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A B S T R A C T

Accurate prediction of dispersion curves for ultrasonic guided waves propagation in multi-
layered composite laminates is crucial for the deployment of nondestructive testing procedures
and structural health monitoring algorithms dedicated to aerospace composite materials.
However, existing efforts mainly focused on finding ways to build complex-valued dispersion
equations for guided waves (see transfer matrix method (TMM), global matrix method (GMM)
and stiffness matrix method (SMM) for example) with little focus on developing efficient and
stable numerical solving methods associated with the derived complex-valued equations. In
this paper, the conditions under which complex-valued dispersion equations are either real-
or purely imaginary-valued equations (termed as dichotomy property) are derived for both
single- and multi-layered composite plates. With such a property, the complex-valued dispersion
equations can be efficiently numerically solved within the real number field via the standard
bisection method or the corrected phase change method. It is thus now possible to overcome
numerical issues frequently reported in literature. Besides, a parallel computing technique is
proposed in this paper to improve the computational efficiency of the traditional GMM. The
proposed methodology provides a new standard framework to solve the dispersion equations
which is stable, multipurpose, and numerically efficient.

1. Introduction

One important tendency in aerospace engineering is the increasing use of composite laminates benefiting from their high strength
to weight ratios. Many Lamb wave-based structural health monitoring (SHM) techniques have been developed to detect and locate
damage in composite materials such that the integrity and safety of the aerospace structures under service can be guaranteed [1,2].
Two basic characteristics of Lamb waves [3] establish the foundation of SHM for aerospace composite structures: (1) it can propagate
to a long distance and cover a large monitoring area; (2) some propagating modes possess high sensitivity to a certain defect
type occurring in composite materials, e.g., delamination, matrix cracking, fiber degradation and debonding, corrosion and fatigue
fracture, etc. SHM algorithms however heavily rely on computational methods dedicated to dispersion curves prediction [4–10]
allowing to link the phase velocity of a given mode with the excitation frequency. Dispersion curves are for example the basis for
selecting appropriate excitation frequencies and designing an optimal piezoelectric transducer (PZT) network (position and size of
the PZT elements) [11,12] or for advanced damage localization algorithms [13,14]. Accurately and efficiently computing dispersion
curves is thus mandatory for the deployment of SHM to aerospace composite structures by means of Lamb waves. However, strong
anisotropy and multiple layers stacking of composite laminates complicate the theory of guided wave propagation such that the
conventional single-layered homogeneous and isotropic model, i.e., Rayleigh–Lamb equations [15], is no longer suitable for modeling
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guided waves propagation in composite laminates. Therefore, for the derivation of such dispersion curves associated with guided
waves propagation in anisotropic multi-layered plates matrix formulations have become the prevalent modeling techniques.

A first method is the transfer matrix method [5,16–18] (TMM) which relates the field variables, i.e., the stress and displacement
components, at the top and bottom surfaces of the plate through a series of transfer matrices, and simultaneously take account for
the continuity of field variables at interfaces of adjacent layers and the traction free boundary conditions at the two outer surfaces of
the plate. But one fatal flaw of TMM is the notorious ‘‘large 𝑓𝑑 problem’’ which means that at the large product value of frequency 𝑓
and layer thickness 𝑑, the dispersion curves obtained from the solutions of the dispersion equation built with TMM become unstable.
The reason of this problem is attributed to the poor conditioning of the transfer matrices due to the coexisting growing and decaying
wave types.

An alternative global matrix method (GMM) was proposed [6,19,20]. The principal idea of GMM is to assemble all the sub-
matrices representing the continuity conditions of field variables in each layer into a global matrix, along with all layers’ wave
amplitudes to be determined by the traction free boundary conditions. The pioneering software Disperse [21] and a toolbox
implemented in MATLAB called ElasticMatrix [22] are based on GMM. The main merit of GMM rests on its numerical stability
even at large 𝑓𝑑 range but at the cost of heavy computational burden. However, some problems still exist for GMM for some
applications such as missing roots or the production of outliers for some mode [23], limited computational capability making that
it can only cope with laminates containing no more than 64 layers [24], and the incomplete functionality that it only deals with
isotropic and transversely isotropic materials [22], thus restricting the wave propagation direction along materials’ principal axes.

A stiffness matrix method (SMM) has been developed by recasting the layer’s transfer matrix to form the stiffness matrix that
relates the displacement to stress at the top and bottom side of a layer [25,26]. Then, the continuity conditions used in TMM and
GMM are now transformed to recursive procedures from the first to the last layer in SMM to produce a global stiffness matrix
of the whole plate. Finally, the traction free boundary condition is applied to the generated global stiffness matrix to obtain the
dispersion equation. In order to get stable dispersion solutions, SMM and TMM have been combined to form the stiffness transfer
matrix method (STMM) [27]. SMM has been adopted to compute the dispersion curves of anisotropic composites with 400 layers
being a component of the rocket Ariane 6 [24]. It has thus been proved that SMM is unconditionally stable. But its shortcoming is
the degeneration from conceptual simplicity in comparison with TMM and GMM.

Through the previous literature review, it can be recognized that even if significant efforts are carried out to find ways of building
the dispersion equation via different methods, e.g., TMM, GMM and SMM, little work was conducted to study the property of the
derived dispersion equation and to find efficient and stable associated numerical solving methods. In most references, once the
derivation of dispersion equation is completed, one just says that the solution to this equation usually requires a utilization of numerical
methods (see [5,6,17,18,28]), but little details are provided. The derived dispersion equation belongs to the family of complex-
valued equations, which is more difficult to solve than a real-valued equation. Thus, the majority of methods mathematically
transform the solving process to search the global minimal moduli of the dispersion function that should be zero in theory, termed
as Min-Abs method in this paper. A representative example is the pioneering software Disperse which employed a path-dependent
minimal moduli search strategy combined with the convergence criteria of checking the included phase angle of the complex-valued
characteristic function that should be greater than 90◦ [21,29]. The toolbox ElasticMatrix makes use of MATLAB built-in function
fminbnd to achieve the minimal moduli searching purpose [22]. Another complex strategy adopted by the software Dispersion
Calculator is to check, in a small interval, both the occurrence of minimum moduli and sign change of the dispersion function
(see Table I of [24]). Recently, Zhu et al. developed an iterative method to solve the dispersion equation by also coping with the
modulus of the dispersion function, i.e., |D(𝑓, 𝜉)|, which provides a strict convergence condition to distinguish the local and global
minima [30]. In addition to the Min-Abs method introduced above, another interesting method is by consecutively monitoring the
phase change of the dispersion function, which is actually evolved from the convergence criteria of Disperse. However, this method
suffers from numerical instability issue when applied to multiple layered plates having 50 layers (see Fig. 7(c) of [20]). Note that
amongst the mentioned methods, only Disperse and Zhu’s method can tackle viscoelastic plate [31,32], which is not the focus of the
current paper, i.e., pure elastic laminate.

