2iεµνγ + 2δντiδµγ −

3

2
δµνδγτi), if ξi = γ. (A19)

Next, for an observable O = σ
(i)
ξi
⊗ σ(j)

ξj
⊗ σ(l)

ξl
we can write

Dkµν(ρ(i,j)
τi,τj , σ

(i)
ξi
⊗ σ(j)

ξj
⊗ σ(l)

ξl
) ≡ D(k)

µν tr

[((
σ(k)
µ ρ(i,j)

τi,τjσ
(k)
ν −

1

2
{σ(k)

ν σ(k)
µ , ρ(i,j)

τi,τj}
))

(σ
(i)
ξi
⊗ σ(j)

ξj
⊗ σ(l)

ξl
)

]
=

{
2iD

(l)
µνεµνγδγξlδτiξiδτjξj if k = l

0 else.
. (A20)

Then, according to the results of the previous subsection, we get

Dlµν(ρ(i,j)
τi,τj , σ

(i)
ξi
⊗ σ(j)

ξj
⊗ σ(l)

ξl
) = 2iD(l)

µνεµνγδγαlδτiγδτjη if ξi = γ, ξj = η, ξl = αl. (A21)

Finally, for an observable O = σ
(1)
ξ1
⊗ . . . σ(i)

ξi
· · · ⊗ σ(j)

ξj
· · · ⊗ σ(k)

ξk
, k > 3, the Lindblad part of the equation (A3) is the

following

D(m)
µν tr

[((
σ(m)
µ ρ(i,j)

τi,τjσ
(m)
ν − 1

2
{σ(m)

ν σ(m)
µ , ρ(i,j)

τi,τj}
))

(σ
(1)
ξ1
⊗ · · · ⊗ σ(i)

ξi
· · · ⊗ σ(j)

ξj
· · · ⊗ σ(k)

ξk
)

]
= 0. (A22)
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1. Final Results

After we selected the different observable operators and defined the density matrix ρ0 = ρ
(i)
τi ⊗ρ

(j)
τj ⊗ I2n−2

22n−2 , where the

i and j qubits are in the Pauli states, we are ready to isolate the desired coefficients. For an observable O = σ
(i)
γ ⊗σ(j)

η

we can write the equation (A3) as follows

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 = −2

∑
α1

a(i)
α1
εα1τiγδητj − 2

∑
α1

a(j)
α1
εα1τjηδγτi (A23)

− 2
∑
α1,α2

a(ij)
α1α2

(
εα1τiγδηα2 + εα2τjηδγα1

)
+
∑
µ,ν

(
D(i)
µν(2iεµνγ + 2δντiδµγ −

3

2
δµνδγτi)δτjη

+D(j)
µν (2iεµνγδγη + 2δντjδµη −

3

2
δµνδητj )δτiγ

)
.

Selecting τj 6= η, τi 6= γ, we can isolate the coefficients of the type a
(ij)
α1α2 in (A23), namely

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 = −2

∑
α1,α2

a(ij)
α1α2

(
εα1τiγδηα2

+ εα2τjηδγα1

)
. (A24)

Let us call ρtτiτj the density matrix evaluated by the Hamiltonian evolution from ρ0. From (A24) we can find a
(ij)
α1α2 .

To this end, we select γ = y, η = y and four pairs τi, τj ∈ {z, x; z, z;x, x;x, z} to get the system of equations

d

dt
tr
[
ρtzx(σ(i)

y ⊗ σ(j)
y )
]
|t=0 = 2(a(ij)

xy − a(ij)
yz ),

d

dt
tr
[
ρtzz(σ

(i)
y ⊗ σ(j)

y )
]
|t=0 = 2(a(ij)

xy + a(ij)
yx ), (A25)

d

dt
tr
[
ρtxx(σ(i)

y ⊗ σ(j)
y )
]
|t=0 = −2(a(ij)

yz + a(ij)
zy ),

d

dt
tr
[
ρtxz(σ

(i)
y ⊗ σ(j)

y )
]
|t=0 = −2(a(ij)

yx + a(ij)
zy ).

Since a
(ij)
yz = a

(ij)
zy and a

(ij)
xy = a

(ij)
yx , we can write

a(ij)
xy =

1

4

d

dt
tr
[
ρtzz(σ

(i)
y ⊗ σ(j)

y )
]
|t=0, a(ij)

yz = −1

4

d

dt
tr
[
ρtxx(σ(i)

y ⊗ σ(j)
y )
]
|t=0. (A26)

Selecting γ = x, η = y and four pairs τi, τj ∈ {y, z; y, x; z, z; z, x} to get the system of equations

d

dt
tr
[
ρtyz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 = 2(a(ij)

xx + a(ij)
zy ),

d

dt
tr
[
ρtyx(σ(i)

x ⊗ σ(j)
y )
]
|t=0 = 2(a(ij)

zy − a(ij)
xz ), (A27)

d

dt
tr
[
ρtzz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 = 2(a(ij)

xx − a(ij)
yy ),

d

dt
tr
[
ρtzx(σ(i)

x ⊗ σ(j)
y )
]
|t=0 = −2(a(ij)

yy + a(ij)
xz ).

Hence

a(ij)
xx =

1

2

d

dt
tr
[
ρtyz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 +

1

4

d

dt
tr
[
ρtxx(σ(i)

y ⊗ σ(j)
y )
]
|t=0, (A28)

a(ij)
xz = −1

2

d

dt
tr
[
ρtyx(σ(i)

x ⊗ σ(j)
y )
]
|t=0 −

1

4

d

dt
tr
[
ρtxx(σ(i)

y ⊗ σ(j)
y )
]
|t=0,

a(ij)
yy = −1

2

d

dt
tr
[
ρtzz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 +

1

2

d

dt
tr
[
ρtyz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0

+
1

4

d

dt
tr
[
ρtxx(σ(i)

y ⊗ σ(j)
y )
]
|t=0.

Selecting γ = x, η = z and four pairs τi, τj ∈ {y, y; z, x; y, x; z, y}, we get

d

dt
tr
[
ρtyy(σ(i)

x ⊗ σ(j)
z )
]
|t=0 = −2(a(ij)

xx − a(ij)
zz ),

d

dt
tr
[
ρtzx(σ(i)

x ⊗ σ(j)
z )
]
|t=0 = 2(a(ij)

xy − a(ij)
yz ), (A29)

d

dt
tr
[
ρtyx(σ(i)

x ⊗ σ(j)
z )
]
|t=0 = −2(a(ij)

zz − a(ij)
xy ),

d

dt
tr
[
ρtzy(σ(i)

x ⊗ σ(j)
z )
]
|t=0 = −2(a(ij)

xx + a(ij)
yz ).

Hence the last coefficient is

a(ij)
zz = −1

2

d

dt
tr
[
ρtyx(σ(i)

x ⊗ σ(j)
z )
]
|t=0 +

1

4

d

dt
tr
[
ρtzz(σ

(i)
y ⊗ σ(j)

y )
]
|t=0. (A30)
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To find the other coefficients we select τj = η, τi 6= γ and rerewrite (A23) as

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 = −2

∑
α1

a(i)
α1
εα1τiγ − 2

∑
α1,α2

a(ij)
α1α2

εα1τiγδηα2 (A31)

+ 2
∑

µ=x,y,z

D(i)
µµδµτiδµγ + 2

µ6=ν∑
µ,ν=x,y,z

D(i)
µν(iεµνγ + δντiδµγ).

Next, for τj 6= η, τi = γ, we can rewrite (A23) as

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 = −2

∑
α1

a(j)
α1
εα1τjη − 2

∑
α1,α2

a(ij)
α1α2

εα2τjηδγα1

+ 2
∑

µ=x,y,z

D(i)
µµδµτjδµη + 2

µ6=ν∑
µ,ν=x,y,z

D(i)
µν(iεµνγδγη + δντjδµη). (A32)

Selecting an observable O = σ
(i)
γ , we can write

d

dt
tr
[
ρtσ

(i)
γ

]
|t=0 = −

∑
α1

a(i)
α1
εα1τiγ − 2

∑
α1,α2

a(ij)
α1α2

εα1τiγδα2τj (A33)

+ 2
∑

µ=x,y,z

D(i)
µµ(δµτiδµγ −

3

4
δγτi) + 2

µ6=ν∑
µ,ν=x,y,z

D(i)
µν(iεµνγ + δντiδµγ).

For the other observable O = σ
(j)
η , the result is the following

d

dt
tr
[
ρtσ

(j)
η )
]
|t=0 = −

∑
α1

a(j)
α1
εα1τjη − 2

∑
α1,α2

a(ij)
α1α2

εα2τjηδα1τi

+ 2
∑

µ=x,y,z

D(j)
µµ(δµτjδµη −

3

4
δητj ) + 2

µ6=ν∑
µ,ν=x,y,z

D(j)
µν (iεµνγδγη + δντjδµη). (A34)

Substituting (A33) in (A31), we can write

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 −

d

dt
tr
[
ρtσ

(i)
γ

]
|t=0 = −

∑
α1

a(i)
α1
εα1τiγ (A35)

+ 2
∑
α1,α2

a(ij)
α1α2

εα1τiγ(δτjα2
− δηα2

) +
3

2

∑
µ=x,y,z

D(i)
µµδγτi .

Since in (A31) the conditions τj = η, τi 6= γ, hold, we can rewrite the latter equation as

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 −

d

dt
tr
[
ρtσ

(i)
γ

]
|t=0 = −

∑
α1

a(i)
α1
εα1τiγ . (A36)

Solving the latter equation, we find a
(i)
α1 . To this end, we select γ = y, τi = x, τj = η ∈ {x, y, z} and get

a(i)
x = − d

dt
tr
[
ρtxη(σ(i)

y ⊗ σ(j)
η )
]
|t=0 +

d

dt
tr
[
ρtxησ

(i)
y

]
|t=0. (A37)

Next, for γ = x, τi = z, τj = η ∈ {x, y, z} we get the solution of (A36), namely

a(i)
y = − d

dt
tr
[
ρtzη(σ(i)

x ⊗ σ(j)
η )
]
|t=0 +

d

dt
tr
[
ρtzησ

(i)
x

]
|t=0. (A38)

Finally, for γ = x, τi = y, τj = η ∈ {x, y, z} the solution is

a(i)
z =

d

dt
tr
[
ρtyη(σ(i)

x ⊗ σ(j)
η )
]
|t=0 −

d

dt
tr
[
ρtyησ

(i)
x

]
|t=0. (A39)
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Substituting (A34) in (A32), we can write

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 −

d

dt
tr
[
ρtσ

(j)
η )
]
|t=0 = −

∑
α1

a(j)
α1
εα1τjη

+ 2
∑
α1,α2

a(ij)
α1α2

εα2τjη(δτiα1
− δγα1

) +
3

2

∑
µ=x,y,z

D(i)
µµδητj . (A40)

Since τj 6= η, τi = γ, hold, we can rewrite it as follows

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 −

d

dt
tr
[
ρtσ

(j)
η )
]
|t=0 = −

∑
α1

a(j)
α1
εα1τjη. (A41)

Solving the latter equation, we find a
(j)
α1 . Selecting η = y, τj = z and τi = γ ∈ {x, y, z}, we get

a(j)
x =

d

dt
tr
[
ρtγz(σ

(i)
γ ⊗ σ(j)

y )
]
|t=0 −

d

dt
tr
[
ρtγzσ

(j)
y )
]
|t=0. (A42)

