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Abstract. We aim to build a vast database (up to 9 million individu-
als) from the handwritten tabular nominal census of Paris of 1926, 1931
and 1936, each composed of about 100,000 handwritten simple pages in
a tabular format. We created a complete pipeline that goes from the
scan of double pages to text prediction while minimizing the need for
segmentation labels. We describe how weighted finite state transducers,
writer specialization and self-training further improved our results. We
also introduce through this communication two annotated datasets for
handwriting recognition that are now publicly available, and an open-
source toolkit to apply WFST on CTC lattices.

Keywords: handwriting recognition - Document Layout Analysis - self-
training - table analysis - WFST - semi-supervised learning

1 Introduction

In the digital age, many handwritten corpora containing very interesting infor-
mation for historians still remain unexploited because it would be too costly and
time-consuming to analyze them by hand entirely. The POPP project (Project
for the OCRing of the Paris Population census) aims to build a vast database (12
million individuals) from the handwritten tabular nominal census of Paris of the
years 1926, 1931, 1936 and 1946, each composed of about 100,000 handwritten
simple pages in a tabular format (figure 3a shows a double page). In this paper,
the first three census are considered since they have the same table structure.

* Project supported by CollEx-Persée (AAP19_20), with the financial collaboration of
the TGIR Progedo and the Grand Equipement Documentaire Campus Condorcet.
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A similar table structure was used for the population census at the national
level in France at the same epoch. This material is a primary source of informa-
tion for historian demographers, urban historians and more generally researchers
in the humanities and social sciences. This fixed structure that spans over the
entire corpus facilitates the recognition process of handwritten information. In-
deed, every cell contains an expected specific type of information (a name, a
date, an address, etc.) that can be modeled thanks to a dictionary or a regular
expression that is used to drive the recognition process based on beam search
Viterbi alignment [14,16,5].

The core of the processing chain is the handwriting recognition module. Even
if significant progress has been made these last years thanks to the use of deep
neural network architectures, performance can degrade quickly on heterogeneous
data, or heterogeneous writing styles, showing generalization difficulties of such
architectures. The size and thoroughness of the training dataset have proved
to be a major factor in getting high performance recognition systems [10], thus
the interest to generate additional synthetic or augmented data for training the
network [22].

Less explored in the handwriting recognition literature, semi-supervised learn-
ing offers an interesting framework to exploit large amounts of un-annotated
datasets during training. Considering the large amount of data available to us
with the three handwritten Paris census, this is a path we decided to explore,
more precisely self-training. Evaluation results show a significant performance
increase with this framework, reaching nearly mono-writer performance. We an-
alyze the performance in relation to the size of the network architecture.

In this communication, we present the main components of the whole pro-
cessing chain of the handwritten tabular nominal census and the recognition
performance obtained on a subset of the corpus that was manually annotated
for training as well as evaluation purposes. The main components are based on
deep neural networks for table detection, table line detection and line recogni-
tion, whereas syntax-driven handwritten field recognition uses Weighted Finite
State Transducers (WFST). Finally, a set of coherency rules that are derived
from the fixed structure of the census tables is exploited to fill in missing fields
as much as possible. In the end, the extraction results exported through CSV
files are made available to the research community of historian demographers.
Some components of the processing chain are made freely available to the re-
search community, notably the Kaldi-based WFST decoder® that has been re-
factorized for easy integration in a Python programming framework. We also
provide free access to the POPP annotated handwritten corpus to the Docu-
ment Image Analysis research community.® This paper is organized as follows.

Section 2 is devoted to the presentation of the corpus. Section 3 provides an
overview of the processing pipeline. Section 4 is devoted to the pre-processing
stage, including table detection, page classification, table dewarping and table
line detection. Section 5 is devoted to the handwriting recognition module pre-

® https://gitlab.com/projet-popp/sigra,/
5 https://github.com/Shulk97/POPP-datasets,/
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sentation, including the deep NN optical model, self-training and the presenta-
tion of the recognition results. Section 6 is devoted to domain knowledge lever-
aging and content verification, including syntactical and lexicon-based language
models, decoding, normalization of the recognized fields and logical deduction
rules. Section 7 provides some information regarding processing time all along
the pipeline.