In comparison with the multi-layered anisotropic system, the standard root-finding algorithms, e.g., bisection and Newton–
Raphson, are widely used for the single-layered isotropic Rayleigh–Lamb dispersion equation. The solving process of the Rayleigh–
Lamb equation is achieved by dividing the whole solution domain into three regions, i.e., region 1 of 𝑣 < 𝑐𝑇 , region 2 of 𝑐𝑇 < 𝑣 < 𝑐𝐿
and region 3 of 𝑣 > 𝑐𝐿, where 𝑣 is the phase velocity, and 𝑐𝑇 and 𝑐𝐿 are the velocities of transverse and longitudinal modes,
respectively. Then in each region, the complex-valued Rayleigh–Lamb equation is derived to be a real one such that any standard
root-finding algorithm can be easily called to solve it (see [33] and ch. 6.3 of [28]). Inspired by the strategy of solving the Rayleigh–
Lamb equation introduced above, the same idea of converting the complex-valued equation to a real one, which can be easily solved
via standard root-finding algorithms, has been applied here to the multi-layered anisotropic dispersion equation built with GMM,
TMM and SMM. Finally an important property of dispersion equations, termed as dichotomy property in this paper, is demonstrated:
they are either real- or purely imaginary-valued equations. On the basis of this property, it is shown that some numerical issues can
be overcome and as a consequence the computational efficiency gets a great improvement.

The structure of this paper is outlined here. The dispersion equation for a single-layered monoclinic lamina is briefly derived in
Section 2 and its dichotomy property is comprehensively studied in Section 3. Then, this property is extended to a multi-layered
anisotropic system via GMM in Section 4. The ability to overcome some numerical issues with the dichotomy property is validated
in Section 5. Discussion is given in Section 6 and the conclusions are drawn in Section 7.



Fig. 1. Wave propagation model in (a) a single lamina and (b) a laminate.

2. Dispersion equation of guided wave in a monoclinic lamina

2.1. The basic equations for elastic solids

During the deformation of an elastic solid regardless of forced by a static or dynamic load, the 3D stress 𝜎𝑖𝑗 and strain 𝜀𝑘𝑙 tensors
within the elastic solid are linked by the generalized Hooke’s law as expressed using tensor notation in Eq. (1).

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3) (1)

where, 𝑐𝑖𝑗𝑘𝑙 is a fourth order tensor representative of elastic coefficients, which can be transformed to a six order matrix 𝐶𝑝𝑞 by
using the Voigt notation with the one-to-one correspondence 𝑖𝑗 or 𝑘𝑙 = 11, 22, 33, 23(32), 13(31), 12(21) ↔ 𝑝 or 𝑞 = 1, 2, 3, 4, 5, 6 in order
to facilitate the subsequent derivations.

Strain 𝜀𝑘𝑙 and displacement 𝑢𝑖 tensors are connected by the geometric equation presented in Eq. (2).

𝜀𝑘𝑙 =
1
2
(𝑢𝑘,𝑙 + 𝑢𝑙,𝑘) (𝑘, 𝑙 = 1, 2, 3) (2)

Given that guided waves propagation in a composite laminate is targeted here, a single lamina medium is studied firstly and
then transition is made to a laminate. Considering the wave propagation model in a lamina (see Fig. 1(a)), which infinitely extends
along axis 𝑥2, the vibration of the lamina is inherently controlled by its elastodynamic equation as presented in Eq. (3) using tensor
notation:

𝑐𝑖𝑗𝑘𝑙𝑢𝑙,𝑘𝑗 = 𝜌𝑢̈𝑖 (𝑖 = 1, 2, 3) (3)

where, 𝜌 is the mass density.
Since the wave propagates along 𝑥1-direction, the plane-strain state in 𝑥2-direction is assumed thus leading to the displacement

field being invariant to 𝑥2. Besides, for a general time-harmonic wave solution of Eq. (3), the following displacement field 𝐮 can be
defined.

𝐮 =
[

𝑢1, 𝑢2, 𝑢3
]T =

[

𝑈, 𝑉 , 𝑊
]Tei𝜉(𝑥1+𝛼𝑥3−𝑣𝑡) (4)

where, T is the transpose operator; i is the imaginary number unit; 𝜉 is the wavenumber along 𝑥1 direction; 𝛼 is the ratio of
wavenumbers between 𝑥3 and 𝑥1 direction, as illustrated in Fig. 1; 𝑣 is the phase velocity; 𝑈 , 𝑉 , 𝑊 are the amplitudes of displacement
along 𝑥1, 𝑥2, 𝑥3 direction, respectively; 𝑡 is the time variable. In order to focus on the subject of this article, i.e., dichotomy property
of dispersion equations, classical results presented in Sections 2.2 and 2.3 will be directly provided because detailed contents already
exists in many Refs. [2,34].

2.2. The Christoffel equation

Let us take a general monoclinic material into account. This kind of material has 13 independent constants in its elastic matrix 𝐂,
as presented in Eq. (5). For other kind of materials, such as orthotropic and isotropic materials, all the counterparts can be simplified
from the corresponding equations of monoclinic material.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 𝐶12 𝐶13 0 0 𝐶16
𝐶22 𝐶23 0 0 𝐶26

𝐶33 0 0 𝐶36
𝐶44 𝐶45 0

sym 𝐶55 0
𝐶66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13
2𝜀12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)



Substituting Eqs. (4) and (5) into Eq. (3), the Christoffel equation 𝐊(𝛼)𝐔 = 𝟎 can be generated as detailed in Eq. (6).

⎡

⎢

⎢

⎣

𝐾11(𝛼) 𝐾12(𝛼) 𝐾13(𝛼)
𝐾12(𝛼) 𝐾22(𝛼) 𝐾23(𝛼)
𝐾13(𝛼) 𝐾23(𝛼) 𝐾33(𝛼)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑈
𝑉
𝑊

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

(6)

where,

𝐾11(𝛼) = 𝐶11 − 𝜌𝑣2 + 𝐶55𝛼
2, 𝐾12(𝛼) = 𝐶16 + 𝐶45𝛼

2, 𝐾13(𝛼) = (𝐶13 + 𝐶55)𝛼,

𝐾22(𝛼) = 𝐶66 − 𝜌𝑣2 + 𝐶44𝛼
2, 𝐾23(𝛼) = (𝐶36 + 𝐶45)𝛼, 𝐾33(𝛼) = 𝐶55 − 𝜌𝑣2 + 𝐶33𝛼

2 (7)

To make sure that the above equation set leads to nontrivial amplitudes of displacement, the matrix 𝐊(𝛼) should be singular,
namely, det{𝐊(𝛼)} = 0, where det{⋅} means the operator of computing the determinant for a square matrix. Expanding this
determinant results in a third order polynomial equation in terms of 𝛼2 as expressed in Eq. (8).

(𝛼2) ≜ 𝐴6𝛼
6 + 𝐴4𝛼

4 + 𝐴2𝛼
2 + 𝐴0 = 0 (8)

where, the coefficients 𝐴6, 𝐴4, 𝐴2, 𝐴0 are presented in Appendix A, and can be computed from the constant elastic coefficients 𝐶𝑝𝑞
and mass density 𝜌 at a specified phase velocity 𝑣 = 𝑣0.

𝛥 =
𝑝3

27
+

𝑞2

4
, 𝑝 =

3𝐴6𝐴2 − 𝐴2
4

3𝐴2
6

, 𝑞 =
27𝐴2

6𝐴0 − 9𝐴6𝐴4𝐴2 + 2𝐴3
4

27𝐴3
6

(9)

The three 𝛼2 roots can be solved from Eq. (8) via Cardano’s Formula or polynomial root-finding algorithm, for which their
behavior is determined by the discriminant 𝛥 defined in Eq. (9) according to the following three cases [20,35].

⎧

⎪

⎨

⎪

⎩

(1) 𝛥 < 0, all 𝛼2 roots are real and unique;
(2) 𝛥 = 0, all 𝛼2 roots are real and at least two are equal;
(3) 𝛥 > 0, one 𝛼2 root is real and the other two are complex conjugates.