Selecting η = x, τj = z and τi = γ ∈ {x, y, z}, we get

a(j)
y = − d

dt
tr
[
ρtγz(σ

(i)
γ ⊗ σ(j)

x )
]
|t=0 +

d

dt
tr
[
ρtγzσ

(j)
x )
]
|t=0. (A43)

Finally, selecting η = y, τj = x and τi = γ ∈ {x, y, z}, we get the last coefficient of this type

a(j)
z = − d

dt
tr
[
ρtγx(σ(i)

γ ⊗ σ(j)
y )
]
|t=0 +

d

dt
tr
[
ρtγxσ

(j)
y )
]
|t=0. (A44)

All the coefficients with the corresponding observables and initial states are given in Table I.

a
(i)
α {O, ρ

(i,j)
τi,τj} Equation

a
(i)
x {σ(i)

y ⊗ σ(j)
η , ρ

(i,j)
x,η }; {σ(i)

y , ρ
(i,j)
x,η )}, ∀η ∈ {x, y, z} (A37)

a
(i)
y {σ(i)

x ⊗ σ(j)
η , ρ

(i,j)
z,η }; {σ(i)

x , ρ
(i,j)
z,η }, ∀η ∈ {x, y, z} (A38)

a
(i)
z {σ(i)

x ⊗ σ(j)
η , ρ

(i,j)
y,η }; {σ(i)

x , ρ
(i,j)
y,η }, ∀η ∈ {x, y, z} (A39)

a
(j)
x {σ(i)

γ ⊗ σ(j)
y , ρ

(i,j)
γ,z }; {σ(i)

y , ρ
(i,j)
γ,z }, ∀γ ∈ {x, y, z} (A42)

a
(j)
y {σ(i)

γ ⊗ σ(j)
x , ρ

(i,j)
γ,z }; {σ(i)

x , ρ
(i,j)
γ,z }, ∀γ ∈ {x, y, z} (A43)

a
(j)
z {σ(i)

γ ⊗ σ(j)
y , ρ

(i,j)
γ,x }; {σ(i)

y , ρ
(i,j)
γ,x }, ∀γ ∈ {x, y, z} (A44)

a
(ij)
xx {σ(i)

x ⊗ σ(j)
y , ρ

(i,j)
y,z }; {σ(i)

y ⊗ σ(j)
y , ρ

(i,j)
x,x } (A28)

a
(ij)
yy {σ(i)

x ⊗ σ(j)
y , ρ

(i,j)
z,z }; {σ(i)

x ⊗ σ(j)
y , ρ

(i,j)
y,z }; {σ(i)

y ⊗ σ(j)
y , ρ

(i,j)
x,x } (A28)

a
(ij)
zz {σ(i)

x ⊗ σ(j)
z , ρ

(i,j)
y,x }; {σ(i)

y ⊗ σ(j)
y , ρ

(i,j)
z,z } (A30)

a
(ij)
xy {σ(i)

y ⊗ σ(j)
y , ρ

(i,j)
z,z } (A26)

a
(ij)
yz {σ(i)

y ⊗ σ(j)
y , ρ

(i,j)
x,x } (A26)

a
(ij)
xz {σ(i)

x ⊗ σ(j)
y , ρ

(i,j)
y,x }; {σ(i)

y ⊗ σ(j)
y , ρ

(i,j)
x,x } (A28)

TABLE I. The first column represents the type of the estimated Hamiltonian parameters a
(i)
αi , a

(ij)
αi,αj , αi, αj ∈ {x, y, z}. In the

third column the number of equation for every parameter is provided, depending from the pairs of the observable O and the

initial state ρ
(i,j)
τi,τj = ρ

(i)
τi ⊗ ρ

(j)
τj ⊗ ρN−2, τi, τj = {x, y, z}, given in the second column. For example, to estimate a

(i)
x we use

(A37) with two pairs of observables and states: {O, ρ(i,j)τi,τj} = {(σ(i)
y ⊗ σ(j)

η , ρ
(i,j)
x,η ); (σ

(i)
y , ρ

(i,j)
x,η )}.

For an observable O = σ
(i)
γ ⊗ σ(j)

η ⊗ σ(l)
αl we can write the equation

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η ⊗ σ(l)
αl

)
]
|t=0 = −4

∑
αiαjαl

a(ijl)
αiαjαl

(εαiτiγδηαj + εαjτjηδγαi) (A45)

+ 2i
∑
µ,ν

D(l)
µνεµνγδγαlδτiγδτjη.

Selecting τj = η, τi 6= γ, we can rewrite (A45) as

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η ⊗ σ(l)
αl

)
]
|t=0 = −4

∑
αiαjαl

a(ijl)
αiαjαl

εαiτiγδηαj . (A46)
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From this equation we can find a
(ijl)
αiαjαl . For an observable O = σ

(1)
α1 ⊗ . . . σ

(i)
γ · · · ⊗ σ(j)

η · · · ⊗ σ(k)
αk , k > 3 we can write

d

dt
tr
[
ρt(σ

(1)
α1
⊗ . . . σ(i)

γ · · · ⊗ σ(j)
η · · · ⊗ σ(k)

αk
)
]
|t=0 = −2k−1

∑
α1,...,αk

a(1...k)
α1...αk

(εαiτiγδηαj + εαjτjηδγαi). (A47)

Selecting τj = η, τi 6= γ, we can rewrite (A47) as

d

dt
tr
[
ρt(σ

(1)
α1
⊗ . . . σ(i)

γ · · · ⊗ σ(j)
η · · · ⊗ σ(k)

αk
)
]
|t=0 = −2k−1

∑
α1,...,αk

a(1...k)
α1...αk

εαiτiγδηαj . (A48)

Solving this equation, we find a
(1...k)
α1...αk .

From (A15) we can find three Lindbladian coefficients. Selecting τi = y, τj = η, γ = x, we can find

D(i)
xy =

1

2

d

dt
tr
[
ρtyη(σ(i)

x ⊗ σ(j)
η )
]
|t=0 − a(i)

z − a(ij)
zη . (A49)

Next, for τi = z, τj = η, γ = x, we deduce

D(i)
xz =

1

2

d

dt
tr
[
ρtzη(σ(i)

x ⊗ σ(j)
η )
]
|t=0 + a(i)

y + a(ij)
yη . (A50)

Finally, for τi = z, τj = η, γ = y, the coefficient is

D(i)
yz =

1

2

d

dt
tr
[
ρtzη(σ(i)

y ⊗ σ(j)
η )
]
|t=0 − a(i)

x − a(ij)
xη . (A51)

From (A23) we can find three more coefficients. Selecting τj = y, τi = z, γ = z, η = x, we get

D(j)
xy =

1

2

d

dt
tr
[
ρtzy(σ(i)

z ⊗ σ(j)
x )
]
|t=0 − a(j)

z − a(ij)
zz . (A52)

For τj = y, τi = y, γ = y, η = z, we can deduce

D(j)
zy =

1

2

d

dt
tr
[
ρtyy(σ(i)

y ⊗ σ(j)
z )
]
|t=0 + a(j)

x + a(ij)
yx . (A53)

Selecting τj = z, τi = y, γ = y, η = x, we get

D(j)
xz =

1

2

d

dt
tr
[
ρtyz(σ

(i)
y ⊗ σ(j)

x )
]
|t=0 + a(j)

y + a(ij)
yy . (A54)

From (A33) we find the following coefficients:

D(i)
xx =

1

10

(
−3

d

dt
tr
[
ρtxτjσ

(i)
x

]
|t=0 − 3

d

dt
tr
[
ρtyτjσ

(i)
y

]
|t=0 + 2

d

dt
tr
[
ρtzτjσ

(i)
z

]
|t=0

)
, (A55)

D(i)
yy =

1

10

(
−3

d

dt
tr
[
ρtxτjσ

(i)
x

]
|t=0 + 2

d

dt
tr
[
ρtyτjσ

(i)
y

]
|t=0 − 3

d

dt
tr
[
ρtzτjσ

(i)
z

]
|t=0

)
,

D(i)
zz =

1

10

(
2
d

dt
tr
[
ρtxτjσ

(i)
x

]
|t=0 − 3

d

dt
tr
[
ρtyτjσ

(i)
y

]
|t=0 − 3

d

dt
tr
[
ρtzτjσ

(i)
z

]
|t=0

)
.

From (A34) the following coefficients can be found

D(j)
xx =

1

10

(
−3

d

dt
tr
[
ρtγ1xσ

(i)
x

]
|t=0 − 3

d

dt
tr
[
ρtγ2yσ

(i)
y

]
|t=0 + 2

d

dt
tr
[
ρtγ3zσ

(i)
z

]
|t=0

)
, (A56)

D(j)
yy =

1

10

(
−3

d

dt
tr
[
ρtγ1xσ

(i)
x

]
|t=0 + 2

d

dt
tr
[
ρtγ2yσ

(i)
y

]
|t=0 − 3

d

dt
tr
[
ρtγ3zσ

(i)
z

]
|t=0

)
,

D(j)
zz =

1

10

(
2
d

dt
tr
[
ρtγ1xσ

(i)
x

]
|t=0 − 3

d

dt
tr
[
ρtγ2yσ

(i)
y

]
|t=0 − 3

d

dt
tr
[
ρtγ3zσ

(i)
z

]
|t=0

)
.

All the Lindbladian coefficients with the corresponding observables and initial states are given in Table II.
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D
(i)
µν {O, ρ

(i,j)
τi,τj} Equation

D
(i)
xx , D

(i)
yy , D

(i)
zz {σ(i)

x , ρ
(i,j)
x,τj1}; {σ

(i)
y , ρ

(i,j)
y,τj2}; {σ

(i)
z , ρ

(i,j)
z,τj3}, ∀τj1,2,3 ∈ {x, y, z} (A55)

D
(j)
xx , D

(j)
yy , D

(j)
zz {σ(i)

x , ρ
(i,j)
γ1,x}; {σ

(i)
y , ρ

(i,j)
γ2,y}; {σ

(i)
z , ρ

(i,j)
γ3,z}, ∀γ1 ∈ {y, z}, ∀γ2 ∈ {x, z}, γ3 ∈ {x, y} (A56)

D
(i)
xy {σ(i)

x ⊗ σ(j)
η , ρ

(i,j)
y,η }, ∀η ∈ {x, y, z} (A49)

D
(i)
xz {σ(i)

x ⊗ σ(j)
η , ρ

(i,j)
z,η }, ∀η ∈ {x, y, z} (A50)

D
(i)
yz {σ(i)

y ⊗ σ(j)
η , ρ

(i,j)
z,η }, ∀η ∈ {x, y, z} (A51)

D
(j)
xy {σ(i)

z ⊗ σ(j)
x , ρ

(i,j)
z,y } (A52)

D
(j)
xz {σ(i)

y ⊗ σ(j)
x , ρ

(i,j)
y,z } (A54)

D
(j)
yz {σ(i)

y ⊗ σ(j)
z , ρ

(i,j)
y,y } (A53)

TABLE II. The first column represents the type of the estimated Lindbladian parameters D
(i)
µν , µ, ν ∈ {x, y, z}. In the third

column the number of equation for every parameter is provided, depending from the pairs of the observable O and the initial

state ρ
(i,j)
τi,τj = ρ

(i)
τi ⊗ ρ

(j)
τj ⊗ ρN−2, τi, τj = {x, y, z}, given in the second column. For example, to estimate D

(j)
yz we use (A53)

with one pair of observable and state: {O, ρ(i,j)τi,τj} = {σ(i)
y ⊗ σ(j)

z , ρ
(i,j)
y,y }.

