*L'électrification intelligente au service de la transition énergétique* 



### An ADMM-based Coordination Strategy for the Control of Distributed Storage at the Household Level – Impact of the End-User Settings

<u>Rémy Rigo-Mariani</u>, Vincent Debucsshere

### **ELECTRIMACS 2022**

14<sup>th</sup> International Conference of TC-Electrimacs Commitee 16-19 May, Nancy, France









### Simulated Use Case



### **Coordinated Management of Distributed Storage**

#### • System :

- A pool of N users with solar + storage systems.
- A coordinator at the PCC level with no direct control of end-users' assets.

### Application :

**Optimal scheduling** (operational planning), **arbitrage** between system and individual objectives.

#### Assumptions : .

Grid not represented, active power management only, deterministic forecast profiles.

#### Implemented Solution : .

**Coordination/decentralized strategy** based on exchanged « price/quantity » information.



#### Data:

Load - REFIT load measurements - London Solar - Radiation/Temperature from NASA

#### $f_n(\boldsymbol{x}_n) = \sum_{t \in T} \left( p_{n,t}^+ \times \pi_t^+ - p_{n,t}^+ \times \pi^- \right) \times dt$

## **Model Equations**

### **Models and Objectives**

#### • End Users :

- **Controls :** storage charge/discharge, curtailed solar.
- State variables : stored energy, grid power.
- **Objective : minimize the electricity bill**, subject to operating constraints (linear).

obj: 
$$\min_{\mathbf{x}_n} f_n(\mathbf{x}_n)$$
 s.t  $g_n(\mathbf{x}_n) \le 0$   
 $f_n(\mathbf{x}_n) = \sum_{t \in T} \left( \underbrace{p_{n,t}^+ \times \pi_t^+}_{\text{purchase}} - \underbrace{p_{n,t}^+ \times \pi^-}_{\text{sell}} \right) \times dt$ 

- Billing scenarios :
  - **S1** : purchase + selling.
  - **S2** : purchase + selling + ability to curtail solar.
  - **S3** : purchase + ability to curtail solar.





$$\begin{aligned} \mathbf{x}_{n} &= \left\{ s_{n,t}^{-}, s_{n,t}^{+}, e_{n,t}, g_{n,t}^{-}, p_{n,t}^{-}, p_{n,t}^{+} \right\} \\ p_{n,t}^{+} + g_{n,t} + s_{n,t}^{-} = l_{n,t} + s_{n,t}^{+} + p_{n,t}^{-} \quad \forall t \in T \\ 0 \leq s_{n,t}^{-}, s_{n,t}^{+} \leq \overline{s_{n}} \quad \forall t \in T \\ 0 \leq e_{n,t} \leq \overline{e_{n}} \quad \forall t \in T \\ e_{t=1}^{-} = e_{t=T} \\ e_{n,t}^{-} = e_{n,t-1}^{-} + s_{n,t}^{+} \times \eta - s_{n,t}^{-} / \eta \quad \forall t \in T - \{1\} \\ 0 \leq g_{n,t}^{-} \leq g_{n,t}^{0} \quad \forall t \in T \\ g_{n,t}^{-} = g_{n,t}^{0} - g_{n,t}^{-} \quad \forall t \in T \end{aligned}$$

# **Model Equations**



### **Models and Objectives**

#### • Coordinator :

- **Controls :** No asset control, compute the global power based on users' decisions.
- **Objective : minimize energy import/export** and peak values.

obj: 
$$\min_{\substack{X = \{x_1, \dots, x_n\} \\ \text{from users}}} F(X) = \sum_{t \in T} (P_t)^2 \times dt = \sum_{t \in T} \left( \sum_{n \in N} p_{n,t} \right)^2 \times dt$$

- Motivations :
  - **Technical :** penalize both import/export flows, implicitly embeds grid losses.
  - Mathematical : convex, continuous function.
  - **Economical** : increasing marginal cost of generation.