It is of great importance to state that the case 𝛥 > 0 will be automatically excluded for isotropic materials (see ch. 5.6 of [28] for
more information). Actually, the absence of 𝛥 > 0 is not limited to isotropic materials, after a number of numerical investigations on
various composite materials including transversely isotropic, orthotropic and monoclinic materials, only a few materials will lead
to 𝛥 > 0 in a small phase velocity range. That is to say, for most composite materials, the case 𝛥 > 0 will be also automatically
excluded. One convincing evidence catering this perspective comes from the Fig. 2 of [20]. In the following numerical examples,
the existence of 𝛥 > 0 will be checked firstly for the sake of strictness. For 𝛥 ≤ 0, the three 𝛼2 roots are all real numbers and can be
sorted in Eq. (10a). The six 𝛼 roots regardless of which case are obtained by satisfying the condition in Eq. (10b).

𝛼21 ≤ 𝛼23 ≤ 𝛼25 , if 𝛥 ≤ 0 (10a)

𝛼2 = −𝛼1, 𝛼4 = −𝛼3, 𝛼6 = −𝛼5 (10b)

2.3. The displacement and stress fields

For each 𝛼𝑟 (𝑟 = 1,… , 6), there will be a corresponding solution of displacement amplitude
[

𝑈𝑟, 𝑉𝑟, 𝑊𝑟
]T according to Eq. (6),

which is one degree on indeterminacy according to the theory of linear algebra. The three displacement amplitudes can be
determined by assigning a specific value for a certain term, for example 𝑈𝑟 = 1, and 𝑉𝑟 and 𝑊𝑟 are found from the resulted equation
set via Cramer’s Rule as presented in Eq. (11).

𝑉𝑟 =
𝐾11(𝛼𝑟)𝐾23(𝛼𝑟) −𝐾12(𝛼𝑟)𝐾13(𝛼𝑟)
𝐾13(𝛼𝑟)𝐾22(𝛼𝑟) −𝐾12(𝛼𝑟)𝐾23(𝛼𝑟)

, 𝑊𝑟 =
𝐾11(𝛼𝑟)𝐾23(𝛼𝑟) −𝐾12(𝛼𝑟)𝐾13(𝛼𝑟)
𝐾12(𝛼𝑟)𝐾33(𝛼𝑟) −𝐾13(𝛼𝑟)𝐾23(𝛼𝑟)

(11)

It is easy to get the following relationship given the condition in Eq. (10b) if one substitutes the specific expression of 𝐾𝑖𝑗 (𝛼) in
Eq. (7) into Eq. (11).

𝑉2 = 𝑉1, 𝑉4 = 𝑉3, 𝑉6 = 𝑉5; 𝑊2 = −𝑊1, 𝑊4 = −𝑊3, 𝑊6 = −𝑊5 (12)

With the predefined form of displacements in Eq. (4) and the obtained amplitudes in Eq. (11), the displacement field 𝐮 =
[𝑢1, 𝑢2, 𝑢3]T now can be written as the superposition of the six solutions as shown in Eq. (13), in which each term within the
summation represents a partial wave.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1 =
(

∑6
𝑟=1 𝜂𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

𝑢2 =
(

∑6
𝑟=1 𝜂𝑟𝑉𝑟e

i𝜉𝛼𝑟𝑥3
)

ei𝜉(𝑥1−𝑣𝑡)

𝑢3 =
(

∑6
𝑟=1 𝜂𝑟𝑊𝑟ei𝜉𝛼𝑟𝑥3

)

ei𝜉(𝑥1−𝑣𝑡)

(13)

where, 𝜂𝑟 is the participation factor of partial wave to be determined, which can be organized into a vector 𝜼 = [𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5, 𝜂6]T.



Following Eqs. (2), (5), and (13), the stress tensor defined in Eq. (1) can be written as the superposition of six partial waves
as presented in Eq. (14), in which only the three terms 𝝈 = [𝜎33, 𝜎23, 𝜎13]T are provided because they correspond to the boundary
conditions at the bottom and top surfaces of a single lamina to be evaluated in the following section.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎33 =
(

∑6
𝑟=1 𝜂𝑟𝛽1𝑟e

i𝜉𝛼𝑟𝑥3
)

i𝜉ei𝜉(𝑥1−𝑣𝑡)

𝜎23 =
(

∑6
𝑟=1 𝜂𝑟𝛽2𝑟e

i𝜉𝛼𝑟𝑥3
)

i𝜉ei𝜉(𝑥1−𝑣𝑡)

𝜎13 =
(

∑6
𝑟=1 𝜂𝑟𝛽3𝑟e

i𝜉𝛼𝑟𝑥3
)

i𝜉ei𝜉(𝑥1−𝑣𝑡)

(14)

where, 𝛽𝑖𝑟 is the amplitude of partial wave in terms of stress and is defined in Eq. (15).

𝛽1𝑟 = 𝐶13 + 𝐶36𝑉𝑟 + 𝐶33𝛼𝑟𝑊𝑟

𝛽2𝑟 = 𝐶45𝛼𝑟 + 𝐶44𝛼𝑟𝑉𝑟 + 𝐶45𝑊𝑟

𝛽3𝑟 = 𝐶55𝛼𝑟 + 𝐶45𝛼𝑟𝑉𝑟 + 𝐶55𝑊𝑟

(𝑟 = 1,… , 6) (15)

Like in Eq. (12), 𝛽𝑖𝑟 exhibits some relationships described in Eq. (16).

𝛽12 = 𝛽11, 𝛽14 = 𝛽13, 𝛽16 = 𝛽15
𝛽22 = −𝛽21, 𝛽24 = −𝛽23, 𝛽26 = −𝛽25
𝛽32 = −𝛽31, 𝛽34 = −𝛽33, 𝛽36 = −𝛽35

(16)

2.4. Dispersion equations of symmetric and anti-symmetric modes

The stress field should meet the traction free boundary condition (BC) as illustrated in Fig. 1(a) and formulated in Eq. (17)
when guided waves propagate in a free plate. Furthermore, the displacement and stress fields have symmetry condition (SC) at the
midplane of a lamina as presented in Eqs. (18a) and (18b) (see [5] for more information).

𝜎𝑖3(𝑥3 = ±ℎ) = 0 (𝑖 = 1, 2, 3) (17)

where, ℎ is the half thickness.

𝑢3(𝑥3 = 0) = 0, 𝜎23(𝑥3 = 0) = 𝜎13(𝑥3 = 0) = 0 for symmetric modes (18a)

𝑢1(𝑥3 = 0) = 𝑢2(𝑥3 = 0) = 0, 𝜎33(𝑥3 = 0) = 0 for anti-symmetric modes (18b)

Note that 𝑥3 = −ℎ in Eq. (17) is redundant for deriving dispersion equations. Thus, we adopted the BC at 𝑥3 = ℎ in Eq. (17)
and the SC in Eq. (18a) to derive the dispersion equation of symmetric modes. Substituting Eqs. (13) and (14) into two equations,
meanwhile reorganizing the resulted equation set in matrix form with the participation factors 𝜼 being the unknown vector, one
obtains Eq. (19).

