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Characterizing the interactions and dynamics of quantum mechanical systems is an essential task
in developing quantum technologies. We propose an efficient protocol based on the estimation
of the time-derivatives of few qubit observables using polynomial interpolation for characterizing
the underlying Hamiltonian dynamics and Markovian noise of a multi-qubit device. For finite range
dynamics, our protocol exponentially relaxes the necessary time-resolution of the measurements and
quadratically reduces the overall sample complexity compared to previous approaches. Furthermore,
we show that our protocol can characterize the dynamics of systems with algebraically decaying
interactions. The implementation of the protocol requires only the preparation of product states and
single-qubit measurements. Furthermore, we improve a shadow tomography method for quantum
channels that is of independent interest and discuss the robustness of the protocol to various errors.
This protocol can be used to parallelize the learning of the Hamiltonian, rendering it applicable for
the characterization of both current and future quantum devices.

I. INTRODUCTION

Large quantum devices consisting of tens to hundreds
of qubits have been realized across various hardware ar-
chitectures [1–4] representing a significant step towards
the realization of quantum computers and simulators
with the potential to solve outstanding problems in-
tractable for classical computers [5, 6]. However, con-
tinued progress towards this goal requires careful char-
acterization of the underlying Hamiltonians and dissi-
pative dynamics of the hardware to mitigate errors and
engineer the desired dynamics. The exponential growth
of the dimension of the state space of a quantum device
with the number of qubits renders this an outstanding
challenge broadly referred to as the Hamiltonian learn-
ing problem [7–35].

To tackle this challenge, previous approaches make
strong assumptions such as the existence of a trusted
quantum simulator capable of simulating the unknown
Hamiltonian [20, 21] or the capability of preparing par-
ticular states of the Hamiltonian such as steady states
and Gibbs states [23, 25, 26, 29, 36, 37], which may be
difficult for realistic devices subject to various decoher-
ence mechanisms.

Alternatively, several works [30–32] are built on the
observation that a Master equation describes the evo-
lution of any system governed by Markovian dynamics.
Through this, one obtains a simple linear relation be-
tween time derivatives of expectation values and the pa-
rameters of the Hamiltonian, jump operators and decay
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FIG. 1.

rates (jointly referred to as the parameters of the Lind-
bladian L) governing the system. Furthermore, for finite
range interactions, these approaches can estimate the pa-
rameters of the Lindbladian to a given precision from a
number of samples that is independent of the system’s
size [30–32].

A significant drawback of these approaches is that
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the time derivatives are estimated using finite differ-
ence methods. Obtaining a good precision thus requires
high time resolution, which is experimentally challeng-
ing given the finite operation time of gates and measure-
ments. To estimate a Lindbladian parameter up to an
additive error ϵ, the system has to be probed at times
O(ϵ) apart and expectation values of observables have to
be estimated up to a precision of O(ϵ2), which translates
to an overall O(ϵ−4) sample complexity to estimate each
parameter.

In this article, we propose a protocol that alleviates
these daunting experimental requirements. Our protocol
requires only a time resolution of O(polylog(ϵ−1)) repre-
senting an exponential improvement compared to previ-
ous protocols and gives an overall sample complexity to
recover all parameters of a k-local n qubit Lindbladian
up to precision ϵ of O(9kϵ−2polylog(n, ϵ−1)). We obtain
this by estimating time derivatives using multiple tem-
poral sampling points and robust polynomial interpola-
tion [38]. Furthermore, we show how to use shadow pro-
cess tomography methods to estimate multiple param-
eters in parallel. In particular, we improve the results
of Refs. [39, 40] in extending the framework of classical
shadows to processes and Pauli matrices with an alter-
native proof, a result that is of independent interest. We
also extend our analysis to long-range (algebraically de-
caying) interactions in the systems, obtaining the first
results for such systems to the best of our knowledge.
The necessary operations for our protocol are measure-
ments in the Pauli bases on time-evolved product states
consisting of Pauli eigenstates. These minimal require-
ments make our protocol feasible for characterization of
both current and future quantum devices.

II. RESULTS

In order to use our protocol for an efficient character-
ization of a quantum device, two assumptions should be
fulfilled:

1. The quantum device implements an (unknown)
Markovian quantum evolution on n qubits de-
scribed by a time-independent Lindbladian, L.

2. We assume knowledge of the general structure of
the interaction graph of the device i.e. which qubits
are coupled to each other. Importantly, no assump-
tions are made regarding the couplings’ exact form.

The first assumption ensures that the evolution of a
general observable, O(t) is described by the Master equa-
tion, i.e. d

dtO(t) = L(O(t)). We note that the Lindbla-
dian captures both the Hamiltonian evolution and the
dissipative dynamics of the device.

The second assumption bounds the size of the estima-
tion task. It corresponds to making some assumptions
about the locality of the generator, as evolutions with-
out some locality assumptions have exponentially many

parameters. However, having prior knowledge that, e.g.
nearest neighbor couplings dominate in the device, makes
the estimation task tractable. For now, we will assume
that we know which qubits interact. Later, we will show
that a bound on the support of each interaction and
some technical assumptions on the evolution suffice to
also learn the interaction graph from data.

Using the knowledge of the interaction graph, one can
expand the Lindbladian in an operator basis, {Pi} con-
structed from tensor products of single-qubit Pauli ma-
trices and the identity [41]:

L(O) =
∑

ai[Pi, ρ]

+
∑

Di,j(P
†
i OPj −

1

2
{P †

j Pi, O}) (1)

Such an expansion is always possible since this basis
amounts to a Hilbert-Schmidt orthogonal set of Hermi-
tian operators spanning the entire vector space. Note
that the coefficient matrix Di,j needs to be positive for it
to form a valid Lindbladian. Estimating the set of expan-
sion coefficients {ai, Di,j} gives an estimation of L and
thus a full characterization of the system.

It is well known that the Master equation for the
time derivative of the expectation value of a local
observable O at time t = 0 for a given initial state
ρ of the system gives us a linear equation for the
expansion coefficients [30–32]. We use this to estimate
the expansion coefficients going through three stages
of classical pre-processing, quantum processing, and
classical post-processing (see Fig. I).

Classical pre-processing: After expanding L in an
operator basis, the following steps are performed.

1. Find a suitable complete set, {(ρj , Oi)} of multi-
qubit product states (ρj) and observables (Oi) for
which the Master equation involves only a few se-
lected expansion parameters of the Lindbladian for
each element of the set. The set is complete in the
sense that all expansion coefficients can be found
by solving the Master equations for all elements in
the set. As we show below, such a set can readily
be found by considering initial states where only a
few qubits are initialized as different eigenstates of
the Pauli matrices while the remaining qubits are
prepared in the maximally mixed state I/2.

2. Calculate the expectation values appearing on
the right-hand side of the Master equations
d
dt tr [ρjOi(t)] = tr [ρjL(Oi)] for all elements in the
set {(ρj , Oi)} in terms of the expansion coefficients.
Since the initial states and the observables are
products, this can be done efficiently.

Quantum processing: In order to solve for the expan-
sion coefficients, we also need the values of the time-
derivatives appearing on the left-hand side of the Master
equations, i.e. d

dt tr [ρjOi]. These can be estimated using
the quantum device. The naive approach is the following:
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1. The quantum device is prepared in initial state ρj
and evolved for a time tk ∈ {t0, t1, . . . , tmax} after
which the observable Oi is measured.

2. The above procedure is repeated for each element in
the set {(ρj , Oi)} for all evolution times tk to obtain
estimates of 〈Oi(tk)〉j = tr [ρj(tk)Oi] where ρj(tk)
is the state of the system having evolved for time
tk from the initial state ρj . We note that the single
qubit mixed states can be simulated by sampling
eigenstates of the Pauli matrices at random.

For this naive approach, the sample complexity increases
linearly with the size of the set {(ρj , Oi)} since the expec-
tation values 〈Oi(tk)〉j are estimated sequentially. How-
ever, we also propose a variation of the classical shadows
protocol of Ref. [42] for process tomography that can re-
duce this to a logarithmic scaling. In essence, we can
obtain estimates of all elements in the set {(ρj , Oi)} in
parallel. This is done by the following steps:

1. Every qubit is prepared in a random Pauli matrix
eigenstate and the system is evolved for a time tk
after which each qubit is measured in a random
single-qubit Pauli basis.

2. The above procedure is repeated
O(3w1+w2ϵ−2 log(K)) times set by the required
precision, ϵ, of the estimates, the size, K, of the
set {(ρj , Oi)} and the weights (i.e. maximum
number of sites differing from identity) of ρj (w1)
and Oi (w2). The whole procedure is repeated for
all times tk ∈ {t0, t1, . . . , tmax}.

From the measurement statistics of the above procedure,
it is possible to obtain accurate estimates of all 〈Oi(tk)〉j
and thus a parallel estimation is possible. We refer to
Sec. V and the Supplementary Note for more details and
proof of the method.

Whether to use the sequential approach or the parallel
approach depends on the number of qubits and the
weight of the states and observables in the set {(ρj , Oi)}.
For few qubit processors, the sequential protocol may
require fewest samples, however for local Hamiltonians
on a lattice, the logarithmic scaling in system size of
the parallel method will quickly be advantageous for
larger processors. Importantly, both methods only
require the preparation of single qubit Pauli states and
measurements in single-qubit Pauli bases.

Classical post-processing: The final part of the char-
acterization involves estimating d

dt tr [ρjOi(t)] from the
experimentally obtained time trace of 〈Oi(tk)〉j and
solving for the expansion coefficients {aα}. This involves

1. Fit the time trace of 〈Oi(tk)〉j with a low-
degree polynomial in the time, pi,j(t) and estimate
d
dt tr [ρjOi] as d

dtpi,j(t)|t=0. This is done for each
element in the set {(ρj , Oi)}.

2. Solve the set of linear equations from the Master
equations d

dt tr [ρjOi] = tr [ρjL(Oi)] with respect to
the expansion coefficients. This is possible since
d
dt tr [ρjOi] has been estimated from the polyno-
mial fits and all expectation values appearing in
tr [ρjL(Oi)] have been calculated leaving the expan-
sion coefficients as the only unknown parameters.

Following the steps above, a complete characterization
of the underlying Hamiltonian and dissipative dynamics
of the quantum device as given by the Lindbladian is
obtained. The two key steps of the protocol are the
choice of the set {(ρj , Oi)} and the polynomial interpo-
lation used to obtain estimates of the time derivatives.
Below, we outline the details of both steps and provide
rigorous guarantees on the precision of the protocol.
Importantly, we show that Lieb-Robinson bounds on
the spread of correlations in the system can be used to
ensure robust polynomial fitting of the time traces of
expectation values allowing for an exponential relaxation
of the temporal resolution compared to finite difference
methods rendering the protocol feasible for near-term
quantum devices.

Choosing the set of initial states and observables:
The first step in the classical pre-processing is to
expand L in an operator basis constructed from tensor
products of single-qubit Pauli matrices and the iden-
tity. The right-hand side (rhs) of the Master equation
d
dt tr [ρjOi(t)] = tr [ρjL(Oi)] can be expanded as a sum
of single Pauli matrices and their products. Our goal is
to isolate the unknown expansion coefficients. To this
end, we consider an initial state of the form

ρ
(i,j)
k,l =

(I + σ
(i)
k )

2
⊗

(I + σ
(j)
l )

2
⊗ ρn−2, (2)

where k, l = x, y, z. Thus, the i’th and j’th qubit are
prepared in eigenstates of the Pauli matrices σk and σl

while the state of the remaining n − 2 qubits, ρn−2, is
assumed to be the maximally mixed state.

For a state of the form in Eq. (2) the rhs of the Master
equation (see above) can be simplified greatly depending
on the choice of the observable O. This is due to the
properties of the Pauli matrices namely that they have
vanishing trace and that

σkσl = δklI + iεklpσp, (3)

where δkl is the Kroenecker delta function and εklp is
the Levi-Civita symbol. As we show explicitly in the
Supplementary Note, if a single qubit Pauli observable,
O = σ

(i)
l , is chosen, then only the single qubit terms of

the rhs of the Master equation involving the i’th qubit
will have non-vanishing trace and, using the relation in
Eq. (3), the different single qubit Pauli expansion coeffi-
cients (the coefficients of terms in the expansion that only
involves single qubit Pauli matrices) can be isolated.

After isolating the single qubit expansion coefficients,
the coefficients related to two-qubit Pauli terms (σ(i)

i ⊗
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σ
(j)
j ) can be isolated by choosing observables of the form

O = σ
(i)
i ⊗ σ

(j)
j in a similar manner. This procedure can

be iterated to isolate higher order expansion coefficients
by considering observables involving more and and more
qubits.

In the Supplementary Note, we provide a detailed
derivation of how all expansion parameters can be iso-
lated for a general Hamiltonian with terms coupling be-
tween two and k qubits and arbitrary single qubit dissi-
pation terms. We note that already for two qubit dissipa-
tion terms, deriving linear combinations of initial states
and expectation values that allow us to isolate different
parameters is quite cumbersome and we do not do this
explicitly. However, from a numerical point of view, this
is a trivial task. Indeed, as remarked before, each pair of
Pauli strings gives us access to a linear equation for the
different evolution parameters.

After collecting enough equations to ensure that the
linear system is invertible, the precision with which
we need to estimate each expectation value to ensure
a reliable estimation of the parameters is controlled
by the condition number of the matrix describing the
system of linear equations. As both estimating the
condition number and solving the linear system can be
done efficiently, we conclude that estimating dissipative
terms acting on a constant number of qubits does not
pose a significant challenge from a numerical perspective.

Robust polynomial interpolation: As described above, a
key step in our learning algorithm is to obtain informa-
tion about the time-derivatives of observables at t = 0.
For this, we rely on robust polynomial interpolation.
Accordingly, based on expectation values 〈Oi(tk)〉j for a
set of times tk we want to extract a polynomial pi,j(t)

such that we can estimate d
dt tr [ρjOi] as d

dtpi,j(t)|t=0.
For this approach to work, we have to be able to
control the degree of the polynomial pi,j(t) in order
to give an upper bound on the number of sampling
points tk for which we will have to determine 〈Oi(tk)〉j
experimentally. In the following, we briefly outline how
such a guarantee on the degree of pi,j(t) can be obtained
and refer to the methods section for a more detailed
proof.

Our argument proceeds in two steps: establishing that
local expectation values are well approximated by low-
degree polynomials and then showing how to robustly
extract the derivative of the polynomial from this infor-
mation. Before we give an overview of the ideas, we will
also need to introduce some notation to deal with Lind-
bladians acting on different parts of the system. We will
denote by Λ the whole system of qubits and for some
subset B ⊂ Λ of qubits, we denote by LB , the generator
truncated to those qubits.

The first step of our proof is to establish that the expec-
tation value 〈O(t)〉 of a local observable O that evolves
under a Lindbladian LB restricted to some sub-region B
up to some time tmax, can indeed be approximated up
to error ε by a degree-d polynomial, where d depends

linearly on the size of B, tmax and log(ε−1).
For the second step of our argument, it remains to show

under which circumstances, we can restrict the evolution
of the Pauli-strings Pm

a , that we identified in the previ-
ous step, to a local generator. The main insight here is
that for finite range (or sufficiently quickly fast decay-
ing) interactions, the dynamics of any local observable
O exhibits an effective light cone quantified by a Lieb-
Robinson bound (LRB) [43–48]. The LR-bound, in turn,
allows us to restrict the Lindbladian on the full system
to a generator coupling only systems in the vicinity of
the support of O, where the size of this shielding region
only grows linearly with tmax.

Bringing these two arguments together, we can first
employ the LR-bound to restrict the dynamics to a
sub-region around the support of the Pauli-string, P a

m,
and then approximate the corresponding evolution on
that finite region up to error ε by a polynomial of
degree O

[
poly(tmax, log(ϵ

−1))
]
. Now, making use of

the techniques from Ref. [38], we can extract the first
derivative of this polynomial from measurements at
O
[
polylog(ϵ−1)

]
different times tk. Indeed, in that

work, the authors show how to perform polynomial
interpolation reliably only given approximations of the
values and even under the presence of outliers.

Robustness of the protocol to experimental errors:
In the previous sections, we assumed that we can pre-
pare Pauli eigenstates and measure in Pauli eigenbases
and did not consider state preparation and measurement
(SPAM) errors. Furthermore, we assumed that the dy-
namics is described exactly be a generator that is local.
Such an idealized scenario rarely comes up in practice
and it is important to develop protocols that also work
when these conditions are only met approximately.
Here, we will provide the main arguments showing that
our protocol is indeed robust to such imperfections.
We refer to Supplementary Note for the more detailed
technical derivations and statements.

First, we consider the setting where the SPAM er-
rors are well-characterized and independent of the basis
we prepare and measure. In this case, it is possible to
adapt the protocol to incorporate this information with-
out changing its performance significantly. For instance,
if the SPAM errors are described by local depolarizing
noise with depolarizing probability p, we can still re-
cover 2−local Hamiltonians with single qubit noise with
a O((1−p)−4) sampling overhead when compared to the
noiseless case. In particular, this only depends on the
local noise rate. We then show that this is the case more
generally: if the SPAM errors are not characterized well
or are highly dependent on the particular state we are
preparing or the basis we are measuring, then once again
the effect of SPAM errors will be independent of the sys-
tem’s size and only depend on the precision we wish to
obtain.

Besides SPAM errors, our protocol is also robust to
perturbations of the generators, even nonlocal ones.
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More precisely, assume that the true generator is of the
form L = L′ + ∆, where L is a Lindbladian that satis-
fies a LR-bound and ∆ is an arbitrary, potentially global
perturbation. A naive bound would imply that for short
times, the expectation value of this perturbed evolution
could be up to t‖∆‖∞→∞ away from the unperturbed
value, where ‖∆‖∞→∞ = sup∥X∥∞≤1 ‖∆(X)‖∞. How-
ever, we show that only the effect of ∆ on few-qubit ob-
servables contributes to the bound. A precise statement
is given in Thm. 9.1. of the Supplementary Note 9. As
an illustrative example, assume that ∆ is a small all-to-
all coupling between all pairs of qubits of order τ , e.g.

∆(X) = τ

n∑
i,j=1,i̸=j

i[σ(i)
x σ(j)

x , X]. (4)

Clearly, such an evolution does not satisfy a LR-bound
and ‖∆‖∞→∞ = O(τn2). However, we show that
under such a perturbation, the expectation value is only
perturbed by O(tτn), which corresponds to the local
effect of this global perturbation. To show this, we once
again resort to LR bounds and the fact that we only
need to measure local observables. Taken together, these
results show that our protocol is robust to both SPAM
noise and deviations from the assumptions we impose
on the generators.

Learning the structure of the interactions: So far,
we have also assumed that we have knowledge of the
interaction graph. However, an astute reader might have
remarked that we do not require this explicit knowledge
for our protocol to work: indeed, we just use it to decide
which parameters to estimate and need to restrict the
possible interaction graphs to have an LR bound for
the evolution. Thus, a brute-force approach to learning
the interaction structure also follows from our results
if we wish to estimate all k-body couplings of strength
at least η: we just estimate all k body-couplings up to
a precision η/4 and discard all of those that we see are
smaller than 3

4η. This can be done with a number of
samples that scales like O(9kη−2polylog(η−1) log(n)).

III. NUMERICAL EXAMPLES

To investigate the performance of our protocol for ex-
perimentally relevant parameters, we performed numeri-
cal simulations of a multi-qubit superconducting device.
We consider a system with tunable couplers similar to the
Google Sycamore chip [1]. This design relies on a can-
cellation of the next-next-nearest coupling between two
qubits through the direct coupling with a coupler [49, 50].
We consider a generic system consisting of a 2D grid of
qubits with exchange coupling between nearest neigh-
bors. The dynamics are described through a Lindblad
equation with the effective two-qubit Hamiltonian for

each neighboring qubit pair (i, j) [49, 50]

Hij =
∑
k=i,j

1

2
ω̃kσ

(k)
z +

[
gigj
∆ij

+ gij

]
(σ

(i)
+ σ

(j)
− +σ

(i)
− σ

(j)
+ ) (5)

for i 6= j = 1, . . . , n and a dissipation term acting on
the i’th qubit and having jump operators σ

(i)
− , σ

(i)
+ (gen-

eralised amplitude damping) and σ
(k)
z (pure dephasing).

Here ω̃k = ωk +
g2
k

∆k
is the Lamb-shifted qubit frequency,

gi is the coupling between the i’th qubit and the cou-
pler, and gij is the direct two-qubit coupling. We have
assumed that ∆k = ωk − ωc < 0 where ωc (ωk) is the
frequency of the coupler (k’th qubit) and have defined
1/∆ij = (1/∆i + 1/∆j)/2. By adjusting the frequen-
cies of the coupler and the qubits, the effective qubit-
qubit interaction can be canceled up to experimental
precision. Typical qubit frequencies are around 5 − 6
GHz [1]), while ∆k ∼ −1 GHz, gij ∼ 10 − 20 MHz,
and gj ∼ 100 MHz [49, 50]. In our simulation, we as-
sume that all qubit frequencies and couplings have been
characterized up to a precision of 100 kHz using standard
characterization techniques [1] and consequently, that all
couplers have been tuned off with the same precision i.e.
gigj
∆ij

+ gij ∼ 100 kHz. Considering a layout of 16 qubits
(see below for the interaction graph), we randomly sam-
ple all qubit frequencies and qubit-qubit interactions ac-
cording to Gaussian distributions with zero mean and
standard deviation of 100 kHz.

In addition to the Hamiltonian evolution, we also in-
clude dissipative dynamics in our numerical simulation.
We include quasi-static random frequency shifts of the
qubits leading to effective dephasing with a characteris-
tic timescale of T ∗

2 ∼ 150 µs as well as pure dephasing
resulting in a transverse relaxation on a timescale T2 ∼ 60
µs representing state of the art coherence times [1, 50].
Finally, we include longitudinal relaxation of the qubits
through an amplitude damping channel on the time scale
of T1 ∼ 60 µs. We refer to Supplementary Note 2for a
more detailed discussion and Table III for the sampled
parameters of our simulation.