Appendix B: Numerical simulations

For simulations of the Hamiltonian learning protocol, we employed direct numerical solution of the time-dependent
Schrodinger equation for the whole system of N = 16 qubits, whose time-dependent wavefunction |ψ(t)〉 is represented
as an array of 2N complex numbers, normalized to 1. The evolution includes both unitary component, governed by
the system’s Hamiltonian, and three non-unitary components: the first one, stemming from the quasi-static random
frequency shifts, leading to essentially non-Markovian dephasing of the qubits with the characteristic time T ∗2 , the
second component, described as a set of Lindblad superoperators corresponding to the phase damping channel,
leading to Markovian transverse decoherence of the qubits on the timescale T2, and the third component, also leading
to Markovian evolution of the qubit, and described as a set of Lindblad superoperators corresponding to the amplitude
damping channel, which leads to longitudinal relaxation of the qubit on the timescale T1. For precise meaning of the
terms “Markovian” and “non-Markovian”, see explanations below in subsection B 2.

1. Unitary evolution

The simulation of the unitary (Hamiltonian) evolution was performed using the 2nd order Suzuki-Trotter decom-
position of the evolution operator. The total Hamiltonian of the system in question can be written as

H =

N∑
j,k=1

∑
α=x,y

Jjkσ
α
j σ

α
k +

1

2

N∑
j=1

Ωjσ
z
j , (B1)

where the operators σαj for α = x, y, z denote the Pauli matrices σxj , σyj , and σzj , respectively, corresponding to the
j-th qubit, and for the problem considered in this paper the couplings Jjk are restricted to the nearest neighbor
qubits on a 2-D lattice. Note that the actual frequency Ωj of the j-th qubit in the Hamiltonian (B1) is different from
its nominal frequency ω̃m mentioned in the main text; the reasons for this difference are explained in subsection B 2
below.

The Hamiltonian (B1) is represented as a sum

H = HX +HY +HZ (B2)

HX =

N∑
j,k=1

Jjkσ
x
j σ

x
k , (B3)

HY =

N∑
j,k=1

Jjkσ
y
j σ

y
k , (B4)

HZ =
1

2

N∑
j=1

Ωjσ
z
j , (B5)
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and the corresponding Suzuki-Trotter decomposition of the evolution operator U(∆t) for the (small) timestep of
duration ∆t has the form

U(∆t) ≡ exp (−iH∆t) ≈ e−iHZ∆t/2 e−iHY ∆t/2 e−iHX∆t e−iHY ∆t/2 e−iHZ∆t/2, (B6)

ensuring the overall time discretization error of the order (∆t)2. The evolution operator over many time steps is a
product of elementary operators U(∆t).

Each term in the sum representing the Hamiltonian HX (and, similarly, HY and HZ) commutes with all other
terms, therefore

exp (−iHX∆t) =

N∏
j,k=1

exp (−iJjk∆t σxj σ
x
k) =

N∏
j,k=1

[
cos (Jjk∆t)− iσxj σxk sin (Jjk∆t)

]
. (B7)

Each term in this direct product acts on the wavefunction |ψ(t)〉 in a straightforward manner: the entries of the array
that represents the wavefunction turn into linear combinations of themselves. Similar direct-product representation
holds for HY and HZ as well, such that the action of the total evolution operator U(∆t) is easy to compute, without
the need to calculate or store 2N × 2N matrices.

In order to represent the situation where the non-initialized part of the system is in the completely mixed state, but
avoid using the density matrix explicitly (which would imply dealing with 2N × 2N matrix instead of the single array
of the size 2N ), we represent the completely mixed state as a wavefunction with random entries [53, 54]. Specifically,
we sampled the real and the imaginary parts of each entry of the corresponding wavefunction independently from
Gaussian distribution with zero mean and unit variance, and then normalized the resulting wavefunction to one. In
this way, for instance, the situation where the first and the second qubit are both initialized in the state |0〉, while
the rest of the system is in completely mixed state, i.e. when the system’s density matrix is

ρ = |0〉〈0| ⊗ |0〉〈0| ⊗ 1

2N−2
1N−2, (B8)

where 1N−2 is an identity matrix of the size 2N−2 × 2N−2, is represented using the total wavefunction in the form

|ψ〉 = |0〉 ⊗ |0〉 ⊗ |ψ(r)
N−2〉, (B9)

where the random state |ψ(r)
N−2〉 of the remaining N−2 qubits is generated as described above. Such an approximation

provides high accuracy, of the order of exp (−N/2), due to the measure concentration phenomenon [55].
Further improvement in accuracy was achieved by averaging the values of the relevant observables over M = 189

independent realizations of the random wavefunction (as well as other random quantities, see below), which reduced

the error by an additional factor of the order ∼ 1/
√
M ≈ 0.07. The accuracy was also independently controlled by

estimating the variance in the calculated values of the observables, and ensuring that this variance remains much
smaller than the statistical error caused by the shot noise produced by sampling the relevant observables for each
qubit.

2. Non-unitary evolution

The first non-unitary component of the system’s evolution, dephasing of the j-th qubit on the timescale T ∗2,j , caused
by its random static frequency shift, is modeled by directly reproducing the underlying physical picture. Namely, we
assumed that the actual frequency Ωj of the j-th qubit, see Eq. B1, is a sum of two contributions: the nominal value
ω̃j , and a random shift βj that remains constant during the system’s evolution. The values of βj were independently
sampled from Gaussian distributions with zero mean and variance b2j , which can be different for different qubits. The
parameter bj determines the dephasing time T ∗2,j of the j-th qubit: if this qubit were uncoupled from the rest of the
system, then, after averaging over βj , its transverse (x- and y-) components would undergo Gaussian decay with time

dependence exp (−b2j t2/2), i.e. bj =
√

2/T ∗2,j .
As mentioned above in subsection B 1, the evolution of the system was repeated M = 189 times; each time we used

different realizations of the set of the random frequency shifts βj (as well as other random quantities, such as e.g.
different realizations of the random wavefunction, also see below). Within this approach, for each particular realization
of the parameters βj , the evolution of the system is unitary, and can be simulated using the system’s wavefunction
as described in subsection B 1 above, while the non-unitary decay occurs due to averaging of the relevant observables
over different realizations of the random parameters βj (along with other random quantities).
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Note that the dephasing caused by averaging over the static random frequency shifts, with its characteristic
Gaussian-like decay of the density matrix elements, cannot be described via Lindblad operators. It is an exam-
ple of non-Markovian evolution, in the sense that it cannot be described by a set of first-order differential equations
(with respect to time t), which would include only current values of the (averaged) elements of the system’s density
matrix ρ(t); in other words, the future values of the (averaged) density matrix elements, at times t + s (s > 0),
are not completely determined by their current values at the moment of time t. At the same time, the static noise
processes βj(t) representing the random frequency shifts are, of course, Markovian random processes, sastisfying the
Chapman-Kolmogorov equation.

The two other components of the non-unitary evolution, addressed below, are Markovian, and can be described
using the Lindblad operators. However, in order to avoid dealing with the density matrix, these components were
also modeled by employing the random processes and calculating the averages of the relevant observables.

The second non-unitary component of the evolution corresponds to the Markovian dephasing, and can be described
via the set of Lindblad superoperators corresponding to the phase damping channel. For an isolated qubit, this would
lead to exponential decay of the transverse components of the j-th qubit, having the form exp (−t/T2,j). This kind of
dephasing, being Markovian, can be described by a set of first-order differential equations, generalizing the well-known
Bloch-Redfield equations [56], which include only the current values of the elements of the system’s density matrix
ρ(t), such that the future values of the density matrix elements, at times t+ s (s > 0), are completely determined by
their current values at the moment of time t.

This decay was modeled by taking the z-rotation of the j-th qubit produced by Ωj (i.e., produced by the action of
the operator exp (−iHZ∆t) in Eq. B6), and adding to it another time-dependent rotation around the z-axis by the
angle γj(t). For each time step of duration ∆t, the values γj(t) were sampled randomly, indepedently of each other
and of their previous values, from Gaussian distribution with zero mean and variance 4g2

j τj∆t. This choice for the
quantity γ(t) can be visualized as a rotation induced by a time-dependent frequency shift δωj(t), which is represented
by an Ornstein-Uhlenbeck noise process with the correlation function 〈δωj(t) δωj(t+s)〉 = g2

j exp (−|s|/τj), in the limit
where the correlation time τj is much smaller than ∆t, while the magnitude gj is large (formally, τj → 0 and gj →∞),
but the combination g2

j τj = 1/T2,j remains finite. For an isolated qubit, the average evolution under the influence of
such Ornstein-Uhlenbeck noise δωj(t) is known [57] to produce exponential decay of the qubit’s transverse (x- and
y-) components with the decay time T2. Again, for each particular realization of the time-dependent random process
γj(t), the evolution of the system is unitary, and can be simulated using the system’s wavefunction as described in
subsection B 1 (provided, of course, that ∆t � T2,j , to ensure accuracy of the Suzuki-Trotter decomposition), while
the non-unitary decay occurs due to averaging over different realizations of the noise.

The third non-unitary component, describing exponential relaxation of the j-th qubit towards the state |0〉 on a
timescale T1,j , was simulated in a similar manner, by representing the non-unitary evolution via averaging over many
realizations of a random unitary evolution, employing the approach described in Ref. [58], with some modifications
improving the accuracy. Namely, at each time step, we calculated the probability pj for the j-th qubit to make
a transition (“quantum jump”) from the state |1〉 to the state |0〉; the corresponding value is pj = wj1 µ

2
j , where

µj =
√

1− exp (−∆t/T1,j), and wj1 is the total probability of the system to be in the subspace corresponding to
the j-th qubit in the state |1〉. This transition was implemented with the probability pj at each time step: the
part of the system’s wavefunction corresponding to the j-th qubit in the state |0〉 was replaced by its complement,
i.e. by the part corresponding to the j-th qubit in the state |1〉, multiplied by the factor µj , and the part of the
wavefunction corresponding to the j-th qubit in the state |1〉 was set to zero. Alternatively, with the probability
1− pj at each time step, the part of the wavefunction corresponding to the j-th qubit in the state |1〉 was multiplied
by the factor exp [−(1/2) ∆t/T1,j ], while its complement was left unchanged. These transformations were applied
to the wavefunction in succession, for all qubits (for all j = 1, . . . N), and the resulting modified wavefunction was
normalized back to 1. Since all these transformations commute with the action of the operator exp (−iHZ∆t) in
Eq. B6, they were applied at the end of each unitary time-step evolution, after application of the operator U(∆t)
given by Eq. B6, in parallel with the action of the operators exp (−iHZ∆t) or exp (−iHZ∆t/2).

Note that this implementation corresponds to the application to the wavefunction of the Krauss operators E0 or
E1 (see Ref. 59), describing the amplitude damping quantum channel, with the corresponding probabilities, where E1

corresponds to the event of the “quantum jump”, and E0 corresponds to the absence of it.

Appendix C: Numerical simulation of superconducting qubit platform

From the discussion in the main text we are simulating a 2D grid of qubits that interact only with the nearest
neighbours. The coupling between two neighbouring qubits through a coupler can be described by an Hamiltonian
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(3). In our notations it can be rewritten as

H =
∑
k=i,j

a(k)
z H(k)

z + a(i,j)
xx H(i,j)

xx + a(i,j)
yy H(i,j)

yy , (C1)

where we introduce the notations

a(i)
z =

1

2
ω̃(i), a(j)

z =
1

2
ω̃(j), a(i,j)

xx = a(i,j)
yy =

1

2

[gigj
∆

+ gij

]
, (C2)

H(i)
z = σ(i)

z , H(j)
z = σ(j)

z , H(i,j)
xx = σ(i)

x σ(j)
x , H(i,j)

yy = σ(i)
y σ(j)

y .