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑊1 −𝑊1 𝑊3 −𝑊3 𝑊5 −𝑊5

𝛽21 −𝛽21 𝛽23 −𝛽23 𝛽25 −𝛽25
𝛽31 −𝛽31 𝛽33 −𝛽33 𝛽35 −𝛽35

𝛽11ei𝜉𝛼1ℎ 𝛽11e−i𝜉𝛼1ℎ 𝛽13ei𝜉𝛼3ℎ 𝛽13e−i𝜉𝛼3ℎ 𝛽15ei𝜉𝛼5ℎ 𝛽15e−i𝜉𝛼5ℎ

𝛽21ei𝜉𝛼1ℎ −𝛽21e−i𝜉𝛼1ℎ 𝛽23ei𝜉𝛼3ℎ −𝛽23e−i𝜉𝛼3ℎ 𝛽25ei𝜉𝛼5ℎ −𝛽25e−i𝜉𝛼5ℎ

𝛽31ei𝜉𝛼1ℎ −𝛽31e−i𝜉𝛼1ℎ 𝛽33ei𝜉𝛼3ℎ −𝛽33e−i𝜉𝛼3ℎ 𝛽35ei𝜉𝛼5ℎ −𝛽35e−i𝜉𝛼5ℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5
𝜂6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(19)

Eq. (19) can be rewritten as a compact form, 𝐃𝑠(𝑣, 𝜉)𝜼 = 𝟎, where 𝐃𝑠 is the matrix in Eq. (19) and the subscript ‘𝑠’ denotes the
symmetric modes. It should be noted that in 𝐃𝑠, in addition to 𝜉, there are yet variables 𝛼𝑟, 𝑊𝑟, 𝛽1𝑟, 𝛽2𝑟, 𝛽3𝑟 (𝑟 = 1, 3, 5). But 𝐃𝑠
implicitly links 𝑣 and 𝜉 given that 𝛼𝑟, 𝑊𝑟, 𝛽𝑖𝑟 are actually determined by 𝑣 through the Christoffel equation. Thus, the dependency
property on (𝑣, 𝜉) has been attached to 𝐃𝑠. In order to produce non-trivial solution of 𝜼, 𝐃𝑠(𝑣, 𝜉) should vanish as presented in
Eq. (20), which is the dispersion equation for symmetric modes in implicit1 form.

𝑠(𝑣, 𝜉) ≜ det{𝐃𝑠(𝑣, 𝜉)} = 0 for symmetric modes (20)

For the dispersion equation of anti-symmetric modes, substituting Eqs. (13) and (14) into Eq. (17), with 𝑥3 = ℎ, and Eq. (18b)
results in Eq. (21), which can be also rewritten as the compact form, 𝐃𝑎(𝑣, 𝜉)𝜼 = 𝟎, where the subscript ‘𝑎’ denotes the anti-symmetric
modes. To guarantee a non-trivial solution of 𝜼, 𝐃𝑎(𝑣, 𝜉) should vanish as presented in Eq. (22), which is the dispersion equation for

1 In this paper, the term implicit means that the dispersion equation is defined in matrix-determinant form.



anti-symmetric modes in implicit form.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 1 1

𝑉1 𝑉1 𝑉3 𝑉3 𝑉5 𝑉5
𝛽11 𝛽11 𝛽13 𝛽13 𝛽15 𝛽15

𝛽11ei𝜉𝛼1ℎ 𝛽11e−i𝜉𝛼1ℎ 𝛽13ei𝜉𝛼3ℎ 𝛽13e−i𝜉𝛼3ℎ 𝛽15ei𝜉𝛼5ℎ 𝛽15e−i𝜉𝛼5ℎ

𝛽21ei𝜉𝛼1ℎ −𝛽21e−i𝜉𝛼1ℎ 𝛽23ei𝜉𝛼3ℎ −𝛽23e−i𝜉𝛼3ℎ 𝛽25ei𝜉𝛼5ℎ −𝛽25e−i𝜉𝛼5ℎ

𝛽31ei𝜉𝛼1ℎ −𝛽31e−i𝜉𝛼1ℎ 𝛽33ei𝜉𝛼3ℎ −𝛽33e−i𝜉𝛼3ℎ 𝛽35ei𝜉𝛼5ℎ −𝛽35e−i𝜉𝛼5ℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5
𝜂6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

𝑎(𝑣, 𝜉) ≜ det{𝐃𝑎(𝑣, 𝜉)} = 0 for anti-symmetric modes (22)

Observing Eqs. (19) and (21), it is certain that, no matter which SC is considered, 𝐃(𝑣, 𝜉) is a complex-valued matrix due to
the existence of complex exponential terms. In general, its determinant, (𝑣, 𝜉), has real, 𝑅(𝑣, 𝜉), and imaginary, 𝐼 (𝑣, 𝜉), parts.
Thus, the intuitive way of solving the dispersion equation is to find the zero points of both parts and then take their intersections
as presented in Eq. (23), which is easy to implement because both 𝑅(𝑣, 𝜉) and 𝐼 (𝑣, 𝜉) are real-valued functions such that many
real variables-based root-finding algorithms can be used such as the bisection method.

(𝑣, 𝜉) ≜ 𝑅(𝑣, 𝜉) + i𝐼 (𝑣, 𝜉) = 0 ⇔

{

𝑅(𝑣, 𝜉) = 0
𝐼 (𝑣, 𝜉) = 0

(23)

The explicit2 formula of the determinant of 𝐃𝑠(𝑣, 𝜉) in Eq. (19) and 𝐃𝑎(𝑣, 𝜉) in Eq. (21) were then derived in Eqs. (24a) and (24b)
by right of the software Mathematica due to its powerful capability of symbolic computing. Note that during manipulation using
Mathematica, the Euler’s equation should be used, for example, ei𝜉𝛼1ℎ = cos(𝜉𝛼1ℎ) + i sin(𝜉𝛼1ℎ).

𝑠(𝑣, 𝜉) =[𝐵1 cos(𝜉𝛼1ℎ) sin(𝜉𝛼3ℎ) sin(𝜉𝛼5ℎ) + 𝐵2 sin(𝜉𝛼1ℎ) cos(𝜉𝛼3ℎ) sin(𝜉𝛼5ℎ)

+ 𝐵3 sin(𝜉𝛼1ℎ) sin(𝜉𝛼3ℎ) cos(𝜉𝛼5ℎ)]𝐵4
(24a)

𝑎(𝑣, 𝜉) =[𝐵1 sin(𝜉𝛼1ℎ) cos(𝜉𝛼3ℎ) cos(𝜉𝛼5ℎ) + 𝐵2 cos(𝜉𝛼1ℎ) sin(𝜉𝛼3ℎ) cos(𝜉𝛼5ℎ)

+ 𝐵3 cos(𝜉𝛼1ℎ) cos(𝜉𝛼3ℎ) sin(𝜉𝛼5ℎ)]𝐵5
(24b)

where,

𝐵1 = 𝛽11(𝛽25𝛽33 − 𝛽23𝛽35), 𝐵2 = 𝛽13(𝛽21𝛽35 − 𝛽25𝛽31), 𝐵3 = 𝛽15(𝛽23𝛽31 − 𝛽21𝛽33)

𝐵4 = 8
[

𝑊1(𝛽25𝛽33 − 𝛽23𝛽35) +𝑊3(𝛽21𝛽35 − 𝛽25𝛽31) +𝑊5(𝛽23𝛽31 − 𝛽21𝛽33)
]

𝐵5 = 8i
[

𝑉1(𝛽15 − 𝛽13) + 𝑉3(𝛽11 − 𝛽15) + 𝑉5(𝛽13 − 𝛽11)
]

(25)

With Eqs. (24a) and (24b), the implicit dispersion equations, Eqs. (20) and (22), have been exposed in Eqs. (26a) and (26b).
Considering that the tangent functions are discontinuous, it is preferred to adopt Eqs. (24a) and (24b) for computation.