In Fig. 2, we plot the average estimation error as a func-
tion of the temporal resolution set by the value of the
initial time step, t0. For this plot, we only included the
Hamiltonian evolution in the numerical simulation to-
gether with quasi-static random frequency shifts of the
qubits. This was to lower the run time of the simulation
allowing us to investigate the performance for a broad
range of initial times. We assumed the total run time of
the experiment was fixed such that t0 × S is constant,
where S is the number of samples. From the figure, we
clearly see the improved scaling of our protocol of the
estimation error with the time-step size compared to us-
ing a finite difference method [30–32]. Besides already
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performing better at the time resolution for moderate
values of the initial time, we see that after a threshold
initial time around 10−0.7, the performance is not limited
by the initial time, only the shot noise. In contrast, the
finite difference method still requires smaller initial times
to improve on the error with the same shot noise.

We also investigated the robustness of our method with
respect to shot-noise for a fixed time resolution. For these
simulations, we again only included the Hamiltonian evo-
lution together with quasi-static random frequency shifts
of the qubits to have a practical run time of the simu-
lation. From Fig. 3 we see that for a fixed time reso-
lution of 30 ns our protocol results in an average esti-
mation error that improves linearly with the shot-noise
down to an error below 10−4. This is in contrast to finite
difference methods, where the estimation error plateaus
around 10−3 since it becomes limited by the time reso-
lution. This is a clear effect of the exponential improve-
ment of our protocol w.r.t. the time resolution compared

to finite difference methods.
Finally, we performed a numerical simulation that in-

cluded the pure dephasing and amplitude damping noise
as described above and estimated the σXσX couplings
between the qubits. As shown in Fig. 4, we obtain re-
liable estimates of all 22 couplings demonstrating how
our method allows the estimation of specific terms in the
Hamiltonian despite the dynamics being governed by the
full (dissipative) Lindbladian. For simplicity, we did not
explicitly estimate the single qubit Hamiltonian parame-
ters and the Lindbladian decay rates.

For all estimations above, we fitted to degrees 1 − 7
and picked the one with the smallest average error on
the sampled points. In Supplementary Note 6 we give
explicit rigorous bounds on how to pick the parameters
like the degree for a given desired precision, but we be-
lieve that a heuristic approach like the one pursued in
the numerics performs well in practice: as long as the
interpolating polynomial approximates well the observed
points and new points we did not fit to, the degree should
be adequate. We note that, although the robust interpo-
lation methods of Ref. [38], in principle, require random
times, we performed numerical experiments with deter-
ministic times on systems with 16 qubits.

IV. DISCUSSION

In conclusion, we have proposed a Hamiltonian learn-
ing protocol based on robust polynomial interpolation
that has rigorous guarantees on the estimation error. Our
protocol offers an exponential reduction in the required
temporal resolution of the measurements compared to
previous methods and a quadratic reduction in the over-
all sampling complexity for finite-range interactions. Our
protocol only requires the preparation of single qubit
states and single qubit measurements in the Pauli bases
and is robust to various imperfections such as SPAM er-
rors and Hamiltonian perturbations. This makes it suit-
able for the characterization of both near-term and future
quantum devices.

Furthermore, the recovery of multiple parameters can
be highly parallelized by resorting to a variation of clas-
sical shadows to quantum channels we improve here.

Our method allows for the characterization of a general
local Markovian evolution consisting of a unitary Hamil-
tonian part and a dissipative part. While we have only
explicitly considered single-qubit dissipation here, we be-
lieve that our protocol is also valid for general multi-qubit
dissipation as outlined above but leave the explicit anal-
ysis of this to future work. We have also analysed the
performance of our protocol for algebraically decaying
interactions which we believe to be the first results for
Hamiltonian learning of such systems. The convergence
of our method can be ensured for interactions decaying
faster than the dimension of the system. We note, how-
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FIG. 4.

ever, that improved bounds on the locality of such sys-
tems might improve this result in the future.

V. METHODS

Here we detail and formalize our results regarding the
estimation error guarantees of our protocol. In partic-
ular, we detail the use of Lieb-Robinson bounds on the
spread of correlations in the system to bound the error.
Furthermore, we outline the shadow tomography method
for the parallelization of the measurements.

Derivative estimation: Define f(t) = tr
[
etL(O)ρ

]
and

LB to be the Lindbladian truncated to a subregion B
of the interaction graph. Our protocol consists of first
estimating f(ti) up to an error O(ϵ) for random times
t1, . . . , tm. The curve of f(t) is then fitted to a low-
degree polynomial p, and p′(0) is taken as an estimate
for the derivative f ′(0) = tr [L(O)ρ]. Below we prove the
accuracy and robustness of this method. The first step is
Theorem 1, which establishes under what conditions f(t)
is indeed well-approximated by a low-degree polynomial.

Theorem 1. Let L be a local Lindbladian on a D-
dimensional lattice Λ. Moreover, let tmax, ϵ > 0 and OY

be a 2-qubit observable, supported on some region Y ∈ Λ,
such that ‖OY ‖ ≤ 1, holds. Then there is a polynomial
p of degree

d = O
[
poly(tmax, log(ϵ

−1))
]
, (6)

such that for all 0 ≤ t ≤ tmax:∣∣tr [etLΛ(OY )ρ
]
− p(t)

∣∣ ≤ ϵ, (7)

and p′(0) = tr [LΛ(OY )ρ], holds.
The main technical tool required for the proof are Lieb-

Robinson bounds (LRB) [43–48], which ascertain that
the dynamics of local observables under a time evolu-
tion with a local Lindbladian have an effective lightcone.
More precisely, we need that for regions Y ⊂ B we have

‖(etLB − etLΛ)(OY )‖ ≤
c1 exp(−µ dist(Y,Λ\{B}))(evt − 1), (8)

to hold for constants c1, µ and v, where dist() is the dis-
tance in the graph.

From the LRB we can show that the dynamics is well-
approximated by a low-degree polynomial. We leave the
details of the proof to the Supplementary Note 3 and only
discuss the main steps here. The general idea of going
from the LRB to the low-degree polynomial is to truncate
the Taylor series of the evolution under LB for B large
enough and take that as the approximating polynomial.
As the derivatives of the evolution under LB only scale
with the size of the region B, this allows us to show
that the Taylor series converges quickly. To simplify the
presentation we did not give explicit numerical constants
in the bounds, but in Sec.A of the Supplementary Note 7
we explicitly determine the constants for the polynomial
approximation.

Now that we have concluded that the expectation value
is well-approximated by a small degree polynomial, we
continue to show that we can reliably extract the deriva-
tive from approximations of the expectation values for
different t. This is formally stated in the following theo-
rem.
Theorem 2. Let L be a Lindbladian on a D-dimensional
regular lattice. Suppose we can measure the expectation
value of two-body Pauli observables on Pauli eigenstates
in the time interval [t0, tmax] under L for t0 as

t−1
0 = O

[
polylog(ϵ−1)

]
(9)

and tmax = 2 + t0. Then, measuring the expectation
values at

m = O
[
polylog(ϵ−1)

]
(10)

random times up to precision O(ϵ/ polylog(ϵ−1)), is suffi-
cient to obtain an estimate of the Lindbladian coefficients
âi of ai satisfying

|âi − ai| = ϵ. (11)
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This yields a total sample complexity of S =
O
(
ϵ−2 polylog(ϵ−1)

)
.

Importantly, Theorem 2 bypasses both requiring small
initial times and O(ϵ−4) sample complexities.

To go from Thm. 1 to Thm. 2 we first need to estab-
lish that we can robustly infer an approximation of p
from finite measurement data subject to shot noise. Sub-
sequently, we need to show that it will also allow us to
reliably estimate p′(0). Let us start with approximating
p.

a. Robust polynomial interpolation: We will resort
to the robust polynomial interpolation methods of [38]
to show Thm. 2. We review their methods in more de-
tail in Supplementary Note 6. In our setting, the ran-
domly sampled point xi, i ∈ 1,m correspond to different
times ∈ [t0, tmax] and the yi ∈ R to approximations of
the expectation value of the evolution at that time. Fur-
thermore, the yi satisfy the promise that there exists a
polynomial p of degree d and some σ > 0 such, that

yi = p(xi) + wi, |wi| ≤ σ, (12)

hold, for strictly more than half of the yi. The rest might
be outliers. In our setting, the magnitude of σ corre-
sponds to the amount of shot noise present in the esti-
mates of the expectation values.

The authors of [38] then show that by sampling
m = O(d log(d)) points from the Chebyshev measure on
[t0, tmax], a combination of ℓ1 and ℓ∞ regression allows
us to find a polynomial p̂ of degree d that satisfies:

max
x∈[t0,tmax]

|p(x)− p̂(x)| = O(σ). (13)

Although the details of the ℓ1 and ℓ∞ interpolation are
more involved and described in the Supplementary Note
4, a rough simplification of the procedure is the following.
First, we find a polynomial p1 of degree d that minimizes∑

i |p1(xi) − yi|. After finding p1 we compute the poly-
nomial p∞ that minimizes maxi |p∞(xi)− (yi − p1(x1))|.
We then output p̂ = p1 + p∞ as our guess polynomial.
Note that finding both p1 and p∞ can be cast as linear
programs and thus can be solved efficiently [51].

By combining this result with Thm. 1, we robustly
extract a polynomial that approximates the curve t 7→
tr
[
etL(OY )ρ

]
up to O(ϵ) for t ∈ [t0, tmax]. Indeed, we

only need to estimate the expectation value f(ti) up to ϵ
for enough ti and run the polynomial interpolation.

Note that Eq. (13) only allows us to conclude that
p − p̂ is small. However, we are ultimately interested in
the curve’s derivative at t = 0, as the derivative contains
information about the parameters of the evolution. For
arbitrary smooth functions, two functions being close
on an interval does not imply that their derivatives are
close as well. Fortunately, for polynomials the picture
is simpler. By the Thm. 1 one has to estimate the
first derivative of a polynomial at t = 0 but not of the
actual function. A classical result from approximation
theory, Markov brother’s inequality [52], allows us to

quantify the deviation of the derivatives given a bound
on the degree and a bound like Eq. (13). Putting these
observations together, we arrive at Thm. 2. The details
of the proof are given in the Supplementary Note 4.

Generalizations of Thm. 2: We also generalize Thm. 2
in two directions. First, we extend the results to inter-
actions acting on k qubits instead of 2. As long as the
noise is constrained to act on 1 qubit and k = O(1), this
generalization is straightforward. Indeed, we only need
to measure an observable that has the same support as
the Pauli string and does not commute with it, as it is
then always possible to find a product initial state that
isolates the parameter. Generalizing to noise acting on
more than one qubit makes it more difficult to isolate
the parameters of the evolution as described in the main
text. In that case, it then becomes necessary to solve
a system of linear equations that couples different pa-
rameters. Although our method still applies, analysing
this scenario would require picking the observables and
initial states in a way that the system of equations is
well-conditioned and we will not discuss this case in
detail here.

Second, another important generalization is to go be-
yond short-range systems. Although we have only stated
our results for short-range systems in Thm. 2, our tech-
niques apply to certain long-range systems. As this gen-
eralization is more technical, we leave the details to the
Supplementary Note 4 and constrain ourselves to dis-
cussing how the statement of Thm. 2 changes for more
general interactions.

Only one aspect of the previous discussion changes sig-
nificantly for long-range interactions: how the r.h.s. of
Eq. (8) generalizes. More precisely, let us assume that
for some injective function h : R→ R with h(x) = o(1),
we have

‖(etLB − etLΛ)(OY )‖ ≤
h(dist(Y, V \{B}))(evt − 1). (14)

For instance, for short-range or exponentially decaying
interactions, h will be an exponentially decaying func-
tion. Then we can restate Thm. 2 in terms of h−1. As
we show in Thm. 6.1. of the Supplementary Note 6,
for a precision parameter ϵ > 0 and evolution on a D-
dimensional lattice, assume that we pick the initial time
as

t0 = O

(h−1

(
ϵ

2(e2.5v − 1)

)D

log(ϵ−1)

)−2
 . (15)

Furthermore, assume that we estimate the expecta-
tion value of local observables up to precision O(ϵ) at

Õ
[(

h−1
(

ϵ
2(e2.5v−1)

))D
log(ϵ−1))

]
points. Then we can
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estimate each parameter up to an error of

O

ϵ(h−1

(
ϵ

2(e2.5v − 1)

)D

log(ϵ−1)

)2
 , (16)

through, the same procedure as in the local case. Note
that the error in Eq. (16) only tends to 0 as ϵ → 0 if
h−1

(
ϵ

2(e2.5v−1)

)D
log(ϵ−1) = o(ϵ−1), holds, i.e. the func-

tion h must decay fast enough. In the Supplementary
Note 5, we discuss examples of systems with algebraically
decaying interactions for which this is satisfied. For in-
stance, for potentials that decay like r−α with α > 5D−1

we obtain that h−1(ϵ) = O(ϵ−
1

α−3D ), holds. We summa-
rize the resulting resources in in the Supplementary Table
6.

But the message of bounds like (16) is that it is still
possible to obtain bounds on the error independent of the
system’s size beyond short-range systems. However, this
comes at the expense of requiring higher precision and
sampling from more points.

Another important observation is that the assumption
that we know the structure of the interactions exactly is
not required. Indeed, our method is robust to Hamilto-
nian perturbations of the model as long as the resulting
evolution still satisfies a LR bound. For instance, suppose
that there actually is a non-negligible interaction between
qubits i and j that is not accounted by our model. As
long as the resulting time evolution still satisfies a LR
bound, our results still hold. As the linear equation to
isolate any parameter is independent of that parameter,
we can still apply our techniques in this setting.

Parallelizing the measurements: To parallelize the
measurement procedure and ensure that we can obtain
experimental data to estimate all parameters simulta-
neously, we resort to a classical shadow process tomog-
raphy method. Although some papers in the literature
already discussed classical shadows for process tomog-
raphy [39, 40], we present a simplified and streamlined
proof that also gives an improved sample complexity for
the observables relevant to this work in the Supplemen-
tary Note.

More precisely, we show that given a quantum channel
Φ, Pauli strings P 1

a , . . . , P
K1
a that differ from the identity

on at most ωa sites and Pauli strings P 1
b , . . . P

K2

b that
differ from the identity on at most ωb sites, it is possible
to obtain estimates êm,l of 2−n tr

[
Pm
a Φ(P l

b)
]

satisfying

|2−n tr
[
Pm
a Φ(P l

b)
]
− êm,l| ≤ ϵ (17)

for all m, l with probability at least 1− δ from

O(3ωa+ωbϵ−2 log(K1K2δ
−1)) (18)

samples. More precisely, the protocol of shadow process
tomography requires preparing Eq. (18) many different
random initial product Pauli eigenstates and measuring
them in random Pauli bases. This makes it feasible to
implement it in the near-term. We discuss it in more
detail in the Supplementary Note 7, as this protocol may
be of interest beyond the problem at hand.

The shadow process tomography protocol is ideally
suited for our Hamiltonian learning protocol. Indeed,
note that to learn k-body interactions, we only required
the preparation of initial states ρl that differ from the
maximally mixed state on k qubits and measure Pauli
strings Pm supported on at most k qubits. Further-
more, for a system of n qubits in total, there are at most
16k
(
n
k

)
≤ 16knk such states or Pauli strings. We conclude

that we can estimate all required expectation values for
a given time step using

O(9kϵ−2k log(nδ−1)) (19)

samples. As our protocol requires estimating expecta-
tion values at a total of polylog(ϵ−1) time steps, we can
gather the data required to recover all the O(n) parame-
ters of the evolution from O(ϵ−2polylog(n, ϵ−1)) samples
through the shadow process tomography protocol when-
ever k = O(1).

VI. DATA AVAILABILITY

The data generated and analyzed during the current
study are available from the authors upon request.

VII. CODE AVAILABILITY

The computer codes developed and tested by the au-
thors, and the input files used for producing the presented
data, are available upon request. The current version of
the codes is not designed for broad distribution and re-
quires substantial hardware resources for reproducing the
presented results. Correct installation of the current ver-
sion of the codes, preparation of correct input files, and
correct analysis of the results require substantial exper-
tise, and may need separate instructions in each specific
case.

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.
Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Bran-
dao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,

E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
Travis S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,



10

D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
mark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-
Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin-
tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank,
K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre-
vithick, A. Vainsencher, B. Villalonga, T. White, Z. J.
Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Marti-
nis. Quantum supremacy using a programmable super-
conducting processor. Nature, 574(7779):505–510, 2019.

[2] H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C.
Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu,
X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan,
G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu,
and J. W. Pan. Quantum computational advantage using
photons. Science, 370(6523):1460–1463, dec 2020.

[3] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter,
D. Barredo, K. N. Schymik, V. Lienhard, L. P. Henry,
T. C. Lang, T. Lahaye, A. M. Lauchli, and A. Browaeys.
Quantum simulation of 2d antiferromagnets with hun-
dreds of rydberg atoms. Nature, 595(7866):233–238, jul
2021.

[4] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Se-
meghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pich-
ler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner,
V. Vuletić, and M. D. Lukin. Quantum phases of matter
on a 256-atom programmable quantum simulator. Na-
ture, 595(7866):227–232, jul 2021.

[5] J. I. Cirac and P. Zoller. Goals and opportunities in
quantum simulation. Nat. Phys., 8(4):264–266, apr 2012.

[6] I. L. Chuang M. A. Nielsen. Quantum Computation and
Quantum Information. Cambridge University Pr., De-
cember 2010.

[7] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham,
R. Parekh, U. Chabaud, and E. Kashefi. Quantum certifi-
cation and benchmarking. Nat. Rev. Phys., 2(7):382–390,
jun 2020.

[8] M. D. Shulman, S. P. Harvey, J. M. Nichol, S. D. Bartlett,
A. C. Doherty, V. Umansky, and A. Yacoby. Suppressing
qubit dephasing using real-time hamiltonian estimation.
Nat. Commun, 5(1), oct 2014.

[9] J. Zhang and M. Sarovar. Quantum hamiltonian identi-
fication from measurement time traces. Phys. Rev. Let.,
113(8):080401, aug 2014.

[10] J. Zhang and M. Sarovar. Identification of open quan-
tum systems from observable time traces. Phys. Rev. A.,
91(5):052121, may 2015.

[11] C. Di Franco, M. Paternostro, and M. S. Kim. Hamil-
tonian tomography in an access-limited setting without
state initialization. Phys. Rev. Lett., 102:187203, May
2009.

[12] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gam-
betta. Procedure for systematically tuning up cross-talk
in the cross-resonance gate. Phys. Rev. A, 93(6):060302,
jun 2016.

[13] A. Sone and P. Cappellaro. Hamiltonian identifiability
assisted by a single-probe measurement. Phys. Rev. A,
95(2):022335, feb 2017.

[14] G. O. Samach, A. Greene, J. Borregaard, M. Christandl,
D. K. Kim, C. M. McNally, A. Melville, B. M. Niedziel-
ski, Y. Sung, D. Rosenberg, M. E. Schwartz, J. L. Yoder,
T. P. Orlando, J. I-J. Wang, S. Gustavsson, M. Kjaer-

gaard, and W. D. Oliver. Lindblad tomography of a su-
perconducting quantum processor. May 2021.

[15] S. T. Wang, D. L. Deng, and L. M. Duan. Hamiltonian
tomography for quantum many-body systems with arbi-
trary couplings. New J. Phys, 17(9):093017, sep 2015.

[16] J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A.
Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G.
Rarity, A. Laing, and M. G. Thompson. Experimental
quantum hamiltonian learning. Nat. Phys., 13(6):551–
555, mar 2017.

[17] A. Valenti, E. van Nieuwenburg, S. Huber, and E. Gre-
plova. Hamiltonian learning for quantum error correc-
tion. Phys. Rev. Research, 1(3):033092, nov 2019.

[18] A. Valenti, G. Jin, J. Léonard, S. D. Huber, and E. Gre-
plova. Scalable hamiltonian learning for large-scale out-
of-equilibrium quantum dynamics. Physical Review A,
105(2):023302, 2022.

[19] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory.
Robust online hamiltonian learning. New J. Phys,
14(10):103013, oct 2012.

[20] N. Wiebe, C. Granade, C. Ferrie, and D. G. Cory.
Hamiltonian learning and certification using quantum re-
sources. Phys. Rev. Lett., 112:190501, May 2014.

[21] N. Wiebe, C. Granade, C. Ferrie, and D. Cory. Quantum
hamiltonian learning using imperfect quantum resources.
Phys. Rev. A, 89:042314, Apr 2014.

[22] A. Shabani, M. Mohseni, S. Lloyd, R. L. Kosut, and
H. Rabitz. Estimation of many-body quantum hamilto-
nians via compressive sensing. Phys. Rev. A, 84:012107,
Jul 2011.

[23] X. L. Qi and D. Ranard. Determining a local hamiltonian
from a single eigenstate. Quantum, 3:159, jul 2019.

[24] E. Chertkov and B. K. Clark. Computational inverse
method for constructing spaces of quantum models from
wave functions. Phys. Rev. X, 8(3):031029, jul 2018.

[25] E. Bairey, I. Arad, and N. H. Lindner. Learning a local
hamiltonian from local measurements. Phys. Rev. Lett.,
122:020504, Jan 2019.

[26] Anurag A., Srinivasan A., Tomotaka K., and Mehdi S.
Sample-efficient learning of interacting quantum systems.
Nat. Phys., 17(8):931–935, may 2021.

[27] T.J. Evans, R. Harper, and S.T. Flammia. Scalable
bayesian hamiltonian learning. December 2019.

[28] L. Zhi, Z. Liujun, and H.H. Timothy. Hamiltonian
tomography via quantum quench. Phys. Rev. Let.,
124(16):160502, apr 2020.

[29] J. Haah, R. Kothari, and E. Tang. Optimal learning
of quantum Hamiltonians from high-temperature Gibbs
states, 2021. arXiv:2108. 04842v1.

[30] M. P. da Silva, O. Landon-Cardinal, and D. Poulin. Prac-
tical characterization of quantum devices without tomog-
raphy. Phys. Rev. Lett., 107:210404, Nov 2011.

[31] E. Bairey, C. Guo, D. Poletti, N. H. Lindner, and I. Arad.
Learning the dynamics of open quantum systems from
their steady states. N. J. Phys., 22(3):032001, mar 2020.