2 Corpus and ground-truthed datasets

2.1 Presentation of the census

Three census of the population of Paris are considered in this paper: 1926, 1931
and 1936. Each census is divided into 20 boroughs (arrondissements in French),
themselves divided into 4 districts each (80 districts in total). Each census con-
sists of approximately 100,000 pages and 3 million lines, and we estimate the
number of writers for one census to be between 80 and 500. The raw dataset
stored by the Archives of Paris consists in a set of double pages (see figure 3a)
made of every pages of the census booklets, including the front and back covers.
The pages that are interesting for us are the pages containing tables filled with
information that describes each individual. As depicted on figure 3b, these ta-
bles contain around 30 rows and each row describes one individual. The tables
contain 15 columns. The first 5 columns are actually filled with only 3 types
of information: street names, street numbers and household numbers. The 10
other columns contain information about each individual, such as name, place
of birth and occupation. In this communication, we focus our attention on these
10 columns.

The challenging aspect of this dataset lies in the handwritten nature of the
table information. They have been written by the multiple enumerators that
were involved in gathering the information when visiting each home. Because
of the handwritten aspect of the data, the table layout is often not respected.
Sometimes, words are written across two columns, and in some cases, some
words are written between rows. Figure 1 shows an overview of a page and
the challenges that can arise with this dataset. Moreover, since the tables were
filled by many writers, some columns were not filled out in the same way. For
example, the column place of birth is sometimes filled out with the city and
the département of birth (French administrative division), with the département
only, or with the country of birth only.

2.2 Annotation of two datasets

In order to tune the text recognition model, a first training dataset was necessary.
Although the table structure is extremely stable for every page of the census,
there is a large variability in the writing styles, background color, and ink type.
Therefore, we annotated one double page for each of the 80 districts of the
census of 1926, so as to create a generic dataset as representative as possible.
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Fig. 1: Headers and first rows of a table from 1926. The corresponding annotation
of the first row is ” Cathelain/Louis/81/Aube/x3/x3/ch. /X4 /manoeuvre/?716-3527.

Since this dataset already contains a significant diversity of writing styles, there
is no need to create year-specific annotated datasets. Indeed, these three census
have been scanned under the same conditions, the printed table template is the
same and there is no year-specific degradation. This first dataset thus contains
160 pages made of 4800 handwritten lines, split into training (80%), validation
(10%) and test (10%) sets. The split has been conducted at the double page
level so that lines from a given district are located in only one subset. This
dataset was manually transcribed line by line using the specific character ”/”
as a logical column separator and the specific character ”3d” to indicate empty
columns. To describe words written between lines, we defined the symbol ”!”
and ”7” indicating a word respectively written below and above the regular line.
These out of line words are not used yet, but are annotated for future use. Figure
1 presents an example of annotation.

Moreover, to conduct some mono-writer experiments, we annotated another
dataset consisting of 49 pages (1470 lines) from a single district named Belleville
located in the 20" arrondissement and written by a single writer”. Among these
49 pages, 39 pages were used for training, 5 pages were used for validation and
the last 5 pages were used for testing.

We make available to the research community the images and labels of these
two datasets®.

3 Processing Pipeline

The processing pipeline is depicted on figure 2, below. It is composed of four
main stages: pre-processing, handwriting recognition, domain knowledge inte-
gration and content verification. The pre-processing stage is devoted to table

" The complete Belleville census was written by three writers but their writing style
are very similar and can be therefore considered as one unique writing style.
8 https://github.com/Shulk97/POPP-datasets,/
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detection, image dewarping and table row detection. The second stage is de-
voted to handwriting recognition applied on the detected rows. Language models
are introduced during the third stage to constrain the handwriting recognition
stage to allow content extraction and normalization using Weighted Finite State
Transducers (WFST). We also apply a rejection rule based on grammars defined
for each column. Finally, the stage of content verification introduces a set of
coherency rules that are derived from the fixed structure of the census tables to
fill in some missing fields as much as possible. In the end, the extraction results
exported through CSV files are made available to the research community of
historian demographers.