𝐵1 cot(𝜉𝛼1ℎ) + 𝐵2 cot(𝜉𝛼3ℎ) + 𝐵3 cot(𝜉𝛼5ℎ) = 0 for symmetric modes (26a)

𝐵1 tan(𝜉𝛼1ℎ) + 𝐵2 tan(𝜉𝛼3ℎ) + 𝐵3 tan(𝜉𝛼5ℎ) = 0 for anti-symmetric modes (26b)

3. Dichotomy property of dispersion equation

In this section, we only focus on the case 𝛥 ≤ 0 to study the dichotomy property of dispersion equation through theoretical
derivations, but we leave the extremely rare case 𝛥 > 0 to numerical validation in Section 5.2. There are three reasons for this: (1)
the theoretical study on the case 𝛥 ≤ 0 is enough to show the essence of dichotomy property; (2) the theoretical derivation on the
case 𝛥 > 0 is untractable, thus numerical validation is necessary; (3) the case 𝛥 > 0 is an extremely rare phenomenon for composite
materials according to the explanation presented in Section 2.2.

3.1. Properties of intermediate parameters

For the case 𝛥 ≤ 0, all three 𝛼2 roots are real numbers. Based on this, if 𝛼2𝑟 ≥ 0 then 𝛼𝑟(= ±
√

𝛼2𝑟 ) is a real number regardless of
being positive or negative, while if 𝛼2𝑟 < 0 then 𝛼𝑟 is a purely imaginary number. In order to investigate the dichotomy property of
dispersion equations, three properties of the intermediate parameters 𝑉𝑟, 𝑊𝑟, 𝛽1𝑟, 𝛽2𝑟, 𝛽3𝑟, 𝐵5 depending on 𝛼𝑟 are listed below and
the proof is provided in Appendix B.

2 In this paper, the term explicit means that the dispersion equation is simplified from the original one defined in matrix-determinant form.



7

Property 1: 𝛼𝑟 ∈ R ⟹
(

𝑉𝑟,𝑊𝑟, 𝛽1𝑟, 𝛽2𝑟, 𝛽3𝑟
)

∈ R5.
Property 2: 𝛼𝑟 ∈ iR ⟹

(

𝑉𝑟, 𝛽1𝑟
)

∈ R2 and (𝑊𝑟, 𝛽2𝑟, 𝛽3𝑟) ∈ iR3.
Property 3: ∀𝛼𝑟, 𝐵5 ∈ iR.

When the six roots of Eq. (8) are obtained for a specific material and 𝑣0, one can sort them to satisfy the condition in Eq. (10a)
(𝛼21 ≤ 𝛼23 ≤ 𝛼25). This leads to the following four cases:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1) all 𝛼1, 𝛼3, 𝛼5 are real numbers
(

0 ≤ 𝛼21 ≤ 𝛼23 ≤ 𝛼25
)

;
(2) only 𝛼1 is a purely imaginary number

(

𝛼21 < 0 ≤ 𝛼23 ≤ 𝛼25
)

;
(3) only 𝛼1, 𝛼3 are purely imaginary numbers

(

𝛼21 ≤ 𝛼23 < 0 ≤ 𝛼25
)

;
(4) all 𝛼1, 𝛼3, 𝛼5 are purely imaginary numbers

(

𝛼21 ≤ 𝛼23 ≤ 𝛼25 < 0
)

.

It is obvious that the boundary of the four cases is 𝛼1 = 0, 𝛼3 = 0, 𝛼5 = 0, respectively, which can be reached by letting 𝐴0 = 0 in
Eq. (8). Keeping in mind the expression of 𝐴0 in Appendix A, this further leads to the definition of three critical velocities, which
characterize the three bulk wave velocities (longitudinal, shear horizontal and shear vertical modes) propagating along the lamina
plane. Note that dispersion equation has a singularity at the bulk wave velocity, thus, some outliers in the dispersion solutions
will occur. For example, the constant phase velocities appearing in Fig. 3 of [23] and produced by the software Disperse can be
interpreted as one of these outliers.

𝑣I =

√

𝐴 +
√

𝐵
2𝜌

, 𝑣II =

√

𝐴 −
√

𝐵
2𝜌

, 𝑣III =

√

𝐶55
𝜌

(27)

where, 𝐴 = 𝐶11 + 𝐶66 and 𝐵 = (𝐶11 − 𝐶66)2 + 4𝐶2
16.

3.2. Dichotomy property of dispersion equation when sweeping 𝜉

In this section, we take the example of anti-symmetric modes to theoretically study the dichotomy property of dispersion
equations. The tools used for anti-symmetric modes are readily applicable to symmetric modes.

3.2.1. Case 1: all 𝛼1, 𝛼3, 𝛼5 are real numbers
For case 1, according to Property 1, all 𝛽1𝑟, 𝛽2𝑟, 𝛽3𝑟 (𝑟 = 1, 3, 5) are real numbers. The three coefficients 𝐵1, 𝐵2, 𝐵3 defined in

Eq. (25) are real numbers as well. Besides, set 𝐵5 = i𝑃5 where 𝑃5 is a real number according to the Property 3. Thus, the dispersion
function 𝑎(𝑣, 𝜉) defined in Eq. (24b) can be written as follows.

𝑎(𝑣, 𝜉) = i[𝐵1 sin(𝜉𝛼1ℎ) cos(𝜉𝛼3ℎ) cos(𝜉𝛼5ℎ) + 𝐵2 cos(𝜉𝛼1ℎ) sin(𝜉𝛼3ℎ) cos(𝜉𝛼5ℎ)

+ 𝐵3 cos(𝜉𝛼1ℎ) cos(𝜉𝛼3ℎ) sin(𝜉𝛼5ℎ)]𝑃5 = i𝐼
𝑎 (𝑣, 𝜉) ⇒ 𝐚 𝐩𝐮𝐫𝐞𝐥𝐲 𝐢𝐦𝐚𝐠. 𝐪𝐮𝐚𝐧𝐭𝐢𝐭𝐲

(28)

It is evident from Eq. (28) that 𝑎(𝑣, 𝜉) should be a purely imaginary-valued function in case 1 given that all the terms in this
function are real numbers other than the imaginary number unit. This is equivalent to say that its real part is identically vanishing,
𝑅

𝑎 (𝑣, 𝜉) ≡ 0. Thus, the original complex-valued equation 𝑎(𝑣, 𝜉) = 0 now has been transformed to 𝐼
𝑎 (𝑣, 𝜉) = 0, which is a real-valued

equation easy to be solved via bisection method. This phenomenon casts the essence of dichotomy property.

3.2.2. Case 2: only 𝛼1 is a purely imaginary number
In this case, set 𝛼1 = i𝑎1. According to the Property 2 and 3, 𝛽21, 𝛽31, 𝐵5 become purely imaginary numbers, so one can set them

as 𝛽21 = i𝑝21, 𝛽31 = i𝑝31, 𝐵5 = i𝑃5, here 𝑎1, 𝑝21, 𝑝31, 𝑃5 are real numbers. In that way, 𝐵1, 𝐵2, 𝐵3 in Eq. (25) can be deduced as
follows.

𝐵1 = 𝛽11(𝛽25𝛽33 − 𝛽23𝛽35) ⇒ a real number
𝐵2 = 𝛽13(i𝑝21𝛽35 − 𝛽25i𝑝31) = i𝛽13(𝑝21𝛽35 − 𝛽25𝑝31) = i𝑃2 ⇒ an imag. number
𝐵3 = 𝛽15(𝛽23i𝑝31 − i𝑝21𝛽33) = i𝛽15(𝛽23𝑝31 − 𝑝21𝛽33) = i𝑃3 ⇒ an imag. number

(29)

where, 𝑃2, 𝑃3 are definitely real numbers.
With the new definitions, keeping in mind that sin(i𝜉𝑎1ℎ) = i sinh(𝜉𝑎1ℎ), cos(i𝜉𝑎1ℎ) = cosh(𝜉𝑎1ℎ), where sinh(⋅) and cosh(⋅) is the

hyperbolic sine and cosine function, respectively, 𝑎(𝑣, 𝜉) defined in Eq. (24b) can be deduced as follows.

