
HAL Id: hal-03675366
https://hal.science/hal-03675366v1

Submitted on 23 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Representation of Malware Execution Traces
for Experts and Machine Learning

Vincent Raulin, Pierre-François Gimenez, Yufei Han, Valérie Viet Triem Tong

To cite this version:
Vincent Raulin, Pierre-François Gimenez, Yufei Han, Valérie Viet Triem Tong. Towards a Represen-
tation of Malware Execution Traces for Experts and Machine Learning. RESSI 2022 - Rendez-Vous
de la Recherche et de l’Enseignement de la Sécurité des Systèmes d’Information, May 2022, Chambon-
sur-Lac, France. pp.1-3. �hal-03675366�

https://hal.science/hal-03675366v1
https://hal.archives-ouvertes.fr


Towards a Representation of Malware Execution
Traces for Experts and Machine Learning

Vincent Raulin∗, Pierre-François Gimenez†, Yufei Han∗, Valérie Viet Triem Tong†
∗Inria, Univ. Rennes, IRISA, {firstname.lastname}@inria.com

†CentraleSupélec, Univ. Rennes, IRISA, {firstname.lastname}@centralesupelec.fr

Abstract—Dynamic analysis is a common technique to analyze
the run-time behavior of software and identify malware (ma-
licious software). Execution traces typically contain the list of
system calls with their parameters, the list of accessed files, etc.
Several representations have been proposed to organize these
data better and help both human experts and automated tools
analyze them effectively. This paper reviews these representations
and identifies four research problems that the first author plans
to investigate during his Ph.D.

Index Terms—malware analysis, dynamic analysis, visualiza-
tion, data representation

I. INTRODUCTION

In recent years, the number of malware (malicious
software) has been increasing rapidly. Every year commer-
cial antiviruses manufacturers make reports on their annual
activities, including malware evolution data, which shows a
tremendous amount of new malware per month [5]. With this
rising threat, adapted defenses must be organized.

Malware analysis is the domain of computer science fo-
cusing on identifying and understanding malware. The iden-
tification task consists of distinguishing malware from benign
software (also called goodware), whereas the understanding
task goes further and consists of studying the program’s
behavior. Both tasks can be approached in different ways.
Static analysis is the study of the code of the malware without
execution. Dynamic analysis is based on the monitoring of the
software execution. Hybrid analysis can mix both techniques.

This study will focus on dynamic analysis. This analysis
is generally done with a controlled environment that collect
information about the execution, for example with the Cuckoo
[1] sandbox which returns an execution report. This report is
very rich and can contain many different types of information
which is not easy to handle right away for experts of malware
analysis tools (for example, Machine Learning (ML) models).

Machine learning has been successfully applied to various
domains such as image and language processing and can be
used in execution traces analysis. In that case, a learning
algorithm is fed with the collected data as an input to learn
a model and then perform a task, for example detecting
whether sample is a malware or classifying a malware into
a family – virus, trojan, ransomware, etc. The transformation
of the execution traces of a sample into the input data of
a malware analysis system can have a large impact of the
model’s performances. Besides, these representations are not
only useful for ML techniques: they can also be used by a

human expert to understand the behavior of a malware. Many
representations [3], [4], [8], [10]–[12], [18], [19] of execution
traces have been proposed, with various advantages and limits.

This article presents a survey of malware execution rep-
resentations and points out their limitations. This brings us
closer to the goal of the Ph.D. of the first author, that is to
build a representation of a program behavior that is robust to
evasion attacks, can encompass executions traces from various
mainstream Operating Systems (OSes), be useful for an expert
to manually review and reflects all malicious actions of an
execution trace.

The paper is structured as follow. Section II presents a
survey of malware execution representations. Section III points
out several research questions related to representation and
discusses them. Finally, Section IV concludes this article and
presents the goal of this Ph.D. thesis.

II. SURVEY OF MALWARE EXECUTION REPRESENTATIONS

Our work focuses on defining and extracting efficient feature
representations from dynamic traces of malware samples. The
first subsection focuses on the different sources for monitor-
ing information. The second subsection summarizes proposed
representations of this information.

A. Sources of information
Most works on dynamic analysis [16] collect system call

traces while executing a malware sample. Indeed, they are
the main medium of interaction between a program and the
host OS, and their traces can provide accurate detection output
of malicious payloads [7], [8], [10], [12], [14], [19]. Their
parameters are also an important source of information [8],
[14], [20]. Monitoring disk access, network ports, and OS
activity inside a virtual machine have also been proposed [2],
[3], [18]. Finally, physical properties like CPU usage [15] or
CPU power consumption [6] can also be monitored. But such
information does not concern interactions with the OS, which
is out of scope for this study.