Thus, we define the 16 qubits 2D grid, where we generate ω1, ω2, ωc, g1, g2, g12 from Gaussian distribution with mean

and variance N (0, 1). The parameters a
(i)
z , a

(j)
z , a

(ij)
xx , a

(ij)
yy we estimate in our simulation and the rates of decay of T1,

T2 and T ?2 are given in the Table III. The observables and initial states, isolating the desired coefficients a
(i)
z , a

(j)
z , a

(i,j)
xx

(ij) a
(ij)
xx , a

(ij)
yy [kHz] (i) a

(i)
z [kHz] T1 [µs] T2 [µs] T ?2 [µs]

1, 2 1.28112 1 1.73807 58.5227 65.9752 151.515
2, 3 -0.716875 2 -0.816877 60.0269 65.1704 166.667
3, 4 -0.956949 3 -1.0602 59.2424 64.6375 163.934
4, 5 -0.819328 4 -0.913223 61.0255 65.7397 149.254
1, 6 -1.1682 5 -1.23118 59.0545 66.0886 147.059
2, 7 -0.213057 6 -0.654699 60.0915 66.1118 151.515
3, 8 -0.563789 7 -0.514756 59.8856 65.1432 153.846
4, 9 1.74022 8 2.0817 61.0389 64.8252 158.73
5, 10 1.68348 9 -0.568581 60.5375 66.2155 158.73
6, 7 -1.51535 10 -0.710498 61.5036 65.389 149.254
7, 8 -0.729672 11 1.86153 59.8949 65.825 147.059
8, 9 1.6622 12 -2.03725 60.3777 65.1203 153.846
9, 10 -0.314438 13 -1.31695 57.5781 65.6052 156.25
11, 12 -0.475787 14 -0.902159 59.1881 65.8892 158.73
6, 11 1.3663 15 -0.202118 60.0283 66.2967 144.928
7, 12 -2.03531 16 0.136975 58.9397 66.0541 149.254
12, 13 -1.22632
13, 8 -0.717182
13, 14 -0.546421
14, 9 1.90836
14, 15 -0.781306
11, 16 -0.358714

TABLE III. The first column represents the numbers of qubits whose coefficients a
(ij)
αi,αj , αi, αj ∈ {x, y, z} are not zero, given

in the second column. The fourth column contains a
(i)
αi , αi ∈ {x, y, z}, i = 1, . . . , 16. The rates of decay of T1, T2 and T ?2 ,

corresponding to i’s qubit are given in the fifth and six’s columns, respectively.

and a
(i,j)
yy , are given in Table IV. One can see, that we need three starting states, namely ρ01 = ρ

(i)
x ⊗ ρ(j)

x ⊗ I2n−2

22n−2 ,

ρ02 = ρ
(i)
y ⊗ ρ

(j)
z ⊗ I2n−2

22n−2 and ρ03 = ρ
(i)
z ⊗ ρ

(j)
z ⊗ I2n−2

22n−2 to isolate all four unknown coefficients. We measure the
expectation values of observables in different times. Next, the time traces of these expectation values are fitted, using
the polynomial interpolation method, and the derivatives estimation is preceded. Finally, using (A39), (A44), (A28)

and (A28), the estimates of the coefficients a
(i)
z , a

(j)
z , a

(i,j)
xx , a

(i,j)
yy for the pair of (i, j) are obtained. We repeat this

process for all pairs of interacting qubits to obtain all coefficients of the Hamiltonian of the 2D grid.
In the presence of the noise, the observables and initial states required to isolate the Lindbladian coefficients are

given in Table V. One can see, that we need three extra starting states in the presence of the Lindbladian noise,

namely ρ04 = ρ
(i)
z ⊗ ρ(j)

y ⊗ I2n−2

22n−2 , ρ05 = ρ
(i)
y ⊗ ρ(j)

y ⊗ I2n−2

22n−2 and ρ06 = ρ
(i)
z ⊗ ρ(j)

x ⊗ I2n−2

22n−2 to find L
(i)
µν , µ, ν ∈ {x, y, z}.

Appendix D: Approximating local time evolutions by polynomials

One of the main points behind our method is the fact that the time evolution of local observables at constant times
is well-approximated by polynomials. The purpose of this section is to make this assertion precise.
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a
(i)
αi {O, ρ

(i,j)
τi,τj} Equation

a
(i)
z {σ(i)

x ⊗ σ(j)
z , ρ

(i,j)
y,z }; {σ(i)

x , ρ
(i,j)
y,z } (A39)

a
(j)
z {σ(i)

x ⊗ σ(j)
y , ρ

(i,j)
x,x }; {σ(i)

y , ρ
(i,j)
x,x } (A44)

a
(ij)
xx {σ(i)

x ⊗ σ(j)
y , ρ

(i,j)
y,z }; {σ(i)

y ⊗ σ(j)
y , ρ

(i,j)
x,x } (A28)

a
(ij)
yy {σ(i)

x ⊗ σ(j)
y , ρ

(i,j)
z,z }; {σ(i)

x ⊗ σ(j)
y , ρ

(i,j)
y,z }; {σ(i)

y ⊗ σ(j)
y , ρ

(i,j)
x,x } (A28)

TABLE IV. In this table the minimal selection of the pairs {O, ρ
(i,j)
τi,τj} is presented for our specific example. The first

column represents the type of the estimated Hamiltonian (C1) parameters a
(i)
αi , a

(ij)
αi,αj , αi, αj ∈ {x, y, z}. In the third column

the number of equation for every parameter is provided, depending from the pairs of the observable O and the initial state

ρ
(i,j)
τi,τj = ρ

(i)
τi ⊗ ρ

(j)
τj ⊗ ρN−2, τi, τj = {x, y, z}, given in the second column. To estimate all four parameters we need only three

initial states: ρ
(i,j)
x,x , ρ

(i,j)
z,z and ρ

(i,j)
y,z .

D
(i)
µν {O, ρ

(i,j)
τi,τj} Equation

D
(i)
xx , D

(i)
yy , D

(i)
zz {σ(i)

x , ρ
(i,j)
x,x }; {σ(i)

y , ρ
(i,j)
y,z }; {σ(i)

z , ρ
(i,j)
z,z } (A55)

D
(j)
xx , D

(j)
yy , D

(j)
zz {σ(i)

x , ρ
(i,j)
z,x }; {σ(i)

y , ρ
(i,j)
z,y }; {σ(i)

z , ρ
(i,j)
y,z } (A56)

D
(i)
xy {σ(i)

x ⊗ σ(j)
z , ρ

(i,j)
y,z } (A49)

D
(i)
xz {σ(i)

x ⊗ σ(j)
η , ρ

(i,j)
z,z } (A50)

D
(i)
yz {σ(i)

y ⊗ σ(j)
η , ρ

(i,j)
z,z } (A51)

D
(j)
xy {σ(i)

z ⊗ σ(j)
x , ρ

(i,j)
z,y } (A52)

D
(j)
xz {σ(i)

y ⊗ σ(j)
x , ρ

(i,j)
y,z } (A54)

D
(j)
yz {σ(i)

y ⊗ σ(j)
z , ρ

(i,j)
y,y } (A53)

TABLE V. In this table the minimal selection of the pairs {O, ρ
(i,j)
τi,τj} is presented for our specific example. The first column

represents the type of the estimated Lindbladian parameters D
(i)
µν , µ, ν ∈ {x, y, z}. In the third column the number of equation

for every parameter is provided, depending from the pairs of the observable O and the initial state ρ
(i,j)
τi,τj = ρ

(i)
τi ⊗ ρ

(j)
τj ⊗ ρN−2,

τi, τj = {x, y, z}, given in the second column. To estimate all parameters we need only three extra states to the ones given by

the previous table, namely: ρ
(i,j)
z,x , ρ

(i,j)
z,y and ρ

(i,j)
y,y .

Before we do that, let us set some notation. Given a system of n qubits on a D, we let LΓ : M2n → M2n be a
Lindbladian which models the time evolution of the system in the Heisenberg picture. Note that in the supplementary
information we consider a slightly more general class of evolutions than in the main text. There, we restricted to
evolutions whose Hamiltonians were short range with two-body interactions and the noise acted on at most one qubit
at a time. Here, in contrast, we will also consider k-local evolutions with long range.

We will assume that this Lindbladian can be written as:

LΓ =
∑
A⊂Γ

LA, (D1)

where LA is a Lindbladian only acting on the qudits in A. Given some graph G = (V,E) on n vertices, we will say
that L is k−local if LA 6= 0 only if A is a subset of vertices of G containing at most k vertices. Furthermore, we will
say that LΓ is locally bounded if there is a constant g > 0 such that for all B ⊂ Γ we have that:

‖
∑

A⊂Γ:A∩B 6=∅
LA‖ ≤ g|B|. (D2)

This condition is satisfied if e.g. L is a local Lindbladian on a D−dimensional lattice. In that case, we have g = O(D).
However, this condition is also fulfilled for generators with algebraically decaying tails, as long as these tails decays
fast enough. Moreover, for ease of notation we will let for a region B ⊂ Γ

LB =
∑
A⊂B

LA (D3)

be the generator restricted to a subregion B.
Furthermore, given the graph G, some region X ⊂ V and r > 0, we will denote by Λr(X) the set of vertices that

are a distance at most r from X:

Λr(X) = {v ∈ V : ∃x ∈ X s.t. d(x, v) ≤ r}. (D4)
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We will also require some norms for superoperators. Given a superoperator Φ :M2n →M2n we define for p, q ≥ 1

‖Φ‖p→q = sup
X∈M2n

‖Φ(X)‖q
‖X‖p

,

where ‖ · ‖p corresponds to the Schatten p-norm. Also note that p =∞ corresponds to the operator norm.
Our goal will be to prove the following statement:

Theorem D.1 (Polynomials approximate the evolution of local expectation values, informal). Let GΓ be a local
Lindbladian on a D-dimensional regular lattice. Moreover, let tmax, ε > 0 be given and OY and observable supported
on a constant number of qubits. Assume that GΓ satisfies a Lieb-Robinson bound. Then there is a polynomial p of
degree

d = Õ

[(
h−1

(
ε

evtmax − 1

))D
tmax log(ε−1)

]
such that for all 0 ≤ t ≤ tmax: ∣∣tr [etLΓ(OY )ρ

]
− p(t)

∣∣ ≤ ε. (D5)

and

p′(0) = tr [LΓ(OY )ρ] . (D6)

We will start by showing a similar statement for the time evolution of truncated local evolutions. After that we will
conclude by showing that truncated, local evolutions approximate the global evolution well. It is simple to see that
derivatives of locally bounded, truncated evolutions can only increases with the size of the region they are defined on:

Lemma D.1 (Derivatives of truncated local evolutions). Let LΓ be a locally bounded Lindbladian with constant g.
For an observable O such that ‖O‖ ≤ 1, an initial state ρ and a region B ⊂ Γ define the evolution of the truncated
evolution fB : R+ → R as fB(t) = tr

[
etLB (O)ρ

]
. Then for all t ≥ 0:∣∣∣f (k)
B (t)

∣∣∣ ≤ (tg|B|)k (D7)

In particular, for any 0 < t < tmax we have that:∣∣∣∣∣fB(t)−
d∑
k=0

f
(k)
B (0)

k!
tk

∣∣∣∣∣ ≤ (tmaxg|B|)d+1

(d+ 1)!
. (D8)

Proof. The proof is elementary. Note that:

f
(k)
B (t) = tr

[
etLB ((tLB)k(O))ρ

]
.