𝑎(𝑣, 𝜉) = − [𝐵1 sinh(𝜉𝑎1ℎ) cos(𝜉𝛼3ℎ) cos(𝜉𝛼5ℎ) + 𝑃2 cosh(𝜉𝑎1ℎ) sin(𝜉𝛼3ℎ) cos(𝜉𝛼5ℎ)

+ 𝑃3 cosh(𝜉𝑎1ℎ) cos(𝜉𝛼3ℎ) sin(𝜉𝛼5ℎ)]𝑃5 ⇒ 𝐚 𝐫𝐞𝐚𝐥 𝐪𝐮𝐚𝐧𝐭𝐢𝐭𝐲
(30)

This result reveals that in case 2, the imaginary part is identically vanishing, 𝐼
𝑎 (𝑣, 𝜉) ≡ 0. Thus, the original complex-valued

equation 𝑎(𝑣, 𝜉) = 0 now has been converted to 𝑅
𝑎 (𝑣, 𝜉) = 0, which is a real-valued equation easy to be solved via bisection method.



Table 1
The ranges of phase velocity 𝑣 [m/s] that correspond to the four cases.
Case 1
0 ≤ 𝛼2

1 ≤ 𝛼2
3 ≤ 𝛼2

5

Case 2
𝛼2
1 < 0 ≤ 𝛼2

3 ≤ 𝛼2
5

Case 3
𝛼2
1 ≤ 𝛼2

3 < 0 ≤ 𝛼2
5

Case 4
𝛼2
1 ≤ 𝛼2

3 ≤ 𝛼2
5 < 0

[8918.75, +∞) [2142.25, 8918.75) [1879.72, 2142.25) (0, 1879.72)

3.2.3. Case 3: only 𝛼1, 𝛼3 are purely imaginary numbers
In this case, set 𝛼1 = i𝑎1, 𝛼3 = i𝑎3, meanwhile according to the Property 2 and 3, set 𝛽21 = i𝑝21, 𝛽31 = i𝑝31, 𝛽23 = i𝑝23, 𝛽33 = i𝑝33,

𝐵5 = i𝑃5, where 𝑎1, 𝑎3, 𝑝21, 𝑝31, 𝑝23, 𝑝33, 𝑃5 are real numbers. With the new substitutions, 𝐵1, 𝐵2, 𝐵3 in Eq. (25) can be deduced as
follows.

𝐵1 = 𝛽11(𝛽25i𝑝33 − i𝑝23𝛽35) = i𝛽11(𝛽25𝑝33 − 𝑝23𝛽35) = i𝑃1 ⇒ an imag. number
𝐵2 = 𝛽13(i𝑝21𝛽35 − 𝛽25i𝑝31) = i𝛽13(𝑝21𝛽35 − 𝛽25𝑝31) = i𝑃2 ⇒ an imag. number
𝐵3 = 𝛽15(i𝑝23i𝑝31 − i𝑝21i𝑝33) = 𝛽15(−𝑝23𝑝31 + 𝑝21𝑝33) ⇒ a real number

(31)

where, 𝑃1, 𝑃2 are definitely real numbers.
Substitute Eq. (31) into Eq. (24b) to lead to the following form. Obviously, as with case 1, the solving process should be focused

on the imaginary part in case 3, 𝐼
𝑎 (𝑣, 𝜉) = 0.

𝑎(𝑣, 𝜉) =i[ − 𝑃1 sinh(𝜉𝑎1ℎ) cosh(𝜉𝑎3ℎ) cos(𝜉𝛼5ℎ) − 𝑃2 cosh(𝜉𝑎1ℎ) sinh(𝜉𝑎3ℎ) cos(𝜉𝛼5ℎ)

+ 𝐵3 cosh(𝜉𝑎1ℎ) cosh(𝜉𝑎3ℎ) sin(𝜉𝛼5ℎ)]𝑃5 ⇒ 𝐚 𝐩𝐮𝐫𝐞𝐥𝐲 𝐢𝐦𝐚𝐠. 𝐪𝐮𝐚𝐧𝐭𝐢𝐭𝐲
(32)

3.2.4. Case 4: all 𝛼1, 𝛼3, 𝛼5 are purely imaginary numbers
In this case, set 𝛼1 = i𝑎1, 𝛼3 = i𝑎3, 𝛼5 = i𝑎5, according to the Property 2 and 3, continuously set 𝛽21 = i𝑝21, 𝛽31 = i𝑝31, 𝛽23 = i𝑝23,

𝛽33 = i𝑝33, 𝛽25 = i𝑝25, 𝛽35 = i𝑝35, 𝐵5 = i𝑃5, where, 𝑎1, 𝑎3, 𝑎5, 𝑝21, 𝑝31, 𝑝23, 𝑝33, 𝑝25, 𝑝35, 𝑃5 are real numbers. Substitute these new
settings into Eq. (25) to deduce as follows.

𝐵1 = 𝛽11(i𝑝25i𝑝33 − i𝑝23i𝑝35) = 𝛽11(−𝑝25𝑝33 + 𝑝23𝑝35) ⇒ a real number
𝐵2 = 𝛽13(i𝑝21i𝑝35 − i𝑝25i𝑝31) = 𝛽13(−𝑝21𝑝35 + 𝑝25𝑝31) ⇒ a real number
𝐵3 = 𝛽15(i𝑝23i𝑝31 − i𝑝21i𝑝33) = 𝛽15(−𝑝23𝑝31 + 𝑝21𝑝33) ⇒ a real number

(33)

Under the new settings, Eq. (24b) can be further deduced to Eq. (34). Hence, case 4 has the same dichotomy property as with
case 2, i.e., the solving process should be focused on the real part, 𝑅

𝑎 (𝑣, 𝜉) = 0.

𝑎(𝑣, 𝜉) = − [𝐵1 sinh(𝜉𝑎1ℎ) cosh(𝜉𝑎3ℎ) cosh(𝜉𝑎5ℎ) + 𝐵2 cosh(𝜉𝑎1ℎ) sinh(𝜉𝑎3ℎ) cosh(𝜉𝑎5ℎ)

+ 𝐵3 cosh(𝜉𝑎1ℎ) cosh(𝜉𝑎3ℎ) sinh(𝜉𝑎5ℎ)]𝑃5 ⇒ 𝐚 𝐫𝐞𝐚𝐥 𝐪𝐮𝐚𝐧𝐭𝐢𝐭𝐲
(34)

3.2.5. Numerical validation of the dichotomy property when sweeping 𝜉
The chosen structure is a single-layered monoclinic plate, whose material properties are cited from [20] and provided in

Appendix D for convenience. The absence of 𝛥 > 0 has been checked in the Fig. 2(d) of [20] that shows the three real-valued
𝛼2 roots. With the provided material properties, the three critical velocities can be computed based on Eq. (27), which, therefore,
divide the whole domain of phase velocity 𝑣 into four ranges that correspond to the four cases presented in Table 1.

Analysis of Case 1:
Firstly, we assign a typical phase velocity 𝑣0 = 9000m∕s according to Table 1, and substitute the specified material parameters

into Eq. (A.1) to calculate the polynomial coefficients of Eq. (8). Then, the three 𝛼2 roots of the bi-cubic equation, (𝛼2) = 0, can be
solved via Cardano’s Formula, from which the six 𝛼 roots are finally obtained with the three predominant ones being 𝛼1 = 0.5667,
𝛼3 = 3.2007, 𝛼5 = 5.8644. All the three terms are real numbers, which is in agreement with the precondition of case 1.

