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Abstract: The Michael addition reaction was revisited with a full focus on sustainability combined
with efficiency, using mechanochemistry in mild conditions. First, the synthesis of cyclopentenone
derivatives was chosen as a model reaction to find optimal conditions in mechanochemistry while
using classical but weak bases. The reaction was efficient (84–95% yields), fast (2–6 h), solvent free,
and required 0.1 equivalent of base. Aiming to reach greener conditions, classical bases were then
replaced using new bio-sourced bases, called Eco-bases, that were easily prepared from plants and
led to heterogeneous catalysts. The composition and structure of Eco-bases were characterized by
MP-AES, XRPD, EBSD/EDS, HRTEM/EDX and ion chromatography. Interestingly, a high ratio of
potassium was observed with the presence of K2Ca(CO3)2 for the most effective Eco-base. The new
Eco-bases were used for the mechanical-assisted construction of functionalized alkenone derivatives.
The versatility of the method has been successfully applied with good to excellent yields to different
Michael donors and acceptors. Eco-bases were recycled and reused four times with the same
performances. Combining Eco-bases and mechanochemistry in Michael addition reactions allowed
reaching a maximum degree of sustainability (efficient, rapid, low catalyst loading, solvent-free
reactions with bio-sourced catalysts) and participating in the development of mechanochemistry in
sustainable chemistry.

Keywords: Michael addition; mechanochemistry; eco-base; alien invasive plants; phytomanagement

1. Introduction

Michael addition is an interesting methodology for the building of C–C and C–X
links. With the possible variety of Michael donors and acceptors, the reaction is a versatile
synthetic tool for constructing simple and complex molecules. Michael and heteroatom-
Michael additions are widely used for the production of drugs, perfumes, agrochemical
products and polymers with numerous applications in emerging technologies includ-
ing biomedical, pharmaceutical, optoelectronic composites, adhesives, and coatings [1].
Michael addition also presents a number of advantages in Green Chemistry. Its mechanism
displays a 100% atom economy. Michael addition involves an addition to carbon–carbon
double bonds containing an electron-withdrawing group in mild conditions. The reaction
has usually been performed in protic and ecofriendly solvents, such as alcohols, with a
weak base (tertiary amines, alkali hydroxides, guanidines, amidines, phenolates, fluorides
etc.) [2,3]. If intramolecular Michael additions are performed with sub-stoichiometric or
catalytic bases in a homogenous medium [4], the bases are rarely recyclable [5–7].
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Many efforts have been carried out to design heterogeneous catalysts to promote
base reuse and recycling. Two strategies have been developed. The first one is based on
grafting the base on a solid support (silica, polystyrene) [3]. However, the preparation of
these solid catalysts is not consistent with the principles of Green Chemistry. For example,
aminopropylsilane can be grafted onto silica using trimethoxyamino propyl silane (TMPS)
by heating to 100 ◦C in toluene. TPMS is prepared by the addition of hydrotrimethoxysilane
onto allylamine with a rhodium catalyst (rhodium phosphide or its oligomer) [8]. The life
cycle assessment of such a process is clearly not satisfactory. The second strategy is based on
using metal-catalyzed reactions, since they present several advantages, as recyclability and
easy separation. However, the cost and hazard of metals limit their use in an organometallic
Michael addition.

Recently, efforts have been made in using metals for more sustainable Michael ad-
dition reactions. For example, microcrystalline cellulose-immobilized nanoparticles with
iron (Fe3O4@MCC) were described to promote Michael addition reactions in an aqueous
ethanolic medium and gave high yields in mild conditions [9]. The catalyst was recycled
and reused without considerable depreciation in catalytic activity after 5 runs. However,
the preparation of the catalyst is questionable in terms of Green Chemistry.

Metal nanoparticles of magnesium oxide have also successfully been used as catalysts
in Knoevenagel reactions, while using the Grindstone method, without solvent and at
room temperature [3]. Inspired by these last two examples and considering the similarities
between the Knoevenagel reaction and the Michael addition, especially the formation and
the addition of a carbanion nucleophile from an activated methylene precursor, we have first
studied the potential of weak bases in Michael addition using mechanical-assisted methods.
Aiming to reach greener conditions, we then prepared and characterized bio-sourced bases,
called Eco-bases, and investigated their catalytic efficiency in some mechanical-assisted
Michael addition reactions (Scheme 1).
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Scheme 1. General approach to investigate catalytic efficiency of weak bases and bio-sourced bases
(Eco-bases) in mechanical-assisted Michael addition reactions.

2. Methods
2.1. General Information

Gas Chromatography coupled with Mass Spectroscopy (GC–MS) analyses were per-
formed on a Thermo Scientific™ Trace 1300 GC coupled with an ISQ QD quadrupole. The de-
tection system was connected with a Thermo TG-5SilMS column (0.18 µm × 0.18 µm × 20 m).
GC-FID analyses were performed on a similar column connected to a flame ionization
detector (FID). In each case, hydrogen was used as a carrier gas (1 mL min−1), using
the following temperature program: 80 ◦C isothermal (1 min), 80 to 260 ◦C gradient at
40 ◦C min−1, then 260 ◦C isothermal (1 min).

The samples were prepared in ethyl acetate, and biphenyl was used as an internal
standard for GC-FID quantifications. Mass spectra were recorded in impact electronic
mode at 70 V, and identification was made by the NIST 14 database.

Nuclear Magnetic Resonance (NMR) spectra were recorded on a Brüker Avance III
HD 400 MHz at 20 ◦C using deuterated chloroform (CDCl3) as solvent. The 1H and 13C
frequencies were 400 and 100 MHz respectively.