[32] A. Zubida, E. Yitzhaki, N. H. Lindner, and E. Bairey.
Optimal short-time measurements for hamiltonian learn-
ing. August 2021. arXiv:2108. 08824.

[33] A. Gu, L. Cincio, and P.J. Coles. Practical black box
hamiltonian learning. June 2022.

[34] W. Yu, J. Sun, Z. Han, and X. Yuan. Practical and
efficient hamiltonian learning. January 2022.

[35] D. Rattacaso, G. Passarelli, and P. Lucignano. High-
accuracy hamiltonian learning via delocalized quantum



11

state evolutions. Quantum, 7:905, 2023.
[36] K. Rudinger and R. Joynt. Compressed sensing for hamil-

tonian reconstruction. Phys. Rev. A, 92:052322, Nov
2015.

[37] C. Rouze and D. Stilck França. Learning quan-
tum many-body systems from a few copies, 2021.
arXiv:2107.03333v2.

[38] D. Kane, S. Karmalkar, and E. Price. Robust Polynomial
Regression up to the Information Theoretic Limit. In
2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 391–402, Berkeley, CA,
October 2017. IEEE.

[39] J. Kunjummen, M.C. Tran, D. Carney, and J.M. Taylor.
Shadow process tomography of quantum channels, 2021.
arXiv:2110.03629v2.

[40] R. Levy, D. Luo, and B.K. Clark. Classical Shadows for
Quantum Process Tomography on Near-term Quantum
Computers, 2021. arXiv:2110.02965v1.

[41] M. M. Wolf. Quantum channels & operations: Guided
tour. Lecture notes available at http://www-m5. ma. tum.
de/foswiki/pub M, 5, 2012.

[42] H.-Y. Huang, R. Kueng, and J. Preskill. Predicting many
properties of a quantum system from very few measure-
ments. Nature Physics, 16(10):1050–1057, jun 2020.

[43] E. H. Lieb and D. W. Robinson. The finite group ve-
locity of quantum spin systems. Commun. Math. Phys,
28(3):251–257, sep 1972.

[44] D. Poulin. Lieb-Robinson Bound and Locality for Gen-
eral Markovian Quantum Dynamics. Phys. Rev. Let.,
104(19):190401, May 2010.

[45] M. Kliesch, C. Gogolin, and J. Eisert. Lieb-Robinson
Bounds and the Simulation of Time-Evolution of Local
Observables in Lattice Systems. In Volker Bach and Luigi
Delle Site, editors, Many-Electron Approaches in Physics,
Chemistry and Mathematics, pages 301–318. Springer In-
ternational Publishing, Cham, 2014. Series Title: Math-
ematical Physics Studies.

[46] M. B. Hastings. Locality in Quantum Systems.
arXiv:1008. 5137 [math-ph, physics:quant-ph], August
2010. arXiv: 1008. 5137.

[47] M. Kliesch, C. Gogolin, and J. Eisert. Lieb-robinson
bounds and the simulation of time-evolution of local
observables in lattice systems. In Many-Electron Ap-
proaches in Physics, Chemistry and Mathematics, pages
301–318. Springer International Publishing, 2014.

[48] T. Kuwahara and K. Saito. Strictly Linear Light Cones
in Long-Range Interacting Systems of Arbitrary Dimen-
sions. Phys. Rev. X, 10(3):031010, July 2020.

[49] F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Camp-
bell, T. P. Orlando, S. Gustavsson, and W. D. Oliver.
Tunable coupling scheme for implementing high-fidelity
two-qubit gates. Phys. Rev. Applied, 10:054062, Nov
2018.

[50] Y. Sung, L. Ding, J. Braumüller, A. Vepsäläinen, B. Kan-
nan, M. Kjaergaard, A. Greene, G. O. Samach, C. Mc-
Nally, D. Kim, A. Melville, B. M. Niedzielski, M. E.
Schwartz, J. L. Yoder, T. P. Orlando, S. Gustavsson,
and W. D. Oliver. Realization of high-fidelity cz and zz-
free iswap gates with a tunable coupler. Phys. Rev. X,
11:021058, Jun 2021.

[51] L. Vandenberghe S. Boyd. Convex Optimization. Cam-
bridge University Press, March 2004.

[52] W. Markoff and J. Grossmann. über Polynome, die in
einem gegebenen Intervalle möglichst wenig von Null ab-

weichen. Mathematische Annalen, 77(2):213–258, June
1916.

VIII. ACKNOWLEDGEMENTS

D.S.F. was supported by VILLUM FONDEN via the
QMATH Centre of Excellence under Grant No. 10059
and the European Research Council (Grant agreement
No. 818761). This work is part of HQI initiative
(www.hqi.fr) and DSF was supported by France 2030 un-
der the French National Research Agency award number
“ANR-22-PNCQ-0002”. A.H.W. thanks the VILLUM
FONDEN for its support with a Villum Young Investiga-
tor Grant (Grant No. 25452). J.B. acknowledges support
from The AWS Quantum Discovery Fund at the Harvard
Quantum Initiative and funding from the NWO Gravi-
tation Program Quantum Software Consortium. V.V.D.
work is a part of the research program NWO QuTech
Physics Funding (QTECH, programme 172) with project
number 16QTECH02, which is (partly) financed by the
Dutch Research Council (NWO); the work was partially
supported by the Kavli Institute of Nanoscience Delft.
L.A.M. was supported by the Netherlands Organisation
for Scientific Research (NWO/OCW), as part of the
Quantum Software Consortium program (project num-
ber 024.003.037 / 3368).

IX. AUTHOR CONTRIBUTION STATEMENTS

DSF, AHW and JB conceived the original project.
DSF, AHW, and LM conducted the analytical deriva-
tions with input from VVD and JB. The software for the
many-qubit simulations was written and tested by VVD.
LM and DSF performed the numerical analysis with in-
put from AHW and JB. All authors contributed to the
discussion of the results and writing of the manuscript.

X. COMPETING INTERESTS STATEMENT

The authors declare no competing interests.

XI. FIGURE CAPTIONS

Fig. 1: Sketch of the proposed protocol to estimate
an unknown Lindbladian, L, of a multi-qubit device. In
the first step of classical pre-processing, the interaction
graph between qubits is identified from the physical con-
nectivity of the device. Then the unknown Lindbladian
is written in a general form using an operator basis of
Pauli strings, {Pi} and a suitable set of initial states and
observables, {(ρj , Oi)} is chosen. In the second step of
quantum processing, a time trace (expectation value) of
each element of the set is obtained from the preparation
and evolution of single qubit Pauli eigenstates on the
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quantum device followed by measurements in single qubit
Pauli basis. In the last step of classical post-processing,
each time trace is fitted to a low-degree polynomial to es-
timate the derivative of the observable. From these, an
estimate of the Lindbladian, Lest, is obtained from the
Master equation.

Fig. 2: The median quality of recovery of of one 2-
qubit coupling using interpolation methods and those
based on numerical derivatives [30–32] as a function of
the initial time. We assumed that the total time of the
experiment is fixed. That is, we let the initial time times
the total number of samples for each time step to be a
constant (107 for this plot). We used the expectation
value of 40 equally spaced times which had the same dis-
tance between each other as the initial time. For each
initial time, we simulated 1000 instances of the recovery
protocol, always adding shot noise with the same stan-
dard deviation to the data. The dots correspond to the
median quality of recovery, whereas the lower and upper
end correspond to the 25 and 75 percentile. We ran the
simulation on a system with 16 qubits.

Fig. 3: Median quality of recovery of one 2-qubit cou-
pling using interpolation methods and those based on
numerical derivatives [30–32] as a function of the stan-
dard deviation of the shot noise. The initial time for
this estimate is 30 ns and here we also generated 1000
instances of the noise with a given standard deviation.

The plot shows the median quality of the recovery and
the 25 and 75 percentiles. We see that the quality of the
recovery for the interpolation decays approximately lin-
early with the shot noise, before plateauing at shot noise
−6. For the numerical derivative, we see two regimes:
first a linear decay of the error until a shot of noise of
order 10−3. After that, the error plateaus and does not
improve even with smaller shot noise. This is because for
numerical derivative methods, at this point the dominant
error source comes from the choice of initial time, whereas
for interpolation it is at −6. Importantly, we see that in-
terpolation consistently provides estimates that are no
worse than the numerical derivatives method.

Fig. 4: Error in the recovery of σXσX couplings of a
quantum system with a geometry similar to the Sycamore
processor using numerical derivatives and interpolation.
Note that while we only plot the estimation of the Hamil-
tonian couplings, the numerical simulation included the
full Lindbladian including both dephasing due to quasi-
static random frequency shifts of the qubits, pure de-
phasing and amplitude damping noise. The initial time
for each coupling was 0.1 µs in the simulation. Note that
interpolation consistently outperforms numerical deriva-
tives, sometimes by several orders of magnitude. We
chose the time steps and the number of samples to com-
pare both methods as in Fig. 2.
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Supplementary Note 1: Selecting States and Observables to Isolate Parameters

Any Hamiltonian can be written as

H =
∑
m1

∑
α1

a(m1)
α1

σ(m1)
α1

+
∑

m1,m2

∑
α1α2

a(m1,m2)
α1α2

σ(m1)
α1

σ(n)
α2

+ . . . (1)

≡
∑
m1

∑
α1

a(m1)
α1

H(m1)
α1

+
∑

m1,m2

∑
α1α2

a(m1,m2)
α1α2

H(m1,m2)
α1α2

+ . . . ,

where Roman indices identify the subspace on which the operator acts, and Greek indices identify the Pauli operator,
e.g. α = x. No assumption about the dimension or structure of the hermitian Hamiltonian is needed for this
expansion to be valid. For a Markovian noise environment, the evolution of a quantum system ρ0 is described by a
Master equation of the form

dρt
dt

∣∣∣
t=0

= −i[H, ρ0] +
n∑

m=1

3∑
µ,ν=1

L(m)
µ,ν (σ

(m)
µ ρ0σ

(m)
ν

†
− 1

2
{σ(m)

ν

†
σ(m)
µ , ρ0}), (2)

where H is the Hamiltonian describing the evolution of the system, L(m)
µ,ν are the elements of the Lindblad matrix,

expressed in an operator basis consisting of the different combinations of single-qubit Pauli matrices {σ}. Multiplying
it from the right hand side on an observable O and taking the trace, we can write

d

dt
tr [ρtO] |t=0 = −i

∑
m1

∑
α1

a(m1)
α1

tr
[
[H(m1)

α1
, ρ0]O

]
− i

∑
m1m2

∑
α1α2

a(m1m2)
α1α2

tr
[
[H(m1m2)

α1α2
, ρ0]O

]
− . . .

. . .−i
∑

m1...mk

∑
α1...αk

a(m1...mk)
α1...αk

tr
[
[H(m1...mk)

α1...αk
, ρ0]O

]
. . . (3)

+
∑
m

∑
µ,ν

L(m)
µν tr

[
(σ(m)

µ ρ0σ
(m)
ν

†
− 1

2
{σ(m)

ν

†
σ(m)
µ , ρ0})O

]
.

Let us introduce the notation

B(m1,...,mk)
α1,...,αk

(ρ0, O) ≡ −i tr
[
[H(m1...mk)

α1...αk
, ρ0]O

]
. (4)

To isolate the coefficients {a(m1)
α1 , a

(m1m2)
α1α2 , . . . } we observe the n qubit state with the following density matrix

ρ(i,j)τi,τj = ρ(i)τi ⊗ ρ(j)τj ⊗ ρn−2, τ = {1, 2, 3} (5)

where the i and j are the Pauli qubits, namely ρ
(i,j)
τi,j = (I + σ

(i,j)
τi,j )/2, and ρn−2 is the density matrix of all other

qubits, which we set to be maximally mixed. Using σασβ = δαβI + iεαβγσγ , we can find the following relations

B(i)
α1

(ρ(i,j)τi,τj , O) =
1

2

(
εα1τiγ

(
tr
[
(σ(i)

γ ⊗ I)O
]
+ tr

[
(σ(i)

γ ⊗ σ(j)
τj )O

]))
, (6)
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B(j)
α1

(ρ(i,j)τi,τj , O) =
1

2

(
εα1τjζ

(
tr
[
(I ⊗ σ

(j)
ζ )O

]
+ tr

[
(σ(i)

τi ⊗ σ
(j)
ζ )O

]))
, (7)

B(ij)
α1α2

(ρ(i,j)τi,τj , O) =
1

2

(
εα1τiγ

(
δα2τj tr

[
(σ(i)

γ ⊗ I)O
]
+ tr

[
(σ(i)

γ ⊗ σ(j)
α2

)O
])

(8)

+ εα2τjη

(
δα1τi tr

[
(I ⊗ σ(j)

η )O
]
+ tr

[
(σ(i)

α1
⊗ σ(j)

η )O
]))

,

where O is acting on (i, j) qubits. Selecting O = σ
(i)
ξi

⊗ σ
(j)
ξj

, we can rewrite the latter matrix element as follows

B(i)
α1

(ρ(i,j)τi,τj , σ
(i)
ξi

⊗ σ
(j)
ξj

) = 2εα1τiγδξiγδξjτj =


2εα1τiγδητj if ξi = γ, ξj = η,
2εα1τiγ if ξi = γ, ξj = η, η = τj ,
0 else

, (9)

B(j)
α1

(ρ(i,j)τi,τj , σ
(i)
ξi

⊗ σ
(j)
ξj

) = 2εα1τjζδξjζδξiτi =


2εα1τjζδκτi if ξj = ζ, ξi = κ,
2εα1τjζ if ξj = ζ, ξi = κ, κ = τi,
0 else

,

B(ij)
α1α2

(ρ(i,j)τi,τj , σ
(i)
ξi

⊗ σ
(j)
ξj

) = 2
(
εα1τiγδξiγδξjα2

+ εα2τjηδξiα1
δξjη

)
=


2
(
εα1τiγδηα2

+ εα2τjηδγα1

)
if ξi = γ, ξj = η,

2εα1τiγδτjα2
if ξi = γ, ξj = η, η = τj ,

0 else
,

where η, γ ∈ {x, y, z}. Selecting other observable O = σ
(i)
ξi

, we can rewrite (6)-(8) differently as

B(i)
α1

(ρ(i,j)τi,τj , σ
(i)
ξi
) = εα1τiγδξiγ =

{
εα1τiγ if ξi = γ,
0 else

, B(j)
α1

(ρ(i,j)τi,τj , σ
(i)
ξi
) = 0, (10)

B(ij)
α1α2

(ρ(i,j)τi,τj , σ
(i)
ξi
) = 2εα1τiγδα2τjδξiγ =

{
2εα1τiγδα2τj if ξi = γ,
0 else

.

Next, selecting O = σ
(j)
ξj

, we can rewrite (6)-(8) as

B(i)
α1

(ρ(i,j)τi,τj , O) = 0, B(j)
α1

(ρ(i,j)τi,τj , σ
(i)
ξi
) = εα1τjζδξjζ =

{
εα1τjζ if ξj = ζ,
0 else

, (11)

B(ij)
α1α2

(ρ(i,j)τi,τj , σ
(j)
ξj

) = 2εα2τjηδα1τiδξjη =

{
2εα2τjηδα1τi if ξj = η,
0 else

.

For k ≥ 2 we can write the general matrix element:

B(m1,...,mk)
α1,...,αk

(ρ(i,j)τi,τj , O) =
1

2

(
εαiτiγ

(
tr
[
(σ(1)

α1
⊗ · · · ⊗ σ(i)

γ ⊗ · · · ⊗ σ(j)
αj

⊗ · · · ⊗ σ(k)
αk

)O
]

(12)

+ δαjτj tr
[
(σ(1)

α1
⊗ · · · ⊗ σ(i)

γ ⊗ · · · ⊗ I(j) ⊗ · · · ⊗ σ(k)
αk

)O
] )

+ εαjτjη

(
tr
[
(σ(1)

α1
⊗ · · · ⊗ σ(i)

αi
⊗ · · · ⊗ σ(j)

η ⊗ · · · ⊗ σ(k)
αk

)O
]

+ δαiτi tr
[
(σ(1)

α1
⊗ · · · ⊗ I(i) ⊗ · · · ⊗ σ(j)

η ⊗ · · · ⊗ σ(k)
αk

)O
] ))

,

where O is acting on (1, . . . , k) qubits. Let O = σ
(1)
ξ1

⊗ · · · ⊗ σ
(k)
ξk

, holds. Then we can rewrite (12) as follows

B(1,...,k)
α1,...,αk

(ρ(i,j)τi,τj , σ
(1)
ξ1

⊗ · · · ⊗ σ
(k)
ξk

) ≡ −iT r
(
[σ(1)

α1
⊗ · · · ⊗ σ(k)

αk
, ρ(i,j)τi,τj ](σ

(1)
ξ1

⊗ · · · ⊗ σ
(k)
ξk

)
)

= 2k−1(εαiτiγδα1ξ1 . . . δγξi . . . δαjξj . . . δαkξk + εαjτjηδα1ξ1 . . . δαiξi . . . δηξj . . . δαkξk) (13)

=

{
2k−1(εαiτiγδηαj + εαjτjηδγαi) if ξi = γ, ξj = η, ξ1,...,k = α1,...,k,
0 else

.
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From this result, for k = 3 we get

B(i,j,l)
αiαjαl

(ρ(i,j)τi,τj , σ
(i)
ξi

⊗ σ
(j)
ξj

⊗ σ
(l)
ξl
) = 2(εαiτiγδγ,ξiδαjξj + εαjτjηδαiξiδηξj )δαlξl . (14)

To isolate {L(m)
µν } we recall the assumption that ρn−2 is the density matrix of the maximally mixed state. Then

the Lindblad part of the equation (3) for an observable O = σ
(i)
ξi

⊗ σ
(j)
ξj

is

Lk
µν(ρ

(i,j)
τi,τj , σ

(i)
ξi

⊗ σ
(j)
ξj

) ≡ L(k)
µν tr

[((
σ(k)
µ ρ(i,j)τi,τjσ

(k)
ν − 1

2
{σ(k)

ν σ(k)
µ , ρ(i,j)τi,τj}

))
(σ

(i)
ξi

⊗ σ
(j)
ξj

)

]
(15)

=


L
(i)
µν(2iεµνγδγξi + 2δντiδµξi − 3

2δµνδξiτi)δτjξj if k = i

L
(j)
µν (2iεµνγδγξj + 2δντjδµξj − 3

2δµνδξjτj )δτiξi if k = j

0 else
.

Let us substitute the conditions (9) in (15). We get the following results:

Li
µν(ρ

(i,j)
τi,τj , σ

(i)
ξi

⊗ σ
(j)
ξj

) = L(i)
µν(2iεµνγ + 2δντiδµγ − 3

2
δµνδγτi)δτjη if ξi = γ, ξj = η, (16)

and

Lj
µν(ρ

(i,j)
τi,τj , σ

(i)
ξi

⊗ σ
(j)
ξj

) = L(j)
µν (2iεµνγδγη + 2δντjδµη −

3

2
δµνδητj )δτiγ if ξi = γ, ξj = η. (17)

However, for an observable O = σ
(i)
ξi

the Lindblad part of the equation (3) is the following

Lk
µν(ρ

(i,j)
τi,τj , σ

(i)
ξi
) ≡ L(k)

µν tr

[((
σ(k)
µ ρ(i,j)τi,τjσ

(k)
ν − 1

2
{σ(k)

ν σ(k)
µ , ρ(i,j)τi,τj}

))
(σ

(i)
ξi
)

]
(18)

=


L
(i)
µν(2iεµνγδγξi + δντiδµξi − 3

2δµνδξiτi + δµξiδτiν) if k = i

0 if k = j

0 else
.

Substituting the conditions (10) in (18), we get

Li
µν(ρ

(i,j)
τi,τj , σ

(i)
ξi
) = L(i)

µν(2iεµνγ + 2δντiδµγ − 3

2
δµνδγτi), if ξi = γ. (19)

Next, for an observable O = σ
(i)
ξi

⊗ σ
(j)
ξj

⊗ σ
(l)
ξl

we can write

Lk
µν(ρ

(i,j)
τi,τj , σ

(i)
ξi

⊗ σ
(j)
ξj

⊗ σ
(l)
ξl
) ≡ L(k)

µν tr

[((
σ(k)
µ ρ(i,j)τi,τjσ

(k)
ν − 1

2
{σ(k)

ν σ(k)
µ , ρ(i,j)τi,τj}

))
(σ

(i)
ξi

⊗ σ
(j)
ξj

⊗ σ
(l)
ξl
)

]
=

{
2iL

(l)
µνεµνγδγξlδτiξiδτjξj if k = l

0 else.
. (20)

Then, according to the results of the previous subsection, we get

Ll
µν(ρ

(i,j)
τi,τj , σ

(i)
ξi

⊗ σ
(j)
ξj

⊗ σ
(l)
ξl
) = 2iL(l)

µνεµνγδγαl
δτiγδτjη if ξi = γ, ξj = η, ξl = αl. (21)

Finally, for an observable O = σ
(1)
ξ1

⊗ . . . σ
(i)
ξi

· · · ⊗ σ
(j)
ξj

· · · ⊗ σ
(k)
ξk

, k > 3, the Lindblad part of the equation (3) is the
following

L(m)
µν tr

[((
σ(m)
µ ρ(i,j)τi,τjσ

(m)
ν − 1

2
{σ(m)

ν σ(m)
µ , ρ(i,j)τi,τj}

))
(σ

(1)
ξ1

⊗ · · · ⊗ σ
(i)
ξi

· · · ⊗ σ
(j)
ξj

· · · ⊗ σ
(k)
ξk

)

]
= 0. (22)
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A. Final Results

After we selected the different observable operators and defined the density matrix ρ0 = ρ
(i)
τi ⊗ρ

(j)
τj ⊗ I2n−2

22n−2 , where the
i and j qubits are in the Pauli states, we are ready to isolate the desired coefficients. For an observable O = σ

(i)
γ ⊗σ(j)

η

we can write the equation (3) as follows

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 = −2

∑
α1

a(i)α1
εα1τiγδητj − 2

∑
α1

a(j)α1
εα1τjηδγτi (23)

− 2
∑
α1,α2

a(ij)α1α2

(
εα1τiγδηα2

+ εα2τjηδγα1

)
+
∑
µ,ν

(
L(i)
µν(2iεµνγ + 2δντiδµγ − 3

2
δµνδγτi)δτjη

+ L(j)
µν (2iεµνγδγη + 2δντjδµη −

3

2
δµνδητj )δτiγ

)
.