For expert and classifier systems to better analyze these
data, one needs to organize them inside a representation.
The following subsection proposes a literature review of such
representations.

B. Representations of monitoring information
We identified four families of representation, depending on

how they organize the information, and thus what parts of a
program’s behavior they highlight.



1) Representing the order of actions: A classical repre-
sentation directly uses time series of system calls without
parameters [12], [19]. This representation is already used
in execution reports. N-grams (sequences of n system calls)
or word embedding vectors (a machine-learning-based tech-
nique) [12], [19] are then extracted to conduct malware
analysis. A graph structure inspired from Markov chains has
also been proposed [7], [10], where each vertex denotes a
system call and each edge is labelled by the probability to
chain two system calls in the observed executing traces. This
representation was extended by [10] to consider n-tuples of
system calls. The size of this representation does not depend
on the sample or the size of the execution traces.

2) Representing the actions on objects: Parameters of
system calls allow to better characterize the behavior of a
program. For example, one can identify whether a ”open file”
system call concerns the same target file as the ”write into
file” system call executed later. Several representations track
objects, e.g. files, sockets, threads, etc, manipulated by system
calls as parameters or return values. [8] defines a graph where
each vertex is a system call and a directed edge links every pair
of consecutive system calls that manipulate the same object
in the sequence. Another work [14], [20] consists of multiple
time series, one for each set of system calls manipulating the
same object.

3) Representing the interactions between objects: Several
works rely on multiple other sources of information from the
interactions with the system, e.g. network traffic, contacted
IPs/URLs/domains, file access (with modifications) for better
understanding malware behaviors. In [3], processes, threads,
files and sockets are included in the representation. Further-
more, system calls are replaced by more accurate actions.
For example, a call to ”open” with a file descriptor will be
replaced by ”open file” with the corresponding file object, thus
a sequence is transformed in a categorized (by type of objects
it handles) version. From that point, a sequence of system
calls is processed for each monitored thread. This sequence
is then categorized, and all the objects it interacts with are
formatted to include practical information (i.e., the mode this
file is opened with, which process spawned which one, what
thread contacted which IP on what port, etc.). Sadly, we do
not have much more information on how the actual graph is
built.

4) Representing the interactions between processes from
different programs: The work from [18] proposes a graph-
structured representation based on the monitoring of multiple
processes on several machines.This is a heterogeneous graph
with three node types: file, process and socket. There are three
kinds of edges: from a process to a socket (if that process uses
this socket to communicate), from a process to a file (if that
process interacts with it) and from a process to another one (if
the former creates the latter). This malware representation can
identify a suspicious process by comparing its behavior with
benign processes. It can also be used to analyze the behavior
of a malware with respect to the files it handles, the processes
it spawns and the IP address it contacts. For example, it could

help identify a remote C&C (Command and Control) server.
Finally, VirusTotal’s database exploration graph [2] is a

representation that entails the interactions between a malware
and other entities (file, IP, domains, etc.), both via internet and
via the file system.

III. DISCUSSIONS ON RESEARCH PROBLEMS

The previous research efforts try to achieve different objec-
tives. However, they do not necessarily address all of the open
problems that we raise as below.

A. How to make a representation more robust to evading
techniques?

The detector’s resilience to evasion techniques is an issue
that can determine the accuracy level of ML-based malware
detection models. Our study will only consider evasion tech-
niques as tricking an analyzing tool to make a malware appear
benign while still executing its payload. For example, changing
individual API calls (by replacing them with equivalent ones
or adding dummy system calls) can easily alter system-call-
sequence-based representations and transition graphs. This
attack can evade the ML-based detector and yet preserve the
functionalities of the malicious payloads [9], [13], [17]. On the
other hand, by feeding a heterogeneous graph-based malware
representation to an ML detector, we expect to mitigate
such functionality-preserving evasion attacks. Furthermore, we
expect such a representation to unveil evading techniques used
in non-ML-based malware analysis, such as camouflage and
mimicry attacks.