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum 100 FT-IT, ATR mode,
between 700 and 3000 cm−1.
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Microwave plasma-atomic emission spectrometer (MP-AES) coupled with an SPS4
autosampler from Agilent Technologies™ was used to study the mineral composition of
the Eco-bases. The mineral composition of parts of several plants was determined by
MP-AES after a heat treatment under air flow at 550 ◦C during 4 h. MP-AES analyses were
performed using the metal analysis of total dissolved solutes in water. The samples were
digested in 10 mL of reversed aqua regia (1:2, hydrochloric acid (37%): nitric acid (65%))
under a microwave-assisted digestion (Multiwave-Go Anton Paar) with the following
program: 20 to 165 ◦C in 20 min and then 10 min isothermal at 165 ◦C. Samples were
filtered and then diluted to 0.4 mg L−1 in 1% aqueous nitric acid. Mineral compositions
were determined by using a microwave plasma-atomic emission spectroscopy (MP-AES)
4200 (Agilent Technologies, Santa Clara, CA, USA) equipped with a concentric nebulizer
and a double-pass cyclonic spray chamber. The pump speed during analysis was kept
at 10 rpm, and the sample introduction tube diameter was 0.89 mm. The analytical cycle
consisted of 30 s rinsing with aq. 1% nitric acid followed by 25 s of sample uptake (pump
speed 40 rpm) and then 20 s of equilibration before the reading at preselected integration
times (pump speed 10 rpm). The integration time was set to 3 s for all elements. Unless
otherwise stated, the automatic background correction mode available in the software was
used. All analysis results were performed in triplicate.

X-ray Powder Diffraction (XRPD) data measurements on samples dried at 100 ◦C for
2 h were conducted using a BRUKER diffractometer (D8 Advance, with Cu Kα radiation
at 1.54086 Å) equipped with a LynxEye detector. Diffraction patterns were analyzed with
DIFFRAC-EVA software and several XRD databases (Crystallography Open Data Base
2016, and PDF 2011, 2017 or 2018).

Electron backscattered diffraction (EBSD) and energy-dispersive spectroscopy (EDS)
analysis were performed in a scanning electron microscope (CamScan X500FE CrystalProbe)
at Geosciences Montpellier (France). EBSD maps with step sizes ranging from 0.2 to 0.7 µm
and forward scatter electron (FSE) images with a resolution up to 5 nÅ were acquired on
small areas within each crystal using a working distance of 25 mm, a tilt angle of 70◦, an
acceleration voltage of 20 V, and a beam current of 10 nA. EBSD data were acquired and
treated with the AZtecSynergy software from Oxford Instruments HKL.

High-resolution transmission electron microscopy (HRTEM) analyses were performed at
200 kV on a JEOL 2200 FS equipped with a CCD Gatan Ultrascan 4000 CCD (4092 × 4092 px2)
at the MEA platform (University of Montpellier, France). Scanning transmission electron
microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) was used to obtain chemical
mapping with a probe size of 0.7 nm. The EDX spectra were recorded on a Silicon Drift
X-MAXn 100TLE detector from Oxford Instrument. Samples were embedded in LR White
resin and cut (thin section of 70 nm) with a Leica UC7 ultramicrotome equipped with a
Diatome diamond. Sections were deposited on a carbon-coated copper grid (300 mesh).

Ionic chromatography analyses were performed at the Laboratory of Physical Chem-
istry and Microbiology for Materials and Environment (LCPME-UMR 7564 CNRS-University
of Lorraine) with 882 Compact IC from Metrohm equipped with a chemical suppressor and
a conductimetric detector. A Metrosep A Supp 16 – 250/4.0 column with a guard column
and RP3 pre-column thermostated at 55 ◦C were used. A NaOH (25 mM) solution with a
soda lime guard is used as eluent (flow rate: 0.8 mL min−1).

Mechanical-assisted Michael addition reactions were performed with a Planetary Ball
Mill Machine referenced Retsch PM 100. The reaction mixture was ground for a specific
time (see tables) with a rotation speed of 500 rpm (8.33 Hz) with a pause interval of 10 min
every hour.

2.2. General Procedures
2.2.1. Harvest and Preparation of the Eco-bases

Arabidopsis halleri (Ah) leaves have been collected in a heavily industrialized region of
Poland in the vicinity of the Zn smelter of the Bolesław Mine and Metallurgical Plant near
the city of Olkusz.
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Nocceae caerulescens (Nc) and Anhyllis vulneraria (Av) leaves were harvested before
flowering in Les Avinières, a former Zinc mining site in Saint-Laurent-le-Minier.

Arabidopsis halleri (Ah), Nocceae caerulescens (Nc) and Anhyllis vulneraria (Av) are well-
studied hyperaccumulators of Zn, which were widely used in phytoremediation programs.
The population from the investigated location was previously shown to contain extremely
high and consistent concentrations of Zn in aerial parts.

Fallopia japonica (Fj) is another alien invasive plant in European wetlands. Leaves have
been collected in Saint-Bauzille-de-Putois (Hérault) and Thoiras (Gard), France, in a context
of integrated wetland management by ETPB Gardons and Grison’s team. This is a highly
invasive and widespread alien species in Europe, and it is also listed as one of the most
potent global invasive plant species.

Salix alba (Sa) leaves were harvested in Laon, Grand-Est region, France. Salix alba is a
common tree species, which is native to the wetlands of the northern hemisphere, especially
Europe, temperate Asia and North Africa. Its biomass is very abundant.

Oyster shells were given by oyster aqua-culturists from Thau lake in the Mediterranean
area, France.

Leaves were first washed twice in deionized water and oven-dried at 80 ◦C. The
obtained solid (30 g) was then thermally treated in an oven under air flow. The temperature
program consisted of a first gradient from 25 to 350 ◦C in 1 h then 2 h at 350 ◦C, which was
followed by a second gradient from 350 to 550 ◦C in 1 h then 4 h at 550 ◦C before a slow
cooling in the oven to obtain Eco-base (5 g).

2.2.2. Procedures for Dimethyl-2-(3-oxocyclopentyl) Malonate 3

Weak-bases (1 equiv of Zn for ZnO, 1 equiv of Ca for CaO, EcoCaOx, CaCO3, 1 equiv of
Mg for MgO, 0.08 equiv of K for K2CO3, KHCO3, K2CO3 + CaO, K2CO3 + CaCO3), dimethyl
malonate (580 µL, 5 mmol, 1 equiv), 2-cyclopenten-1-one (420 µL, 5 mmol, 1 equiv) were
added to a ball mill reactor with 100 balls of 5 mm diameter. The reactor was grinding
for 2 h at 8.33 Hz. Every hour, the rotation was stopped for 10 min, and the rotation
direction was reversed. The ball mill reactor was washed three times with EtOAc (25 mL).
The suspension was filtered with ethyl acetate (25 mL), and the filtrate was concentrated
under vacuum.