Selecting τj 6= η, τi 6= γ, we can isolate the coefficients of the type a(ij)α1α2 in (23), namely

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 = −2

∑
α1,α2

a(ij)α1α2

(
εα1τiγδηα2

+ εα2τjηδγα1

)
. (24)

Let us call ρtτiτj the density matrix evaluated by the Hamiltonian evolution from ρ0. From (24) we can find a
(ij)
α1α2 .

To this end, we select γ = y, η = y and four pairs τi, τj ∈ {z, x; z, z;x, x;x, z} to get the system of equations

d

dt
tr
[
ρtzx(σ

(i)
y ⊗ σ(j)

y )
]
|t=0 = 2(a(ij)xy − a(ij)yz ),

d

dt
tr
[
ρtzz(σ

(i)
y ⊗ σ(j)

y )
]
|t=0 = 2(a(ij)xy + a(ij)yx ), (25)

d

dt
tr
[
ρtxx(σ

(i)
y ⊗ σ(j)

y )
]
|t=0 = −2(a(ij)yz + a(ij)zy ),

d

dt
tr
[
ρtxz(σ

(i)
y ⊗ σ(j)

y )
]
|t=0 = −2(a(ij)yx + a(ij)zy ).

Since a(ij)yz = a
(ij)
zy and a

(ij)
xy = a

(ij)
yx , we can write

a(ij)xy =
1

4

d

dt
tr
[
ρtzz(σ

(i)
y ⊗ σ(j)

y )
]
|t=0, a(ij)yz = −1

4

d

dt
tr
[
ρtxx(σ

(i)
y ⊗ σ(j)

y )
]
|t=0. (26)

Selecting γ = x, η = y and four pairs τi, τj ∈ {y, z; y, x; z, z; z, x} to get the system of equations

d

dt
tr
[
ρtyz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 = 2(a(ij)xx + a(ij)zy ),

d

dt
tr
[
ρtyx(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 = 2(a(ij)zy − a(ij)xz ), (27)

d

dt
tr
[
ρtzz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 = 2(a(ij)xx − a(ij)yy ),

d

dt
tr
[
ρtzx(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 = −2(a(ij)yy + a(ij)xz ).

Hence

a(ij)xx =
1

2

d

dt
tr
[
ρtyz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 +

1

4

d

dt
tr
[
ρtxx(σ

(i)
y ⊗ σ(j)

y )
]
|t=0, (28)

a(ij)xz = −1

2

d

dt
tr
[
ρtyx(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 −

1

4

d

dt
tr
[
ρtxx(σ

(i)
y ⊗ σ(j)

y )
]
|t=0,

a(ij)yy = −1

2

d

dt
tr
[
ρtzz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0 +

1

2

d

dt
tr
[
ρtyz(σ

(i)
x ⊗ σ(j)

y )
]
|t=0

+
1

4

d

dt
tr
[
ρtxx(σ

(i)
y ⊗ σ(j)

y )
]
|t=0.

Selecting γ = x, η = z and four pairs τi, τj ∈ {y, y; z, x; y, x; z, y}, we get

d

dt
tr
[
ρtyy(σ

(i)
x ⊗ σ(j)

z )
]
|t=0 = −2(a(ij)xx − a(ij)zz ),

d

dt
tr
[
ρtzx(σ

(i)
x ⊗ σ(j)

z )
]
|t=0 = 2(a(ij)xy − a(ij)yz ), (29)

d

dt
tr
[
ρtyx(σ

(i)
x ⊗ σ(j)

z )
]
|t=0 = −2(a(ij)zz − a(ij)xy ),

d

dt
tr
[
ρtzy(σ

(i)
x ⊗ σ(j)

z )
]
|t=0 = −2(a(ij)xx + a(ij)yz ).

Hence the last coefficient is

a(ij)zz = −1

2

d

dt
tr
[
ρtyx(σ

(i)
x ⊗ σ(j)

z )
]
|t=0 +

1

4

d

dt
tr
[
ρtzz(σ

(i)
y ⊗ σ(j)

y )
]
|t=0. (30)
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To find the other coefficients we select τj = η, τi 6= γ and rerewrite (23) as

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 = −2

∑
α1

a(i)α1
εα1τiγ − 2

∑
α1,α2

a(ij)α1α2
εα1τiγδηα2 (31)

+ 2
∑

µ=x,y,z

L(i)
µµδµτiδµγ + 2

µ̸=ν∑
µ,ν=x,y,z

L(i)
µν(iεµνγ + δντiδµγ).

Next, for τj 6= η, τi = γ, we can rewrite (23) as

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 = −2

∑
α1

a(j)α1
εα1τjη − 2

∑
α1,α2

a(ij)α1α2
εα2τjηδγα1

+ 2
∑

µ=x,y,z

L(i)
µµδµτjδµη + 2

µ̸=ν∑
µ,ν=x,y,z

L(i)
µν(iεµνγδγη + δντjδµη). (32)

Selecting an observable O = σ
(i)
γ , we can write

d

dt
tr
[
ρtσ

(i)
γ

]
|t=0 = −

∑
α1

a(i)α1
εα1τiγ − 2

∑
α1,α2

a(ij)α1α2
εα1τiγδα2τj (33)

+ 2
∑

µ=x,y,z

L(i)
µµ(δµτiδµγ − 3

4
δγτi) + 2

µ̸=ν∑
µ,ν=x,y,z

L(i)
µν(iεµνγ + δντiδµγ).

For the other observable O = σ
(j)
η , the result is the following

d

dt
tr
[
ρtσ

(j)
η )
]
|t=0 = −

∑
α1

a(j)α1
εα1τjη − 2

∑
α1,α2

a(ij)α1α2
εα2τjηδα1τi

+ 2
∑

µ=x,y,z

L(j)
µµ(δµτjδµη −

3

4
δητj ) + 2

µ̸=ν∑
µ,ν=x,y,z

L(j)
µν (iεµνγδγη + δντjδµη). (34)

Substituting (33) in (31), we can write

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 −

d

dt
tr
[
ρtσ

(i)
γ

]
|t=0 = −

∑
α1

a(i)α1
εα1τiγ (35)

+ 2
∑
α1,α2

a(ij)α1α2
εα1τiγ(δτjα2

− δηα2
) +

3

2

∑
µ=x,y,z

L(i)
µµδγτi .

Since in (31) the conditions τj = η, τi 6= γ, hold, we can rewrite the latter equation as

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 −

d

dt
tr
[
ρtσ

(i)
γ

]
|t=0 = −

∑
α1

a(i)α1
εα1τiγ . (36)

Solving the latter equation, we find a
(i)
α1 . To this end, we select γ = y, τi = x, τj = η ∈ {x, y, z} and get

a(i)x = − d

dt
tr
[
ρtxη(σ

(i)
y ⊗ σ(j)

η )
]
|t=0 +

d

dt
tr
[
ρtxησ

(i)
y

]
|t=0. (37)

Next, for γ = x, τi = z, τj = η ∈ {x, y, z} we get the solution of (36), namely

a(i)y = − d

dt
tr
[
ρtzη(σ

(i)
x ⊗ σ(j)

η )
]
|t=0 +

d

dt
tr
[
ρtzησ

(i)
x

]
|t=0. (38)

Finally, for γ = x, τi = y, τj = η ∈ {x, y, z} the solution is

a(i)z =
d

dt
tr
[
ρtyη(σ

(i)
x ⊗ σ(j)

η )
]
|t=0 −

d

dt
tr
[
ρtyησ

(i)
x

]
|t=0. (39)



6

Substituting (34) in (32), we can write
d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 −

d

dt
tr
[
ρtσ

(j)
η )
]
|t=0 = −

∑
α1

a(j)α1
εα1τjη

+ 2
∑
α1,α2

a(ij)α1α2
εα2τjη(δτiα1

− δγα1
) +

3

2

∑
µ=x,y,z

L(i)
µµδητj . (40)

Since τj 6= η, τi = γ, hold, we can rewrite it as follows
d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η )
]
|t=0 −

d

dt
tr
[
ρtσ

(j)
η )
]
|t=0 = −

∑
α1

a(j)α1
εα1τjη. (41)

Solving the latter equation, we find a
(j)
α1 . Selecting η = y, τj = z and τi = γ ∈ {x, y, z}, we get

a(j)x =
d

dt
tr
[
ρtγz(σ

(i)
γ ⊗ σ(j)

y )
]
|t=0 −

d

dt
tr
[
ρtγzσ

(j)
y )
]
|t=0. (42)

Selecting η = x, τj = z and τi = γ ∈ {x, y, z}, we get

a(j)y = − d

dt
tr
[
ρtγz(σ

(i)
γ ⊗ σ(j)

x )
]
|t=0 +

d

dt
tr
[
ρtγzσ

(j)
x )
]
|t=0. (43)

Finally, selecting η = y, τj = x and τi = γ ∈ {x, y, z}, we get the last coefficient of this type

a(j)z = − d

dt
tr
[
ρtγx(σ

(i)
γ ⊗ σ(j)

y )
]
|t=0 +

d

dt
tr
[
ρtγxσ

(j)
y )
]
|t=0. (44)

All the coefficients with the corresponding observables and initial states are given in Table I.

a
(i)
α (O, {τ (i)

i , τ
(j)
j }) Equation

a
(i)
x (σ

(i)
y ⊗ σ

(j)
η , {x, η}); (σ(i)

y , {x, η}), η ∈ {x, y, z} (37)
a
(i)
y (σ

(i)
x ⊗ σ

(j)
η , {z, η}); (σ(i)

x , {z, η}), η ∈ {x, y, z} (38)
a
(i)
z (σ

(i)
x ⊗ σ

(j)
η , {y, η}); (σ(i)

x , {y, η}), η ∈ {x, y, z} (39)
a
(j)
x (σ

(i)
γ ⊗ σ

(j)
y , {γ, z}); (σ(i)

y , {γ, z}), γ ∈ {x, y, z} (42)
a
(j)
y (σ

(i)
γ ⊗ σ

(j)
x , {γ, z}); (σ(i)

x , {γ, z}), γ ∈ {x, y, z} (43)
a
(j)
z (σ

(i)
γ ⊗ σ

(j)
y , {γ, x}); (σ(i)

y , {γ, x}), γ ∈ {x, y, z} (44)
a
(ij)
xx (σ

(i)
x ⊗ σ

(j)
y , {y, z}); (σ(i)

y ⊗ σ
(j)
y , {x, x}) (28)

a
(ij)
yy (σ

(i)
x ⊗ σ

(j)
y , {z, z}); (σ(i)

x ⊗ σ
(j)
y , {y, z}); (σ(i)

y ⊗ σ
(j)
y , {x, x}) (28)

a
(ij)
zz (σ

(i)
x ⊗ σ

(j)
z , {y, x}); (σ(i)

y ⊗ σ
(j)
y , {z, z}) (30)

a
(ij)
xy (σ

(i)
y ⊗ σ

(j)
y , {z, z}) (26)

a
(ij)
yz (σ

(i)
y ⊗ σ

(j)
y , {x, x}) (26)

a
(ij)
xz (σ

(i)
x ⊗ σ

(j)
y , {y, x}); (σ(i)

y ⊗ σ
(j)
y , {x, x}) (28)

Supplementary Table I. The first column represents the type of the estimated Hamiltonian parameters a
(i)
αi , a(ij)

αi,αj , αi, αj ∈
{x, y, z}. In the third column the number of equation for every parameter is provided, depending from the pairs of the observable
O and the initial state ρ

(i,j)
τi,τj = ρ

(i)
τi ⊗ ρ

(j)
τj ⊗ ρn−2, τi, τj = {x, y, z}, given in the second column. For example, to estimate a

(i)
x

we use (37) with two pairs of observables and states: {O, ρ
(i,j)
τi,τj} = {(σ(i)

y ⊗ σ
(j)
η , ρ

(i,j)
x,η ); (σ

(i)
y , ρ

(i,j)
x,η )}.

For an observable O = σ
(i)
γ ⊗ σ

(j)
η ⊗ σ

(l)
αl we can write the equation

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η ⊗ σ(l)
αl
)
]
|t=0 = −4

∑
αiαjαl

a(ijl)αiαjαl
(εαiτiγδηαj + εαjτjηδγαi) (45)

+ 2i
∑
µ,ν

L(l)
µνεµνγδγαl

δτiγδτjη.

Selecting τj = η, τi 6= γ, we can rewrite (45) as

d

dt
tr
[
ρt(σ

(i)
γ ⊗ σ(j)

η ⊗ σ(l)
αl
)
]
|t=0 = −4

∑
αiαjαl

a(ijl)αiαjαl
εαiτiγδηαj

. (46)
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From this equation we can find a
(ijl)
αiαjαl . For an observable O = σ

(1)
α1 ⊗ . . . σ

(i)
γ · · · ⊗ σ

(j)
η · · · ⊗ σ

(k)
αk , k > 3 we can write

d

dt
tr
[
ρt(σ

(1)
α1

⊗ . . . σ(i)
γ · · · ⊗ σ(j)

η · · · ⊗ σ(k)
αk

)
]
|t=0 = −2k−1

∑
α1,...,αk

a(1...k)α1...αk
(εαiτiγδηαj + εαjτjηδγαi). (47)

Selecting τj = η, τi 6= γ, we can rewrite (47) as

d

dt
tr
[
ρt(σ

(1)
α1

⊗ . . . σ(i)
γ · · · ⊗ σ(j)

η · · · ⊗ σ(k)
αk

)
]
|t=0 = −2k−1

∑
α1,...,αk

a(1...k)α1...αk
εαiτiγδηαj . (48)

Solving this equation, we find a
(1...k)
α1...αk .

From (15) we can find three Lindbladian coefficients. Selecting τi = y, τj = η, γ = x, we can find

L(i)
xy =

1

2

d

dt
tr
[
ρtyη(σ

(i)
x ⊗ σ(j)

η )
]
|t=0 − a(i)z − a(ij)zη . (49)

Next, for τi = z, τj = η, γ = x, we deduce

L(i)
xz =

1

2

d

dt
tr
[
ρtzη(σ

(i)
x ⊗ σ(j)

η )
]
|t=0 + a(i)y + a(ij)yη . (50)

Finally, for τi = z, τj = η, γ = y, the coefficient is

L(i)
yz =

1

2

d

dt
tr
[
ρtzη(σ

(i)
y ⊗ σ(j)

η )
]
|t=0 − a(i)x − a(ij)xη . (51)

From (23) we can find three more coefficients. Selecting τj = y, τi = z, γ = z, η = x, we get

L(j)
xy =

1

2

d

dt
tr
[
ρtzy(σ

(i)
z ⊗ σ(j)

x )
]
|t=0 − a(j)z − a(ij)zz . (52)

For τj = y, τi = y, γ = y, η = z, we can deduce

L(j)
zy =

1

2

d

dt
tr
[
ρtyy(σ

(i)
y ⊗ σ(j)

z )
]
|t=0 + a(j)x + a(ij)yx . (53)

Selecting τj = z, τi = y, γ = y, η = x, we get

L(j)
xz =

1

2

d

dt
tr
[
ρtyz(σ

(i)
y ⊗ σ(j)

x )
]
|t=0 + a(j)y + a(ij)yy . (54)

From (33) we find the following coefficients:

L(i)
xx =

1

10

(
−3

d

dt
tr
[
ρtxτjσ

(i)
x

]
|t=0 − 3

d

dt
tr
[
ρtyτjσ

(i)
y

]
|t=0 + 2

d

dt
tr
[
ρtzτjσ

(i)
z

]
|t=0

)
, (55)

L(i)
yy =

1

10

(
−3

d

dt
tr
[
ρtxτjσ

(i)
x

]
|t=0 + 2

d

dt
tr
[
ρtyτjσ

(i)
y

]
|t=0 − 3

d

dt
tr
[
ρtzτjσ

(i)
z

]
|t=0

)
,

L(i)
zz =

1

10

(
2
d

dt
tr
[
ρtxτjσ

(i)
x

]
|t=0 − 3

d

dt
tr
[
ρtyτjσ

(i)
y

]
|t=0 − 3

d

dt
tr
[
ρtzτjσ

(i)
z

]
|t=0

)
.

From (34) the following coefficients can be found

L(j)
xx =

1

10

(
−3

d

dt
tr
[
ρtγ1xσ

(i)
x

]
|t=0 − 3

d

dt
tr
[
ρtγ2yσ

(i)
y

]
|t=0 + 2

d

dt
tr
[
ρtγ3zσ

(i)
z

]
|t=0

)
, (56)

L(j)
yy =

1

10

(
−3

d

dt
tr
[
ρtγ1xσ

(i)
x

]
|t=0 + 2

d

dt
tr
[
ρtγ2yσ

(i)
y

]
|t=0 − 3

d

dt
tr
[
ρtγ3zσ

(i)
z

]
|t=0

)
,

L(j)
zz =

1

10

(
2
d

dt
tr
[
ρtγ1xσ

(i)
x

]
|t=0 − 3

d

dt
tr
[
ρtγ2yσ

(i)
y

]
|t=0 − 3

d

dt
tr
[
ρtγ3zσ

(i)
z

]
|t=0

)
.

All the Lindbladian coefficients with the corresponding observables and initial states are given in Table II.
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L
(i)
µν (O, {τ (i)

i , τ
(j)
j }) Equation

L
(i)
xx, L(i)

yy , L(i)
zz (σ

(i)
x , {x, τj1}); (σ(i)

y , {y, τj2}); (σ(i)
z , {z, τj3}), τj1,2,3 ∈ {x, y, z} (55)

L
(j)
xx , L(j)

yy , L(j)
zz (σ

(i)
x , {γ1, x}); (σ(i)

y , {γ2, y}); (σ(i)
z , {γ3, z}), γ1 ∈ {y, z}, γ2 ∈ {x, z}, γ3 ∈ {x, y} (56)

L
(i)
xy (σ

(i)
x ⊗ σ

(j)
η , {y, η}), η ∈ {x, y, z} (49)

L
(i)
xz (σ

(i)
x ⊗ σ

(j)
η , {z, η}), η ∈ {x, y, z} (50)

L
(i)
yz (σ

(i)
y ⊗ σ

(j)
η , {z, η}), η ∈ {x, y, z} (51)

L
(j)
xy (σ

(i)
z ⊗ σ

(j)
x , {z, y}) (52)

L
(j)
xz (σ

(i)
y ⊗ σ

(j)
x , {y, z}) (54)

L
(j)
yz (σ

(i)
y ⊗ σ

(j)
z , {y, y}) (53)

Supplementary Table II. The first column represents the type of the estimated Lindbladian parameters L
(i)
µν , µ, ν ∈ {x, y, z}.

In the third column the number of equation for every parameter is provided, depending from the pairs of the observable O and
the initial state ρ

(i,j)
τi,τj = ρ

(i)
τi ⊗ ρ

(j)
τj ⊗ ρn−2, τi, τj = {x, y, z}, given in the second column. For example, to estimate L

(j)
yz we use

(53) with one pair of observable and state: {O, ρ
(i,j)
τi,τj} = {σ(i)

y ⊗ σ
(j)
z , ρ

(i,j)
y,y }.

Supplementary Note 2: Numerical simulations

For simulations of the Hamiltonian learning protocol, we employed direct numerical solution of the time-dependent
Schrodinger equation for the whole system of n = 16 qubits, whose time-dependent wavefunction |ψ(t)〉 is represented
as an array of 2n complex numbers, normalized to 1. The evolution includes both unitary component, governed by
the system’s Hamiltonian, and three non-unitary components: the first one, stemming from the quasi-static random
frequency shifts, leading to essentially non-Markovian dephasing of the qubits with the characteristic time T ∗

2 , the
second component, described as a set of Lindblad superoperators corresponding to the phase damping channel,
leading to Markovian transverse decoherence of the qubits on the timescale T2, and the third component, also leading
to Markovian evolution of the qubit, and described as a set of Lindblad superoperators corresponding to the amplitude
damping channel, which leads to longitudinal relaxation of the qubit on the timescale T1. For precise meaning of the
terms “Markovian” and “non-Markovian”, see explanations below in subsection 2 B.

A. Unitary evolution

The simulation of the unitary (Hamiltonian) evolution was performed using the 2nd order Suzuki-Trotter decom-
position of the evolution operator. The total Hamiltonian of the system in question can be written as

H =

n∑
m1,m2=1

∑
α1,α2=x,y

Jm1,m2σ
(m1)
α1

σ(m2)
α2

+
1

2

n∑
m1=1

Ωm1σ
(m1)
z , (57)

For the problem considered in this paper the couplings Jm1,m2
are restricted to the nearest neighbor qubits on a 2−D

lattice. Note that the actual frequency Ωm1
of the m1-th qubit in the Hamiltonian (57) is different from its nominal

frequency ω̃m mentioned in the main text; the reasons for this difference are explained in subsection 2 B below.
The Hamiltonian (57) is represented as a sum

H = HX +HY +HZ (58)

HX =

n∑
m1,m2=1

Jm1,m2
σ(m1)
x σ(m2)

x , HY =

n∑
m1,m2=1

Jm1,m2
σ(m1)
y σ(m2)

y , HZ =
1

2

n∑
m1=1

Ωm1
σ(m1)
z , (59)

and the corresponding Suzuki-Trotter decomposition of the evolution operator U(∆t) for the (small) timestep of
duration ∆t has the form

U(∆t) ≡ exp (−iH∆t) ≈ e−iHZ∆t/2 e−iHY ∆t/2 e−iHX∆t e−iHY ∆t/2 e−iHZ∆t/2, (60)

ensuring the overall time discretization error of the order (∆t)2. The evolution operator over many time steps is a
product of elementary operators U(∆t).

Each term in the sum representing the Hamiltonian HX (and, similarly, HY and HZ) commutes with all other
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terms, therefore

exp (−iHX∆t) =

n∏
m1,m2=1

exp (−iJm1,m2
∆t σ(m1)

x σ(m2)
x ) =

n∏
m1,m2=1

[
cos (Jm1,m2

∆t)− iσ(m1)
x σ(m2)

x sin (Jm1,m2
∆t)
]
.

