
Detecting APT through graph anomaly detection
Maxime Lanvin†, Pierre-François Gimenez†, Yufei Han∗, Frédéric Majorczyk‡, Ludovic Mé∗, Éric Totel§

∗Inria, Univ. Rennes, IRISA, {firstname.lastname}@inria.com
†CentraleSupélec, Univ. Rennes, IRISA, {firstname.lastname}@centralesupelec.fr

‡DGA-MI, Univ. Rennes, IRISA, frederic.majorczyk@intradef.gouv.fr
§Samovar, Télécom SudParis, Institut Polytechnique de Paris, eric.totel@telecom-sudparis.eu

Abstract—Despite fruitful achievements made by unsupervised
machine learning-based anomaly detection for network intrusion
detection systems, they are still prone to the issue of high false
alarm rates, and it is still difficult to reach very high recalls.
In 2020, Leichtnam et al. proposed Sec2graph, an unsupervised
approach applied to security objects graphs that exhibited in-
teresting results on single-step attacks. The graph representation
and the embedding allowed for better detection since it creates
qualitative features. In this paper, we present new experiments
to assess the performances of this approach for detecting APT
attacks. We achieve better detection performances than the
original work’s baseline detection methods on the DAPT2020
dataset. This work is realised in the context of the Ph.D. thesis
of Maxime Lanvin, which started in October 2021.

Index Terms—anomaly detection, intrusion detection, graph
analysis, machine learning

I. INTRODUCTION

Over the recent years, the number of cyberattacks has
soared. To supplement preventive security mechanisms, de-
ploying Network Intrusion Detection Systems (NIDSes) to
analyse network traffic and look for evidence of attacks in
this traffic is common. Snort and Suricata are two examples
of NIDSes, using signatures to detect known attacks among the
traffic. Unfortunately, signature-based detectors cannot detect
new attacks, like zero-day attacks. Anomaly detectors have
been developed to overcome this difficulty. They approximate
the system’s normal behaviour with a model and detect devi-
ations from it, i.e., anomalies. The excellent results obtained
by Machine Learning (ML) for a decade in applications like
natural language or image processing led to its use in anomaly
detection. The unsupervised learning approach is especially
interesting because it does not require labelled data.

However, current IDSes fail at detecting sophisticated at-
tacks because they focus on single-step attack detection,
leaving to the correlation phase [10] the task of identifying
multiple steps of the same attack. This is an issue because
nowadays attacks are becoming more complex, and they are
performed in multiple steps. Notably, Advanced Persistent
Threats (APT) aims at a stealthy and long-term presence
targeting an IT infrastructure to gain access to highly sensitive
data or harm the system’s health. A typical APT attack
includes the following stages, namely reconnaissance (the
attacker discovers the information systems with, e.g., scanning
techniques), foothold establishment (the attacker sets up a

This work has been partly realised thanks to a doctoral grant from the cyber
excellence pole (PEC : DGA, Brittany Region).

remote access), lateral movement (the attacker moves to other
machines) and finally, the goal of the attacker is performed,
for example, data exfiltration. These stages and others have
been formalised in the MITRE ATT&CK matrix [9].

APT attacks are particularly challenging to detect. To
this aim, this paper expands a previous work [5], namely
Sec2graph, in which a ”security objects graph” is built from
the network traffic. The nodes of the graph represent network
information (e.g., an IP address, a file transfer, or an HTTP
connection), and they are linked when they appear in the
same network event (e.g., an IP packet or a DNS request).
Anomaly detection is then performed on top of this graph,
using an AutoEncoder (AE). This approach exhibited good
detection results in terms of recall and false-positive rate on
both CICIDS datasets [8], [1].

However, the attacks included in these datasets are mainly
single-step attacks. These datasets do not contain APT traces
or are limited to the reconnaissance and foothold establishment
phases, without any lateral movement and data exfiltration.
Besides, the reference [7] has, on the one hand, proposed
a new dataset called DAPT2020 containing full APT traces,
and, on the other hand, presented results obtained with various
unsupervised ML anomaly detection approaches (Stacked AE,
Stacked AE with LSTM, and OneClass SVM) on classical
datasets (UNB2015 [6], CICIDS 2017 [8], 2018 [1]) and
their new dataset. The authors conclude that the detection on
DAPT2020 is overall poor and that APT detection is particu-
larly challenging. This demonstrates that new approaches are
needed to detect such attacks.

In this context, our objective is to study how the security
objects graph-based approach applied to CICIDS data could
be extended to DAPT2020.

The rest of this paper is organised as follows. Section II
presents a quick overview of the Sec2graph approach. Ex-
ploiting this approach, section III compares detection results
on DAPT2020 with those presented in [7]. Finally, section IV
concludes this paper and proposes future work.