Eco-base (5.58 mmol, 1.1 equiv of K), dimethyl malonate (580 µL, 5 mmol, 1 equiv),
and 2-cyclopenten-1-one (420 µL, 5 mmol, 1 equiv) were added to a ball mill reactor with
100 balls of 5 mm diameter. The reactor was grinding for 2 h at 8.33 Hz. Every hour, the
rotation was stopped for 10 min and the rotation direction was reversed. The ball mill
reactor was washed three times with EtOAc (20 mL). The suspension was filtered with
ethyl acetate (25 mL), and the filtrate was concentrated under vacuum.

Dimethyl 2-(3-oxocyclopentyl) malonate 3 was purified by distillation (Eb150 mbar = 64–65 ◦C).
Dimethyl 2-(3-oxocyclohexyl)malonate and dimethyl 2-(2-nitro-1-phenylethyl)malonate

were purified by flash chromatography (cyclohexane: ethyl acetate, 9:1).

3. Results and Discussion
3.1. Mechanochemical Michael Addition Promoted by Weak Bases

First, we studied the mechanochemical Michael addition of dimethylmalonate 2 onto
2-alkyl cyclopentenones 1. This 1,4-addition is the key step of the industrial synthesis
of perfume ingredients such as methyl dihydrojasmonate [9–11]. Considering the recent
performances of metal oxides in Knoevenagel reactions and Michael addition reactions,
several oxides and other mineral bases of similar basicity were tested. The reaction was
performed without solvent in mild conditions (Table 1).
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Table 1. Conditions optimization for mechanical Michael addition reaction.
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a 2-cyclopenten-1-one (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), base (1 equiv), 2 h, grinding at
8.33 Hz when mechanochemistry is used. b 2-pentyl-cyclopenten-1-one (9.85 mmol, 1 equiv), dimethylmalonate
(98.9 mmol, 10 equiv), base (1 equiv of K), 6 h, grinding at 8.33 Hz when mechanochemistry is used. c Conversions
and yields were determined by GC-MS FID using biphenyl as an internal standard. d Yields were determined
after distillation of the crude mixture. Pure products were characterized by NMR.

The reaction was not possible by direct mechanocatalysis in the absence of base
(Table 1, entry 1). The use of metal oxides (MgO, ZnO) combined to mechanical energy,
which were successfully used in Knoevenagel reactions [3], did not promote the Michael
addition (Table 1, entries 2–3). The use of slightly stronger bases such as CaO and Eco-CaOx,
derived from oyster shells [12], led to a total conversion of 1 (Table 1, entries 5–6). While
CaCO3 and KHCO3 were ineffective, K2CO3, K2CO3 + CaO and K2CO3 + CaCO3 exhibited
excellent activity (Table 1, entries 4, 7–10). The comparison between batch mode and
mechanochemical activation was interesting (Table 1, entries 7–10). When the substrate was
bulky (R = C5H11), the presence of the base was not sufficient. The mechanical activation
was required (Table 1, entries 9, 10).

In conclusion, mechanochemistry can be adapted to Michael additions. Different
advantages can be claimed: (i) the reaction was very effective, even with bulky substrates;
(ii) the reaction conditions were mild: the reaction was fast (2–6 h) at room temperature, so
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the conditions were energy-efficient; (iii) the reaction was solvent free and prevented waste
production; (iv) the use of weak bases such as K2CO3 was sufficient. Mechanochemistry
can therefore contribute to developing green and sustainable Michael addition reactions.
Additionally, in the aim to increase the sustainability of the reaction, we chose to substitute
K2CO3 by bio-sourced bases, called Eco-bases. Indeed, the industrial manufacture of K2CO3
is based on the carbonation of KOH, which is produced by, not so green, electrolytical
mercury processes [13]. Progresses in terms of life cycle assessments are clearly needed.

3.2. Mechanochemical Michael Addition Promoted by Eco-Bases

The Grison group has shown that the remediation phytotechnologies, such as phytoex-
traction [14–27], rhizofiltration [28–31] and biosorption [32–36] generate biomass which can
be turned into innovative ecocatalysts. Among the plant species that can be transformed,
here, we selected the ones that were the richest in potassium (Figure 1).
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Figure 1. Plant species selected for the preparation of Eco-bases.

First, we have used an Zn-hyperaccumulating plant, Anthyllis vulneraria (Av), Noccaea
caerulescens (Nc) and Arabidopsis halleri (Ah). The first two have been harvested in Les
Avinières, which is a former zinc-mining site in Saint-Laurent-Le-Minier, southern France.
The second one has been harvested in a mine and metallurgical site in Poland (Ah). Then,
we have studied the used of an alien invasive species in Europe, Fallopia japonica (Fj). This
plant species is very abundant, and its richness in Mg and K make it interesting to design
an Eco-base. Finally, a common and available woody tree, Salix alba (Sa), has been tested
for comparison.

Considering the mineral chemodiversity of these plants, a comparative study of
chemical composition of Eco-bases was performed in order to identify the best candidates
for mechanochemical Michael addition.

3.2.1. Preparation of Eco-bases

For Eco-bases from Zn-hyperaccumulators and invasive species, bulk samples of
leaves were collected from ≈1000 individual plants within a sample area of ≈0.1 km2.
Sampling at the metalliferous sites was conducted across an area that is consistently affected
by the source of pollution, and the harvested plant biomass was thoroughly homogenized
to minimize biases from site heterogeneity. As for the reference plant material S. alba, leaves
were collected from four trees, from an area of 2 km2.

The dried leaves, from each plant species, were thermally treated under air flow at
550 ◦C for 4 h, in order to remove the organic matter.