Once 𝛼1, 𝛼3, 𝛼5 are obtained, all the intermediate parameters can be calculated. Then, the implicit dispersion equation for
anti-symmetric modes defined in Eq. (22) can be generated, which is superficially a complex-valued equation with respect to 𝜉
at 𝑣0 = 9000m∕s due to the existence of the complex exponential terms in matrix 𝐃𝑎(𝑣, 𝜉). Thus, the standard solving procedures
should handle both real and imaginary parts, represented in Eq. (23). We plot its function curves of real and imaginary parts in
Fig. 2 to intuitively study the distribution of solutions of the equation 𝑎(𝑣0 = 9000, 𝜉) = 0 before solving it via bisection method.

Let us focus on the implicit curve firstly in both sub-figures of Fig. 2. For the real part, its curve is oscillating and chaotic,
superficially indicating ‘many spurious roots’ in the presented 𝑥-axis range. For the imaginary part, its curve is continuous and
smooth and the seven zero-points can be clearly recognized as marked by red circles. Comparing the order of magnitude for both
curves, the one of real part (10−8) is largely smaller than the one of imaginary part (107).

Then, we superimpose the explicit curves to make deep comparison with the implicit curves, where the explicit curves are plotted
based on the explicit expression, Eq. (28). In the sub-figure of imaginary part both curves are totally overlapped because the explicit
expression just succeeds from the implicit one. In the sub-figure of real part the zero-valued explicit curve reflects the inference of
Eq. (28) in a numerical way. As for the chaotic implicit curve, which should have been totally zero-valued in theory like the explicit
curve, the reason lies in the numerical errors, e.g., round-off error or machine epsilon, that is inevitable when performing numerical
analysis.



Fig. 2. Using bisection method to solve the equation 𝑎(𝑣0 = 9000, 𝜉) = 0.

Anyway, the solving process should be focused on the effective part (imaginary part in this case). By sweeping 𝜉 with a small
enough step within an interested range, the accurate solutions of 𝜉 can be solved via bisection method as shown in Fig. 2(b). These
solutions correspond to the points of dispersion curves, 𝑣 versus 𝜉, of the anti-symmetric modes at 𝑣0 = 9000m∕s. The conventional
dispersion curves 𝑣 versus 𝜔 can be transformed from 𝑣 versus 𝜉 through 𝜔 = 𝜉𝑣.

One positive effect of dichotomy property is the ability to overcome the numerical instability issue encountered in [20], which
adopts a phase change method3 to solve the dispersion equation. In this paper, we exemplify the solution of 𝜉1 = 538.95 to illustrate
our improvement to the phase change method adapted to dichotomy property.

In the implicit curve of Fig. 2(b), there are two points 1 and 2 around the solution 𝜉1 = 538.95. We map the two points on the
complex plane as schematically shown in Fig. 3(a). It can be seen that each point may appear at any one of two positions in the
complex plane due to the existence of tiny real part, see Fig. 2(a), caused by numerical error which can be regarded as a random
disturbance to the theoretic positions locating on the 𝑦-axis in Fig. 3(a). In practice, no matter which 1′ or 1′′ is identified, the
phase angle of point 1 is approximately equal to −90◦, and the phase angle of point 2 is approximately equal to 90◦. In Fig. 2(b),
if moving point 1 to 2 along the curve, there should have a sudden 180◦ phase change in Fig. 3(a) when crossing the accurate
solution 𝜉1 = 538.95. Thus, like the bisection method, one can consecutively monitor the occurrence of 180◦ phase change to search
𝜉 solutions.

Fig. 3(b) intuitively shows the continuous curves of phase angle changing with 𝜉. Employing the phase change method, all the
𝜉 solutions can be obtained as shown in this figure, which are the same as the solutions via bisection method marked in Fig. 2(b).

Analysis of Case 2:
Adopting the previously introduced material properties and assigning a typical phase velocity 𝑣0 = 5000m∕s according to Table 1,

the three predominant 𝛼 solutions can be easily obtained as 𝛼1 = 3.6014i, 𝛼3 = 1.5933, 𝛼5 = 3.0868. Apparently, only 𝛼1 is a purely
imaginary number, which is in agreement with the precondition of case 2. With the solved 𝛼1, 𝛼3, 𝛼5, the implicit Eq. (22) and
explicit Eq. (30) can be illustrated in Fig. 4, with the real and imaginary part respectively, to intuitively study the distribution of its
solutions. As predicted in Eq. (30), for case 2, the real part becomes effective whereas due to the existence of numerical error the
imaginary part becomes chaotic. Finally, the three solutions of 𝜉 at 𝑣0 = 5000m∕s can be solved using bisection method as marked
in Fig. 4(a).

In case 2, particular attention should be paid to the phase change method due to the existence of tiny imaginary part which will
give rise to disorder in the phase angle. We take the solution of 𝜉2 = 3025.76 as the example to illustrate this issue. Map the two
points 1 and 2 in Fig. 4(a) on the complex plane as schematically shown in Fig. 5. Like in case 1, each point may appear at any
one of two points in the complex plane due to the disturbance of tiny imaginary part. Thus, point 1′ and 1′′ will be identified as
two different phase angles respectively approaching to 180◦ and −180◦, which will further give rise to oscillating in the phase angle
curve as illustrated in Fig. 6(a). If directly applying phase change method to such an disordered curve, instability issue like spurious
or loss roots will be faced [20]. Thus, when sweeping 𝜉 to monitor phase change, the spurious phase angle of −180◦ should be
corrected as 180◦ firstly, as displayed in Fig. 6(b). Eventually, with the corrected phase angle curve, the 𝜉 solutions can be obtained
via phase change method as indicated in Fig. 6(b), which are the same as by using bisection method in Fig. 4(a).

3 In the authors’ opinion, the phase change method is evolved from the convergence criteria of Disperse that checks the included phase angle of the
complex-valued dispersion function being greater than 90◦ for real solutions of dispersion equation [29].



Fig. 3. Using phase change method to solve the equation 𝑎(𝑣0 = 9000, 𝜉) = 0.

Fig. 4. Using bisection method to solve the equation 𝑎(𝑣0 = 5000, 𝜉) = 0.

Fig. 5. The schematic diagram of phase change method for case 2.



Fig. 6. Using phase change method to solve the equation 𝑎(𝑣0 = 5000, 𝜉) = 0.

3.3. Dichotomy property of dispersion equation when sweeping 𝑣

The efforts made above are related with the dichotomy property when sweeping wavenumber 𝜉. Alternatively, this property is
also owned when sweeping phase velocity 𝑣 at a fixed 𝜉0 but with more complexity, since at a fixed 𝜉0, the process of sweeping
𝑣 will cross all the four cases of 𝛼1, 𝛼3, 𝛼5. However, when sweeping 𝜉, a single 𝑣0 only leads to an unitary case among the four
possible ones. Thanks to the theoretical derivations previously carried out, it is possible to automatically adapt when sweeping phase
velocity. We only take here a numerical example to illustrate the solving process of the dispersion equation 𝑎(𝑣, 𝜉0) = 0 via both
bisection and phase change methods which considers the dichotomy property when sweeping phase velocity.