Now, by Hölder’s inequality we have that:∣∣∣f (k)
B (t)

∣∣∣ ≤ ‖etLB ((tLB)k(O))‖∞‖ρ‖1
(1)

≤ tk‖etLB‖∞→∞‖LB‖k∞→∞
(2)

≤ tkgk|B|k,

where in (1) we used the submultiplicativity of the operator norm, i.e. ‖Φ1Φ2‖∞→∞ ≤ ‖Φ1‖∞→∞‖Φ2‖∞→∞ for all
linear maps Φ1,Φ2. In (2) we used the fact that for any quantum channel ‖etGB‖∞→∞ = 1 and the fact that the
Lindbladian is locally bounded with constant g. The estimate in Eq. (D8) then immediately follows from Taylor’s
remainder theorem.

We then immediately have:

Corollary D.1. In the same setting as Lemma D.1 it holds that for any given ε > 0 and tmax > 0 there is a polynomial
p of degree

d = 2etmaxg|B| log(ε−1)− 1 (D9)

such that for all 0 ≤ t ≤ tmax we have that

|fB(t)− p(t)| ≤ ε.
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Proof. It follows from Sitrling’s approximation that the error in Eq. (D8) is bounded by∣∣∣∣∣f(t)−
d∑
k=0

f (k)(0)

k!
tk

∣∣∣∣∣ ≤ 1

d
√

2π

(
etmaxg|B|
d+ 1

)d+1

. (D10)

It is then easy to see that picking d = 2etmaxg|B| log(ε−1)− 1 is sufficient to ensure that the error in (D8) is at most
ε. Indeed, plugging in the value of d into Eq. (D10) we get:∣∣∣∣∣f(t)−

d∑
k=0

f (k)(0)

k!
tk

∣∣∣∣∣ ≤ 1

d
√

2π

(
1

log(ε−1)

)2etmaxg|B| log(ε−1)

= (D11)

1

d
√

2π
exp

[
− log(log(ε−1)) log(ε−1)2etmaxg|B|

]
=

1

d
√

2π
εlog(ε−1)2etmaxg|B| ≤ ε. (D12)

Thus, the truncated Taylor expansion yields the desired polynomial.

We conclude from Lemma D.1 and Cor. D.1 that local, truncated time evolutions are well-approximated by poly-
nomials whose degree grows like the size of the region times the maximal time of evolution.

Also note that the estimate in Eq. (D11) is quite loose and shows that for d as in Eq. (D9) the error decays like a
polynomial of high-degree in ε. But that rough approximation will be sufficient for our purposes.

Cor. D.1 is an important step to prove our Thm. D.2, but still does not correspond to the exact statement we
wish to prove. This is because Cor. D.1 is a statement about the local, truncated evolution, whereas Thm. D.2 is a
statement about the global evolution being well-approximated by a polynomial of small degree. The strategy to go
from the local to the global evolution, is to show that for the (local) observables required for our protocl, the local
evolution approximates the global one well.

Our main tool to show this approximatability of expectation values are Lieb-Robinson bounds [43–45, 60], which
exactly give conditions under which the local time evolution and the global one are close for small enough times and
local observables. In order to provide a self-contained presentation, we include a brief introduction to Lieb-Robinson
bounds in Sec. G of this appendix.

In fact, there are various ways of quantifying this idea of local approximability and, thus, LR-bounds come in
various forms. The version that we are going to work with here and which is discussed in detail in Sec. G, considers
an observable OY initially supported on in a region Y . For a region B ⊃ Y we set R = dist(Γ\{B}, Y )/k, where k is
the locality of the generator, then it is shown in Lemma G.1 that indeed

‖(etLΓ − etLΛr(Y ))(OY )‖∞ ≤ (evt − 1)h(R), (D13)

where h : R+ → R+ is a monotonically increasing function such that limR→+∞ h(R) = 0 and v is some constant that
depends on the generator, usually called the LR-velocity. On the other hand, the decay of the function h typically
depends on how fast the interactions in the system decays spatially (i.e. if it is strictly local, exponentially decaying
in the distance or even algebraically decaying) and the geometry of the underlying lattice. However, the important
point for our purposes is that it does not depend on the system size. For the specific case of short-range Hamiltonians
discussed in the main text, we have that h(R) = e−µR for some constant µ > 0. For algebraically decaying evolutions
we usually have h(x) = O(x−k) for some k ∈ R+.

We refer again to Sec. G for a discussion of various LR-bounds available in the literature. But from Eq. (D13) we
immediately conclude that the values of the expectation values of global and local evolutions are well-approximated
by each other. More precisely:

Proposition D.1. Let OY be an observable supported on some region Y , ε > 0 and tmax be given. Assume Eq. (D13)
holds for the time evolution GΓ and a function h. Let l > 0 be given by

l = h−1

(
ε

etmax − 1

)
.

Then we have for Λl(Y ) and all 0 < t < tmax and any initial state ρ that

| tr
[(
etLΓ − etLΛl(Y )

)
(OY )ρ

]
| ≤ ε. (D14)

Proof. The claim follows directly from Eq. (D13) or Lemma G.1 and a Hölder inequality. Indeed, for the value of l in
Eq. (D14), we obtain from Eq. (D13) after some simplification that

‖(etLΓ − etLΛr(Y ))(OY )‖∞ ≤ ε. (D15)
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Note that in the case of short-range systems we have that h−1(x) = µ−1 log(x). From now on we will suppress

the terms of order log(log(ε−1)) or higher from the equations and denote bounds where we do this with Õ. Thus,
combining D.1 with Prop. D.1 we conclude that:

Theorem D.2. Let GΓ be a locally bounded Lindbladian on a D-dimensional regular lattice with constant g. Moreover,
let tmax, ε > 0 be given and OY and observable such that ‖OY ‖ ≤ 1 and OY is supported on a constant number of
qubits. Assume that GΓ satisfies Eq. (D13). Then there is a polynomial p of degree

d = Õ

[(
h−1

(
ε

evtmax − 1

))D
tmax log(ε−1)

]
such that for all 0 ≤ t ≤ tmax: ∣∣tr [etLΓ(OY )ρ

]
− p(t)

∣∣ ≤ ε. (D16)

and

p′(0) = tr [LΓ(OY )ρ] . (D17)

Proof. It follows from Prop. D.1 that a region of radius

l = Õ
[
h−1

(
ε

2(etmax − 1)

)]
is enough to approximate the time evolution of etLΓ(OY ) up to ε/2. If the original region Y has a constant number
of qubits, then for a D-dimensional lattice we have |Λl(Y )| = O(lD). It then follows from Cor. D.1 that for regions
of this size, it is sufficient to pick a degree that is

O

[
h−1

(
ε

2(etmax − 1)

)D
tmax log(ε−1))

]

to approximate the expectation value of the local evolution up to an error ε/2. This concludes the proof by a triangle
inequality. Eq. (D17) is clear from properties of the truncated Taylor series.

Thus, we see that as long as the time evolution of the system satisfies a Lieb-Robinson bound, we can approximate
the expectation value of a local observable as a function of time by a polynomial whose degree is dictated by how fast
the function h decays and the maximal time of the evolution. In particular, for ε−1 = O(1) and time tmax = O(1),
we conclude that the degree of the polynomial is independent of the system’s size.

In Thm. D.2 we established that we can approximate the function f : t 7→ tr
[
etLΓ(OY )ρ

]
well by a polynomial for

constant times. However, to estimate the parameters of the Hamiltonian we are ultimately interested in the derivative
of f at time 0. We will later show in Sec. E that for the special case of polynomials of bounded degree, a good recovery
of the polynomial also implies a good recovery of the derivative. In particular, as for the polynomial in Lemma D.1
we have that p′(0) = f ′(0), it is sufficient to argue that any two polynomials that approximates the curve f(t) up to
sufficiently large precision in a sufficiently large number of points must have close derivatives at 0 as well. This will
be the subject of the next section and proved in Prop. E.1.

Appendix E: (Robust) polynomial interpolation and derivative estimation

In this section of the appendix, we are going to review a result in the literature [38] that shows how to perform
polynomial interpolation in a robust way even in the presence of outliers. Furthermore, we will show that good
polynomial interpolation also implies a good approximation of derivatives of the polynomial, which is our end goal.
We will use and review the results and algorithms of [38] for the robust polynomial interpolation and resort to Markov
brothers’ inequality [52] for estimating the error on the derivatives.

Let us start by briefly recalling the technical problems we wish to overcome. We assume we are able to approximate
the expectation value of f(t) = tr

[
ρetG(O)

]
for some suitably-picked initial state ρ and time-evolved observable O.

As argued in Sec. D, the function f is well-approximated by a low degree polynomial p whenever the time evolution
is generated by a local Hamiltonian. Moreover, as shown in Sec. A, by suitably choosing the observable and initial
state, we can easily read off the value of the coupling of the Hamiltonian from the value of f ′(0). Thus, our goal is to
find a polynomial p that approximates f from values of f(ti) for some ti ∈ [a, b] for then use p to infer f ′(0).
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It is well-known that if p is a polynomial of degree d, then it is uniquely determined by its values at d+ 1 points.
Thus, one could naively expect that having access to f(t1), . . . , f(td̃) points for d̃ ∼ d times is sufficient to reconstruct
d.

However, the present situation exhibits three challenges that need to be overcome to ensure that we can reliably
apply polynomial interpolation methods and recover p from points f(ti):

1. we can only estimate f(t), and not p(t). And the value of f only approximates that of p up to some error εa,
as discussed in Thm. D.2.

2. we do not have access to the value of f(t) directly, but can only approximate it to a precision εs by sampling
from the output of the device at time t O(ε−2

s ) times.

3. we are interested in the value of p′(0) and not in the polynomial p itself. Thus, we need to ensure a small error
in estimating the derivative.

To deal with the first two problems the polynomial interpolation technique we use has to be robust to the noise
stemming from both the approximation error from the polynomial approximation and the statistical noise. To deal
with the third issue, we will show that we need to pick the final and initial time of the interpolation in a judicious
manner.

To obtain some intuition about how to pick the times, let us consider the case of estimating the derivative of a
quadratic polynomial at 0. I.e., if we have two linear functions p, p̂ that are ε close in some interval [a, b], how well can
we infer the derivative of p at 0 from that of p̂? First, note that if the interval [a, b] is very small, then two functions
can differ by ε and their derivatives can still differ by ε/(b− a) even for linear functions. This indicates we probably
do not want to pick b− a too small. However, as we know that increasing b also implies that, in our setting, we need
to increase the degree of the polynomial for the fitting, which in turns increases the number of points we need to
estimate, this hints at the fact that picking b− a of constant order will be optimal.

On the other hand, it is also clear that the closer a is to 0, the more information about the value of p′(0) we can
infer from the interpolation. Thus, this discussion suggests that picking a as close to 0 as possible and b of constant
order should give the best results. We will prove this intuition later in this section, but first will discuss robust
interpolation.

Directly interpolating through the noisy data can be an unstable procedure if we do not pick the interpolating
points wisely and perform a suitable regression. Recent results have shown how to perform polynomial interpolation
in an essentially optimal fashion in a robust way even with a fraction of the points being outliers [38]. Let us now
review the results of [38].