3.2.2. Characterization of Eco-bases

The elemental composition of the Eco-bases was determined by MP-AES analyses (Table 2).
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Table 2. Elemental composition of the Eco-bases determined by MP-AES analyses.

Composition (Weight % (± %RSD))

Entry Eco-base Al Ca Fe K Mg Mn Na Zn

1 Eco-base-Av 0.53
(0.49)

19.65
(1.82)

1.02
(1.60)

10.46
(0.67)

2.17
(1.90)

0.25
(0.75)

1.74
(0.31)

5.02
(1.94)

2 Eco-base-Nc 0.60
(4.07)

7.76
(7.59)

1.21
(1.19)

16.99
(4.48)

2.24
(5.20)

0.02
(8.30)

0.01
(115.9)

9.13
(3.38)

3 Eco-base-Ah 0.10
(2.79)

14.06
(0.37)

0.16
(10.03)

15.82
(0.63)

5.25
(0.18)

0.07
(0.27)

0.14
(1.11)

10.16
(1.06)

4 Eco-base-Fj 0.74
(0.99)

13.57
(1.01)

0.54
(2.77)

20.13
(1.82)

6.21
(0.09)

0.20
(0.70)

0.21
(0.60)

0.12
(2.43)

5 Eco-base-Sa 0.50
(1.45)

16.90
(0.72)

1.14
(3.76)

5.95
(2.98)

1.62
(3.21)

0.16
(1.35)

0.19
(2.18)

0.59
(1.42)

As expected, Eco-base-Av, Eco-base-Nc and Eco-base-Ah exhibited a high rate in Zn
(5.02−10.16%) and K (10.46−16.99%). While Eco-base-Ah was the richest in Zn (10.16%),
Eco-base-Fj had the highest rate in K (20.13%) and Mg (6.21%). The mineral composition of
Eco-base-Sa was more usual (Table 2, entry 5, [37]). Accordingly, Eco-base-Ah and Eco-base-
Fj were selected for further steps due to their most promising mineral composition: the
highest concentrations of Mg, very high rates of K, and the highest Zn rate in Eco-base-Ah.

X-Ray Powder Diffraction (XRPD) analyses were then performed to characterize
the crystalline complexes found in the two Eco-bases that exhibited the most interesting
composition, Eco-base-Ah and Eco-base-Fj (Table 3).

Table 3. XRPD analyses of the most promising Eco-bases.

Entry Eco-
Base Na Al Mg K Ca Zn Si

1 Eco-base-
Ah

NaAl2(Si3Al)O10
(OH)2

(Mg0.9Fe0.1)O
(Mg0.9Zn0.1)O

K2SO4
KCl CaCO3

ZnO
K2ZnSiO4

ZnSiO3

SiO2

2 Eco-base-
Fj Na2SO4 CaMgSi2O6

K2SO4
KCl

K2Ca(CO3)2

CaCO3 SiO2

The structures of Eco–base-Ah showed an unusual mixture of zinc silicate, such as
K2ZnSiO4 and ZnSiO3, an aluminic species with interesting properties, Paragonite [38],
and usual potassium species, KCl and K2SO4 (Table 3, entries 1, 2).

Mixed metal oxides as (Mg0.9Fe0.1)O and (Mg0.9Zn0.1)O were observed in Eco–base-Ah
(Table 3, entry 1). The formation of magnesium oxide was surprising at 550 ◦C compared to
standard temperature conditions (800 ◦C). Interestingly, the presence of mixed magnesium-
zinc oxide could enhance the reactivity of MgO [21,22,25,29]. With MgO being ineffective
in this reaction (see Table 1), it was interesting to examine the effect of ZnO on the reactivity
of MgO.

Eco-base-Fj exhibited a carbonate of potassium and calcium: K2Ca(CO3)2 (Table 3,
entry 2). The formation of this mixed carbonate is in agreement with the temperature of
the thermal treatment [37]. In the preliminary study (Table 1), we have showed that only
K2CO3 was efficient to promote Michael addition. The reactivity of K2Ca(CO3)2 was still
unknown in this reaction.

Complementary assessments were performed to identify other basic entities. The
combination of chemical data from energy dispersive X-ray spectrometry (EDS) and crys-
tallographic data from electron backscattered diffraction (EBSD) has allowed us to identify
oxyapatite calcium phosphate for Eco-base-Fj (see Supplementary Materials, Table S3).
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Although the temperature of thermal treatment was below 600 ◦C, the formation of oxyap-
atite calcium phosphate was consistent with Hedayati’s studies [39,40], which described
the presence of K2Ca(CO3)2 and (CaPO4)6 CaO in the ashes of poplar. This mineral species
has been described as a basic catalytic material [41].

The morphology of Eco-bases was analyzed by HR-TEM and the structural distri-
bution of mineral species was mapped by STEM-EDX for Eco-base-Ah (Figure 2) and
Eco-base-Fj (Figure 3).
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HR-TEM images of the Eco-bases clearly confirmed their granular morphology with a
particle size in the range of 50 to 200 nm. Round particles of about 10–50 nm of diameter
seemed to blend together into a mineral matrix. STEM-EDX confirmed that potassium,
calcium, magnesium and phosphorus were present, as expected based on the MP-AES
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analyses. The polymetallic structure of Eco-bases was supported by the aggregation of
potassium, oxygen and all the other elements in round small particles.

The co-localization of Mg and Zn confirmed the formation of (Mg0.9Zn0.1)O for Eco–
base-Ah. Likewise, the observation of mixed carbonate of K2Ca(CO3)2 was consistent with
the co-localization of Ca and K for Eco–base-Fj. The simultaneous presence of Ca, S and
O for Eco-base-Ah. Arabidopsis halleri belongs to the Brassicaceae family, which can be
explained by the presence of CaSO4.

3.2.3. Eco-bases Reactivity in the Mechanochemical Michael Addition
Synthesis of Dimethyl 2-(3-oxocyclopentyl) Malonate 3

We studied the mechanochemical reactivity of Eco-bases in the Michael addition
reaction between dimethylmalonate 2 and 2-alkyl cyclopente-2-enones 1 for comparative
purposes with the conventional bases, which were previously used (Table 4).