II. PRINCIPLE OF ANOMALY DETECTION BASED ON
SECURITY OBJECTS GRAPH

The result we present in this paper were obtained using
the analysis of the security objects graph introduced by [5].
The advantage of employing a graph-based representation is
two-fold. First, it enables a much more interpretable view of
the network traffic data. When an anomaly is detected, one



Fig. 1. Example of a security objects graph

can visualise in the graph what happened and quickly obtain
an overview of the situation that would be harder to explain
using the network logs directly. Second, it brings a compact
representation of the verbose information delivered by network
analysers and provides a notion of neighbourhood in the graph
that doesn’t exist in the log files. For example, with such
security objects graph, it is easy to identify the IP addresses
related to a domain name as they will be indirectly linked
through a domain name. In contrast, in the network logs, these
pieces of information are not close to each other.

This approach is composed of three steps: (1) the construc-
tion of the security objects graph from a set of network logs,
(2) the encoding of this graph in a form usable by an AE [3],
and (3) the use of this AE (learning then detection). During the
training phase, the AE learns to rebuild the learning data. Dur-
ing the detection phase, the AE produces reconstructed vectors
that are compared to input ones to get the reconstruction error.
This error quantifies the anomaly. The following subsections
detail these three phases.

A. Building a graph of security objects

Although the detection concerns network connections, all
the information extracted from the IP layer to the application
layer (HTTP request, mail, etc.) are considered. The raw
data used to build the graph is a collection of network logs
containing this kind of information. Due to the diversity of the
information, the graph is heterogeneous.

Figure 1 shows an example of a security objects graph con-
structed from network logs. In this example, a client requested
the IP address of the domain google.com via the DNS pro-
tocol, then contacted the google.com server with an HTTP
request to obtain an SSL certificate before initiating an HTTPS
connection with the same server. The graph presented in the
figure is constructed from logs of these various protocols. The
graph’s nodes correspond to the network information in this
scenario (client, DNS server, HTTPS server, network ports,
network connections, SSL certificate, etc.). These nodes are
directly linked when the information they represent appears in
the same network event. The interested reader will find more
technical details on this construction in [5].

B. Encoding a graph of security objects

The second step of the approach is to encode a graph in
the form of vectors usable by the AE. This step is classically
named ”graph embedding” [4] in the ML literature, and its
goal is to compress the topological structure information and
the node attributes into a vectorised feature representation.
In this embedding, each edge of the graph is processed
independently and leads to a vector. This vector encodes
the triplet (source node, edge type, destination node), thus
encompassing only the immediate neighbourhood (i.e., within
a one-hop distance). The one-hot encoding of the edge type,
the source and destination nodes attributes are concatenated to
create the vector of a triplet. One-hot encoding is a classical
technique to embed categorical variables. The idea is to create
for each variable a vector whose size is the number of
categories. Each feature of this vector contains a 0, except the
feature associated with the variable category that receives a
1. Discrete and categorical attributes are processed differently.
For discrete attributes (such as port numbers or IP addresses),
the number of possible categories is limited by keeping the
most frequent categories and merging the rare categories
into a single one. For continuous attributes (such as time
duration or the number of packets exchanged), a clustering
for each attribute is performed with Gaussian Mixture Model
(GMM). The resulting cluster membership labels are used as
the categories in the one-hot representation.

C. Anomaly detection

For this one-class classification problem, we use an AE to
learn how to reconstruct the normal network traffic accurately.
Then, during the detection phase, the AE produces a recon-
struction error of an input network traffic record. Lower (resp.
higher) reconstruction error indicates that the corresponding
input is less (resp. more) likely to represent an anomaly.

In the detection phase, the reconstruction error for each
edge of the security objects graph is computed. The average
reconstruction error for all the edges relative to a single
network connection is then computed and compared to a
predefined threshold. Any link with an average reconstruction
error above the threshold is considered as an anomaly and then
its related network connection.

The reference [5] shows that this unsupervised approach is,
on the CICIDS 2017 data, as good as or better than other
supervised approaches of the literature. However, some attack
types are poorly detected (infiltration and botnet attacks), and
the false-positive rate remains quite high.

III. EXPERIMENTS ON THE DAPT2020 DATASET

DAPT2020 was produced to propose a dataset to assess
IDSes on APT attacks. It offers a wide variety of attacks.
In contrast with previous datasets, it includes every stage of
an APT, including the final ones such as lateral movement
and data exfiltration. The DAPT2020 dataset includes five
days of traffic. The Monday network traffic is fully benign,
whereas the other days contain one APT step per day, from
the reconnaissance step to the data exfiltration step.



The authors of DAPT2020 performed several experiments
on this dataset, using three different models: Stacked AE
(SAE), SAE with LSTM layers and OneClass SVM. The
detection performances are evaluated with the Area Under
the Curve (AUC) of both the ROC and the Precision-Recall
(PR) curves. Although SAE outperformed the other models
on both metrics for all attacks, its performances are very low
in comparison with supervised approaches. In this section, we
evaluate and compare the performances of Sec2graph.

The experimental protocol is as follow. The authors of [7]
learn one model per APT step: for each step, the training data
is composed of the benign traffic located in all the days that
do not include attacks related to this step. However, due to
some labelling imprecision with their dataset, the extraction
of benign traffic in the days that include attacks may be
incorrect. In addition, their experimental protocol does not
follow the current practices in IDS evaluation. For these
reasons, Sec2graph model was learnt from the Monday data
that contains no malicious traffic. Since we use only a subset
of the training data used by [7], we can legitimately compare
our results to theirs.