We will now assume we wish to estimate a polynomial p : [−1, 1]→ R of degree d, as this corresponds to the setting
of [38]. Note that for Hamiltonian learning, we will be interested in the case where the domain is of the form [a, b]
for a, b ≥ 0. However, we can simply shift and rescale the domain to [−1, 1]. When we summarize our results later,
we will dicuss the effect of this rescaling explicitly. We will assume we are given access to m random samples (xi, yi)
of points such that a fraction of at least α > 1/2 of them satisfies for some σ > 0 that:

p(xi) = yi + wi, |wi| ≤ σ. (E1)

There are results available for various different ways of sampling the points xi. However, the best available sample
complexity is given by sampling from the Chebyshev measure, which has density

1

π
√

1− x2

on the interval [−1, 1]. We then have:

Theorem E.1 (Robust polynomial interpolation). Let p : [−1, 1]→ R be a polynomial of degree d and assume we are
given m samples (xi, yi) such that a fraction α > 1/2 of them satisfies Eq. (E1) for some σ > 0. Moreover, suppose
that the xi were sampled independently and at random from the Chebyshev measure. Then for any δ > 0

m = O
(
d log

(
d
δ

))
(E2)

samples suffice to with probability of success at least 1− δ recover a polynomial p̂ that satisfies:

max
x∈[−1,1]

|p(x)− p̂(x)| ≤ 3σ. (E3)

Moreover, p̂ can be computed in time polynomial in the number of samples m.
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Proof. We refer to [38, Corollary 1.5] for a proof and note that we obtain the statement by setting the parameter
ε = 1/2 in their statement.

We note that the same result holds for random points picked from the uniform measure with m = O(d2).
The result above solves our problem of robust polynomial interpolation outlined in points 1 and 2. It shows that

it if we can ensure that we can approximate sufficiently many points of the polynomial up to some σ, then we also
recover the whole polynomial up to some error proportional to σ. Moreover, the number of sampled required only
has a logarithmic overhead in d when compared with the case where we know the points exactly. As we will see later,
for our puproses it will be important to choose d to be small. Thus, in a nutshell, we see that Thm. E.1 ensures that
we can reliably and robustly perform polynomial interpolation by only a small overhead when compared to when we
know the points exactly.

We will later describe in more detail the algorithm given in [38] whose output satisfies the promises of Thm. E.1.
However, before that we will show how the condition in Eq. (E3) ensures that we can also recover the derivative of
the polynomial as long as the degree d is small.

To do that, we will resort to Markov brothers’ inequality, which we restate now for completeness.

Lemma E.1 (Markov brothers’ inequality). For d, k ∈ N define the constant CM (d, k) to be given by

CM (d, k) =
d2
(
d2 − 12

) (
d2 − 22

)
· · ·
(
d2 − (k − 1)2

)
1 · 3 · 5 · · · (2k − 1)

. (E4)

Then for any polynomial p of degree d we have that:

max
x∈[−1,1]

∣∣∣p(k)(x)
∣∣∣ ≤ CM (d, k) max

x∈[−1,1]
|p(x)| . (E5)

Proof. We refer to [61, Theorem 1.2] for a proof and discussion of this result.

Note that the value of CM(d, k) increases exponentially with d for k constant. We remark that having further
promises on the structure of the polynomial, such as the location of its zeros, can greatly improve this estimate.
We once again refer to [61, Chapter 1] for a discussion on this. It would be interesting to see if recent results on
the analyticity of the partition function [29] could be used in our context to also improve this estimate, as it grows
exponentially with d. However, this general bound will suffice for our purposes.

It is easy to see that for polynomials defined on some interval [a, b], the polynomial p̃(x) = p( b−a2 x+ a+b
2 ) is defined

on [−1, 1] and we can use this simple transformation to obtain a variation of Eq. (E5) for polynomials defined on
general intervals. Indeed, applying Eq. (E5) to p̃, it follows from a straightforward application of the chain rule that

max
x∈[a,b]

∣∣∣p(k)(x)
∣∣∣ ≤ ∣∣∣∣ 2

(b− a)

∣∣∣∣k CM (d, k) max
x∈[a,b]

|p(x)| . (E6)

From this we conclude that:

Lemma E.2 (Extrapolating the derivative at 0). Let p : [0, b] → R be a polynomial of degree d such that for some
ε > 0 and 0 < a < b:

max
x∈[a,b]

|p(x)| ≤ ε. (E7)

Then

max
x∈[0,a]

|p(x)| ≤ ε

(
d∑
k=0

∣∣∣∣ 2

(b− a)

∣∣∣∣k akCM (d, k)

(k)!

)
(E8)

and

|p′(0)| ≤ ε

(
d∑
k=1

∣∣∣∣ 2

b− a

∣∣∣∣k ak−1CM (d, k)

(k − 1)!

)
. (E9)



28

Proof. It follows from Eq. (E7) and Markov brothers’ inequality that

∣∣∣p(k)(a)
∣∣∣ ≤ ∣∣∣∣ 2

b− a

∣∣∣∣k CM (d, k)ε. (E10)

By a Taylor expansion we know that for x ∈ [0, a]:

p(x) =

d∑
k=0

p(k)(a)
(x− a)k

k!
. (E11)

The claim in Eq. (E8) then follows by combining this expansion with Eq. (E10) and a triangle inequality. Similarly
we have

p′(0) =

d∑
k=1

p(k)(a)(−1)k
ak−1

(k − 1)!
, (E12)

for which a similar argument yields Eq. (E9).

The proposition above essentially allows us to control to what extent the derivative of a polynomial at 0 can deviate
from 0 given that the polynomial is small on another interval [a, b]. We can then apply it to the polynomial p− p̂, as
in Eq. (E3) to control the error we make by estimating the derivative at 0 by evaluating p̂(0).

By combining the arguments above we conclude that:

Proposition E.1 (Precision and number of samples for robust interpolation). Let p be a polynomial of degree d. For
some 0 < a < b define

E(a, b, d) =

(
d∑
k=1

∣∣∣∣ 2

b− a

∣∣∣∣k ak−1CM (d, k)

(k − 1)!

)
. (E13)

Then for δ > 0 sampling

m = O(d log(dδ−1)) (E14)

i.i.d. points (xi, yi) from the Chebyshev measure on [a.b] satisfying

p(xi) = yi + wi, |wi| ≤ σ

for at least a fraction α > 1
2 of the points is sufficient to obtain a polynomial p̂ satisfying∣∣p′(0)− (p̂)

′
(0)
∣∣ ≤ 3σE(a, b, d). (E15)

Proof. From Thm. E.1 we know that this number of samples suffices to obtain the polynomial p̂ satisfying

max
x∈[a,b]

|p(x)− p̂(x)| ≤ 3σ.

Applying Lemma E.2 to p− p̂ yields the claim.

This then yields a simple condition on how small σ has to be in the regime of interest to us:

Corollary E.1. In the same setting as in Prop. E.1 for some ε > 0 let a ≤ d−2, b = 2 + a and

σ = εd−2. (E16)

Then

|p′(0)− p̂′(0)| = O(ε). (E17)
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Proof. It is easy to see that we have:

CM (d, k) ≤ d2k

k!!
,

where k!! = 1× 3× 5× · · · × (2k − 1) is the double factorial.
Thus, we see from this and Eq. (E9) that by our choice

a =
1

d2
, b = 2 + a

we have from Eq. (E15) that the estimated polynomial p̂(0) satisfies

|p̂′(0)− p′(0)| ≤ 3σ

(
d∑
k=1

∣∣∣∣ 2

(a− b)

∣∣∣∣k a−1 (ad2)k

k!!(k − 1)!

)
≤ 3σ

(
d∑
k=1

a−1 1

k!!(k − 1)!

)
,

where we used the fact that a ≤ d−2.
Thus, as (

d∑
k=1

1

k!!(k − 1)!

)
≤ e,

we conclude that with this choice of parameters we have

|p̂′(0)− p′(0)| ≤ 3eσa−1,

which gives the claim.

We will discuss in Sec. F how to specialize the discussion and results above to the scenario of Hamiltonian learning.

Appendix F: Choice of parameters and performance guarantee of the protocol

Let us now combine the results from Sections D and E to see how to pick the various parameters of the algorithm
to ensure a good recovery of the couplings of the Hamiltonian.

More precisely, given a coupling parameter ai,j of L we will be interested in estimating the sample complexity of
obtaining an estimate âi,j satisfying

|ai,j − âi,j | ≤ ε (F1)

with high probability for some given error ε. As extensively discussed by now, we can easily reduce estimating the
couplings to estimating derivatives of time evolutions of local observables.

As expected, we will see that the main parameters we need to control are the maximal observation time tmax and
the initial time of measurement t0. This is showcased in the following Theorem:

Theorem F.1 (Choice of final and initial time). Let LΓ be a locally bounded Lindbladian on a D-dimensional regular
lattice with g = O(1) growth constant. Let O be an observable of constant support and ρ and arbitrary quantum state.
Let ε > 0 be given. Assume that LΓ satisfies Eq. (D13) for some function h. Then picking t0 as

t0 = O

(h−1

(
ε

2(e2.5v − 1)

)D
log(ε−1)

)−2
 (F2)

and tmax = 2 + t0 and measuring the expectation value f(t) = tr
[
etLΓ(O)ρ

]
for

m = Õ

[(
h−1

(
ε

2(e2.5v − 1)

))D
log(ε−1))

]
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random times ti ∈ [t0, tmax] up to precision O(ε) is sufficient to obtain an estimate (f̂)′(0) satisfying

∣∣∣(f̂)′(0)− tr [LΓ(O)ρ]
∣∣∣ ≤ 3eεt−1

0 = O

ε(h−1

(
ε

2(e2.5v − 1)

)D
log(ε−1)

)2
 . (F3)

In particular, this estimate can be obtained from

Õ(ε−2 log(δ−1)) (F4)

samples from the time evolved state ρ with probability of success at least 1− δ.

Proof. First, note that by Lemma. D.1, if we pick tmax as described above, then a polynomial p of degree

d = O

[(
h−1

(
ε

2(e2.5v − 1)

))D
log(ε−1))

]
(F5)

is sufficient to approximate the expectation value in the interval [0, tmax] up to an error ε/2, as tmax ≤ 2.5. We will
estimate the value of the polynomial at each point up to an error σ > 0, which is to be determined later.

Thus, by inserting the bound on the degree d in Eq. (E16), we need to estimate each value of the polynomial up to
a precision σ = O(ε) to obtain an overall error of

O

ε(h−1

(
ε

2(e2.5v − 1)

)D
log(ε−1)

)2
 (F6)

As we imposed that the precision with which the polynomial approximates the expectation values is ε/2, we can
estimate the value of the polynomial for a given time up to an error O(ε) from O(ε−2) samples.

As we have to sample

O(d log(d)) = Õ

[(
h−1

(
ε

2(e2.5v − 1)

)D
log(ε−1)

)]

points to perform the stable interpolation, we obtain the advertised sample complexity.

For the case of strictly local or exponentially decaying interactions we have that

h−1

(
ε

2(e2.5v − 1)

)
= poly log(ε−1). (F7)

In that case the sample complexity is of order Õ(ε−2). Thus, in this case we see that the inverse initial time t−1
0 and

the number of points we need to sample from is polylogarithmic in ε. Furthermore, the sample complexity to obtain
an error ε is also Õ(ε−2) up to polylogarithmic corrections.