Table 4. Condition optimization for mechanical Michael addition reaction using Eco-bases.
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Entry Eco-base R Conditions Time
(h)

Equiv.
of 2

Conv.
(%) c

Yield
(%) c

1 Eco-base-
Ah

H Batch a 2 1 0 0

2 Eco-base-
Ah

H Batch a 2 10 >99 83

3 Eco-base-
Ah

H Mechano-
chemistry a

2 1 99 85

4 Eco-base-
Nc

H Mechano-
chemistry a

2 1 >99 93

5 Eco-base-
Av

H Mechano-
chemistry a

2 1 >99 81

6 Eco-base-
Fj

H Mechano-
chemistry a

2 1 >99 97

7 Eco-base-
Ah

C5H11 Batch b 24 10 0 0

8 Eco-base-
Ah

C5H11 Mechano-
chemistry b

6
24

10
10

9
72

1
-

9 Eco-base-
Sa

C5H11 Mechano-
chemistry b

6
16

10
10

26
67

-
-

10 Eco-base-
Fj

C5H11 Mechano-
chemistry b

2
6

10
10

64
84

61
-

Reaction conditions: a 2-cyclopenten-1-one (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), Eco-base
(1.1 equiv of K), 2 h, grinding at 8.33 Hz for mechanochemistry. b 2-pentyl-cyclopenten-1-one (9.85 mmol, 1 equiv),
dimethylmalonate (98.9 mmol, 10 equiv), Eco-base (1.1 equiv of K), 6 h, grinding at 8.33 Hz for mechanochemistry.
c Conversions and yields were determined by GC-MS FID using biphenyl as an internal standard.

It should be noted that the batch mode was not adapted to the Michael addition
catalyzed by Eco-bases. With one equivalent of dimethylmalonate 2, the reaction failed
(Table 4, entry 1). Some difficulties in mechanical agitation required the use of an excess of
reagent 2 (Table 4, entry 2).
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The mechanochemical reactions proceeded faster than batch and did not require an
excess of one reagent (Table 4, entries 3–6). Excellent yields were obtained with all Eco-bases
(81–97%). Moreover, one hindered Michael acceptor (R1 = C5H11) could be converted to
3 adduct with the combination of Eco-base-Fj and mechanochemistry (Table 4, entry 10).
While Eco-base-Ah and Eco-base-Sa required a long reaction time (24 h and 16 h respectively,
entries 8−9), a similar conversion was obtained in only 2 h with Eco-base-Fj. Finally, the
desired product was obtained with a high conversion (84%) in 6 h with Eco-base-Fj.

The structures established by XRDP can explain the difference of reactivity between
Eco-bases (Table 3). The highest performance of Eco-base-Fj could be due to the pres-
ence of K2Ca(CO3)2 as a basic entity. This hypothesis is consistent with the results of
Table 1, which have shown the high reactivity of potassium carbonate in mechanochemical
Michael addition.

Supplementary experiments were performed to calculate the amount of K2Ca(CO3)2
in Eco-base-Fj. Indeed, as shown in Table 3, three potassium species were formed: KCl,
K2SO4 and K2Ca(CO3)2. We evaluated the amount of each potassium species by dissolution
in water and ion chromatographic analysis of the aqueous layer. The conditions and results
are presented as Supplementary Materials in Table S4. An average of 18% of carbonate
was found versus 62% of chloride and 20% of sulfate. We can, therefore, conclude that
only 0.08 equivalent of potassium active species promoted the mechanochemical Michael
addition. This result is remarkable compared to standard catalysts, which usually require
to be used in excess.

Recyclability of Eco-base-Fj

A major challenge of green catalysis is the ability to recycle and to reuse the catalyst.
In order to test the potential for recycling and reuse of our best Eco-base, Eco-base-Fj was
washed with ethyl acetate, dried (100 ◦C, 5 h) and used in a new run to yield the desired
product. Eco-base-Fj could be used for up to four cycles, without any decrease in activity.
These results thus illustrate the stability of the Eco-base (Table 5).

Table 5. Recyclability of Eco-base-Fj.

Molecules 2022, 27, x FOR PEER REVIEW 10 of 15 
 

 

It should be noted that the batch mode was not adapted to the Michael addition 

catalyzed by Eco-bases. With one equivalent of dimethylmalonate 2, the reaction failed 

(Table 4, entry 1). Some difficulties in mechanical agitation required the use of an excess 

of reagent 2 (Table 4, entry 2). 

The mechanochemical reactions proceeded faster than batch and did not require an 

excess of one reagent (Table 4, entries 3–6). Excellent yields were obtained with all Eco-

bases (81–97%). Moreover, one hindered Michael acceptor (R1 = C5H11) could be convert-

ed to 3 adduct with the combination of Eco-base-Fj and mechanochemistry (Table 4, en-

try 10). While Eco-base-Ah and Eco-base-Sa required a long reaction time (24 h and 16 h 

respectively, entries 8−9), a similar conversion was obtained in only 2 h with Eco-base-Fj. 

Finally, the desired product was obtained with a high conversion (84%) in 6 h with Eco-

base-Fj. 

The structures established by XRDP can explain the difference of reactivity between 

Eco-bases (Table 3). The highest performance of Eco-base-Fj could be due to the presence 

of K2Ca(CO3)2 as a basic entity. This hypothesis is consistent with the results of Table 1, 

which have shown the high reactivity of potassium carbonate in mechanochemical Mi-

chael addition. 

Supplementary experiments were performed to calculate the amount of K2Ca(CO3)2 

in Eco-base-Fj. Indeed, as shown in Table 3, three potassium species were formed: KCl, 

K2SO4 and K2Ca(CO3)2. We evaluated the amount of each potassium species by dissolu-

tion in water and ion chromatographic analysis of the aqueous layer. The conditions and 

results are presented as Supplementary Materials in Table S4. An average of 18% of car-

bonate was found versus 62% of chloride and 20% of sulfate. We can, therefore, con-

clude that only 0.08 equivalent of potassium active species promoted the mechanochem-

ical Michael addition. This result is remarkable compared to standard catalysts, which 

usually require to be used in excess. 