B. How to make a representation abstract enough to make it
cross-platform?

A common issue with current malware detection is the
scarcity of dataset on less-targeted mainstream OS such as
macOS or Linux. This issue concerns all the aforementioned
works that are platform-specific because they rely notably on
system calls. To alleviate this problem, we propose to design a
cross-platform representation that could be used to represent
software behavior from multiple OSes. This would allow to
learn to recognize a certain family of malware very common
on a certain platform and then use this detector on a different
platform where this family is much more rare. Reaching this
goal relies on the semantic level of the representations, as
abstracting the meaning of system calls is necessary for a
cross-platform representation and the objects an OS handles
are most often not specific to any particular platform. This
will also be required to reach the goal of III-D.

C. What elements make the representation of an execution
trace visually exploitable for a human expert?

A visual representation can help an expert quickly assess
the behavior of a software and understand its features by
organizing its information to facilitate the search. The rep-
resentations presented in Section II could be improved in
that regard. On the one hand, it is difficult to make logical
connections between actions represented by a time series of



system calls. On the other hand, the system call transition
graph has a manageable constant size but the expert cannot
see the exact chaining of actions anymore, discarding any in-
depth analysis. Representations that focus on system objects
(files, network, etc.) can reveal how a software interacts
with its environment. However, the expert may miss essential
information because such graphs are generally too large. The
most polished visual representation is the Virus Total’s relation
graph. However, it doesn’t include the nature of interactions or
the order of actions, so it is not suited for behavior analysis.
The approach based on object monitoring is promising, but
we expect the size of such representation to be the main
challenge. Our line of research will investigate how to help
the expert navigate such representation using, for example,
recommendations, graph pruning, or graph collapsing.

D. How to ensure a representation reflects all the malicious
actions of a malware infection event?

In an execution trace report, the information used for
malware analysis might not be presented in an exploitable way
i.e. the related information might not appear directly linked.

For instance, representations in system call sequences (with
parameters or not) show that the order of actions is a relevant
information. Indeed it is missing in the transition graph
representations, as some of the related actions do not directly
follow each other.

Furthermore, the representations that include the system call
parameters show that what matters is not only the order of
operations in the sequence, but also the order of operations on
objects (files, IPs, locks, etc).

Moreover, many programs will use multiple threads and/or
processes, and a sequence representation is designed to repre-
sent a single sequence of actions. Heterogeneous information
graph representations address that, and besides, this allows to
make links between these threads/processes, via the objects
that they handle to interact. Thus, these objects represent the
interactions a sequence of actions has with the system at a
higher level.

Finally, Virus Total’s representation shows that we cannot
get rid of the actions. By only showing the related objects,
and not their interactions, nor the order of interactions, this is
not enough to explain what happened during an execution.

IV. CONCLUSION AND GOAL OF THE PHD

This article surveys what is done in terms of representations
of software execution traces. It unveils four research questions
that the literature deals with insufficiently (or sometimes not
at all). The Ph.D. thesis of the first author will therefore
focus on proposing a new representation that encompasses all
suspicious actions while being readable for human experts.
Furthermore, this representation based on higher semantics
should be less prone to evasion techniques and general enough
to be cross-platform.

REFERENCES

[1] Cuckoo sandbox. https://cuckoosandbox.org/.

[2] Virustotal. https://www.virustotal.com/gui/home/upload.
[3] ALPTEKIN, H., YILDIZLI, C., SAVAS, E., AND LEVI, A. TRAPDROID:

Bare-Metal Android Malware Behavior Analysis Framework. In 2019
21st International Conference on Advanced Communication Technology
(ICACT) (PyeongChang Kwangwoon Do, Korea (South), Feb. 2019),
IEEE, pp. 664–671.

[4] ANDERSON, B., QUIST, D., NEIL, J., STORLIE, C., AND LANE, T.
Graph-based malware detection using dynamic analysis. J Comput Virol
7, 4 (Nov. 2011), 247–258.

[5] AV-TEST. Av-test statistics, 2021. https://www.av-test.org/en/statistics/
malware/.

[6] BRIDGES, R., HERNÁNDEZ JIMÉNEZ, J., NICHOLS, J., GOSEVA-
POPSTOJANOVA, K., AND PROWELL, S. Towards Malware Detection
via CPU Power Consumption: Data Collection Design and Analytics. In
2018 17th IEEE International Conference On Trust, Security And Pri-
vacy In Computing And Communications/ 12th IEEE International Con-
ference On Big Data Science And Engineering (TrustCom/BigDataSE)
(Aug. 2018), pp. 1680–1684. ISSN: 2324-9013.