£ Handwritten Domain Gontent ‘
: Pre-processing table Lamllailge verification
transcription integration ol

CIC
lattices

’:—

Fig. 2: Organization of the pipeline.

4 Layout analysis and information extraction

4.1 Segmentation and dewarping of tables

The first step in the processing chain is to detect the two tables in the double
page scans. Deep Convolutional Neural Networks (CNN) have proved to be the
best pixel-wise predictors for this task[19,15]. The dhSegment approach [15] was
chosen since it obtains competitive results on Pagenet [25] and its source code
is open source’. First, we created a dataset made of 80 double pages annotated
for page segmentation. The network was trained using the same parameters as
in [15] with 90% of the dataset and obtained a mean intersection over union
(mIoU) of 0.987 on the remaining 10% of the dataset. We then used the newly
trained model to generate new labels and we also annotated a few extra images
manually that were found difficult for the model. This new labelled dataset is
composed of 223 double pages for training and 40 pages for testing. We finally
trained the model on this new dataset and obtained a mloU of 0.9924 on the
test set. Figure 3b shows the segmentation result obtained from the image in
figure 3a.

After segmenting the tables, the last step is to use the corners of the tables to
dewarp them by applying an affine transformation. The final result of this step
is a table image with a null inclination angle. Figure 3¢ shows the two dewarped
tables obtained from the segmentation result of figure 3b. Once dewarped, we

9 https://github.com/dhlab-epfl/dhSegment
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can easily crop the irrelevant parts of the image, namely the headers and the 5
first columns. The structure of these columns is indeed not respected as can be
seen in figure 1 and they contain address information only.

Fig.3: (a) Example of a double page from the 1926 census. (b) Segmentation
results. (¢) Dewarped tables.

4.2 Page classification

As mentioned in subsection 2.1, we need to detect the pages with tables and dis-
card the other types of pages. Given the amount of data, we trained a classifier
to automatically categorize pages as relevant, irrelevant and badly segmented.
For this simple classification task we used the pre-trained MobileNetV2 architec-
ture [20] with a width multiplier of 1. We bootstrapped training the system with
200 pages which were annotated by hand. Then, we generated a larger training
dataset by generating predictions on unlabeled pages that were then verified
manually to obtain a dataset of 1000 annotated pages with 80% of data for
training, 10% for validation and 10% for testing. The network was then trained
again and we obtained an accuracy of 97.8% on the validation set and 98.5% on
the test set. In order to evaluate the performance of the segmentation model, we
segmented the 100000 pages of the 1926 census and then classified each one with
the classifier. By counting the number of pages classified as badly segmented
by the classifier, we obtained an evaluated ratio of 98% of correctly segmented

pages.

4.3 Segmentation of tables into rows

In order to segment our tables into rows, we first used baseline detection using
the ARU-Net [12] pre-trained on ¢cBAD. We chose ARU-Net because it has
competitive results on cBAD and has the advantage of having the source code
and pre-trained weights publicly available. Thanks to the detected baselines, we
were then able to reconstruct the table rows by regrouping baselines with similar
vertical location. Then, we used this first method to quickly annotate data for
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segmentation. This time, we trained a dhSegment architecture to segment the
baselines of the rows by using 260 annotated pages for training and 32 pages for
validation and obtained a mIoU of 0.80 on validation. Though this result could
be improved, it is enough to localize the rows by taking the median vertical
position of each detected baseline. Finally, to obtain the segmented lines, we
simply have to deduce the bounding box from the baseline, knowing that the
height of the lines is constant.