Recyclability of Eco-base-Fj 

A major challenge of green catalysis is the ability to recycle and to reuse the cata-

lyst. In order to test the potential for recycling and reuse of our best Eco-base, Eco-base-

Fj was washed with ethyl acetate, dried (100 °C, 5 h) and used in a new run to yield the 

desired product. Eco-base-Fj could be used for up to four cycles, without any decrease in 

activity. These results thus illustrate the stability of the Eco-base (Table 5). 

Table 5. Recyclability of Eco-base-Fj. 

 

Entry Number of runs Conv. (%)  Yield (%)  

1 1 >99 97 

2 2 >99 93 

3 3 >99 91 

4 4 >99 98 

Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), dimethyl malonate (5 mmol, 1 equiv) 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions were determined by GC–MS 

FID using biphenyl as an internal standard and yields were determined after distillation. 

Scope of Michael Addition Promoted by Eco-base and Mechanochemistry 

Entry Number of runs Conv. (%) Yield (%)

1 1 >99 97

2 2 >99 93

3 3 >99 91

4 4 >99 98
Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), dimethyl malonate (5 mmol, 1 equiv) Eco-base-Fj
(1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions were determined by GC–MS FID using biphenyl as an
internal standard and yields were determined after distillation.

Scope of Michael Addition Promoted by Eco-base and Mechanochemistry

Subsequently, the methodology was applied to a selected spectrum of Michael accep-
tors (Table 6) and to Michael donors (Table 7) to test the scope of the presented protocol.
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Table 6. Variation of Michael acceptors.

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

Entry Michael Acceptor Product Conv. (%) a Isolated Yield (%) a

1

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

>99 95

2

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

>99 97

3

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

76 61

4

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

>99 38

5

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

Subsequently, the methodology was applied to a selected spectrum of Michael ac-

ceptors (Table 6) and to Michael donors (Table 7) to test the scope of the presented pro-

tocol. 

Table 6. Variation of Michael acceptors. 

 

Entry Michael Acceptor Product Conv. (%)a Isolated Yield (%)a 

1  

 

>99 95 

2 
 

 

>99 97 

3 

  

76 61 

4 

  

>99 38 

5 

  

>99 61 

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), 

Eco-base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was 

obtained by flash chromatography. Conversions were determined by GC-MS FID using biphenyl 

as an internal standard. Pure products were characterized by NMR. 

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-

2-en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. 

It should be noted that the conversions were excellent even with chalcone, which was 

the least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 

4), and some degradation occurred. The reaction failed with cinnamonitrile and methyl 

cinnamate. The screening of Michael acceptors revealed that the methodology was espe-

cially well adapted to enones. 

O

O

O

O

OMe

MeO

>99 61

Reaction conditions: Michael acceptor (5 mmol, 1 equiv), dimethylmalonate (5 mmol, 1 equiv), Eco-base-Fj
(1.1 equiv of K), grinding at 8.33 Hz, 2 h, grinding at 8.33 Hz, 4 h. a Pure product was obtained by flash
chromatography. Conversions were determined by GC-MS FID using biphenyl as an internal standard. Pure
products were characterized by NMR.

The Eco-base-Fj was found to efficiently mediate the reaction when using cyclohex-2-
en-1-one (Table 6, entry 2) or trans-chalcone (Table 6, entry 3), and dimethylmalonate. It
should be noted that the conversions were excellent even with chalcone, which was the
least reactive Michael acceptor. In the case of nitrostyrene, the yield was poor (entry 4), and
some degradation occurred. The reaction failed with cinnamonitrile and methyl cinnamate.
The screening of Michael acceptors revealed that the methodology was especially well
adapted to enones.

The use of β-dicarbonyl compounds (Table 7, entries 1, 2) or ethyl acetoacetate (Table 7,
entry 3) instead of dimethylmalonate led to the expected Michael adducts when the re-
action was performed at room temperature for 2 h (Table 7). Cyclohexane-1,3-dione and
ethyl acetoacetate gave the best conversions (75 and 95%, respectively). Surprisingly,
2,4-pentandione was less reactive.



Molecules 2022, 27, 3306 12 of 15

Table 7. Variation of Michael donors.

Molecules 2022, 27, x FOR PEER REVIEW 12 of 15 
 

 

Table 7. Variation of Michael donors. 

 

Entry Michael Donor Product Conv. (%)  

1 
 

 

75 

2 
 

 

24 

3 
 

 

95 

Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), Michael donor (5 mmol, 1 equiv), Eco-

base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions and yields were determined by GC–

MS FID using biphenyl as an internal standard. 

The use of -dicarbonyl compounds (Table 7, entries 1, 2) or ethyl acetoacetate (Ta-

ble 7, entry 3) instead of dimethylmalonate led to the expected Michael adducts when 

the reaction was performed at room temperature for 2 h (Table 7). Cyclohexane-1,3-

dione and ethyl acetoacetate gave the best conversions (75 and 95%, respectively). Sur-

prisingly, 2,4-pentandione was less reactive. 

4. Conclusions 

Mechanochemistry and Eco-bases are an innovative combination to develop green-

er and sustainable Michael addition. This approach offers numerous advantages: faster 

reaction, mild and solvent-free reaction conditions, efficiency with only 0.01 equivalent 

of potassium active species, resource and energy economy, catalytic conditions, recycla-

bility, bio-sourced and available bases. It demonstrates the remarkable practical utility 

and paves the way toward sustainable and greener catalytic chemistry. In addition to the 

advantages of sustainable chemistry, this approach provides other major environmental 

benefits: (i) restoration of degraded land ecosystems by the phytomanagement of con-

taminated soils and valorization of contaminated biomass in organic synthesis; (ii) use of 

invasive plant species as starting materials to produce Eco-bases. It is an opportunity for 

the recovery of alien invasive plants of wetlands such as Fallopia japonica, and it provides 

interesting support for the control of their proliferation. This new generation of ecocata-

Entry Michael Donor Product Conv. (%)

1

Molecules 2022, 27, x FOR PEER REVIEW 12 of 15 
 

 

Table 7. Variation of Michael donors. 