#### 5

### **Coordination Strategy**

### **Coordination Strategy**

- Alternating Direction Method of Multipliers ADMM:
  - Iterative process with exchange of "price/quantity" information.
  - **Quantity** : predicted grid power from the users  $p_{n,t}$ , reference power computed by the coordinator  $p_{n,t}$ .
  - **Price :** penalty coefficient, dual variables, lagrangian multipliers  $\lambda_{n,t}$ .

#### • User Preference Settings :

Willingness to deviate from individual optimum in case of uncoordinated control – additional constraint with response coefficient  $\alpha$ .

 $\left|f_n(\boldsymbol{x}_n) - f_n^{0}(\boldsymbol{x}_n)\right| \leq \alpha \times f_n^{0}(\boldsymbol{x}_n)$ individual optimum



 $\boldsymbol{x_n} = \{s_{n,t}^-, s_{n,t}^+, e_{n,t}, g_{n,t}^-, p_{n,t}^-, p_{n,t}^+\}$ 

## **Coordination Strategy**



#### **Coordination Strategy C-ADMM**

3.

- Iterative Process : successive updates of individual  $f_n^{(k)}$  and global objectives  $F^{(k)}$ .
- 1. User optimization : returns predicted grid power  $p_{n,t}$ .

obj: 
$$\min_{\boldsymbol{x}_n} f_n(\boldsymbol{x}_n) + \lambda_n^T (p_{n,t} - \hat{p}_{n,t}) + \frac{\rho}{2} \|p_{n,t} - \hat{p}_{n,t}\|_2^2$$

**2. Coordination optimization :** returns the best reference grid powers power  $p_{n,t}$ .

obj: 
$$\min_{\substack{\hat{p}_{n,t} \\ \forall \{n,t\} \\ \in (N,T)}} F(\boldsymbol{X}) + \sum_{t \in T} \sum_{n \in N} \lambda_{n,t}^{T} \left( p_{n,t} - \hat{p}_{n,t} \right) + \frac{\rho}{2} \left\| p_{n,t} - \hat{p}_{n,t} \right\|_{2}^{2}$$
  
convergence rate  
**Lagragians update :**  
$$\lambda_{n,t}^{(k+1)} = \lambda_{n,t}^{(k+1)} + \rho / 2 \left( p_{n,t}^{(k+1)} - \hat{p}_{n,t}^{(k+1)} \right)$$



#### **Preliminary Tests with 3 Houses**

- Global objective optimum value can be computed with all the assets centrally controlled.
- Need for coordination global objective F value:

- No storage control  $-F = 163 \text{ kWh}^2$ 

- Uncoordinated control  $-F = 123 \text{ kWh}^2$
- Global optimum  $-F = 58 \text{ kWh}^2$
- Coordination reaches the global system optimum with over 99 % accuracy.
- Impact of convergence-rate.
- Convergence in 4 iterations in the best case scenario.



- Aggregated power and house 3 power along the iterations
- Global and user objectives along the iterations.
- From uncoordinated control to global optimum.

|          | $F(\mathbf{kWh^2})$ | <i>f</i> <sub>1</sub> (€) | <i>f</i> <sub>2</sub> (€) | <i>f</i> <sub>3</sub> (€) |
|----------|---------------------|---------------------------|---------------------------|---------------------------|
| Uncoord. | 123.72              | -0.34                     | 0.35                      | 1.73                      |
| Iter. 1  |                     |                           |                           |                           |
| Iter. 2  |                     |                           |                           |                           |
| Iter. 3  |                     |                           |                           |                           |
| Iter. 4  |                     |                           |                           |                           |





### **Preliminary Tests with 3 Houses**

- Aggregated power and house 3 power along the iterations
- Global and user objectives along the iterations.
- From uncoordinated control to global optimum.

|          | $F(\mathrm{kWh^2})$ | <i>f</i> <sub>1</sub> (€) | $f_2(\epsilon)$ | <i>f</i> <sub>3</sub> (€) |
|----------|---------------------|---------------------------|-----------------|---------------------------|
| Uncoord. | 123.72              | -0.34                     | 0.35            | 1.73                      |
| Iter. 1  | 64.97               | -0.00                     | 0.73            | 1.96                      |
| Iter. 2  |                     |                           |                 |                           |
| Iter. 3  |                     |                           |                 |                           |
| Iter. 4  |                     |                           |                 |                           |