Furthermore, we discovered that the ”data exfiltration” step
was not correctly labelled: there are several errors in the
csv file describing the malicious network connections. There
are some swapped source and destination IP addresses and
inaccurate timestamps. These errors are partially related to a
buggy version of the tool CICFlowMeter (identified by [2])
used to create the DAPT2020 dataset. For this reason, we
only performed the detection on the first three steps of the
APT attack.

Our results are presented in Table I. The AUC for the ROC
and PR curves are computed for each step of the APT attack.
The Sec2graph column corresponds to our approach and the
SAE column comes from [7]. For all three steps, namely
reconnaissance, foothold establishment, and lateral movement,
our approach performs as good or better than the SAE with
regard to the two metrics. The greatest AUC for the ROC
curve is reached for the foothold establishment step, which is
also the case for the SAE. This behaviour is due to the high
proportion of malicious traffic on this phase, according to the
authors of [7].

Even if we outperform the SAE, the AUC of the PR curve
does not have a value high enough to ensure a low false-
positive rate. We are confident these results could be improved.
For instance, the embedding we use with our model is certainly
suboptimal when detecting some attack that requires a general
view of the information system. Indeed, we have rather a local
view since each edge is encoded independently.

IV. CONCLUSION AND FUTURE WORK

The application of Sec2Graph to DAPT2020 shows that
the generalisation of this approach is possible with minor
adjustments. However, these results are still far from being
satisfactory. Moreover, the AUC is not sufficient to judge the
efficiency of the detection because it doesn’t ensure to get both
a low FPR and a high recall.

TABLE I
DETECTION PERFORMANCES OF SAE AND OUR METHOD ON DAPT2020

AUC ROC AUC PR
APT attack steps SAE Sec2graph SAE Sec2graph

Reconnaissance 0.641 0.888 0.262 0.613
Foothold Establishment 0.846 0.924 0.498 0.480

Lateral Movement 0.634 0.802 0.014 0.603

Thus, we plan to work on several enhancements to detect
APT steps better while ensuring a low FPR.

In the case of APT attacks, one should explicitly take time
into account in the detection process as APT attacks consist of
different steps logically and temporally linked in a cyber kill
chain. Therefore, we are working on including this temporal
aspect in the detection either through the data representation
or the model architecture. The authors of [7] got poor results
using LSTM AEs, but thanks to the graph representation, we
hope to find more interesting temporal patterns.

Furthermore, we plan to get a more comprehensive view of
the information system to allow a finer-grained detection by
adding other data sources like system logs. Some APT steps
leave more traces at the system level than in the network traffic
and could be detected more easily by analysing system logs.
Combining network and system logs in a single graph structure
can be a way to detect and link the different steps of an APT
attack.

Finally, we also plan to work on graph embedding to
leverage the graph structure better and extract more topological
information. ML techniques depend heavily on the quality of
the input data, so extracting more relevant features from the
graph and embedding them into vectors could improve the
detection results.

REFERENCES

[1] CSE-CIC. A realistic cyber defense dataset (CSE-CIC-IDS2018),
https://registry.opendata.aws/cse-cic-ids2018, 2018.

[2] ENGELEN, G., RIMMER, V., AND JOOSEN, W. Troubleshooting an
intrusion detection dataset: the CICIDS2017 case study. In SPW (2021),
pp. 7–12.

[3] GOODFELLOW, I., BENGIO, Y., AND COURVILLE, A. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[4] GOYAL, P., AND FERRARA, E. Graph embedding techniques, appli-
cations, and performance: A survey. Knowledge-Based Systems 151
(2018), 78–94.

[5] LEICHTNAM, L., TOTEL, E., PRIGENT, N., AND MÉ, L. Sec2graph:
Network attack detection based on novelty detection on graph structured
data. In DIMVA (2020), pp. 238–258.

[6] MOUSTAFA, N., AND SLAY, J. UNSW-NB15: a comprehensive data set
for network intrusion detection systems. In MilCIS (2015), pp. 1–6.

[7] MYNENI, S., CHOWDHARY, A., SABUR, A., SENGUPTA, S.,
AGRAWAL, G., HUANG, D., AND KANG, M. DAPT 2020 - constructing
a benchmark dataset for advanced persistent threats. In MLHat (2020),
pp. 138–163.

[8] SHARAFALDIN, I., LASHKARI, A. H., AND GHORBANI, A. A. Toward
generating a new intrusion detection dataset and intrusion traffic char-
acterization. In ICISSP (2018).

[9] THE MITRE CORPORATION. Mitre att&ck, https://attack.mitre.org/,
2015.

[10] VALEUR, F. Real-Time Intrusion Detection Alert Correlation. PhD
thesis, University of California, Santa Barbara, USA, 2006.

http://www.deeplearningbook.org

	Introduction
	Principle of anomaly detection based on security objects graph
	Building a graph of security objects
	Encoding a graph of security objects
	Anomaly detection

	Experiments on the DAPT2020 dataset
	Conclusion and future work
	References