 

Entry Michael Donor Product Conv. (%)  

1 
 

 

75 

2 
 

 

24 

3 
 

 

95 

Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), Michael donor (5 mmol, 1 equiv), Eco-

base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions and yields were determined by GC–

MS FID using biphenyl as an internal standard. 

The use of -dicarbonyl compounds (Table 7, entries 1, 2) or ethyl acetoacetate (Ta-

ble 7, entry 3) instead of dimethylmalonate led to the expected Michael adducts when 

the reaction was performed at room temperature for 2 h (Table 7). Cyclohexane-1,3-

dione and ethyl acetoacetate gave the best conversions (75 and 95%, respectively). Sur-

prisingly, 2,4-pentandione was less reactive. 

4. Conclusions 

Mechanochemistry and Eco-bases are an innovative combination to develop green-

er and sustainable Michael addition. This approach offers numerous advantages: faster 

reaction, mild and solvent-free reaction conditions, efficiency with only 0.01 equivalent 

of potassium active species, resource and energy economy, catalytic conditions, recycla-

bility, bio-sourced and available bases. It demonstrates the remarkable practical utility 

and paves the way toward sustainable and greener catalytic chemistry. In addition to the 

advantages of sustainable chemistry, this approach provides other major environmental 

benefits: (i) restoration of degraded land ecosystems by the phytomanagement of con-

taminated soils and valorization of contaminated biomass in organic synthesis; (ii) use of 

invasive plant species as starting materials to produce Eco-bases. It is an opportunity for 

the recovery of alien invasive plants of wetlands such as Fallopia japonica, and it provides 

interesting support for the control of their proliferation. This new generation of ecocata-

Molecules 2022, 27, x FOR PEER REVIEW 12 of 15 
 

 

Table 7. Variation of Michael donors. 

 

Entry Michael Donor Product Conv. (%)  

1 
 

 

75 

2 
 

 

24 

3 
 

 

95 

Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), Michael donor (5 mmol, 1 equiv), Eco-

base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions and yields were determined by GC–

MS FID using biphenyl as an internal standard. 

The use of -dicarbonyl compounds (Table 7, entries 1, 2) or ethyl acetoacetate (Ta-

ble 7, entry 3) instead of dimethylmalonate led to the expected Michael adducts when 

the reaction was performed at room temperature for 2 h (Table 7). Cyclohexane-1,3-

dione and ethyl acetoacetate gave the best conversions (75 and 95%, respectively). Sur-

prisingly, 2,4-pentandione was less reactive. 

4. Conclusions 

Mechanochemistry and Eco-bases are an innovative combination to develop green-

er and sustainable Michael addition. This approach offers numerous advantages: faster 

reaction, mild and solvent-free reaction conditions, efficiency with only 0.01 equivalent 

of potassium active species, resource and energy economy, catalytic conditions, recycla-

bility, bio-sourced and available bases. It demonstrates the remarkable practical utility 

and paves the way toward sustainable and greener catalytic chemistry. In addition to the 

advantages of sustainable chemistry, this approach provides other major environmental 

benefits: (i) restoration of degraded land ecosystems by the phytomanagement of con-

taminated soils and valorization of contaminated biomass in organic synthesis; (ii) use of 

invasive plant species as starting materials to produce Eco-bases. It is an opportunity for 

the recovery of alien invasive plants of wetlands such as Fallopia japonica, and it provides 

interesting support for the control of their proliferation. This new generation of ecocata-

75

2

Molecules 2022, 27, x FOR PEER REVIEW 12 of 15 
 

 

Table 7. Variation of Michael donors. 

 

Entry Michael Donor Product Conv. (%)  

1 
 

 

75 

2 
 

 

24 

3 
 

 

95 

Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), Michael donor (5 mmol, 1 equiv), Eco-

base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions and yields were determined by GC–

MS FID using biphenyl as an internal standard. 

The use of -dicarbonyl compounds (Table 7, entries 1, 2) or ethyl acetoacetate (Ta-

ble 7, entry 3) instead of dimethylmalonate led to the expected Michael adducts when 

the reaction was performed at room temperature for 2 h (Table 7). Cyclohexane-1,3-

dione and ethyl acetoacetate gave the best conversions (75 and 95%, respectively). Sur-

prisingly, 2,4-pentandione was less reactive. 

4. Conclusions 

Mechanochemistry and Eco-bases are an innovative combination to develop green-

er and sustainable Michael addition. This approach offers numerous advantages: faster 

reaction, mild and solvent-free reaction conditions, efficiency with only 0.01 equivalent 

of potassium active species, resource and energy economy, catalytic conditions, recycla-

bility, bio-sourced and available bases. It demonstrates the remarkable practical utility 

and paves the way toward sustainable and greener catalytic chemistry. In addition to the 

advantages of sustainable chemistry, this approach provides other major environmental 

benefits: (i) restoration of degraded land ecosystems by the phytomanagement of con-

taminated soils and valorization of contaminated biomass in organic synthesis; (ii) use of 

invasive plant species as starting materials to produce Eco-bases. It is an opportunity for 

the recovery of alien invasive plants of wetlands such as Fallopia japonica, and it provides 

interesting support for the control of their proliferation. This new generation of ecocata-

Molecules 2022, 27, x FOR PEER REVIEW 12 of 15 
 

 

Table 7. Variation of Michael donors. 

 

Entry Michael Donor Product Conv. (%)  

1 
 

 

75 

2 
 

 

24 

3 
 

 

95 

Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), Michael donor (5 mmol, 1 equiv), Eco-

base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions and yields were determined by GC–

MS FID using biphenyl as an internal standard. 