Power (kW)

Power (kW)

- Aggregated power and house 3 power along the iterations
- Global and user objectives along the iterations.
- From uncoordinated control to global optimum.

|          | $F(\mathrm{kWh^2})$ | <i>f</i> <sub>1</sub> (€) | <i>f</i> <sub>2</sub> (€) | <i>f</i> <sub>3</sub> (€) |
|----------|---------------------|---------------------------|---------------------------|---------------------------|
| Uncoord. | 123.72              | -0.34                     | 0.35                      | 1.73                      |
| Iter. 1  | 64.97               | -0.00                     | 0.73                      | 1.96                      |
| Iter. 2  | 59.77               | -0.07                     | 0.70                      | 1.99                      |
| Iter. 3  |                     |                           |                           |                           |
| Iter. 4  |                     |                           |                           |                           |





- Aggregated power and house 3 power along the iterations
- Global and user objectives along the iterations.
- From uncoordinated control to global optimum.

|          | F (kWh <sup>2</sup> ) | <i>f</i> <sub>1</sub> (€) | <i>f</i> <sub>2</sub> (€) | <i>f</i> <sub>3</sub> (€) |
|----------|-----------------------|---------------------------|---------------------------|---------------------------|
| Uncoord. | 123.72                | -0.34                     | 0.35                      | 1.73                      |
| Iter. 1  | 64.97                 | -0.00                     | 0.73                      | 1.96                      |
| Iter. 2  | 59.77                 | -0.07                     | 0.70                      | 1.99                      |
| Iter. 3  | 58.56                 | -0.08                     | 0.68                      | 2.02                      |
| Iter. 4  |                       |                           |                           |                           |





- Aggregated power and house 3 power along the iterations
- Global and user objectives along the iterations.
- From uncoordinated control to global optimum.

|          | F (kWh <sup>2</sup> ) | <i>f</i> <sub>1</sub> (€) | <i>f</i> <sub>2</sub> (€) | <i>f</i> <sub>3</sub> (€) |
|----------|-----------------------|---------------------------|---------------------------|---------------------------|
| Uncoord. | 123.72                | -0.34                     | 0.35                      | 1.73                      |
| Iter. 1  | 64.97                 | -0.00                     | 0.73                      | 1.96                      |
| Iter. 2  | 59.77                 | -0.07                     | 0.70                      | 1.99                      |
| Iter. 3  | 58.56                 | -0.08                     | 0.68                      | 2.02                      |
| Iter. 4  | 58.20                 | -0.08                     | 0.68                      | 2.04                      |







13

- Arbitrage between users loss of revenue and global objective improvements.
- Improvement from uncoordinated control still possible without degrading user performances (α = 0).





#### **Scalability to 100 Houses**

- System of 100 users with solar and storage- one day simulation.
- Increase the numbers of users in coordination – the others remain controlled at the individual level.
- System optimum improved with greater numbers of coordinated houses but with greater loss of revenue.
- Ability to curtail the solar generation (S2) improves the system optimum with greater loss of revenue.





#### **Scalability to 100 Houses**

- Arbitrage between the number of coordinated users and their preferences.
- Improvement of the system objective still possible without decreasing users' performances ( $\alpha = 0$ ).
- Global optimum reached with every house fully responsive ( $\alpha = 1$ ).



### Conclusions



- Successful implementation of coordination strategy with up to 100 houses with DERs 'behind the meter'.
- Coordination reaches global objective optimum with fully responsive houses – some improvements still possible without degrading users objectives.
- The more users, the less they need to degrade their objective to reach the same global target values.
- Furthers Works:
  - Investigation of pricing schemes or tailored user objectives to avoid iterations.
  - Include a decentralized real time control to comply with look-ahead scheduling.