(61)
Each term in this direct product acts on the wavefunction |ψ(t)〉 in a straightforward manner: the entries of the array
that represents the wavefunction turn into linear combinations of themselves. Similar direct-product representation
holds for HY and HZ as well, such that the action of the total evolution operator U(∆t) is easy to compute, without
the need to calculate or store 2N × 2N matrices.

In order to represent the situation where the non-initialized part of the system is in the completely mixed state, but
avoid using the density matrix explicitly (which would imply dealing with 2n × 2n matrix instead of the single array
of the size 2n), we represent the completely mixed state as a wavefunction with random entries [1, 2]. Specifically,
we sampled the real and the imaginary parts of each entry of the corresponding wavefunction independently from
Gaussian distribution with zero mean and unit variance, and then normalized the resulting wavefunction to one. In
this way, for instance, the situation where the first and the second qubit are both initialized in the state |0〉, while
the rest of the system is in completely mixed state, i.e. when the system’s density matrix is

ρ = |0〉〈0| ⊗ |0〉〈0| ⊗ In−2

2n−2
, (62)

where In−2 is an identity matrix of the size 2n−2 × 2n−2, is represented using the total wavefunction in the form

|ψ〉 = |0〉 ⊗ |0〉 ⊗ |ψ(r)
n−2〉, (63)

where the random state |ψ(r)
n−2〉 of the remaining n−2 qubits is generated as described above. Such an approximation

provides high accuracy, of the order of exp (−n/2), due to the measure concentration phenomenon [3].
Further improvement in accuracy was achieved by averaging the values of the relevant observables over M = 189

independent realizations of the random wavefunction (as well as other random quantities, see below), which reduced
the error by an additional factor of the order ∼ 1/

√
M ≈ 0.07. The accuracy was also independently controlled by

estimating the variance in the calculated values of the observables, and ensuring that this variance remains much
smaller than the statistical error caused by the shot noise produced by sampling the relevant observables for each
qubit.

B. Non-unitary evolution

The first non-unitary component of the system’s evolution, dephasing of the m1-th qubit on the timescale T ∗
2,m1

,
caused by its random static frequency shift, is modeled by directly reproducing the underlying physical picture.
Namely, we assumed that the actual frequency Ωm1

of the m1-th qubit, see Eq. 57, is a sum of two contributions: the
nominal value ω̃m1

, and a random shift βm1
that remains constant during the system’s evolution. The values of βm1

were independently sampled from Gaussian distributions with zero mean and variance b2m1
, which can be different

for different qubits. The parameter bm1
determines the dephasing time T ∗

2,m1
of the m1-th qubit: if this qubit were

uncoupled from the rest of the system, then, after averaging over βm1
, its transverse (x- and y-) components would

undergo Gaussian decay with time dependence exp (−b2m1
t2/2), i.e. bm1 =

√
2/T ∗

2,m1
.

As mentioned above in subsection 2 A, the evolution of the system was repeated M = 189 times; each time we used
different realizations of the set of the random frequency shifts βm1 (as well as other random quantities, such as e.g.
different realizations of the random wavefunction, also see below). Within this approach, for each particular realization
of the parameters βj , the evolution of the system is unitary, and can be simulated using the system’s wavefunction
as described in subsection 2 A above, while the non-unitary decay occurs due to averaging of the relevant observables
over different realizations of the random parameters βm1 (along with other random quantities).

Note that the dephasing caused by averaging over the static random frequency shifts, with its characteristic
Gaussian-like decay of the density matrix elements, cannot be described via Lindblad operators. It is an exam-
ple of non-Markovian evolution, in the sense that it cannot be described by a set of first-order differential equations
(with respect to time t), which would include only current values of the (averaged) elements of the system’s density
matrix ρ(t); in other words, the future values of the (averaged) density matrix elements, at times t + s (s > 0),
are not completely determined by their current values at the moment of time t. At the same time, the static noise
processes βm1

(t) representing the random frequency shifts are, of course, Markovian random processes, sastisfying the
Chapman-Kolmogorov equation.
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The two other components of the non-unitary evolution, addressed below, are Markovian, and can be described
using the Lindblad operators. However, in order to avoid dealing with the density matrix, these components were
also modeled by employing the random processes and calculating the averages of the relevant observables.

The second non-unitary component of the evolution corresponds to the Markovian dephasing, and can be described
via the set of Lindblad superoperators corresponding to the phase damping channel. For an isolated qubit, this
would lead to exponential decay of the transverse components of the m1-th qubit, having the form exp (−t/T2,j).
This kind of dephasing, being Markovian, can be described by a set of first-order differential equations, generalizing
the well-known Bloch-Redfield equations [4], which include only the current values of the elements of the system’s
density matrix ρ(t), such that the future values of the density matrix elements, at times t+ s (s > 0), are completely
determined by their current values at the moment of time t.

This decay was modeled by taking the z-rotation of the m1-th qubit produced by Ωm1 (i.e., produced by the action
of the operator exp (−iHZ∆t) in Eq. 60), and adding to it another time-dependent rotation around the z-axis by the
angle Λm1(t). For each time step of duration ∆t, the values Λm1(t) were sampled randomly, indepedently of each other
and of their previous values, from Gaussian distribution with zero mean and variance 4g2m1

τm1∆t. This choice for the
quantity Λ(t) can be visualized as a rotation induced by a time-dependent frequency shift δωm1(t), which is represented
by an Ornstein-Uhlenbeck noise process with the correlation function 〈δωm1

(t) δωm1
(t + s)〉 = g2m1

exp (−|s|/τm1
),

in the limit where the correlation time τm1
is much smaller than ∆t, while the magnitude gm1

is large (formally,
τm1

→ 0 and gm1
→ ∞), but the combination g2m1

τm1
= 1/T2,m1

remains finite. For an isolated qubit, the average
evolution under the influence of such Ornstein-Uhlenbeck noise δωm1

(t) is known [5] to produce exponential decay
of the qubit’s transverse (x- and y-) components with the decay time T2. Again, for each particular realization of
the time-dependent random process Λm1

(t), the evolution of the system is unitary, and can be simulated using the
system’s wavefunction as described in subsection 2 A (provided, of course, that ∆t� T2,m1

, to ensure accuracy of the
Suzuki-Trotter decomposition), while the non-unitary decay occurs due to averaging over different realizations of the
noise.

The third non-unitary component, describing exponential relaxation of the m1-th qubit towards the state |0〉 on a
timescale T1,m1

, was simulated in a similar manner, by representing the non-unitary evolution via averaging over many
realizations of a random unitary evolution, employing the approach described in Ref. [6], with some modifications
improving the accuracy. Namely, at each time step, we calculated the probability pm1

for the m1-th qubit to make a
transition (“quantum jump”) from the state |1〉 to the state |0〉; the corresponding value is pm1

= wm1,1 µ
2
m1

, where
µm1

=
√

1− exp (−∆t/T1,m1
), and wm1,1 is the total probability of the system to be in the subspace corresponding

to the j-th qubit in the state |1〉. This transition was implemented with the probability pm1
at each time step: the

part of the system’s wavefunction corresponding to the m1-th qubit in the state |0〉 was replaced by its complement,
i.e. by the part corresponding to the m1-th qubit in the state |1〉, multiplied by the factor µm1

, and the part of
the wavefunction corresponding to the j-th qubit in the state |1〉 was set to zero. Alternatively, with the probability
1−pm1

at each time step, the part of the wavefunction corresponding to the m1-th qubit in the state |1〉 was multiplied
by the factor exp [−(1/2)∆t/T1,m1

], while its complement was left unchanged. These transformations were applied
to the wavefunction in succession, for all qubits (for all m1 = 1, . . . n), and the resulting modified wavefunction was
normalized back to 1. Since all these transformations commute with the action of the operator exp (−iHZ∆t) in
Eq. 60, they were applied at the end of each unitary time-step evolution, after application of the operator U(∆t)
given by Eq. 60, in parallel with the action of the operators exp (−iHZ∆t) or exp (−iHZ∆t/2).

Note that this implementation corresponds to the application to the wavefunction of the Krauss operators E0 or
E1 (see Ref. 7), describing the amplitude damping quantum channel, with the corresponding probabilities, where E1

corresponds to the event of the “quantum jump”, and E0 corresponds to the absence of it.

Supplementary Note 3: Numerical simulation of superconducting qubit platform

From the discussion in the main text we are simulating a 2D grid of qubits that interact only with the nearest
neighbours. The coupling between two neighbouring qubits through a coupler can be described by a Hamiltonian. In
our notations it can be rewritten as

H =
∑
k=i,j

a(k)z H(k)
z + a(i,j)xx H(i,j)

xx + a(i,j)yy H(i,j)
yy , (64)

where we introduce the notations

a(i)z =
1

2
ω̃(i), a(j)z =

1

2
ω̃(j), a(i,j)xx = a(i,j)yy =

1

2

[gigj
∆

+ gij

]
, (65)

H(i)
z = σ(i)

z , H(j)
z = σ(j)

z , H(i,j)
xx = σ(i)

x σ(j)
x , H(i,j)

yy = σ(i)
y σ(j)

y .
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Thus, we define the 16 qubits 2D grid, where we generate ω1, ω2, ωc, g1, g2, g12 from Gaussian distribution with mean
and variance N (0, 1). The parameters a(i)z , a(j)z , a(ij)xx , a(ij)yy we estimate in our simulation and the rates of decay of T1,
T2 and T ⋆

2 are given in the Table III. The observables and initial states, isolating the desired coefficients a(i)z , a(j)z , a(i,j)xx

(ij) a
(ij)
xx , a

(ij)
yy [kHz] (i) a

(i)
z [kHz] T1 [µs] T2 [µs] T ⋆

2 [µs]
1, 2 1.28112 1 1.73807 58.5227 65.9752 151.515
2, 3 -0.716875 2 -0.816877 60.0269 65.1704 166.667
3, 4 -0.956949 3 -1.0602 59.2424 64.6375 163.934
4, 5 -0.819328 4 -0.913223 61.0255 65.7397 149.254
1, 6 -1.1682 5 -1.23118 59.0545 66.0886 147.059
2, 7 -0.213057 6 -0.654699 60.0915 66.1118 151.515
3, 8 -0.563789 7 -0.514756 59.8856 65.1432 153.846
4, 9 1.74022 8 2.0817 61.0389 64.8252 158.73
5, 10 1.68348 9 -0.568581 60.5375 66.2155 158.73
6, 7 -1.51535 10 -0.710498 61.5036 65.389 149.254
7, 8 -0.729672 11 1.86153 59.8949 65.825 147.059
8, 9 1.6622 12 -2.03725 60.3777 65.1203 153.846
9, 10 -0.314438 13 -1.31695 57.5781 65.6052 156.25
11, 12 -0.475787 14 -0.902159 59.1881 65.8892 158.73
6, 11 1.3663 15 -0.202118 60.0283 66.2967 144.928
7, 12 -2.03531 16 0.136975 58.9397 66.0541 149.254
12, 13 -1.22632
13, 8 -0.717182
13, 14 -0.546421
14, 9 1.90836
14, 15 -0.781306
11, 16 -0.358714

Supplementary Table III. The first column represents the numbers of qubits whose coefficients a
(ij)
αi,αj , αi, αj ∈ {x, y, z} are

not zero, given in the second column. The fourth column contains a
(i)
αi , αi ∈ {x, y, z}, i = 1, . . . , 16. The rates of decay of T1,

T2 and T ⋆
2 , corresponding to i’s qubit are given in the fifth and six’s columns, respectively.

and a
(i,j)
yy , are given in Table IV. One can see, that we need three starting states, namely ρ01 = ρ

(i)
x ⊗ ρ

(j)
x ⊗ I2n−2

22n−2 ,
ρ02 = ρ

(i)
y ⊗ ρ

(j)
z ⊗ I2n−2

22n−2 and ρ03 = ρ
(i)
z ⊗ ρ

(j)
z ⊗ I2n−2

22n−2 to isolate all four unknown coefficients. We measure the
expectation values of observables in different times. Next, the time traces of these expectation values are fitted, using
the polynomial interpolation method, and the derivatives estimation is preceded. Finally, using (39), (44), (28) and
(28), the estimates of the coefficients a(i)z , a(j)z , a(i,j)xx , a(i,j)yy for the pair of (i, j) are obtained. We repeat this process
for all pairs of interacting qubits to obtain all coefficients of the Hamiltonian of the 2D grid.

In the presence of the noise, the observables and initial states required to isolate the Lindbladian coefficients are
given in Table V. One can see, that we need three extra starting states in the presence of the Lindbladian noise,
namely ρ04 = ρ

(i)
z ⊗ ρ

(j)
y ⊗ I2n−2

22n−2 , ρ05 = ρ
(i)
y ⊗ ρ

(j)
y ⊗ I2n−2

22n−2 and ρ06 = ρ
(i)
z ⊗ ρ

(j)
x ⊗ I2n−2

22n−2 to find L
(i)
µν , µ, ν ∈ {x, y, z}.

a
(i)
αi {O, ρ(i,j)τi,τj } Equation

a
(i)
z {σ(i)

x ⊗ σ
(j)
z , ρ

(i,j)
y,z }; {σ(i)

x , ρ
(i,j)
y,z } (39)

a
(j)
z {σ(i)

x ⊗ σ
(j)
y , ρ

(i,j)
x,x }; {σ(i)

y , ρ
(i,j)
x,x } (44)

a
(ij)
xx {σ(i)

x ⊗ σ
(j)
y , ρ

(i,j)
y,z }; {σ(i)

y ⊗ σ
(j)
y , ρ

(i,j)
x,x } (28)

a
(ij)
yy {σ(i)

x ⊗ σ
(j)
y , ρ

(i,j)
z,z }; {σ(i)

x ⊗ σ
(j)
y , ρ

(i,j)
y,z }; {σ(i)

y ⊗ σ
(j)
y , ρ

(i,j)
x,x } (28)

Supplementary Table IV. In this table the minimal selection of the pairs {O, ρ(i,j)τi,τj } is presented for our specific example.
The first column represents the type of the estimated Hamiltonian (64) parameters a

(i)
αi , a(ij)

αi,αj , αi, αj ∈ {x, y, z}. In the third
column the number of equation for every parameter is provided, depending from the pairs of the observable O and the initial
state ρ

(i,j)
τi,τj = ρ

(i)
τi ⊗ ρ

(j)
τj ⊗ ρN−2, τi, τj = {x, y, z}, given in the second column. To estimate all four parameters we need only

three initial states: ρ
(i,j)
x,x , ρ(i,j)z,z and ρ

(i,j)
y,z .
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L
(i)
µν {O, ρ(i,j)τi,τj } Equation

L
(i)
xx, L(i)

yy , L(i)
zz {σ(i)

x , ρ
(i,j)
x,x }; {σ(i)

y , ρ
(i,j)
y,z }; {σ(i)

z , ρ
(i,j)
z,z } (55)

L
(j)
xx , L(j)

yy , L(j)
zz {σ(i)

x , ρ
(i,j)
z,x }; {σ(i)

y , ρ
(i,j)
z,y }; {σ(i)

z , ρ
(i,j)
y,z } (56)

L
(i)
xy {σ(i)

x ⊗ σ
(j)
z , ρ

(i,j)
y,z } (49)

L
(i)
xz {σ(i)

x ⊗ σ
(j)
η , ρ

(i,j)
z,z } (50)

L
(i)
yz {σ(i)

y ⊗ σ
(j)
η , ρ

(i,j)
z,z } (51)

L
(j)
xy {σ(i)

z ⊗ σ
(j)
x , ρ

(i,j)
z,y } (52)

L
(j)
xz {σ(i)

y ⊗ σ
(j)
x , ρ

(i,j)
y,z } (54)

L
(j)
yz {σ(i)

y ⊗ σ
(j)
z , ρ

(i,j)
y,y } (53)

Supplementary Table V. In this table the minimal selection of the pairs {O, ρ(i,j)τi,τj } is presented for our specific example.
The first column represents the type of the estimated Lindbladian parameters L

(i)
µν , µ, ν ∈ {x, y, z}. In the third column

the number of equation for every parameter is provided, depending from the pairs of the observable O and the initial state
ρ
(i,j)
τi,τj = ρ

(i)
τi ⊗ ρ

(j)
τj ⊗ ρN−2, τi, τj = {x, y, z}, given in the second column. To estimate all parameters we need only three extra

states to the ones given by the previous table, namely: ρ
(i,j)
z,x , ρ(i,j)z,y and ρ

(i,j)
y,y .

Supplementary Note 4: Approximating local time evolutions by polynomials

One of the main points behind our method is the fact that the time evolution of local observables at constant times
is well-approximated by polynomials. The purpose of this section is to make this assertion precise.

Before we do that, let us set some notation. Given a system of n qubits on a D dimensional lattice Γ, we let
LΛ : M2n → M2n be a Lindbladian which models the time evolution of the system in the Heisenberg picture. Note
that in the supplementary information we consider a slightly more general class of evolutions than in the main text.
There, we restricted to evolutions whose Hamiltonians were short range with two-body interactions and the noise
acted on at most one qubit at a time. Here, in contrast, we will also consider k-local evolutions with long range.

We will assume that this Lindbladian can be written as:

LΛ =
∑
A⊂Λ

LA, (66)

where LA is a Lindbladian only acting on the qubits in A. Given some graph G = (V,E) on n vertices, we will say
that L is k−local if LA 6= 0 only if A is a subset of vertices of G containing at most k vertices. Furthermore, we will
say that LΛ is locally bounded if there is a constant g > 0 such that for all B ⊂ Λ we have that:

‖
∑

A⊂Λ:A∩B ̸=∅

LA‖ ≤ g|B|. (67)

This condition is satisfied if e.g. L is a local Lindbladian on a D−dimensional lattice. In that case, we have g = O(D).
However, this condition is also fulfilled for generators with algebraically decaying tails that decay at least like x−(D+δ)

for some δ > 0. Moreover, for ease of notation we will let for a region B ⊂ Λ

LB =
∑
A⊂B

LA (68)

be the generator restricted or truncated to a subregion B.
Furthermore, given the lattice Λ, some region X ⊂ V and r > 0, we will denote by Λr(X) the set of vertices that

are a distance at most r from X:

Λr(X) = {v ∈ V : ∃x ∈ X s.t. dist(x, v) ≤ r}. (69)

Here the distance is according to the lattice.
We will also require some norms for superoperators. Given a superoperator Φ : M2n → M2n we define for p, q ≥ 1

‖Φ‖p→q = sup
X∈M2n

‖Φ(X)‖q
‖X‖p

, (70)

where ‖ · ‖p corresponds to the Schatten p-norm. Also note that p = ∞ corresponds to the operator norm, for which
we will often drop the +∞ and only write as ‖ · ‖. We will also consider completely bounded versions of these norms,
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which are given by:

‖Φ‖p→q,cb = sup
d≥1

sup
X∈M2n⊗Md

‖Φ⊗ idd(X)‖q
‖X‖p

. (71)

It is then simple to see that derivatives of locally bounded evolutions can only increases with the size of the region
they are defined on:

Lemma 4.1 (Derivatives of local evolutions). Let LΛ be a locally bounded Lindbladian with constant g. For an
observable O such that ‖O‖ ≤ 1, an initial state ρ and a region B ⊂ Λ defines fB : R+ → R as fB(t) = tr

[
etLB (O)ρ

]
.

Then for all t ≥ 0: ∣∣∣f (k)B (t)
∣∣∣ ≤ (g|B|)k . (72)

In particular, for any 0 < t < tmax we have that:∣∣∣∣∣fB(t)−
d∑

k=0

f
(k)
B (0)

k!
tk

∣∣∣∣∣ ≤ (tmaxg|B|)d+1

(d+ 1)!
. (73)

Proof. The proof is elementary. Note that:

f
(k)
B (t) = tr

[
eLB ((tLB)

k(O))ρ
]
. (74)

Now, by Hölder’s inequality we have that:∣∣∣f (k)B (t)
∣∣∣ ≤ ‖etLB ((tLB)

k(O))‖∞‖ρ‖1
(1)

≤ tk‖etLB‖∞→∞‖LB‖k∞→∞
(2)

≤ gk|B|k,

where in (1) we used the submultiplicativity of the operator norm, i.e. ‖Φ1Φ2‖∞→∞ ≤ ‖Φ1‖∞→∞‖Φ2‖∞→∞ for all
linear maps Φ1,Φ2. In (2) we used the fact that for any quantum channel ‖etL‖∞→∞ = 1 and the fact that the
Lindbladian is locally bounded with constant g. The estimate in Eq. (73) then immediately follows from Taylor’s
remainder theorem.

We then immediately have:

Corollary 4.1. In the same setting as Lemma 4.1 it holds that for any given ϵ > 0 and tmax > 0 s.t.

log log(ϵ−1)2etmaxg|B| ≥ 1 (75)

there is a polynomial p of degree

d = 2etmaxg|B| log(ϵ−1)− 1 (76)

such that for all 0 ≤ t ≤ tmax we have that

|fB(t)− p(t)| ≤ ϵ. (77)

Proof. It follows from Sitrling’s approximation that the error in Eq. (73) is bounded by∣∣∣∣∣f(t)−
d∑

k=0

f (k)(0)

k!
tk

∣∣∣∣∣ ≤ 1√
2πd

(
etmaxg|B|
d+ 1

)d+1

. (78)

It is then easy to see that picking d = 2etmaxg|B| log(ϵ−1)− 1 is sufficient to ensure that the error in (73) is at most
ϵ. Indeed, plugging in the value of d into Eq. (78), we get:∣∣∣∣∣f(t)−

d∑
k=0

f (k)(0)

k!
tk

∣∣∣∣∣ ≤ 1√
2πd

(
1

log(ϵ−1)

)2etmaxg|B| log(ϵ−1)

= (79)

1√
2πd

exp
[
− log(log(ϵ−1)) log(ϵ−1)2etmaxg|B|

]
=

1√
2πd

ϵlog log(ϵ−1)2etmaxg|B| ≤ ϵ. (80)

Thus, the truncated Taylor expansion yields the desired polynomial.
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We conclude from Lemma 4.1 and Cor. 4.1 that local time evolutions are well-approximated by polynomials whose
degree grows like the size of the region times the maximal time of evolution.