Most of the time, the logical separation in columns follows the separation
materialized by the printed lines of the table template. However it is not the
case when words are overlapping columns. That is why we introduced in the
ground truth the column separator ’/’ (subsection 2.2) so that the model learns
to predict the logical separation into columns beside predicting the handwritten
text. Thanks to this column separator symbol, we avoid the need to segment the
rows of the table into columns.

5 Handwriting recognition

5.1 Architecture of the optical model

State of the art neural network architectures for handwritten text recognition
are typically made of convolutional layers followed by recurrent layers, either
MDLSTM [27] or BLSTM [17,13]. However, some recent studies showed very
competitive results using fully convolutional networks [31,9,8,30,7]. This kind
of architecture has the advantage of being much faster to train than recurrent
architectures because it can take full advantage of the parallelization capabilities
offered by GPUs. Moreover, several recent publications report on segmentation
free approaches [3,4,21,30,7,6] which do not introduce any explicit line segmen-
tation stage. These network architectures have the ability to be trained at para-
graph level, and learn to detect and recognize text lines at the same time, thus
avoiding the need for any segmentation ground truth.

In this case, line segmentation is not a difficult step because once the table is
dewarped, the lines of text are straight, without slope, parallel and equidistant.
Thus, we use in this work a line recognition model. Indeed, paragraph text
recognition models can have difficulties to converge especially when we try to
modify the width or the depth of the model as we did in subsection 5.3. For our
experiments we chose to use the line text architecture described in [7] because of
its recurrent-free aspect and also because the source code and training weights
on reference datasets are publicly available on Github!?. This architecture is
modular since the encoder of the recognition part can be directly connected to
an attention module to perform handwriting recognition on paragraphs.

5.2 Results of the optical model

We first trained our model on the generic dataset and obtained a CER of 7.08%
and a WER of 19.05% on the test set. This first result is correct, although the

10 https://github.com/FactoDeepLearning /Vertical AttentionOCR
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Results for Belleville according to the number of annotated pages

18.0%

16.0% # pages (lines)| Number of
training and trainings
1-0% validation performed
L 12.0% 0 (0) no fine-tuning
E Metric type 4 (120) 5
g 00% o e 8 (240) 5
10 (300) 1
8.0%
14 (420) 3
6.0% 20 (600) 2
44 (1320) 1
4.0%
0 4 8 10 14 20 44

Number of annotated pages (training and validation sets)

Fig. 4: Left : Recognition results on the Belleville dataset for different numbers
of annotated data. Right : Number of trainings performed for each experiment

error rate is higher than the state of the art results on datasets like TAM or
RIMES with respectively 2.3% [17] and 4.87% [13] of CER on the test set. This
indicates that the difficulty represented by this dataset constitutes an interesting
challenge for the Document Image Analysis research community.

Regarding mono-writer recognition, we first evaluated the model trained with
the generic dataset on the Belleville dataset and obtained 6.42% of CER. Then,
by specializing the model on the whole Belleville dataset, we improve the CER
to 3.65%, i.e. 43% of relative improvement, which shows the great improvements
that can be expected from writer specialization. Then, to evaluate the gain with
respect to the number of annotated pages, we also tuned the system using only
a fraction of the training and validation sets while testing on the complete test
dataset. In order to have more reliable results, we performed cross-validation.
For example, to evaluate the performance obtained using 13 pages for training
and 1 page for validation, we performed 3 trainings using each time randomly
chosen pages that had not been used before. The results are summarized in figure
4. With only 4 annotated pages (3 for training and 1 for validation), we reach
an average CER of 5.11%. Then, the more we annotate data of a target dataset,
the less improvement we get by new annotated lines which confirms the results
obtained in [2]. The next challenge to address will be to minimize the number
of new lines needed to benefit from writer specialization.