For the sake of completeness, let us now discuss the conditions under which our protocol works beyond the setting
of exponentially decaying or short-range interactions. From Eq. (F3) the condition for our procedure to work becomes
transparent: we need that (

h−1

(
ε

2(e2.5v − 1)

)D
log(ε−1)

)−2

= o(ε−1). (F8)

Indeed, in this case we have the property that it is possible to suitably re-scale the error ε to ensure that the total
precision is at some desired precision ε̃. For instance, let us assume that

h−1

(
ε

2(e2.5v − 1)

)
= O(ε−r), (F9)

for some r > 0. As we discuss later, this is typically the case for algebraically decaying interactions. For such a
LR-bound, we see that the resulting error in Eq. (F3) is

O(ε1−2Dr log(ε−1)2). (F10)
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Sample Complexity Number of points Initial time
Finite range ε−2 polylog(ε−1) polylog(ε)

Exponentially ε−2 polylog(ε−1) polylog(ε)

Algebraically (α ≥ 5D − 1) ε−2α−3D
α−5D ε−

D
α−5D ε

2D
α−5D

TABLE VI. scaling of different resources required to obtain a recovery up to additive error ε of a parameters of the evolution.
We have only included the leading order term and α denotes the decay of the potential in space, whereas D the dimension of
the lattice.

Ignoring the log(ε−1) term, we see that by picking ε = ε̃
1

1−2Dr we can ensure an error of order ε̃ for the estimate.

Thus, the growth of h−1 has to be at most r ≤ 1
2D and the sample complexity would also grow like Õ(ε−2−2Dr−r), as

we would need to sample Õ(d) = Õ(ε−r) points up to precision ε̃
1

1−2Dr .
Thus, we see that our protocol has a sample complexity that is independent of the system size to estimate one

parameter and the expected ε−2 scaling for short range evolutions evolutions, up to log factors. For algebraically
decaying interactions, however, the sample complexity has a worse scaling that depends on the exact decay of the
potential, but still independent of system size.

We summarize the sample complexities, smallest initial time t0 and number of different times steps we need for
various different potentials in Table VI.

1. Algorithm for robust polynomial interpolation

Now that we have established that the results of [38] indeed allow us to estimate the derivative at 0, let us now
describe their polynomial interpolation algorithm in more detail for completeness. The algorithm consists of two
parts, one `1 regression and an iteration of `∞ regressions. Following [38], we will only consider the case in which
we interpolate over [−1, 1]. But it is straightforward to also interpolate over other intervals by a suitable affine
transformation of the domain, as discussed before.

a. `1 regression: before we define the `1 regression, we need to define the Chebyshev partitions:

Definition F.1 (Chebyshev partitions). Let m ∈ N be given. The size m Chebyshev partitions of [−1, 1] is the set

of intervals Ij =
[
cos πjm , cos π(j−1)

m

]
for 1 ≤ j ≤ m.

We also define Pd to be the space of polynomials of degree at most d.
With these definitions at hand, we define the `1 regression solution as follows:

Definition F.2. Given a set of n points (xi, yi) and m ∈ N, we define the result of the degree d `1 regression with m
Chebyshev partitions p̂ to be the polynomial

argminp̂∈Pd

n∑
i=1

|Ij |meanxi∈Ij |yi − p̂(xi)| ,

where Pd is the set of polynomials of degree d.

Note that the optimization problem above is a linear program and, thus, can be solved efficiently. Solving the
`1 regression problem with n = O(d log(d)) samples from the Chebyshev measure is guaranteed to give us a good
solution on average. More precisely, as shown in [38, Lemma 1.2], the solution is guaranteed to satisfy

‖p− p̂‖`1 = O(σ),

where as usual σ is the error in each estimate yi and

‖p− p̂‖`1 =

1∫
−1

|p(x)− p̂(x)| dx.

However, the results of the previous sections required us to obtain a good solution in the ‖ · ‖`∞ distance, and in
general

‖p− p̂‖`1 = O(d2‖p− p̂‖∞). (F11)

Although, as commented in the last section, we are interested in the regime of polynomial of relatively small degree,
by adding a `∞ regression iteration on top of the `1 regression, it is possible to get rid of this d2 prefactor.



32

b. `∞ regression: besides getting rid of the unwanted d2 factor on the promise for the error of the `1 regression,
adding a `∞ regression step also has the favourable feature of making the whole procedure more robust to outliers in
the data.

Definition F.3 (`∞ regression). Given a set of n points (xi, yi) and m ∈ N given. For the m Chebyshev partitions
Ij, choose x̃j ∈ Ij arbitrarily and let

ỹj = medianxi∈Ij yi.

We define the result of the degree d `∞ regression with m Chebyshev partitions p̂ to be the polynomial p̂ ∈ Pd

argminp̂∈Pd max
j∈[m]

|p̂ (x̃j)− ỹj | . (F12)

Note that the problem in Eq. (F12) also corresponds to a linear program and, thus, can be solved efficiently. The
output of the `∞ regression algorithm is guaranteed to satisfy

‖p̂− p‖∞ ≤ 2.5σ +
1

2
‖p‖∞ (F13)

as long as m = O(d) and the we pick n = O(d log(d)) samples from the Chebyshev measure, as shown in [38, Lemma
1.3]. Thus, the procedure gives us a promise of recovery in ∞-norm up to the unwanted ‖p‖∞ term. This can be
solved by iterating the `∞ regression step.

c. Iterating the `∞ step: the last step to obtain the desired robust polynomial interpolation is to iteratively
apply the `∞ iteration step to the residual. More precisely, we first perform the `1-regreesion on our data, obtaining
a polynomial p̂0. We can then define the new data points

(xi, ỹ
0
i = yi − p̂0(xi)) (F14)

and run the `∞ interpolation on this residual error, obtaining a polynomial p̂1. From Eq. (F11) and our promise on
the output of the `∞ interpolation, we know that the result of the interpolation will satisfy

‖p− p̂1‖∞ ≤ 2, 5σ +
1

2
O(d2σ).

But then we can iterate this procedure by just running the `∞ regression on

(xi, ỹ
1
i = yi − p̂1(xi)). (F15)

Each time we run the interpolation on the residual, we exponentially reduce the error. By repeating the procedure
O(log2(d)) times, we then arrive at a polynomial satisfying the promises of Thm. E.1.

Note, however, that the procedure used in Sec. III to demonstrate the viability of our method differs slightly from
the ones discussed here. The main difference is that we used equally spaced time steps that were not random. However,
in spite of this difference, we still obtained high quality solutions.

Appendix G: Lieb-Robinson bounds

This section gives a brief overview of Lieb-Robinson bounds. In particular, we give more explicit formulas for the
functions h in (12) in terms of the decay of the interactions and the dimension of the lattice. Lieb-Robinson bounds
are by now a standard tool in quantum many-body systems and quantum information theory and we refer to [42–
47, 62, 63] for a more general overview over the mathematical background and some latest bounds for algebraically
decaying interactions.

At the heart of any Lieb-Robinson bound is the intuitive idea that if interactions in a system happen locally
this should imply a bound on how fast information can be transmitted. The usual way to codify this property for
Hamiltonian systems in the Heisenberg picture is to give a bound on the operator norm of the commutator between
a time-evolved observable initially located in region Y and a second observable located in a region X in the distance
dist(X,Y ) between the regions X,Y , where d could refer to the lattice or graph distance, i.e. a bound of the form

‖[AX , O(t)Y ]‖ ≤ Ch(dist(X,Y ))(evt − 1), (G1)

where C will typically depend on the size of the regions |X| and |Y | as well as on the operator norms of A and B.
However, in the context of Markovian dynamics and master equations, the bound is usually generalized by substituting
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the super-operator [AX , ·] for an arbitrary bounded super-operator KX :M2n →M2n supported on X leading to a
Lieb-Robinson-bound of the form

‖KX(O(t)Y )‖ ≤ Ch(dist(X,Y ))(evt − 1), (G2)

with C depending on ‖KX‖∞→∞,cb. However, if KX is of the form KX = [AX , ·], we have ‖KX‖∞→∞,cb ≤ 2 ‖AX‖∞,

which allows us to recover the commutator [60, 63]. In the following, we consider a regular lattice Λ and assume that
the dynamics is generated by a Lindbladian that decomposes according to

L =
∑
X⊂Λ

LX . (G3)

Following [43, 63, 64], we define the maximal interaction strength J = supX⊂Λ ‖LX‖1→1,cb as well as the decay

behaviour of the interactions µ(r) = supX⊂Λ:diam(X)=r

‖LX‖1→1,cb

J in terms of the stabilized 1-to-1-norm ‖T‖1→1,cb =

supn ‖T ⊗ idn‖r→1. We can then characterize L as finite range if µ(r) = 0 for r ≥ R > 0, exponentially decaying if
µ(r) ≤ e−µr and algebraically decaying if µ(r) ≤ (1 + r)−α for α > 0 and state the following Lieb-Robinson-bound
for Lindbladians

Theorem G.1 (dissipative LR-bound [63]). Let L be a Lindbladian of the form (G3), OY an observable supported
on Y ⊂ Λ and KX :M2n →M2n with KX(idX) = 0. Then

‖KX(O(t)Y )‖ ≤ ‖KX‖∞→∞,cb ‖OY ‖min(|X|, |Y |)h(dist(X,Y ))(evt − 1), (G4)

with h(r) = e−νr for L exponentially decaying or finite range and h(r) = (1 + r)ν if L is algebraically decaying with
α > 2D + 1 with ν < α− (2D + 1).

As stated above, in this work, we require a slightly different formulation of the LR-bound as given in (6), namely

‖(etLΛ − etLΛr(Y ))(OY )‖ ≤ c1h(diam(Λr(Y )))(e
vt − 1), (G5)

which reflects directly that the dynamics of the system can already be described by a generator LΛr(Y )
restricted to a

region Λr(Y ) of diameter r around the initial support Y of the observable OY . To convert a bound of the form (G2),
we follow the reasoning given in [60, 63].

We can express the difference of the dynamics generated by the full Lindblad generator L as compared to a restriction
LΛr to the subset Λr ⊂ Λ according to

(etL − etLΛr )OY = −
∫ t

0

ds ∂s

(
esLΛr e(t−s)L

)
OY =

∫ t

0

ds esLΛr (L − LΛr ) e
(t−s)LOY (G6)

Taking norms on both sides, we therefore obtain an upper bound of the form∥∥(etG − etLΛr )OY
∥∥ ≤ ∑

X 6⊂Λr

∫ t

0

ds
∥∥∥LXe(t−s)LOY

∥∥∥ . (G7)

We notice, that the term inside the integral is exactly of the form of the left-hand side of (G2) with KX = LX . Hence,
we can insert the standard LR-bound for dissipative dynamics from (G2) here and are left with a combinatorial
problem in terms of the decay bounds. This can be done explicitly for several standard interaction decays, such
as finite range, exponentially decaying or algebraically decaying interactions [60, 63]. In particular, based on the
Lieb-Robinson bound in Thm. G.1, we obtain

Lemma G.1 ([63]). Let L be a Lindbladian of the form (G3), OY an observable supported on Y ⊂ Λ and r > 0 then
for LΛr(y) =

∑
X⊂Λr(y) ΛX we have

∥∥(etL − etLΛr(y)
)
OY
∥∥ ≤ ‖OY ‖ |Y |J evt − 1− vt

v
h(r) (G8)

with h(r) exponentially decaying in r for L finite range or exponentially decaying and h(r) decaying as (1 + r)−β if L
is algebraically decaying with α > 2D + 1 and β = α− 3D for α ≥ 5D − 1 and β = 1

2 (α−D − 1) if α ≤ 5D − 1.