The use of -dicarbonyl compounds (Table 7, entries 1, 2) or ethyl acetoacetate (Ta-

ble 7, entry 3) instead of dimethylmalonate led to the expected Michael adducts when 

the reaction was performed at room temperature for 2 h (Table 7). Cyclohexane-1,3-

dione and ethyl acetoacetate gave the best conversions (75 and 95%, respectively). Sur-

prisingly, 2,4-pentandione was less reactive. 

4. Conclusions 

Mechanochemistry and Eco-bases are an innovative combination to develop green-

er and sustainable Michael addition. This approach offers numerous advantages: faster 

reaction, mild and solvent-free reaction conditions, efficiency with only 0.01 equivalent 

of potassium active species, resource and energy economy, catalytic conditions, recycla-

bility, bio-sourced and available bases. It demonstrates the remarkable practical utility 

and paves the way toward sustainable and greener catalytic chemistry. In addition to the 

advantages of sustainable chemistry, this approach provides other major environmental 

benefits: (i) restoration of degraded land ecosystems by the phytomanagement of con-

taminated soils and valorization of contaminated biomass in organic synthesis; (ii) use of 

invasive plant species as starting materials to produce Eco-bases. It is an opportunity for 

the recovery of alien invasive plants of wetlands such as Fallopia japonica, and it provides 

interesting support for the control of their proliferation. This new generation of ecocata-

24

3

Molecules 2022, 27, x FOR PEER REVIEW 12 of 15 
 

 

Table 7. Variation of Michael donors. 

 

Entry Michael Donor Product Conv. (%)  

1 
 

 

75 

2 
 

 

24 

3 
 

 

95 

Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), Michael donor (5 mmol, 1 equiv), Eco-

base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions and yields were determined by GC–

MS FID using biphenyl as an internal standard. 

The use of -dicarbonyl compounds (Table 7, entries 1, 2) or ethyl acetoacetate (Ta-

ble 7, entry 3) instead of dimethylmalonate led to the expected Michael adducts when 

the reaction was performed at room temperature for 2 h (Table 7). Cyclohexane-1,3-

dione and ethyl acetoacetate gave the best conversions (75 and 95%, respectively). Sur-

prisingly, 2,4-pentandione was less reactive. 

4. Conclusions 

Mechanochemistry and Eco-bases are an innovative combination to develop green-

er and sustainable Michael addition. This approach offers numerous advantages: faster 

reaction, mild and solvent-free reaction conditions, efficiency with only 0.01 equivalent 

of potassium active species, resource and energy economy, catalytic conditions, recycla-

bility, bio-sourced and available bases. It demonstrates the remarkable practical utility 

and paves the way toward sustainable and greener catalytic chemistry. In addition to the 

advantages of sustainable chemistry, this approach provides other major environmental 

benefits: (i) restoration of degraded land ecosystems by the phytomanagement of con-

taminated soils and valorization of contaminated biomass in organic synthesis; (ii) use of 

invasive plant species as starting materials to produce Eco-bases. It is an opportunity for 

the recovery of alien invasive plants of wetlands such as Fallopia japonica, and it provides 

interesting support for the control of their proliferation. This new generation of ecocata-

Molecules 2022, 27, x FOR PEER REVIEW 12 of 15 
 

 

Table 7. Variation of Michael donors. 

 

Entry Michael Donor Product Conv. (%)  

1 
 

 

75 

2 
 

 

24 

3 
 

 

95 

Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), Michael donor (5 mmol, 1 equiv), Eco-

base-Fj (1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions and yields were determined by GC–

MS FID using biphenyl as an internal standard. 

The use of -dicarbonyl compounds (Table 7, entries 1, 2) or ethyl acetoacetate (Ta-

ble 7, entry 3) instead of dimethylmalonate led to the expected Michael adducts when 

the reaction was performed at room temperature for 2 h (Table 7). Cyclohexane-1,3-

dione and ethyl acetoacetate gave the best conversions (75 and 95%, respectively). Sur-

prisingly, 2,4-pentandione was less reactive. 

4. Conclusions 

Mechanochemistry and Eco-bases are an innovative combination to develop green-

er and sustainable Michael addition. This approach offers numerous advantages: faster 

reaction, mild and solvent-free reaction conditions, efficiency with only 0.01 equivalent 

of potassium active species, resource and energy economy, catalytic conditions, recycla-

bility, bio-sourced and available bases. It demonstrates the remarkable practical utility 

and paves the way toward sustainable and greener catalytic chemistry. In addition to the 

advantages of sustainable chemistry, this approach provides other major environmental 

benefits: (i) restoration of degraded land ecosystems by the phytomanagement of con-

taminated soils and valorization of contaminated biomass in organic synthesis; (ii) use of 

invasive plant species as starting materials to produce Eco-bases. It is an opportunity for 

the recovery of alien invasive plants of wetlands such as Fallopia japonica, and it provides 

interesting support for the control of their proliferation. This new generation of ecocata-

95

Reaction conditions: 2-cyclopenten-1-one (5 mmol, 1 equiv), Michael donor (5 mmol, 1 equiv), Eco-base-Fj
(1.1 equiv of K), grinding at 8.33 Hz, 2 h. Conversions and yields were determined by GC–MS FID using biphenyl
as an internal standard.

4. Conclusions

Mechanochemistry and Eco-bases are an innovative combination to develop greener
and sustainable Michael addition. This approach offers numerous advantages: faster re-
action, mild and solvent-free reaction conditions, efficiency with only 0.01 equivalent of
potassium active species, resource and energy economy, catalytic conditions, recyclability,
bio-sourced and available bases. It demonstrates the remarkable practical utility and paves
the way toward sustainable and greener catalytic chemistry. In addition to the advan-
tages of sustainable chemistry, this approach provides other major environmental benefits:
(i) restoration of degraded land ecosystems by the phytomanagement of contaminated soils
and valorization of contaminated biomass in organic synthesis; (ii) use of invasive plant
species as starting materials to produce Eco-bases. It is an opportunity for the recovery
of alien invasive plants of wetlands such as Fallopia japonica, and it provides interesting
support for the control of their proliferation. This new generation of ecocatalysts exhibits
environmental and scientific benefits, suggesting a promising life cycle analysis (Figure 4).
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