5.3 Self-training

Self-training is a technique related to semi-supervised learning [26] that consists
in using a model trained on labelled data, called a teacher, to generate pseudo-
labels that are then used for training another model, called a student. This kind
of technique is especially useful when a very large amount of unlabelled data is
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available, which is the case in our project. Self-training has been well explored
in the computer vision field [28,29,32], but few publications have investigated
self-training for handwriting recognition [23].

In this study, we followed the Noisy Student Training scheme described in [28]
which injects noise during the student training. Noise injection makes the student
model better than the teacher because its task is harder: it has to reproduce the
prediction of the teacher model while having noise applied on the input (using
data augmentation) and on the model (using dropout). The student can then
become a teacher for another iteration of the process. Student networks can have
exactly the same architecture as their teacher, or they can have a wider and
deeper architecture, possibly with some recurrent layers or other components.
This training process can be repeated until there is no further improvement.

The unlabelled dataset consists in this case of 2.4 million line images selected
randomly from the 1926 census. First we trained the initial model (model 0) in a
supervised mode on the generic dataset, then we entered the self-training mode
for 4 iterations (more iterations did not provide any improvement). Student 1
and 2 have a similar architecture as model 0, while architecture B of student 3
was 1.5 deeper and 1.25 wider, following the scaling method described in [24].
Indeed, a student 2bis with the initial architecture trained on the predictions of
student 2 showed nearly no improvements on the validation set and regressed
on the test set. Thus, this model was not used for the next iterations and we
used student 3 instead. This new architecture allowed us to further improve the
results. This result is particularly interesting because such an architecture is
not able to converge using supervised learning on the generic dataset. Finally,
we experimented the influence that a BLSTM layer could have on the results.
Indeed, this type of layer is most efficient when a large volume of training data
is available. Moreover, it is shown in the literature that LSTM layers are very
much suited to model contextual information when on top of convolutional layers.
Thus, we trained a student 4 using the predictions of student 3. This final model
has an architecture C made of the encoder of architecture B and a BLSTM-
based decoder. We illustrate this architecture in figure 5. This final architecture

Adaptative - - Character

Features map ;
MaxPooling gy oy 4 layer BLSTM + layer
Dropout Dropout

f FCN Encoder of
architecture B

Fig.5: Schema of architecture C

brought an improvement of almost 1% of CER on test set compared to student 3,
which demonstrates that a BLSTM-based decoder can still be useful compared
to a fully convolutional decoder when a large amount of data is available. By
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using self-training, we have thus improved the CER from 7.08% to 4.52%, which
represents 36% of relative improvement compared to supervised learning. The
table 1 summarizes the results obtained at each experiment.

We also evaluated this self-training process on a single writer dataset. We
used the weights of the best model described above to initialize training on
the Belleville dataset and then performed inference on the complete unlabelled
Belleville district data to generate pseudo-labels. Then we re-trained the model
on these pseudo-labels and obtained a CER of 2.66% and a WER of 6.37% on
the test set. Compared to the results on the Belleville dataset using supervised
learning (CER of 3.65% and a WER of 8.53%), this represents a relative improve-
ment of 30% on the CER. This result indicates that self-learning can improve
recognition performance even when the results are already good. Moreover, it
shows that noisy student training can also be beneficial when combined with
writer specialization.

Table 1: Recognition results of the self-training experiments

CER (%) |WER (%)|CER (%)|/WER (%)
Model Dataset validation|validation| test test
Initial (Model 0) Generic 6.86 18.66 7.08 19.05
Student 1 Generic 6.07 17.12 6.12 17.12
Student 2 Generic 5.94 16.80 5.97 16.83
Student 2bis Generic 5.89 16.68 6.02 16.89
Student 3 Generic 5.64 15.98 5.43 15.50
Student 4 Generic 5.01 14.53 4.52 13.57
Student 4 specialized| Mono-writer| 2.14 5.24 2.66 6.37