Also note that the estimate in Eq. (79) is quite loose and shows that for d as in Eq. (76) the error decays like a
polynomial of high-degree in ϵ. But that rough approximation will be sufficient for our purposes.

Cor. 4.1 is an important step to prove our Thm. 4.1, but still does not correspond to the exact statement we wish
to prove. This is because Cor. 4.1 is a statement about the local evolution, whereas Thm. 4.1 is a statement about the
global evolution being well-approximated by a polynomial of small degree. The strategy to go from the local to the
global evolution, is to show that for the (local) observables required for our protocl, the local evolution approximates
the global one well.

Our main tool to show this approximatability of expectation values are Lieb-Robinson bounds [8–11], which exactly
give conditions under which the local time evolution and the global one are close for small enough times and local
observables. In order to provide a self-contained presentation, we include a brief introduction to Lieb-Robinson bounds
in Sec. 7 of this appendix.

In fact, there are various ways of quantifying that this idea of local approximability and, thus, LR-bounds come in
various forms. The version that we are going to work with here and which is discussed in detail in Sec. 7, considers
an observable OY initially supported on in a region Y . For a region B ⊃ Y we set R = dist(Λ\{B}, Y )/k, where k is
the locality of the generator, then it is shown in Lemma 7.1 that indeed

‖(etLΛ − etLΛr(Y ))(OY )‖∞ ≤ (evt − 1)h(R), (81)

where h : R+ → R
+ is a monotonically increasing function such that limR→+∞ h(R) = 0 and v is some constant that

depends on the generator, usually called the LR-velocity. On the other hand, the decay of the function h typically
depends on how fast the interactions in the system decays spatially (i.e. if it is strictly local, exponentially decaying in
the distance or even algebraically decaying) and the geometry of the underlying lattice. However, the important point
for our purposes is that it does not depend on the system’s size. For the specific case of short-range Hamiltonians
discussed in the main text, we have that h(R) = e−µR for some constant µ > 0. For algebraically decaying evolutions
we usually have h(x) = xk for some k ∈ R+.

We refer again to Sec. 7 for a discussion of various LR-bounds available in the literature. But from Eq. (81) we
immediately conclude that the values of the expectation values of global and local evolutions are well-approximated
by each other. More precisely:

Proposition 4.1. Let OY be an observable supported on some region Y , ϵ > 0 and tmax be given. Assume Eq. (81)
holds for the time evolution LΛ and a function h. Let l > 0 be given by

l = h−1

(
ϵ

evtmax − 1

)
. (82)

Then we have for Λl(Y ) and all 0 < t < tmax and any initial state ρ that

| tr
[(
etLΛ − etLΛl(Y )

)
(OY )ρ

]
| ≤ ϵ. (83)

Proof. The claim follows directly from Eq. (81) or Lemma 7.1 and a Hölder inequality. Indeed, for the value of l in
Eq. (83), we obtain from Eq. (81) after some simplification that

‖(etLΛ − etLΛr(Y ))(OY )‖∞ ≤ ϵ. (84)

Note that in the case of short-range systems we have that h−1(x) = µ−1 log(x). From now on we will suppress
the terms of order log(log(ϵ−1)) or higher from the equations and denote bounds where we do this with Õ. Thus,
combining 4.1 with Prop. 4.1 we conclude that:

Theorem 4.1. Let LΛ be a locally bounded Lindbladian on a D-dimensional regular lattice with constant g. Moreover,
let tmax, ϵ > 0 be given and OY is an observable such that ‖OY ‖ ≤ 1 and OY is supported on a constant number of
qubits. Assume that LΛ satisfies Eq. (81). Then there is a polynomial p of degree

d = Õ

[(
h−1

(
ϵ

evtmax − 1

))D

tmax log(ϵ
−1)

]
(85)

such that for all 0 ≤ t ≤ tmax: ∣∣tr [etLΛ(OY )ρ
]
− p(t)

∣∣ ≤ ϵ, (86)
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and

p′(0) = tr [LΛ(OY )ρ] . (87)

Proof. It follows from Prop. 4.1 that a region of radius

l = Õ
[
h−1

(
ϵ

2(etmax − 1)

)]
(88)

is enough to approximate the time evolution of etLΛ(OY ) up to ϵ/2. If the original region Y has a constant number
of qubits, then for a D-dimensional lattice we have |Λl(Y )| = O(lD). It then follows from Cor. 4.1 that for regions of
this size, it is sufficient to pick a degree that is

O

[
h−1

(
ϵ

2(etmax − 1)

)D

tmax log(ϵ
−1))

]
(89)

to approximate the expectation value of the local evolution up to an error ϵ/2. This concludes the proof by a triangle
inequality. Eq. (87) is clear from properties of the truncated Taylor series.

Thus, we see that as long as the time evolution of the system satisfies a Lieb-Robinson bound, we can approximate
the expectation value of a local observable as a function of time by a polynomial whose degree is dictated by how fast
the function h decays and the maximal time of the evolution. In particular, for ϵ−1 = O(1) and time tmax = O(1),
we conclude that the degree of the polynomial is independent of the system’s size.

In Thm. 4.1 we established that we can approximate the function f : t 7→ tr
[
etLΛ(OY )ρ

]
well by a polynomial for

constant times. However, to estimate the parameters of the Hamiltonian we are ultimately interested in the derivative
of f at time 0. We will later show in Sec. 5 that for the special case of polynomials of bounded degree, a good recovery
of the polynomial also implies a good recovery of the derivative. In particular, as for the polynomial in Lemma 4.1
we have that p′(0) = f ′(0), it is sufficient to argue that any two polynomials that approximates the curve f(t) up to
sufficiently large precision in a sufficiently large number of points must have close derivatives at 0 as well. This will
be the subject of the next section and proved in Prop. 5.1.

Supplementary Note 5: (Robust) polynomial interpolation and derivative estimation

In this section of the appendix, we are going to review a result in the literature [12] that shows how to perform
polynomial interpolation in a robust way even in the presence of outliers. Furthermore, we will show that good
polynomial interpolation also implies a good approximation of derivatives of the polynomial, which is our end goal.
We will use and review the results and algorithms of [12] for the robust polynomial interpolation and resort to Markov
brothers’ inequality [13] for estimating the error on the derivatives.

Let us start by briefly recalling the technical problems we wish to overcome. We assume we are able to approximate
the expectation value of f(t) = tr

[
ρetL(O)

]
for some suitably-picked initial state ρ and time-evolved observable O.

As argued in Sec. 4, the function f is well-approximated by a low degree polynomial p whenever the time evolution is
generated by a local Lindbladian. Moreover, as shown in Sec. 1, by suitably choosing the observable and initial state,
we can easily read off the value of the coupling of the Hamiltonian from the value of f ′(0). Thus, our goal is to find
a polynomial p that approximates f from values of f(ti) for some ti ∈ [a, b] for then use p to infer f ′(0).

It is well-known that if p is a polynomial of degree d, then it is uniquely determined by its values at d+ 1 points.
Thus, one could naively expect that having access to f(t1), . . . , f(td̃) points for d̃ ∼ d times is sufficient to reconstruct
f .

However, the present situation exhibits three challenges that need to be overcome to ensure that we can reliably
apply polynomial interpolation methods and recover p from points f(ti):

1. we can only estimate f(t), and not p(t). And the value of f only approximates that of p up to some error ϵa,
as discussed in Thm. 4.1.

2. we do not have access to the value of f(t) directly, but can only approximate it to a precision ϵs by sampling
from the output of the device at time t O(ϵ−2

s ) times.

3. we are interested in the value of p′(0) and not in the polynomial p itself. Thus, we need to ensure a small error
in estimating the derivative.
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To deal with the first two problems the polynomial interpolation technique we use has to be robust to the noise
stemming from both the approximation error from the polynomial approximation and the statistical noise. To deal
with the third issue, we will show that we need to pick the final and initial time of the interpolation in a judicious
manner.

To obtain some intuition about how to pick the times, let us consider the case of estimating the derivative of a
quadratic polynomial at 0. I.e., if we have two linear functions p, p̂ that are ϵ close in some interval [a, b], how well can
we infer the derivative of p at 0 from that of p̂? First, note that if the interval [a, b] is very small, then two functions
can differ by ϵ and their derivatives can still differ by ϵ/(b− a) even for linear functions. This indicates we probably
do not want to pick b− a too small. However, as we know that increasing b also implies that, in our setting, we need
to increase the degree of the polynomial for the fitting, which in turns increases the number of points we need to
estimate, this hints at the fact that picking b− a of constant order will be optimal.

On the other hand, it is also clear that the closer a is to 0, the more information about the value of p′(0) we can
infer from the interpolation. Thus, this discussion suggests that picking a as close to 0 as possible and b of constant
order should give the best results. We will prove this intuition later in this section, but first will discuss robust
interpolation.

Directly interpolating through the noisy data can be an unstable procedure if we do not pick the interpolating
points wisely and perform a suitable regression. Recent results have shown how to perform polynomial interpolation
in an essentially optimal fashion in a robust way even with a fraction of the points being outliers [12]. Let us now
review the results of [12], but note that we expect that less sophisticated interpolation techniques, i.e. based on least
squares regressions, should have a similar performance in practice. The reason we use the interpolation described
in [12] is that it comes with very strong theoretical guarantees under minal assumptions.

We will now assume we wish to estimate a polynomial p : [−1, 1] → R of degree d, as this corresponds to the setting
of [12]. Note that for Hamiltonian learning, we will be interested in the case where the domain is of the form [a, b]
for a, b ≥ 0. However, we can simply shift and rescale the domain to [−1, 1]. When we summarize our results later,
we will dicuss the effect of this rescaling explicitly. We will assume we are given access to m random samples (xi, yi)
of points such that a fraction of at least α > 1/2 of them satisfies for some σ > 0 that:

p(xi) = yi + wi, |wi| ≤ σ. (90)

There are results available for various different ways of sampling the points xi. However, the best available sample
complexity is given by sampling from the Chebyshev measure, which has density

1

π
√
1− x2

(91)

on the interval [−1, 1]. We then have:

Theorem 5.1 (Robust polynomial interpolation). Let p : [−1, 1] → R be a polynomial of degree d and assume we are
given m samples (xi, yi) such that a fraction α > 1/2 of them satisfies Eq. (90) for some σ > 0. Moreover, suppose
that the xi were sampled independently and at random from the Chebyshev measure. Then for any δ > 0

m = O
(
d log

(
d
δ

))
(92)

samples suffice to with probability of success at least 1− δ recover a polynomial p̂ that satisfies:

max
x∈[−1,1]

|p(x)− p̂(x)| ≤ 3σ. (93)

Moreover, p̂ can be computed in time polynomial in the number of samples m.

Proof. We refer to [12, Corollary 1.5] for a proof and note that we obtain the statement by setting the parameter
ϵ < 1/4 in their statement.

We note that the same result holds for random points picked from the uniform measure with m = O(d2).
The result above solves our problem of robust polynomial interpolation outlined in points 1 and 2. It shows that

it if we can ensure that we can approximate sufficiently many points of the polynomial up to some σ, then we also
recover the whole polynomial up to some error proportional to σ. Moreover, the number of samples required only has
a logarithmic overhead in d when compared with the case where we know the points exactly. As we will see later,
for our puproses it will be important to choose d to be small. Thus, in a nutshell, we see that Thm. 5.1 ensures that
we can reliably and robustly perform polynomial interpolation by only a small overhead when compared to when we
know the points exactly.
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We will later describe in more detail the algorithm given in [12] whose output satisfies the promises of Thm. 5.1.
However, before that we will show how the condition in Eq. (93) ensures that we can also recover the derivative of
the polynomial as long as the degree d is small.

To do that, we will resort to Markov brothers’ inequality, which we restate now for completeness.
Lemma 5.1 (Markov brothers’ inequality). For d, k ∈ N define the constant CM (d, k) to be given by

CM (d, k) =
d2
(
d2 − 12

) (
d2 − 22

)
· · ·
(
d2 − (k − 1)2

)
1 · 3 · 5 · · · (2k − 1)

. (94)

Then for any polynomial p of degree d we have that:

max
x∈[−1,1]

∣∣∣p(k)(x)∣∣∣ ≤ CM (d, k) max
x∈[−1,1]

|p(x)| . (95)

Proof. We refer to [14, Theorem 1.2] for a proof and discussion of this result.

Note that the value of CM(d, k) increases exponentially with d for k constant. We remark that having further
promises on the structure of the polynomial, such as the location of its zeros, can greatly improve this estimate. We
once again refer to [14, Chapter 1] for a discussion on this. It would be interesting to see if recent results on the
analyticity of the partition function [15] could be used in our context to also improve the error estimate. However,
this general bound will suffice for our purposes.

Let us now discuss the rescaling. It is easy to see that for polynomials defined on some interval [a, b], the polynomial
p̃(x) = p( b−a

2 x+ a+b
2 ) is defined on [−1, 1] and we can use this simple transformation to obtain a variation of Eq. (95) for

polynomials defined on general intervals. Indeed, applying Eq. (95) to p̃, it follows from a straightforward application
of the chain rule that

max
x∈[a,b]

∣∣∣p(k)(x)∣∣∣ ≤ ∣∣∣∣ 2

(b− a)

∣∣∣∣k CM (d, k) max
x∈[a,b]

|p(x)| . (96)

From this we conclude that:
Lemma 5.2 (Extrapolating the derivative at 0). Let p : [0, b] → R be a polynomial of degree d such that for some
ϵ > 0 and 0 < a < b:

max
x∈[a,b]

|p(x)| ≤ ϵ. (97)

Then

max
x∈[0,a]

|p(x)| ≤ ϵ

(
d∑

k=0

∣∣∣∣ 2

(b− a)

∣∣∣∣k akCM (d, k)

k!

)
(98)

and

|p′(0)| ≤ ϵ

(
d∑

k=1

∣∣∣∣ 2

b− a

∣∣∣∣k ak−1CM (d, k)

(k − 1)!

)
. (99)

Proof. It follows from Eq. (97) and Markov brothers’ inequality that∣∣∣p(k)(a)∣∣∣ ≤ ∣∣∣∣ 2

b− a

∣∣∣∣k CM (d, k)ϵ. (100)

By a Taylor expansion we know that for x ∈ [0, a]:

p(x) =

d∑
k=0

p(k)(a)
(x− a)k

k!
. (101)

The claim in Eq. (98) then follows by combining this expansion with Eq. (100) and a triangle inequality. Similarly
we have

p′(0) =

d∑
k=1

p(k)(a)(−1)k
ak−1

(k − 1)!
, (102)

for which a similar argument yields Eq. (99).
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The proposition above essentially allows us to control to what extent the derivative of a polynomial at 0 can deviate
from 0 given that the polynomial is small on another interval [a, b]. We can then apply it to the polynomial p− p̂, as
in Eq. (93) to control the error we make by estimating the derivative at 0 by evaluating p̂(0).

By combining the arguments above we conclude that:
Proposition 5.1 (Precision and number of samples for robust interpolation). Let p be a polynomial of degree d. For
some 0 < a < b define

E(a, b, d) =

(
d∑

k=1

∣∣∣∣ 2

b− a

∣∣∣∣k ak−1CM (d, k)

(k − 1)!

)
. (103)

Then for δ > 0 sampling
m = O(d log(dδ−1)) (104)

i.i.d. points (xi, yi) from the Chebyshev measure on [a.b] satisfying
p(xi) = yi + wi, |wi| ≤ σ

for at least a fraction α > 1
2 of the points is sufficient to obtain a polynomial p̂ satisfying∣∣p′(0)− (p̂)

′
(0)
∣∣ ≤ 3σE(a, b, d). (105)

with probability of success at least 1− δ.
Proof. From Thm. 5.1 we know that this number of samples suffices to obtain the polynomial p̂ satisfying

max
x∈[a,b]

|p(x)− p̂(x)| ≤ 3σ. (106)

Applying Lemma 5.2 to p− p̂ yields the claim.

This then yields a simple condition on how small σ has to be in the regime of interest to us:
Corollary 5.1. In the same setting as in Prop. 5.1 for some ϵ > 0 let a ≤ d−2, b = 2 + a and

σ = ϵd−2. (107)
Then

|p′(0)− p̂′(0)| = O(ϵ). (108)
Proof. It is easy to see that we have:

CM (d, k) ≤ d2k

k!!
, (109)

where k!! = 1× 3× 5× · · · × (2k − 1) is the double factorial.
Thus, we see from this and Eq. (99) that by our choice

a =
1

d2
, b = 2 + a (110)

we have from Eq. (105) that the estimated polynomial p̂(0) satisfies

|p̂′(0)− p′(0)| ≤ 3σ

(
d∑

k=1

∣∣∣∣ 2

(a− b)

∣∣∣∣k a−1 (ad2)k

k!!(k − 1)!

)
≤ 3σ

(
d∑

k=1

a−1 1

k!!(k − 1)!

)
, (111)

where we used the fact that a ≤ d−2.
Thus, as (

d∑
k=1

1

k!!(k − 1)!

)
≤ e, (112)

we conclude that with this choice of parameters we have
|p̂′(0)− p′(0)| ≤ 3eσa−1, (113)

which gives the claim by our choice of σ.

We will discuss in Sec. 6 how to specialize the discussion and results above to the scenario of Hamiltonian learning.
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Supplementary Note 6: Choice of parameters and performance guarantee of the pro-
tocol

Let us now combine the results from Sections 4 and 5 to see how to pick the various parameters of the algorithm
to ensure a good recovery of the couplings of the Hamiltonian.

More precisely, given a coupling parameter aα of LΛ we will be interested in estimating the sample complexity of
obtaining an estimate âα satisfying

|aα − âα| ≤ ϵ (114)

with high probability for some given error ϵ. As extensively discussed by now, we can easily reduce estimating the
couplings to estimating derivatives of time evolutions of local observables.

As expected, we will see that the main parameters we need to control are the maximal observation time tmax and
the initial time of measurement t0. This is showcased in the following Theorem:
Theorem 6.1 (Choice of final and initial time). Let LΛ be a locally bounded Lindbladian on a D-dimensional regular
lattice with growth constant g = O(1). Let O be an observable of constant support and ρ and arbitrary quantum state.
Let ϵ > 0 be given. Assume that LΛ satisfies Eq. (81) for some function h. Then picking t0 as

t0 = O

(h−1

(
ϵ

2(e2.5v − 1)

)D

log(ϵ−1)

)−2
 (115)

and tmax = 2 + t0 and measuring the expectation value f(t) = tr
[
etLΛ(O)ρ

]
for

m = Õ

[(
h−1

(
ϵ

2(e2.5v − 1)

))D

log(ϵ−1))

]
(116)

random times ti ∈ [t0, tmax] up to precision O(ϵ) is sufficient to obtain an estimate (f̂)′(0) satisfying

∣∣∣(f̂)′(0)− tr [LΛ(O)ρ]
∣∣∣ ≤ 3eϵt−1

0 = O

ϵ(h−1

(
ϵ

2(e2.5v − 1)

)D

log(ϵ−1)

)2
 . (117)

In particular, this estimate can be obtained from

Õ(ϵ−2 log(δ−1)) (118)

samples from the time evolved state ρ with probability of success at least 1− δ.
Proof. First, note that by Lemma. 4.1, if we pick tmax as described above, then a polynomial p of degree

d = O

[(
h−1

(
ϵ

2(e2.5v − 1)

))D

log(ϵ−1))

]
(119)

is sufficient to approximate the expectation value in the interval [0, tmax] up to an error ϵ/2, assuming that ϵ is small
enough to ensure that tmax ≤ 2.5. We will estimate the value of the polynomial at each point up to an error σ > 0,
which is to be determined later.

Thus, by inserting the bound on the degree d in Eq. (107), we need to estimate each value of the polynomial up to
a precision σ = O(ϵ) to obtain an overall error of

O

ϵ(h−1

(
ϵ

2(e2.5v − 1)

)D

log(ϵ−1)

)2
 (120)

As we imposed that the precision with which the polynomial approximates the expectation values is ϵ/2, we can
estimate the value of the polynomial for a given time up to an error O(ϵ) from O(ϵ−2) samples.

As we have to sample

O(d log(d)) = Õ

[(
h−1

(
ϵ

2(e2.5v − 1)

)D

log(ϵ−1)

)]
(121)

points to perform the stable interpolation, we obtain the advertised sample complexity.
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Sample Complexity Number of points Initial time
Finite range ϵ−2 polylog(ϵ−1) polylog(ϵ)

Exponentially ϵ−2 polylog(ϵ−1) polylog(ϵ)
Algebraically (α ≥ 5D − 1) ϵ−2α−3D

α−5D ϵ−
D

α−5D ϵ
2D

α−5D

Supplementary Table VI. Scaling of different resources required to obtain a recovery up to additive error ϵ of a parameters
of the evolution. We have only included the leading order term and α denotes the decay of the potential in space, whereas D
the dimension of the lattice.

For the case of strictly local or exponentially decaying interactions we have that

h−1

(
ϵ

2(e2.5v − 1)

)
= poly log(ϵ−1). (122)

In that case the sample complexity is of order Õ(ϵ−2). Thus, in this case we see that the inverse initial time t−1
0 and

the number of points we need to sample from is polylogarithmic in ϵ. Furthermore, the sample complexity to obtain
an error ϵ is also Õ(ϵ−2) up to polylogarithmic corrections.

For the sake of completeness, let us now discuss the conditions under which our protocol works beyond the setting of
exponentially decaying or short-range interactions. From Eq. (117) the condition for our procedure to work becomes
transparent: we need that (

h−1

(
ϵ

2(e2.5v − 1)

)D

log(ϵ−1)

)−2

= o(ϵ−1). (123)

Indeed, in this case we have the property that it is possible to suitably re-scale the error ϵ to ensure that the total
precision is at some desired precision ϵ̃. For instance, let us assume that

h−1

(
ϵ

2(e2.5v − 1)

)
= O(ϵ−r), (124)

for some r > 0. As we discuss later, this is typically the case for algebraically decaying interactions. For such a
LR-bound, we see that the resulting error in Eq. (117) is

O(ϵ1−2Dr log(ϵ−1)2). (125)

Ignoring the log(ϵ−1) term, we see that by picking ϵ = ϵ̃
1

1−2Dr we can ensure an error of order ϵ̃ for the estimate.
Thus, the growth of h−1 has to be at most r ≤ 1

2D and the sample complexity would also grow like Õ(ϵ−2−2Dr−r), as
we would need to sample Õ(d) = Õ(ϵ−r) points up to precision ϵ̃

1
1−2Dr .