[7] CHEN, Z.-G., KANG, H.-S., YIN, S.-N., AND KIM, S.-R. Automatic
Ransomware Detection and Analysis Based on Dynamic API Calls Flow
Graph. In Proceedings of the International Conference on Research in
Adaptive and Convergent Systems (Krakow Poland, Sept. 2017), ACM,
pp. 196–201.

[8] DING, Y., XIA, X., CHEN, S., AND LI, Y. A malware detection method
based on family behavior graph. Computers & Security 73 (Mar. 2018),
73–86.

[9] FOGLA, P., SHARIF, M. I., PERDISCI, R., KOLESNIKOV, O. M., AND
LEE, W. Polymorphic blending attacks. In USENIX security symposium
(2006), pp. 241–256.

[10] GRIMMER, M., RÖHLING, M. M., KRICKE, M., FRANCZYK, B., AND
RAHM, E. Intrusion Detection on System Call Graphs. Sicherheit in
vernetzten Systemen (2018), 18.

[11] KINABLE, J., AND KOSTAKIS, O. Malware Classification based on Call
Graph Clustering. Journal in Computer Virology 7, 4 (2011), 233–245.

[12] KOLOSNJAJI, B., ZARRAS, A., WEBSTER, G., AND ECKERT, C. Deep
Learning for Classification of Malware System Call Sequences. In AI
2016: Advances in Artificial Intelligence, B. H. Kang and Q. Bai, Eds.,
vol. 9992. Springer International Publishing, Cham, 2016, pp. 137–149.
Series Title: Lecture Notes in Computer Science.

[13] KUCUK, Y., AND YAN, G. Deceiving Portable Executable Malware
Classifiers into Targeted Misclassification with Practical Adversarial
Samples. Proceedings of the Tenth ACM Conference on Data and
Application Security and Privacy (2020), 341–352.

[14] PARK, Y., REEVES, D., MULUKUTLA, V., AND SUNDARAVEL, B. Fast
malware classification by automated behavioral graph matching. In
Proceedings of the Sixth Annual Workshop on Cyber Security and
Information Intelligence Research - CSIIRW ’10 (Oak Ridge, Tennessee,
2010), ACM Press, p. 1.

[15] PIPLAI, A., MITTAL, S., ABDELSALAM, M., GUPTA, M., JOSHI, A.,
AND FININ, T. Knowledge Enrichment by Fusing Representations for
Malware Threat Intelligence and Behavior. In 2020 IEEE International
Conference on Intelligence and Security Informatics (ISI) (Nov. 2020),
pp. 1–6.

[16] SIHWAIL, R., OMAR, K., AND ARIFFIN, K. A. Z. A survey on malware
analysis techniques: Static, dynamic, hybrid and memory analysis, 2018.

[17] STOKES, J. W., WANG, D., MARINESCU, M., MARINO, M., AND BUS-
SONE, B. Attack and Defense of Dynamic Analysis-Based, Adversarial
Neural Malware Detection Models. In MILCOM 2018 - 2018 IEEE
Military Communications Conference (MILCOM) (Los Angeles, CA,
Oct. 2018), IEEE, pp. 1–8.

[18] WANG, S., CHEN, Z., YU, X., LI, D., NI, J., TANG, L.-A., GUI, J., LI,
Z., CHEN, H., AND YU, P. S. Heterogeneous Graph Matching Networks
for Unknown Malware Detection. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence (Macao, China,
Aug. 2019), International Joint Conferences on Artificial Intelligence
Organization, pp. 3762–3770.

[19] WUNDERLICH, S., RING, M., LANDES, D., AND HOTHO, A. Compar-
ison of System Call Representations for Intrusion Detection. Springer,
Cham 951 (2020), 14–24.

[20] XIAO, F., LIN, Z., SUN, Y., AND MA, Y. Malware Detection Based
on Deep Learning of Behavior Graphs. Mathematical Problems in
Engineering 2019 (Feb. 2019), 1–10.

https://cuckoosandbox.org/
https://www.virustotal.com/gui/home/upload
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

	Introduction
	Survey of Malware Execution Representations
	Sources of information
	Representations of monitoring information
	Representing the order of actions
	Representing the actions on objects
	Representing the interactions between objects
	Representing the interactions between processes from different programs


	Discussions on Research Problems
	How to make a representation more robust to evading techniques?
	How to make a representation abstract enough to make it cross-platform?
	What elements make the representation of an execution trace visually exploitable for a human expert?
	How to ensure a representation reflects all the malicious actions of a malware infection event?

	Conclusion and Goal of the PhD
	References