6 Leveraging domain knowledge

6.1 Language models

Each column, once located at some beginning and ending positions in the lat-
tice thanks to the recognition of the column separator symbol (’/’) is thereafter
decoded using the beam search Viterbi algorithm [14,5] under the constraints
of the expected content in this column. As the census tables share the same
structure over years, it is possible to model the expected content of each col-
umn either with lists of words (in the case of family names, surnames, marital
status, position in a household, etc...) or with regular expressions (in the case
of date of birth, place of birth, occupation, etc...). We created the dictionaries
and formal grammars, using different resources. For example, a list of names
and surnames was built using the French National Statistics Institute (INSEE)
deceased database of people in France since 1970'!, historical researches [11]

' Deceased people database since 1970 (INSEE, in French) : https://www.insee.fr/fr/
information /4190491


https://www.insee.fr/fr/information/4190491
https://www.insee.fr/fr/information/4190491

Recognition and information extraction in historical handwritten tables 11

and official documents'? to generate French town names and administrative
département names. Some country names and foreign towns names were also
included as much as possible. Moreover, when necessary, we have created lists
of abbreviations used by census agents to compose location names, or occupa-
tions. For example, the names of départements such as ”Hautes-Pyrénées” or
”Hautes-Charentes” can be abbreviated as ”Hte Pyrénées” or "H. Charentes”.
Using Finite State Transducers (FST), we combined lists of words and abbre-
viations in regular expressions to detect every combinations of these elements,
and constrain the recognition process of each individual column.

Weighted Finite State Transducers have been proposed for speech recognition
[14,16], and are similarly useful for HTR/OCR. However, the freely available
libraries that implement WFST and their integration into a recognition engine
are not very well documented while they require many steps. Thus, we developed
a framework called SIGRA (SImple ctc GRAmmar toolkit) that regroups two
modules :

— "py-cte-wist-composer” : a WFST generator for decoding CTC probability

lattices

— "py-cte-wist-decoder” : a module that allows to use a WFST to decode CTC
lattices
Based on three existing open source components, Thrax[18], OpenFST[1] and

Kaldi[16], this framework is user-friendly, with a Python API that implements
the required pipeline in RAM instead of writing multiple temporary files on
disk, which is time-consuming. This framework is open source and available on
Gitlab'3. Each grammar is thus defined and compiled into a Weighted Finite
State Transducer using Thrax and exported in the OpenFST format using the
” py-cte-wist-composer” module. Then, the obtained WFSTs are decoded by the
”py-cte-wist-decoder” module that uses Kaldi to explore the optical lattice, and
find the best recognition path over the lattice.

Finally, by introducing the grammar decoding stage, multiple positive as-
pects are expected: 1- should the optical model misrecognize a character, lattice
decoding may recover the correct character 2- simple but effective rejection rules
can be implemented when too much discrepancy is detected between the opti-
cal best path and the grammar best path. The rejection rules are based on a
threshold on the Levenshtein distance between the output string of the gram-
mar and the output string of the optical model. Each threshold has been defined
individually for each column. 3- abbreviations can be detected and normalized
afterwards to a unique form.

Family names are not effectively rejected by the rejection rule because the
list of surnames is huge and a family name with a misrecognized character can
often be another valid family name. However, this is not a serious issue because
it does not prevent to find individuals with close surnames and thus to remove

12 http:/ /www.toponymiefrancophone.org/divfranco/Bougainville/Liste_generale.
aspx?nom=liste_pays
13 https://gitlab.com /users/nkpf/projects/sigra


http://www.toponymiefrancophone.org/divfranco/Bougainville/Liste_generale.aspx?nom=liste_pays
http://www.toponymiefrancophone.org/divfranco/Bougainville/Liste_generale.aspx?nom=liste_pays
https://gitlab.com/users/nkpf/projects/sigra

12 T. CONSTUM et al.

the ambiguity on the individuals on the basis of other information such as year
of birth, place of birth, occupation, marital status etc... Also notice that the
recognition hypothesis of the rejected fields are often close to the results even
if rejected. This is why they are still stored in the final CSV exported files but
indicated as rejected by using the symbol $ as an opening and closing tag, so
that they can be used later on by historians, even if the result was not validated
by the system. To illustrate the benefit of using grammars, we have introduced
four metrics as follows:

— Field Rejection Rate (FRR): ratio of rejected fields over the total number of
fields

— Accepted Field Error Rate (AFER): ratio of incorrectly recognized fields
among the accepted fields over the total number of accepted fields.