Thus, we see that our protocol has a sample complexity that is independent of the system size to estimate one
parameter and the expected ϵ−2 scaling for short range evolutions evolutions, up to log factors. For algebraically
decaying interactions, however, the sample complexity has a worse scaling that depends on the exact decay of the
potential, but still independent of system size.

We summarize the sample complexities, smallest initial time t0 and number of different times steps we need for
various different potentials in Table VI.

A. Algorithm for robust polynomial interpolation

Now that we have established that the results of [12] indeed allow us to estimate the derivative at 0, let us now
describe their polynomial interpolation algorithm in more detail for completeness. The algorithm consists of two
parts, one ℓ1 regression and an iteration of ℓ∞ regressions. Following [12], we will only consider the case in which
we interpolate over [−1, 1]. But it is straightforward to also interpolate over other intervals by a suitable affine
transformation of the domain, as discussed before.

a. ℓ1 regression: before we define the ℓ1 regression, we need to define the Chebyshev partitions:

Definition 6.1 (Chebyshev partitions). Let m ∈ N be given. The size m Chebyshev partitions of [−1, 1] is the set of
intervals Ij =

[
cos πj

m , cos π(j−1)
m

]
for 1 ≤ j ≤ m.



21

We also define Pd to be the space of polynomials of degree at most d.
With these definitions at hand, we define the ℓ1 regression solution as follows:

Definition 6.2. Given a set of n points (xi, yi) and m ∈ N, we define the result of the degree d ℓ1 regression with m
Chebyshev partitions p̂ to be the polynomial

argminp̂∈Pd

n∑
i=1

|Ij |meanxi∈Ij |yi − p̂(xi)| , (126)

where Pd is the set of polynomials of degree d.

Note that the optimization problem above is a linear program and, thus, can be solved efficiently. Solving the
ℓ1 regression problem with n = O(d log(d)) samples from the Chebyshev measure is guaranteed to give us a good
solution on average. More precisely, as shown in [12, Lemma 1.2], the solution is guaranteed to satisfy

‖p− p̂‖ℓ1 = O(σ), (127)

where as usual σ is the error in each estimate yi and

‖p− p̂‖ℓ1 =

1∫
−1

|p(x)− p̂(x)| dx. (128)

However, the results of the previous sections required us to obtain a good solution in the ‖ · ‖ℓ∞ distance, and in
general

‖p− p̂‖ℓ1 = O(d2‖p− p̂‖∞). (129)

Although, as commented in the last section, we are interested in the regime of polynomial of relatively small degree,
by adding a ℓ∞ regression iteration on top of the ℓ1 regression, it is possible to get rid of this d2 prefactor.

b. ℓ∞ regression: besides getting rid of the unwanted d2 factor on the promise for the error of the ℓ1 regression,
adding a ℓ∞ regression step also has the favourable feature of making the whole procedure more robust to outliers in
the data.

Definition 6.3 (ℓ∞ regression). Given a set of n points (xi, yi) and m ∈ N given. For the m Chebyshev partitions
Ij, choose x̃j ∈ Ij arbitrarily and let

ỹj = medianxi∈Ij yi. (130)

We define the result of the degree d ℓ∞ regression with m Chebyshev partitions p̂ to be the polynomial p̂ ∈ Pd

argminp̂∈Pd
max
j∈[m]

|p̂ (x̃j)− ỹj | . (131)

Note that the problem in Eq. (131) also corresponds to a linear program and, thus, can be solved efficiently. The
output of the ℓ∞ regression algorithm is guaranteed to satisfy

‖p̂− p‖∞ ≤ 2.5σ +
1

2
‖p‖∞ (132)

as long as m = O(d) and the we pick n = O(d log(d)) samples from the Chebyshev measure, as shown in [12, Lemma
1.3]. Thus, the procedure gives us a promise of recovery in ∞-norm up to the unwanted ‖p‖∞ term. This can be
solved by iterating the ℓ∞ regression step.

c. Iterating the ℓ∞ step: the last step to obtain the desired robust polynomial interpolation is to iteratively
apply the ℓ∞ iteration step to the residual. More precisely, we first perform the ℓ1-regression on our data, obtaining
a polynomial p̂0. We can then define the new data points

(xi, ỹ
0
i = yi − p̂0(xi)) (133)

and run the ℓ∞ interpolation on this residual error, obtaining a polynomial p̂1. From Eq. (129) and our promise on
the output of the ℓ∞ interpolation, we know that the result of the interpolation will satisfy

‖p− p̂1‖∞ ≤ 2.5σ +
1

2
O(d2σ). (134)
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But then we can iterate this procedure by just running the ℓ∞ regression on

(xi, ỹ
1
i = yi − p̂1(xi)). (135)

Each time we run the interpolation on the residual, we exponentially reduce the error. By repeating the procedure
O(log2(d)) times, we then arrive at a polynomial satisfying the promises of Thm. 5.1.

Note, however, that the procedure used in Sec. III of the main text to demonstrate the viability of our method
differs slightly from the ones discussed here. The main difference is that we used equally spaced time steps that were
not random. However, in spite of this difference, we still obtained high quality solutions.

B. Certifying the degree of the polynomial in the fitting

Our approach requires us to fit the expectation values to a low-degree polynomial. However, it is natural to ask how
to pick the degree of the polynomial we fit the data to and to certify that the degree was chosen correctly. A heuristic
approach to this problem worked remarkably well in our numerics: we increased the degree d until the maximal
difference between the interpolating polynomial we obtained and the data we collected would fall below O(ϵ), the
target accuracy.

In Sec. 7 A we give a version of our polynomial approximation results with explicit constants. The exact required
degree is given in Eq. (148). However, our numerics suggests that a polynomial of degree orders of magnitude smaller
than given by the bound suffices to obtain a good approximation and offers greater numerical stability. We leave to
future work to obtain more refined estimated on the degree required.

Supplementary Note 7: Lieb-Robinson bounds

This section gives a brief overview of Lieb-Robinson bounds. In particular, we give more explicit formulas for the
functions h (see Formula (13) in the main text) in terms of the decay of the interactions and the dimension of the
lattice. Lieb-Robinson bounds are by now a standard tool in quantum many-body systems and quantum information
theory and we refer to [8, 9, 11, 16–20] for a more general overview over the mathematical background and some latest
bounds for algebraically decaying interactions.

At the heart of any Lieb-Robinson bound is the intuitive idea that if interactions in a system happen locally
this should imply a bound on how fast information can be transmitted. The usual way to codify this property for
Hamiltonian systems in the Heisenberg picture is to give a bound on the operator norm of the commutator between
a time-evolved observable OY (t) initially located in region Y and a second observable AX located in a region X in
the distance dist(X,Y ) between the regions X,Y , i.e. a bound of the form

‖[AX , OY (t)]‖ ≤ Ch(dist(X,Y ))(evt − 1), (136)

where C will typically depend on the size of the regions |X| and |Y | as well as on the operator norms of A and
O(t). However, in the context of Markovian dynamics and master equations, the bound is usually generalized by
substituting the super-operator [AX , ·] for an arbitrary bounded super-operator KX : M2n → M2n supported on X
leading to a Lieb-Robinson-bound of the form

‖KX(OY (t))‖ ≤ Ch(dist(X,Y ))(evt − 1), (137)

with C depending on ‖KX‖∞→∞,cb.However, if KX is of the form KX = [AX , ·], we have ‖KX‖∞→∞,cb ≤ 2 ‖AX‖∞,
which allows us to recover the commutator [10, 19]. In the following, we consider a regular lattice Λ and assume that
the dynamics is generated by a Lindbladian that decomposes according to

L =
∑
X⊂Λ

LX . (138)

Following [9, 19, 21], we define the maximal interaction strength

J = sup
X⊂Λ

‖LX‖1→1,cb (139)

as well as the decay behaviour of the interactions

µ(r) = sup
X⊂Λ:diam(X)=r

‖LX‖1→1,cb

J
(140)
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in terms of the stabilized 1-to-1-norm ‖T‖1→1,cb = supn ‖T ⊗ idn‖1→1. We can then characterize L as finite range
if µ(r) = 0 for r ≥ R > 0, exponentially decaying if µ(r) ≤ e−µr and algebraically decaying if µ(r) ≤ (1 + r)−α for
α > 0 and state the following Lieb-Robinson-bound for Lindbladians:

Theorem 7.1 (dissipative LR-bound [19]). Let L be a Lindbladian of the form (138), OY an observable supported
on Y ⊂ Λ and KX : M2n → M2n with KX(idX) = 0. Then

‖KX(OY (t))‖ ≤ ‖KX‖∞→∞,cb ‖OY ‖min(|X|, |Y |)h(dist(X,Y ))(evt − 1), (141)

with h(r) = e−νr for L exponentially decaying or finite range and h(r) = (1 + r)ν if L is algebraically decaying with
α > 2D + 1 with ν < α− (2D + 1), where D is the dimension of the lattice.

As stated above, in this work, we require a slightly different formulation of the LR-bound as given in Formula (7)
of the main text, namely

‖(etLΛ − etLΛr(Y ))(OY )‖ ≤ c1h(diam(Λr(Y )))(e
vt − 1), (142)

which reflects directly that the dynamics of the system can already be described by a generator LΛr(Y )
restricted to a

region Λr(Y ) of diameter r around the initial support Y of the observable OY . To convert a bound of the form (137),
we follow the reasoning given in [10, 19].

We can express the difference of the dynamics generated by the full Lindblad generator LΛ as compared to a
restriction LΛr to the subset Λr ⊂ Λ according to

(etLΛ − etLΛr )OY = −
∫ t

0

ds ∂s
(
esLΛr e(t−s)LΛ

)
OY =

∫ t

0

ds esLΛr (LΛ − LΛr
) e(t−s)LΛ(OY ) (143)

Taking norms on both sides, we therefore obtain an upper bound of the form

∥∥(etLΛ − etLΛr )OY

∥∥ ≤
∑

X ̸⊂Λr

∫ t

0

ds
∥∥∥LXe

(t−s)LΛ(OY )
∥∥∥ . (144)

We notice, that the term inside the integral is exactly of the form of the left-hand side of (137) with KX = LX . Hence,
we can insert the standard LR-bound for dissipative dynamics from (137) here and are left with a combinatorial
problem to obtain a bound on the approximation. This can be done explicitly for several standard interaction decays,
such as finite range, exponentially decaying or algebraically decaying interactions [10, 19]. In particular, based on the
Lieb-Robinson bound in Thm. 7.1, we obtain

Lemma 7.1 ([19]). Let L be a Lindbladian of the form (138), OY an observable supported on Y ⊂ Λ and r > 0 hold.
Then for LΛr(y) =

∑
X⊂Λr(y)

ΛX we have

∥∥(etL − etLΛr(y)
)
OY

∥∥ ≤ ‖OY ‖ |Y |J e
vt − 1− vt

v
h(r) (145)

with h(r) exponentially decaying in r for L finite range or exponentially decaying and h(r) decaying as (1 + r)−β if
L is algebraically decaying with α > 2D + 1 and β = α − 3D for α ≥ 5D − 1 and β = 1

2 (α −D − 1) if α ≤ 5D − 1,
where again D is the dimension of the lattice.

We remark that all these bound give us the required independence of the right-hand side from the overall system
size. We expect that with the help of recent more stringent estimates on Hamiltonians with algebraic decay, it will
most likely be possible to extend and strengthen these bounds for other algebraic decays.

A. Explict Lieb-Robinson velocities

As discussed in section 10, making a priori estimates about the sampling complexity beyond the principle scaling,
requires explicit knowledge about the constants in the LR-bounds we are using, in order to obtain a bound on the
degree of the involved polynomials. This includes in particular the Lieb-Robinson velocity that governs the decay
behaviour of the equations in time. Hence, within this section, we will discuss some models were this dependence can
be made more explicit.
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First of all, we note that for a given anticipated interaction graph and assuming a bound on the interaction strength
and decay behaviour as defined in (139) and (140), according to [19] the Lieb-Robinson velocity can always be chosen
according to

2J sup
x,yΛ

∑
n≥0

|bx(n)|
|bx(n− 1)|

∑
r≥n

µ(r)|by(r)|h(r) ≤ v, (146)

where bx(n) denotes the ball of size n around lattice side x and the function h(r) is specified in Thm. 7.1 depending
on the decay of the interactions. This will in principle allow us to obtain an explicit bound for any anticipated model
our protocol can be applied to.

However, more explicit bounds can be derived in the case of stronger assumptions on the locality of the interactions.
Indeed, let us consider the case of finite-range interactions specified on an interaction graph with (hyper)edge set E
that satisfies the following requirements [11]

1. finite interaction strength: g = supX∈E ‖LX ‖ ≤ ∞

2. finite neighbourhood: Z = maxX∈E |{Y ∈ E : X ∩ Y 6= ∅} ≤ ∞

3. bounded growth of neighbours: maxX∈E |{Y : dist(X,Y ) = n}| ≤Mnη

For such a systems, [11, Thm.2] derives a Lieb-Robinson bound according to Lemma 7.1 with the right-hand side of
(145) given by

2M

Z
‖OY ‖ rηe(egZ)·t−r =

2M

Z
ev·th(r) (147)

with h(r) = rηe−r and the LR-velocity v = egZ. Hence, following the reasoning in section 4, we choose r as
h−1( Zε

4M∥OY ∥ exp(v·tmax)
), which for‖OY ‖ ≤ 1 and for r large enough such that (1 − η log r

r ) > 2
3 means that r should

be chosen as 3
2 log

(
4Me(egZ)·tmax

Zε

)
. This in turn results for the truncated Taylor-expansion for the corresponding

generator LΛy(r) restricted to the region Λy(r) in a polynomial degree of d = 2etmaxg|Λy(r)| − 1, which in the case of
a D-dimensional lattice results in

dexp = 2etmaxg

(
3

2
log

(
4Me(egZ)·tmax

Zε

)
+ diam(supp(OY ))

)D

log(ε−1)− 1 . (148)

Following the reasoning in section 6, this implies a required minimal starting time t0 = d2exp and maximal evolution
time tmax = 2 + t0 as well as sampling m = O

(
d log(dδ−1

)
evolution times within this interval according to the

Chebychev distribution in order to succeed with the polynomial interpolation.
Finally, let us mention that by assuming even more structure on the interactions and using the method developed

in [22] based on the so-called commutativity graph, even stronger bounds on the LR-velocity can be obtained for
certain models. Indeed, for example for the translation invariant transverse field Ising model in two-dimensions, [22]
shows that v ∼ √

g instead of the linear dependence discussed before and we would expect that this scaling will also
be an upper bound in the case of non-translation invariance.

Supplementary Note 8: Parallelizing the Measurements: shadow process tomography

In this section we introduce a method to parallelize the estimation of the Pauli overlaps required for our protocol.
For a quantum channel on n qubits Φ and two collections of Pauli strings P 1

a , . . . , P
K1
a and P 1

b , . . . , P
K2

b that have
combined weight (i.e. number of Paulis that are nonidentity) ωa+ωb at most ω it allows us to estimate all the overlaps
of the form

2−n tr
[
P j
aΦ(P

k
b )
]

(149)

up to an error ϵ with probability at least 1 − δ from a number of samples that grows like O(3w log(K1K2δ
−1)ϵ−2).

Moreover, it only requires us to prepare simple Pauli eigenstates and measure in Pauli eigenbases. Recently two
works [23, 24] have considered how to generalize the shadows protocol to the setting of process tomography. Here we
give an alternative analysis that has a better sample complexity than the previous works when specialized to Pauli
strings. Thus, we believe that this section may be of independent interest.

The protocol we will introduce now allows us to estimate all the data required for our Hamiltonian learning protocol
in parallel. Every round i of the protocol is performed as follows:
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1. Draw two Pauli strings Bi, Si ∈ {σx, σy, σz}n uniformly at random and also a sign vector Ei = {−1,+1}n
uniformly at random.

2. Prepare the quantum state ρi = ⊗n
j=1ϕj(Si, Ei), where ϕj(Si, Ei) is an eigenstate of the j−th Pauli on the

string Si corresponding to the eigenvalue in the j-th entry of Ei.

3. Evolve ρi by Φ.

4. Measure in the Pauli basis defined by Bi. Denote the measurement outcome by Mi.

5. Output (Bi, Si, Ei,Mi).

Let us now introduce some notation to explain how to postprocess the samples obtained from the protocol above.
Let Pa and Pb be the given Pauli operators on n qubits. We say that a basis Bi overlaps with Pa if all qubits on

which Pa acts non trivially are also measured in the same basis. For example, Pa = σx⊗σy ⊗ I and Bi = {σx, σy, σz}
overlap. However, Pa = σx ⊗ σy ⊗ I and Bi = {σx, σz, σz} do not overlap. Moreover, if the basis and Pa overlap, we
say that the measurement outcome Mi overlaps positively if we measure a positive eigenstate of Pa. Otherwise, we
say it is negative.

We will also define a similar notion of the state overlap given the Pauli Pb, the basis Si and sign Ei. We say that Pb

and (Si, Ei) overlap positively if Si coincides with Pb on all qubits it acts non trivially and the state ρi is a positive
eigenstate of Pb. We say we overlap negatively if it is a negative eigenstate. We will also define ω(Pa) to be the
number of qubits on which Pa acts non trivially.

We can now finally introduce a random variable given the Paulis Pa, Pb and the data from the experiment Bi, Si,
Ei and Mi. Let us define a function in terms of the outcomes and inputs of one round of the protocol:

Xa,b(Bi, Si, Ei,Mi) =


0 if Bi does not overlap with Pa or Si does not overlap with Pb,
3ω(Pa)+ω(Pb)/2 if (Bi, Si) overlap with (Pa, Pb), and both do so positively,
3ω(Pa)+ω(Pb)/2 if (Bi, Si) overlap with (Pa, Pb), and both do so negatively,
−3ω(Pa)+ω(Pb)/2 if (Bi, Si) overlap with (Pa, Pb), one positively, the other negatively.

.(150)

We will now show that:

E(Xa,b) = 2−n tr (PaΦ(Pb)). (151)

and

E(X2
a,b) ≤ 3w(Pa)+w(Pb) (152)

Before we prove that, let us discuss how these estimates on moments on Xa,b suffice to obtain the claimed sample
complexity. As in other works on classical shadows, it will be crucial to use the method of median of means esti-
mator [25] to estimate the expectation value of Xa,b. The method of medians of means works as follows. We take a
sample of size S and divide it into K subsets of size B, i.e. S = KB. We then compute the empirical mean on each
of the K subsamples. Denote them by µ̂i, with 1 ≤ i ≤ K. We then set our estimator of the mean to be:

µ̂MoM = median(µ̂1, . . . , µ̂K). (153)

The main property of this estimator is that we have that if the variance of Xa,b is σ2, then:

P(|µ̂MoM − E(Xa,b)| ≥ ϵ) ≤ e
−2K

(
1
2−

σ2

Bϵ2

)
. (154)

In particular, if we pick B = 4σ2ϵ−2 and K = 2 log(δ−1), then:

P(|µ̂MoM − E(Xa,b)| ≥ ϵ) ≤ δ. (155)

We see that the median of means method allows to have a logarithmic scaling of the error probability from a bound
on the variance. On the other hand, just using the empirical mean directly combined with an estimate on the variance
gives a polynomial dependence only.

Armed with these facts about the median of means estimator, the following result immediately follows from (151)
and (152):
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Corollary 8.1. Let {P l
a}

K1

l=1 and {P j
b }

K2
j=1 be two collections of Pauli matrices on n qubits such that for any l, j the

following condition

ω(P l
a) + ω(P j

b ) ≤ ω, (156)

holds. Then

O(3ω log (K1K2δ
−1)ϵ−2) (157)

runs of the protocol above suffice to obtain an estimate el,ja,b satisfying∣∣∣|2−n tr
[
P l
bΦ(P

j
a )
]
− el,ja,b

∣∣∣ ≤ ϵ (158)

for all pairs l, j with probability at least 1− δ.

Proof. Let X l,j
a,b be the random variable we have defined above for a pair of Paulis P l

a and P j
b . By the bound in (152)

we have that E((X l,j
a,b)

2) ≤ 3ω, holds. Thus, for the median of means estimator with B = 3ωϵ−2 samples per group
and K = 2 log(δ−1K1K2) we have an estimate satisfying (158) with probability of failure at most δ/K1K2.

By a union bound, the median of means estimator of all K1K2 combinations of P l
a and P j

b satisfy (158) with
probability of failure at most δ. The total number of samples required for this is

S = KB = O(3ω log (K1K2δ
−1)ϵ−2), (159)

which yields the claim.