We remark that all these bound give us the required independence of the right-hand side from the overall system
size. We expect that with the help of recent more stringent estimates on Hamiltonians with algebraic decay, it will
most likely be possible to extend and strengthen these bounds for other algebraic decays.
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Appendix H: Parallelizing the Measurements: shadow process tomography

In this section we introduce a method to parallelize the estimation of the Pauli overlaps required for our protocol.
For a quantum channel Φt and two colletions of Pauli strings P 1

a , . . . , P
K1
a and P 1

b , . . . , P
K2

b that have combined weight
ωa + ωb at most ω it allows us to estimate all the overlaps of the form

2−n tr
[
P jaΦt(P

k
b )
]

(H1)

up to an error ε with probability at least 1 − δ from a number of samples that grows like O(3w log(K1K2δ
−1)ε−2).

Moreover, it only requires us to prepare simple Pauli eigenstates and measure in Pauli eigenbases. Recently two
works [39, 40] have considered how to generalize the shadows protocol to the setting of process tomography. Unfor-
tunately, it was noticed that the proofs in [39, 40] are incorrect. From a high-level perspective, the issue with their
argument was that it was based on the Choi-Jamilkowski isomorphism to map the problem into a state tomography
problem. However, this unfortunately incurs in an exponential prefactor the authors missed.

Here we present a correction of the proof that also obtains a better exponent for the sample complexity in terms of
the locality. Thus, we believe that this section may be of independent interest.

The protocol we will introduce now allows us to estimate all the data required for our Hamiltonian learning protocol
in parallel. Every round i of the protocol is performed as follows:

1. Draw two Pauli strings Bi, Si ∈ {X,Y, Z}n uniformly at random and also a sign vector Ei = {−1,+1}n uniformly
at random.

2. Prepare the quantum state ρi = ⊗nj=1φj(Si, Ei), where φj(Si, Ei) is an eigenstate of the j−th Pauli on the
string Si corresponding to the eigenvalue in the j-th entry of Ei.

3. Evolve ρi by Φt.

4. Measure in the Pauli basis defined by Bi. Denote the measurement outcome by Mi.

5. Output (Bi, Si, Ei,Mi).

Let us now introduce some notation to explain how to postprocess the samples obtained from the protocol above.
Let Pa and Pb be the given Pauli operators on n qubits. We say that a basis Bi overlaps with Pa if all qubits on

which Pa acts non trivially are also measured in the same basis. For example, Pa = X ⊗ Y ⊗ I and Bi = {X,Y, Z}
overlap. However, Pa = X ⊗ Y ⊗ I and Bi = {X,Z,Z} do not overlap. Moreover, if the basis and Pa overlap, we say
that the measurement outcome Mi overlaps positively if we measure a positive eigenstate of Pa. Otherwise, we say it
is negative.

We will also define a similar notion of the state overlap given the Pauli Pb, the basis Si and sign Ei. We say that Pb
and (Si, Ei) overlap positively if Si coincides with Pb on all qubits it acts non trivially and the state ρi is a positive
eigenstate of Pb. We say we overlap negatively if it is a negative eigenstate. We will also define ω(Pa) to be the
number of qubits on which Pa acts non trivially.

We can now finally introduce a random variable given the Paulis Pa, Pb and the data from the experiment Bi, Si,
Ei and Mi. Let us define a function in terms of the outcomes and inputs of one round of the protocol:

Xa,b(Bi, Si, Ei,Mi) =


0 if Bi does not overlap with Pa or Si does not overlap with Pb,

3ω(Pa)+ω(Pb)/2 if (Bi, Si) overlap with (Pa, Pb), and both do so positively,

3ω(Pa)+ω(Pb)/2 if (Bi, Si) overlap with (Pa, Pb), and both do so negatively,

−3ω(Pa)+ω(Pb)/2 if (Bi, Si) overlap with (Pa, Pb), one positively, the other negatively.

.(H2)

We will now show that:

E(Xa,b) = 2−n tr (Paφt(Pb)). (H3)

and

E(X2
a,b) ≤ 3w(Pa)+w(Pb) (H4)

Before we prove that, let us discuss how these estimates on moments on Xa,b suffice to obtain the claimed sample
complexity. As in other works on classical shadows, it will be crucial to use the method of median of means estima-
tor [65] to estimate the expectation value of Xa,b. The method of medians of means works as follows. We take a
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sample of size S and divide it into K subsets of size B, i.e. S = KB. We then compute the empirical mean on each
of the K subsamples. Denote them by µ̂i, with 1 ≤ i ≤ K. We then set our estimator of the mean to be:

µ̂MoM = median(µ̂1, . . . , µ̂K). (H5)

The main proeprty of this estimator is that we have that if the variance of Xa,b is σ2, then:

P(|µ̂MoM − E(Xa,b)| ≥ ε) ≤ e
−2K

(
1
2−

σ2

Bε2

)
. (H6)

In particular, if we pick B = 4σ2ε−2 and K = 2 log(δ−1), then:

P(|µ̂MoM − E(Xa,b)| ≥ ε) ≤ δ. (H7)

We see that the median of means method allows to have a logarithmic scaling of the error probability from a bound
on the variance. On the other hand, just using the empirical mean directly combined with an estimate on the variance
gives a polynomial dependance only.

Armed with these facts about the median of means estimator, the following result immediately follows from (H3)
and (H4):

Corollary H.1. Let {P la}
K1

l=1 and {P jb }
K2
j=1 be two collections of Pauli matrices on n qubits such that for any l, j the

following condition

ω(P la) + ω(P jb ) ≤ ω, (H8)

holds. Then

O(3ω log (K1K2δ
−1)ε−2) (H9)

runs of the protocol above suffice to obtain an estimate el,ja,b satisfying∣∣∣|2−n tr
[
P lbΦt(P

j
a )
]
− el,ja,b

∣∣∣ ≤ ε (H10)

for all pairs l, j with probability at least 1− δ.

Proof. Let X l,j
a,b be the random variable we have defined above for a pair of Paulis P la and P jb . By the bound in (H4)

we have that E((X l,j
a,b)

2) ≤ 3ω, holds. Thus, for the median of means estimator with B = 3ωε−2 samples per group

and K = 2 log(δ−1K1K2) we have an estimate satisfying (H10) with probability of failure at most δ/K1K2.

By a union bound, the median of means estimator of all K1K2 combinations of P la and P jb satisfy (H10) with
probability of failure at most δ. The total number of samples required for this is

S = KB = O(3ω log (K1K2δ
−1)ε−2), (H11)

which yields the claim.

To conclude we only need to show that (H3) and (H4) hold. Let us start with the expectation value. First, note
that

E(Xa,b) = E(Xa,b|B and S overlap)P(B and S overlap), (H12)

holds. Here we say that B and S overlap if B overlaps with Pa and S overlaps with Pb. The latter formula holds,
because if we do not have overlap then Xa,b = 0 by the case 1 of the definition (H2). Now observe that

P(B and S overlap) = 3−ω(Pa)3−ω(Pb). (H13)

This holds because we have a 1/3 chance of ”hitting the right Pauli” at each point of the support of either Pa or Pb
and they are all independent. Thus, all we need is to determine

E(Xa,b|B and S overlap). (H14)

Here we distinguish four cases:

1. S overlaps positively with Pb and B overlaps positively with Pa.
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2. S overlaps negatively with Pb and B overlaps negatively with Pa,

3. S overlaps positively with Pb and B overlaps negatively with Pa,

4. S overlaps negatively with Pb and B overlaps positively with Pa.

We can then break down the expectation of (H12) down into the cases:

E(Xa,b|B and S overlap)P(B and S overlap) =

4∑
i=1

E(Xa,b|B and S overlap, c = i)P(c = i), (H15)

where c is a random variable which keeps track of which case we have. By definition, if c = 1, 2, then

E(Xa,b|B and S overlap, c = 1, 2) = 3ω(Pa)+ω(Pb)/2. (H16)

If c = 3, 4:

E(Xa,b|B and S overlap, c = 3, 4) = −3ω(Pa)+ω(Pb)/2. (H17)

Note that the 3ω(Pa)+ω(Pb) counteracts the P(B and S overlap) term, up to an additional 1/2 factor.
Thus, all that is left is to estimate

P(c = i), i = 1, 2, 3, 4. (H18)

Let us estimate P(c = 1), the other cases will be analogous. To this end, we will introduce Q+
a and Q−a , which are

the projectors onto the positive and negative eigenvalues, respectively, of the support of Pa. We will use analogous
notation for Q+

b and Q−b . Clearly, Pa = (Q+
a − Q−a ) ⊗ I⊗n−ω(Pa), holds. Here and in what follows we will always

assume for simplicity that the Pauli strings are supported on the first qubits.
Let us estimate the expected initial state for the case c = 1. Conditioned on being a state with positive overlap

with Pb, by constructiton we know that the state is uniformly distributed on the positive eigenspace of Pb. This
corresponds to the state

σ =
Q+
b

2ω(Pb)−1
⊗
(
I
2

)⊗n−ω(Pb)

. (H19)

Given that this is the initial state and that we are measuring in the eigenbasis of Pa (recall that we have overlap),
the probability of measuring a positive outcome is tr (Q+

a ⊗ In−ω(Pa)φt(σ)).
We conclude that

P(c = 1) =
1

2
tr (Q+

a ⊗ In−ω(Pa)φt(σ)) =
1

2n−1
tr (Q+

a ⊗ In−ω(Pa)φt(Q
+
b ⊗ In−ω(Pb))). (H20)

Similarly

P(c = 2) =
1

2n−1
tr (Q−a ⊗ 1n−ω(Pa)φt(Q

−
b ⊗ 1n−ω(Pb))), (H21)

P(c = 3) =
1

2n−1
tr (Q+

a ⊗ 1n−ω(Pa)φt(Q
−
b ⊗ 1n−ω(Pb))), (H22)

P(c = 4) =
1

2n−1
tr (Q−a ⊗ 1n−ω(Pa)φt(Q

+
b ⊗ 1n−ω(Pb))), (H23)

As

2−n tr (Paφt(Pb)) = 2−n(tr (Q+
a φt(Q

+
b )) + tr (Q−a φt(Q

−
b ))− tr (Q+

a φt(Q
−
b ))− tr (Q−a φt(Q

+
b ))), (H24)

we conclude that

E(Xa,b) = 2−n tr (Paφt(Pb)). (H25)

Computing the second moment of Xa,b turns out to be quite simple. Note that the only nonzero value the random

variable X2
(a,b) takes is 32ω(Pa)+2ω(Pb)/4 with probability 3−ω(Pa)−ω(Pb). Thus, we clearly have that:

E(X2
(a,b)) = 3ω(Pa)+ω(Pb)/4, (H26)
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which yields (H4). This concludes all the computations required for Cor. (H.1).
Note that the protocol only requires the preparation of Pauli states and Pauli measurements. Thus, it should be

feasible to implement it on near term devices. Additionally, the required postprocessing is efficient, as evaluating the
value of Xa,b can be efficiently given a sample.

Furthermore, note that if we further have the information that we do not to wish to recover certain bases (i.e. we
do not wish to recover Pauli strings with Y terms), it is possible to adapt the protocol and do not prepare initial
states or measure in that basis. This will reduce the sample complexity accordingly.
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