— OCR-Field Error Rate (OCR FER): percentage of erroneous fields at the
output of the OCR (no rejection applied).

— Grammar Field Error Rate (Grammar FER): percentage of erroneous fields
provided by the grammar (no rejection applied).

Figure 6 shows the performance on test set of the generic dataset regarding
these metrics. The rejection strategy is overall effective because the AFER is
lower than the OCR-FER and the Grammar-FER. However, the results are very
different depending on the column. The lower error rates are obtained on columns
with restricted lexicons such as "marital status”, ”birth year” or ”nationality”
whereas higher error rates are obtained on columns with complex or infinite
lexicons such as "names” or ”occupation”.

Job ID

Fig.6: Field performance metrics on the generic test dataset for each column
category
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6.2 Normalization and logical deductions

In this project, we wanted not only to obtain the textual content in the census
but also to make this content usable by historians. That is why after the text
recognition, we apply a step of normalization that standardizes the columns
combined with logical deductions. This step is necessary because as explained
in subsection 2.1, the columns were not filled in the same way depending on the
census agents. This normalization is made possible by the grammars that detect
all existing forms for a given term. Beside normalizing the content of the cells,
we also applied logical deductions to enrich the database and facilitate the work
of the historians. For example, some writers use the Latin formula ditto in a
cell to indicate that its content is similar to that of the cell above. That is why,
we also perform tabular operations such as deducing the corresponding value of
each ditto.

7 Processing time

In this part, we detail the time of each processing step to process the whole 1926
census, namely 50000 double pages, 100000 simple pages and 3 million lines.
Processing times were measured on a machine with an Intel Core I7 CPU and an
Nvidia Tesla V100 GPU with 16Gb of memory. The total processing time of the
whole pipeline amounts to 67 hours approximately. However, since each double
page is processed independently, the processing chain may easily be parallelized
among several machines. A total of 8.68 hours were spent on page segmentation,
0.52 hours on page classification, 24.16 hours on line segmentation, 22 hours on
model predictions, and 12 hours on decoding, rejection step and post-processing.
Among the different steps of the processing pipeline, the line segmentation step
is the most time consuming. Adapting our architecture to perform paragraph-
based recognition could thus save a considerable amount of time by eliminating
the line segmentation step.

8 Conclusion

We have successfully extracted handwritten alphanumeric information from three
census of the city of Paris representing a total of 300,000 pages and 9 million
individuals. The processing chain relies on state-of-the-art components based on
deep neural networks. The contribution of self-training allowed us to benefit from
the unannotated corpus to improve by 2.5% CER (40% of relative improvement)
the performance of the optical model. Improvements are expected on this point
by exploring alternative strategies to the self-training that has been studied here.

Thanks to weighted state automata, it was possible to efficiently constrain
and control the recognition process and to reject wrong recognition hypothesis.
The knowledge modeling step allowed the integration of external knowledge in
the form of demographic and historical databases in order to model the expected
content using regular expressions and dictionaries.
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The processing chain could easily process the census carried out everywhere

in France between the end of the 19" century and the beginning of the 20"
century because the same census procedures, the same information, and the
same tabular registers were used at that time.

We make available to the community a new labeled manuscript corpus of 6720

lines in total. We also release a flexible library in Python allowing to easily decode
recognition lattices under lexical and grammatical constraints by integrating
known open source components that have remained difficult to integrate together
until now for handwriting recognition.
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