To conclude we only need to show that (151) and (152) hold. Let us start with the expectation value. First, note
that

E(Xa,b) = E(Xa,b|B and S overlap)P(B and S overlap), (160)

holds. Here we say that B and S overlap if B overlaps with Pa and S overlaps with Pb. The latter formula holds,
because if we do not have overlap then Xa,b = 0 by the case 1 of the definition (150). Now observe that

P(B and S overlap) = 3−ω(Pa)3−ω(Pb). (161)

This holds because we have a 1/3 chance of ”hitting the right Pauli” at each point of the support of either Pa or Pb

and they are all independent. Thus, all we need is to determine

E(Xa,b|B and S overlap). (162)

Here we distinguish four cases:

1. S overlaps positively with Pb and B overlaps positively with Pa.

2. S overlaps negatively with Pb and B overlaps negatively with Pa,

3. S overlaps positively with Pb and B overlaps negatively with Pa,

4. S overlaps negatively with Pb and B overlaps positively with Pa.

We can then break down the expectation of (160) down into the cases:

E(Xa,b|B and S overlap)P(B and S overlap) =
4∑

i=1

E(Xa,b|B and S overlap, c = i)P(c = i), (163)

where c is a random variable which keeps track of which case we have. By definition, if c = 1, 2, then

E(Xa,b|B and S overlap, c = 1, 2) = 3ω(Pa)+ω(Pb)/2. (164)

If c = 3, 4:

E(Xa,b|B and S overlap, c = 3, 4) = −3ω(Pa)+ω(Pb)/2. (165)

Note that the 3ω(Pa)+ω(Pb) counteracts the P(B and S overlap) term, up to an additional 1/2 factor.
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Thus, all that is left is to estimate

P(c = i), i = 1, 2, 3, 4. (166)

Let us estimate P(c = 1), the other cases will be analogous. To this end, we will introduce Q+
a and Q−

a , which are
the projectors onto the positive and negative eigenvalues, respectively, of the support of Pa. We will use analogous
notation for Q+

b and Q−
b . Clearly, Pa = (Q+

a − Q−
a ) ⊗ I⊗n−ω(Pa), holds. Here and in what follows we will always

assume for simplicity that the Pauli strings are supported on the first qubits.
Let us estimate the expected initial state for the case c = 1. Conditioned on being a state with positive overlap with

Pb, by construction we know that the state is uniformly distributed on the positive eigenspace of Pb. This corresponds
to the state

σ =
Q+

b

2ω(Pb)−1
⊗
(
I
2

)⊗n−ω(Pb)

. (167)

Given that this is the initial state and that we are measuring in the eigenbasis of Pa (recall that we have overlap),
the probability of measuring a positive outcome is tr (Q+

a ⊗ In−ω(Pa)Φ(σ)).
We conclude that

P(c = 1) =
1

2
tr (Q+

a ⊗ In−ω(Pa)Φ(σ)) =
1

2n−1
tr (Q+

a ⊗ In−ω(Pa)Φ(Q+
b ⊗ In−ω(Pb))). (168)

Similarly

P(c = 2) =
1

2n−1
tr (Q−

a ⊗ 1n−ω(Pa)Φ(Q−
b ⊗ 1n−ω(Pb))), (169)

P(c = 3) =
1

2n−1
tr (Q+

a ⊗ 1n−ω(Pa)Φ(Q−
b ⊗ 1n−ω(Pb))), (170)

P(c = 4) =
1

2n−1
tr (Q−

a ⊗ 1n−ω(Pa)Φ(Q+
b ⊗ 1n−ω(Pb))), (171)

As

2−n tr (PaΦ(Pb)) = 2−n(tr (Q+
a Φ(Q

+
b )) + tr (Q−

a Φ(Q
−
b ))− tr (Q+

a Φ(Q
−
b ))− tr (Q−

a Φ(Q
+
b ))), (172)

we conclude that

E(Xa,b) = 2−n tr (PaΦ(Pb)). (173)

Computing the second moment of Xa,b turns out to be quite simple. Note that the only nonzero value the random
variable X2

(a,b) takes is 32ω(Pa)+2ω(Pb)/4 with probability 3−ω(Pa)−ω(Pb). Thus, we clearly have that:

E(X2
(a,b)) = 3ω(Pa)+ω(Pb)/4, (174)

which yields (152). This concludes all the computations required for Cor. (8.1).
Note that the protocol only requires the preparation of Pauli states and Pauli measurements. Thus, it should be

feasible to implement it on near term devices. Additionally, the required postprocessing is efficient, as evaluating the
value of Xa,b can be efficiently done given a sample.

Furthermore, note that if we further have the information that we do not to wish to recover certain bases (i.e. we
do not wish to recover Pauli strings with Y terms), it is possible to adapt the protocol and do not prepare initial
states or measure in that basis. This will reduce the sample complexity accordingly.

Supplementary Note 9: Robustness of the protocol to various errors

It is natural to inquire to what extent our protocol is robust against state preparation and measurement errors
(SPAM) and to what extent it still outputs reliable estimates whenever the underlying assumptions are only valid
approximately. The goal of this subsection is to address all of these concerns and show that our protocol is highly
robust.

In the following subsections we will discuss the following forms of robustness:
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1. perturbations of the locality of the interaction.

2. SPAM errors.

3. unknown structure of interactions.

By unknown structure of interactions we mean the scenario where we do not know exactly which qubits are actually
coupled to each other, i.e. the precise form of the generator is not given, but we assume such a local structure exists.
And by approximately local generators we mean the case of Lindbladians that are of the form L = L′ +∆, where L
is a Lindbladian that satisfies our locality assumptions and ∆ is an arbitrary perturbation. Note that although we
could extend all of our results to dynamics that have k-body interactions, we will here restrict to at most 2−body
interactions for simplicity.

But before discussing more sophisticated bounds, let us make the general observation that the polynomial interpo-
lation method we are using is robust to noise in the data. This is both in the sense of there being outliers in the data
and the estimates we obtain for the points being close to that of a polynomial.

Thus, we have the following general robustness statement:

Lemma 9.1. Let L be a Lindbladian on a D-dimensional regular lattice and ϵ > 0 be given. Suppose we can measure
the expectation value of two-body Pauli observables in the time interval [t0, tmax] under a family of quantum channels
{Φt}t0≤t≤tmax s.t. for all t ∈ [t0, tmax] we have for 2−body Paulis P :

‖(Φ∗
t − etL)(P )‖ ≤ O(ϵ/ log(ϵ−1)). (175)

for

t−1
0 = O

[
polylog(ϵ−1)

]
(176)

and tmax = 2 + t0. Assume further that we can prepare Pauli eigenstates and perform Pauli measurements up to an
error O(ϵ/ log(ϵ−1)). Then, measuring such Pauli measurements on Pauli eigenstates under the evolution of Φ∗

t for

m = O
[
polylog(ϵ−1)

]
(177)

random times up to precision O(ϵ/ polylog(ϵ−1)), is sufficient to obtain with probability of success at least 2/3 an
estimate âα of aα satisfying

|âα − aα| = ϵ. (178)

Proof. By Eq. (175), measuring the expectation value of P under the time evolution will yield values that are within
O(ϵ/ log(ϵ−1)) of the expectation value for the evolution under L. As the polynomial interpolation method we use is
robust to noise on the values of the polynomial and we only need the expectation value of local Paulis for our recovery,
the statement follows.

Thus, we see that, in general, as long as the perturbation to the idealized, local Lindbladian is of the same order
as the estimate’s precision required at each step for local Paulis, we can still recover the parameters of the idealized
Lindbladian.

A. Robustness to perturbations

Our results strongly rely on the fact that local quantum dynamics satisfy LR bounds. Thus, it is natural to what
extend our protocol is robust against global perturbations, i.e. what happens if we have small couplings between
distant parts of the system. Let us now show that our protocol is robust against such perturbations.

To model such perturbations, we will assume that the true generator is of the form

L = L′ +∆, (179)

where L′ is a time evolution that satisfies a LR bound and ∆ is an arbitrary superoperator that is supposed to
model the non-local parts of the evolution. Furthermore, we will define the following expansion quantity κ(∆, k) that
measures the impact of the non-local part on observables supported on at most k sites:

κ(∆, k) = sup
O:supp(O)≤k,∥O∥≤1

‖∆(O)‖. (180)
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To see why this quantity measures the impact of global perturbations on local observables, let us consider the case
where we have

∆(X) = τ

n∑
i,j=1,i̸=j

i[Hi,j , X], (181)

for some arbitrary Hamiltonian evolution terms ‖Hi,j‖ ≤ 1 supported on qubits i, j. That is, this additional term
models the situation where we have a small interactions between all pairs of qubits. Note that the norm of this
perturbation scales like ∼ n2 in general. In contrast, κ(∆, k) ∼ τkn. This because for an observable supported on k
sites, only the terms that also interact with that site will act nontrivially on it. So we have a total of ∼ nk terms
acting on that site.

We then have:

Theorem 9.1. Let L be a Lindbladian and suppose it is of the form

L = L′ +∆, (182)

where L′ satisfies a LR bound as in Eq. (142). Then we have for an observables O s.t. ‖O‖ ≤ 1 and

‖etL − etL
′
(O)‖ ≤ inf

δ>0
tδ‖∆‖+∞→+∞ +

t∫
0

dsκ(∆, |B(supp(O), log(δ−1) + vs))|). (183)

Proof. We have that:

(etL − etL
′
)(O) =

t∫
0

dse(t−s)L∆esL
′
(O). (184)

Now for any δ > 0 we can approximate esL′
(O) up to δ in operator norm by an observable supported on a ball of

radius rs,δ = vs+ log(δ−1) around the original support of O, i.e.:

esL
′
(O) = Ors + δÕs (185)

where ‖Ors‖, ‖Õs‖ ≤ 1 and Õs does not necessarily have any further locality. Now:

‖(etL − etL
′
)(O)‖ ≤

t∫
0

ds‖e(t−s)L∆esL
′
(O)‖ ≤

t∫
0

ds(‖e(t−s)L∆Ors,δ‖+ ‖e(t−s)L∆(δÕs)‖). (186)

We can estimate the first summand of the integral by
t∫

0

ds‖e(t−s)L∆(Ors,δ)‖ ≤
t∫

0

dsκ(∆, |B(supp(O), log(δ−1) + vs)|) (187)

as, by definition, ‖∆(Ors,δ)‖ ≤ κ(∆, r(s, δ)) and e(t−s)L is a quantum channel in the Heisenberg picture and cannot
increase the operator norm. We can estimate the second summand in a similar way and get:

t∫
0

ds‖e(t−s)L∆(δÕs)‖ ≤ δt‖∆‖+∞→+∞. (188)

As δ > 0 here was arbitrary, we can further optimize the bound over all δ > 0, which gives the claim.

In a nutshell, the bound above says that our protocol is only sensitive to the extent at which global couplings
affect local observables, which makes it significantly more robust than one would expect naively. Let us illustrate
the scaling of the bound above with the example above of all-to-all couplings in Eq. (181). By a triangle inequality,
‖∆‖ ≤ τ n(n−1)

2 . Thus, for an observable initially supported on a constant number of sites, we have that:

κ(∆, r(s, δ)) = τn(vs+ C log(δ−1))D, (189)



30

From this we conclude that for such all-to-all perturbations, we have that

‖(etL − etL
′
)(O)‖ = inf

δ>0
O(nτ(δtn+ tD+1 logD(δ−1))) = O(nτ(t+ tD+1 logD(n))), (190)

where for the last bound we picked δ = n−1. Thus, we see that as long as ntτ � ϵ, our protocol still produces reliable
results even under such global perturbations. Also note that our more refined perturbation bound using the LR-bound
is quadratically better than the naive bound n2tτ � ϵ we directly obtain from observing that ‖∆‖+∞→+∞ ≤ n2.

B. Robustness to characterized SPAM errors

Let us consider how to adapt our protocol to the case where we have SPAM errors. We will model such errors by
assuming we know quantum channels TP and TM that model the noise when preparing the state and the measurement
and we assume that these channels are independent of the Pauli basis we are measuring or preparing.

In that case, the process shadow tomography would be estimating the value of

2−n tr (Pa(TM ◦ etL ◦ TP )(Pb)) = 2−n tr (T ∗
M (Pa)e

tL(TP (Pb)). (191)

If the observable T ∗
M (Pa) is sufficiently local, i.e. it does not increase the support of Pa signigicantly, then our

previous results hold and we know that the function f : t 7→ 2−n tr (T ∗
M (Pa))e

tL(TP (Pb)) will be well-approximated
by a polynomial of low-degree. Thus, we can see that we can evaluate the derivative of the function at 0 exactly as
before. However, now will get access to the equation:

2−n tr (T ∗
M (Pa))L(TP (Pb)) = ca,b (192)

If the channels TM , TP are sufficiently simple (i.e. approximately product), then it is possible to expand the expectation
value in Eq. (192) efficiently and obtain a linear equation for the parameters of L. Note, however, that these SPAM
errors might decrease the condition number of the system of equations. Thus, it would be necessary to see how
the condition number changes with the noise and then adjust the precision with which we estimate the derivative
accordingly.

Let us exemplify this in a simple form of SPAM: local depolarizing noise. Let us assume that both TM and TP consist
of D⊗n

p , where for some parameter p Dp(ρ) = pρ+ (1− p) I2 . In this case, we see that TP (Pb) = pw(Pb)Pb, T
∗
M (Pa) =

pw(Pa)Pa. Thus, in this case we see that the expectation values are rescaled by a factor pw(Pa)+w(Pb) and we can run
exactly the same protocol, but now with a sampling overhead of p2k to learn k−local Hamiltonians. In conclusion, we
see that for noise models like local depolarizing (or in fact any Pauli noise), it is easy to recover our original results
with a mild sampling overhead by adjusting the linear systems.

Developing an analytical understanding of how the condition number changes for other important noise models like
amplitude damping is beyond the scope of this work. But we once again emphasize that this is straightforward and
efficient to do numerically.

C. Robustness to unknown SPAM errors

In the last subsection we discussed how to deal with SPAM errors if they are well-characterized and independent of
the measurement and state being prepared. Now we are going to discuss the case in which they are unknown and can
potentially depend on the measurement and state we wish to prepare. We will show that the effect of SPAM errors
will be local, in the sense that as long as the local SPAM rate is of order at most ϵ, then the protocol still yields reliable
results. For simplicity, we will consider SPAM errors that are modelled by single-qubit product quantum channels.
However, our proof works analogously for channels with an approximately finite light-cone. That is, they map local
observables to observables that are approximately local. More formally, in the SPAM-free setting, our protocol entails
measuring states of the form:

(⊗n
i=1Vi)e

tL(⊗n
i=1Ui)(|0n〉〈0n|), (193)

where Ui, Vi are single-qubit Pauli rotations. We then estimate local observables on such states. We will now model
that instead we prepare the state

(⊗n
i=1Ti,Vi

)(⊗n
i=1Vi)e

tL(⊗n
i=1Ui)(⊗n

i=1Ri,Vi
)(|0n〉〈0n|), (194)
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where Ti,Ui
and Ri,Vi

are single-qubit quantum channels that model the SPAM errors and can potentially depend on
the gates we are implementing. We will now see that only local SPAM errors affect the performance of our protocol.
But before that, let us discuss the sensitivity of the shadows protocol of Sec. 8 to noise. Suppose we wish to use the
shadow protocol to estimate a pair of Paulis Pa, Pb of respective weight wa, wb, i.e. we wish to estimate

2−n tr
[
Pbe

tL(Pa)
]
. (195)

Then the protocol discussed in Sec. 8 consists of measuring an observable of Oa,b,{Vi},{Ui} that depends on the state
preparation and measurement unitaries, is supported only on the support of Pb and such that ‖Oa,b,{Vi},{Ui}‖ =

3wa+wb/4 over an ensemble of random states. Denoting by B the support of Pb, we conclude that if for all possible
Ui, Vi we have

‖ trBc

[
(⊗n

i=1Ti,Vi
)(⊗n

i=1Vi)e
tL(⊗n

i=1Ui)(⊗n
i=1Ri,Vi

)− (⊗n
i=1Vi)e

tL(⊗n
i=1Ui)(|0n〉〈0n|)

]
‖1 ≤ τ, (196)

then by an application of Hölder’s inequality, we have that the expectation value of the shadows protocol will deviate
by at most τ3wa+wb/4 from the ideal value. Although this exponential scaling of the sensitivy in the locality is
undesirable, if the SPAM errors are very strong, we can also adopt the less efficient strategy of preparing each state
for the isolation separately. As for that case we only need to measure a local observable of operator norm 1, we see
that we avoid the exponential factor and the overall error in the estimation for the observable directly follows from
Eq. (196) and corresponds to τ .

Let us now show that τ does not scale with the system’s size and only depends on the local noise rate:

Proposition 9.1. In the notations above, assume that for all i, Ui, Vi we have that ‖Ri,Vi
− id‖⋄, ‖Ti,Vi

− id‖⋄ ≤ τ .
Furthermore, assume that L satisfies a LR-bound like that of Eq. (81). Then for t, wa, wb = O(1) we have that:

‖ trBc

[
(⊗n

i=1Ti,Vi
)(⊗n

i=1Vi)e
tL(⊗n

i=1Ui)(⊗n
i=1Ri,Vi

)− (⊗n
i=1Vi)e

tL(⊗n
i=1Ui)(|0n〉〈0n|)

]
‖1 = O(τpolylog(τ−1)). (197)

In particular, under such a SPAM error we have that the process shadow protocol for Paulis Pa, Pb will have an
expectation value that is O(3wa+wbpoly(wa, wb)τpolylog(τ

−1)) close to the SPAM-free setting.

Proof. the statement is equivalent to having for all OB supported on B s.t. ‖O‖ ≤ 1 that

tr
[
OB

[
⊗n

i=1Ti,Vi)(⊗n
i=1Vi)e

tL(⊗n
i=1Ui)(⊗n

i=1Ri,Vi)− (⊗n
i=1Vi)e

tL(⊗n
i=1Ui)(|0n〉〈0n|)

]]
= O(τpolylog(τ−1)). (198)

First, note that we have that

tr
[
OB(⊗n

i=1Ti,Vi)(⊗n
i=1Vi)e

tL(⊗n
i=1Ui)(⊗n

i=1Ri,Vi)(|0n〉〈0n|)
]
= (199)

tr
[
OB(⊗i∈BTi,Vi)(⊗i∈BVi)e

tL(⊗n
i=1Ui)(⊗n

i=1Ri,Vi)(|0n〉〈0n|)
]
= (200)

tr
[
O′

Be
tL(⊗n

i=1Ui)(⊗n
i=1Ri,Vi)(|0n〉〈0n|)

]
+ ϵ1, (201)

where |ϵ| ≤ wbτ and O′
B is again an observable of operator norm at most 1 on B. Here we have used that all the

unitaries and channels acting outside of B will have a trivial effect. For those acting on B we use our bound on
the diamond distance to the identity channel. Now, by our LR bound we have that for times t = O(1), we can
write etL∗

(O′
B) = Ot,B(t,r) + Xr,t, where Ot,B(t,r) is an observable supported on a ball of size tv + r around B and

‖Xr,t‖ ≤ O(e−Cr). In particular, picking r = O(log(τ−1)) and as t = O(1) we get that etL∗
(O′

B) is localized on a
number of sites that is at most wb(vt+ C log(τ−1))D up to an error ϵ, where D is the dimension of the lattice.

Thus:

tr
[
O′

Be
tL(⊗n

i=1Ui)(⊗n
i=1Ri,Vi)(|0n〉〈0n|)

]
= tr

[
O′

t,B(t,r)(⊗
n
i=1Ui)(⊗n

i=1Ri,Vi)(|0n〉〈0n|)
]
+ ϵ2, (202)

where ϵ2 ≤ τ by our choice of r. We can then follow the same procedure as before for the Ti,Vi
to conclude that

only those channels on the support of O′
t,B(t,r) contribute to the noise. Thus, we get an additional error of order

O(τpolylog(τ−1)). This concludes the proof.

Recall that for the protocols discussed here we have w(Pa), w(Pb) = O(1). Thus, we see that our protocol is robust
to local, gate-dependent SPAM noise as long as the local noise rates are smaller than the target accuracy and the
SPAM errors do not need to decrease with the system’s size.
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Supplementary Note 10: Learning the structure of the interactions

In the main text we assumed that we know which qubits interact with which qubits, i.e. the interaction graph is
known, and we only wish to recover the parameters of this interaction. However, a close inspection of the proof shows
that we do not really require exact knowledge of the structure; all we need is the promise that the evolution satisfies a
LR bound. Indeed, the only structure required for our proofs to go through is that the evolution of local observables
can be well-approximated by that of truncated Lindbladian, and this remains true if the structure of the interactions
is unknown, but the true evolution still satisfies a LR bound.

Thus, in this section we will discuss how to apply our protocol in the setting in which we expect the evolution to
satisfy a LR bound, but we do not necessarily know all qubits that are coupled to each other. Discussing this setting
in full detail and generality goes beyond the scope of this paper, so we will restrict to the case where there is no
Lindblad term and we restrict to interaction acting on only two qubits.

Furthermore, we will make the assumption that we have a lower-bound on the strength of all the interactions that
are non-zero. This is necessary to obtain bounds on the performance of the protocol, as if we don’t have such a
lower-bound it will in principle be necessary to measure expectation values with a very high precision to see their
effect.

We will thus assume that our generator is of the form

L(X) =
∑

(i,j)∈E

aαi[Hα, X], (203)

where the (unknown) interaction graph G = (V,E) is such that the evolution induced by L satisfies a LR bound as
in Eq. (81), 1 ≥ |aα| ≥ η and ‖Hα‖ ≤ 1 and Hα is supported on at most 2 qubits.

Proposition 10.1 (Learning the interaction graph). Let L be a Lindbladian on n-qubits as described in Eq. (203)
that satisfies a LR bound as in Eq. (81) and 1 ≥ |aα| ≥ η. Suppose we can measure the expectation value of two-body
Pauli observables in the time interval [t0, tmax] under {etL}t0≤t≤tmax for

t−1
0 = O

[
polylog(η−1)

]
(204)

and tmax = 2 + t0. Then, measuring the evolution in Pauli bases on Pauli eigenstates under the evolution of etL for

m = O
[
polylog(ϵ−1)

]
(205)

random times O(η−2 log(n) polylog(η−1)) times each, is sufficient to obtain with probability of success at least 2/3 the
list of the edges E.

Proof. The protocol is as follows: we first perform the process shadow tomography protocol for m random times
ti and measure the output O(η−2 log(n)/ polylog(η−1)) times for each ti. Then, by a union bound, we will obtain
the expectation value of all the O(n4) pairs input and output 2-body Pauli strings up to precision η/ polylog(η−1)
each with probability at least 2/3. Conditioning on the event that all of the estimates were correct, we can use our
previous results to estimate the interaction strength for all 2−body Pauli terms up to precision η/4. We then set an
edge between all qubits such that they have a 2−body interaction at least 3

4η in absolute value. By our assumption
that all the interactions are at least η, we will then identify all interactions correctly.

Thus, we see that our protocol can also correctly identify the interactions as long as some LR-bound is given. To
the best of our knowledge, this is the first protocol that does not necessarily require knowledge of the graph, just some
assumptions on the locality. Furthermore, note that the sample complexity of this version of the protocol requires
approximately the same number of samples as to estimate the values themselves. However, note that learning the
graph is computationally more expensive. This is because we need to run O(n2) polynomial interpolations to estimate
all couplings, whereas when we are given the graph, the number of interpolation steps required is O(n).
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