It should be noted that the intermediate parameters, 𝛼𝑟, 𝑉𝑟, 𝑊𝑟, 𝛽𝑖𝑟 (𝑟 = 1, 3, 5; 𝑖 = 1, 2, 3) only depend on phase velocity 𝑣 for
the given material parameters. Thus, when sweeping 𝜉 at a fixed 𝑣0, all evaluations of 𝑎(𝑣0, 𝜉) at all stagnation steps of 𝜉 share
the same intermediate parameters. However, when sweeping 𝑣 at a fixed 𝜉0, these intermediate parameters should be computed
repeatedly at different stagnation steps of 𝑣, thus decelerating the sweeping speed. This point will be assessed in Section 6.2 by
comparing the computational time of the two solving schemes.

Fig. 7 shows the typical function curves of implicit 𝑎(𝑣, 𝜉0) at 𝜉0 = 1750 [1∕m] in the format of real and imaginary parts as well
as phase angle curves. It can be seen that the whole range of 𝑣 interested is large enough to span all the four cases related with 𝛼1,
𝛼3, 𝛼5. Within each case, only the effective part is plotted, and at the boundary of two different cases, there exists a switch between
real and imaginary parts, this occurrence is accompanied by a 90◦ phase change in the phase angle curve. It should be noted that
the phase angle curve in case 2 and 4 has been corrected in Fig. 7, and in case 3 there is no roots. In any case, the curves of real
and imaginary parts should be fed to bisection method, or the corrected phase curve should be fed to phase change method, to get
the solutions of 𝑣 as indicated in Fig. 7.

After comprehensively studying the dichotomy property of dispersion equation for the anti-symmetric modes, we computed its
complete dispersion curves as shown in Fig. 8(a), in which the horizontal and vertical dotted lines highlight the sweeping lines used
in the previous paragraphs to exemplify the dichotomy property of different cases. The dichotomy property of symmetric modes,
though not presented in this paper, can be also investigated by following the methodology used for anti-symmetric modes, thus its
dispersion curves have been depicted in Fig. 8(b).

Comparing the two schemes of sweeping 𝜉 and 𝑣 from Fig. 8, sweeping 𝜉 will lose many data points in a mode’s non-dispersive
ranges, like A0 mode in higher wavenumber, S0 mode in lower wavenumber and SH0 mode in the whole range of wavenumber.
However, sweeping 𝑣 will lose data points near to a mode’s cutoff wavenumber, like A1 mode near to 500 [1∕m]. Therefore, in order
to generate the complete dispersion curves, sweeping 𝜉 and 𝑣 simultaneously then combining both solution sets are necessary. In
Ref. [20], an interpolation method is adopted to reconstruct the missing points in the discrete dispersion solutions. This is only valid
for lower modes.

3.4. Dichotomy property of dispersion equation in 𝑓 − 𝜉 and 𝑓 − 𝑣 domains

The dispersion curves 𝑣 versus 𝜉 retrieved from the symmetry-ignored dispersion equation (𝑣, 𝜉) = 0 belong to actually the
wavenumber–phase velocity domain. The conventional dispersion curves 𝑓 versus 𝜉 and 𝑣 versus 𝑓 can be retrieved from Eqs. (35a)
and (35b), respectively, through the relation 𝑓 = 𝜉𝑣∕(2𝜋).

D(𝑓, 𝜉) ≜ (2𝜋𝑓∕𝜉, 𝜉) = 0 frequency–wavenumber domain (35a)

d(𝑣, 𝑓 ) ≜ (𝑣, 2𝜋𝑓∕𝑣) = 0 frequency–phase velocity domain (35b)



Fig. 7. Using bisection and phase change methods to solve the equation 𝑎(𝑣, 𝜉0 = 1750) = 0. The small width of case 3 is caused by the degree of anisotropy.

Fig. 8. Dispersion curves of the monoclinic lamina.

The newly generated two dispersion equations D(𝑓, 𝜉) = 0 and d(𝑣, 𝑓 ) = 0 still hold the dichotomy property because they naturally
succeed from the equation (𝑣, 𝜉) = 0. Thus, bisection and phase change methods can be used to be the solver for the two equations,
but the effective part should be identified firstly, and if the real part is the effective one, phase correction measure should be taken
to avoid numerical instability issue.

4. Dispersion equation of guided waves in a laminate derived via GMM

The paradigm aforementioned concentrates on a single lamina. In this section, we will extend the dichotomy property of
dispersion equation to a laminate as schematically shown in Fig. 1(b). For a multi-layered composite plate, there are generally
three theoretical methods based on 3D elasticity to build its dispersion equation, TMM and its improved version SMM, as well as
GMM. Here, we adopt GMM to study the dichotomy property of dispersion equation in a laminate due to its numerical stability and
as well to avoid redundancy. The methodology used for GMM is still applicable to TMM and SMM. In the first place, the derivation
process of GMM will be briefly introduced.



4.1. Global matrix method

For a typical layer 𝑙𝑘 in Fig. 1(b), its displacement and stress fields follow the same expressions as a single lamina aforementioned.
Hence, Eqs. (13) and (14) can be rewritten as the following matrix multiplication form in the context of a laminate.

𝐮𝑙𝑘 = 𝜰 𝑙𝑘𝜦𝑙𝑘 (𝑥3)𝜼𝑙𝑘ei𝜉(𝑥1−𝑣𝑡) (36a)

𝝈𝑙𝑘 = 𝜷𝑙𝑘𝜦𝑙𝑘 (𝑥3)𝜼𝑙𝑘ei𝜉(𝑥1−𝑣𝑡) (36b)

where, the superscript ‘𝑙𝑘’ denotes that the associated terms belong to a general layer 𝑙𝑘. 𝜰 𝑙𝑘 , 𝜷𝑙𝑘 , 𝜦𝑙𝑘 (𝑥3) are defined as follows.

𝜰 𝑙𝑘 =
⎡

⎢

⎢

⎣

1 1 1 1 1 1
𝑉1 𝑉2 𝑉3 𝑉4 𝑉5 𝑉6
𝑊1 𝑊2 𝑊3 𝑊4 𝑊5 𝑊6

⎤

⎥

⎥

⎦

𝑙𝑘

,𝜷𝑙𝑘 =
⎡

⎢

⎢

⎣

𝛽11 𝛽12 𝛽13 𝛽14 𝛽15 𝛽16
𝛽21 𝛽22 𝛽23 𝛽24 𝛽25 𝛽26
𝛽31 𝛽32 𝛽33 𝛽34 𝛽35 𝛽36

⎤

⎥

⎥

⎦

𝑙𝑘

,

𝜦𝑙𝑘 (𝑥3) =
⎡

⎢

⎢

⎣

ei𝜉𝛼1𝑥3
⋱

ei𝜉𝛼6𝑥3

⎤

⎥

⎥

⎦

𝑙𝑘
(37)

It should be noted that when transferring Eq. (14) to Eq. (36b), the common factor i𝜉 has been suppressed since it has no effect
on the continuity and boundary conditions to be evaluated subsequently. Eqs. (36a) and (36b) can be concatenated into a single
equation.

𝐒𝑙𝑘 = 𝜞 𝑙𝑘𝜦𝑙𝑘 (𝑥3)𝜼𝑙𝑘ei𝜉(𝑥1−𝑣𝑡) = 𝐙𝑙𝑘 (𝑥3)𝜼𝑙𝑘ei𝜉(𝑥1−𝑣𝑡) (38)

where, 𝐒𝑙𝑘 =
[

𝐮𝑙𝑘T, 𝝈𝑙𝑘T
]T is the field variables. 𝐙𝑙𝑘 (𝑥3) = 𝜞 𝑙𝑘𝜦𝑙𝑘 (𝑥3) and 𝜞 𝑙𝑘 =

[

𝜰 𝑙𝑘T, 𝜷𝑙𝑘T
]T.

In a laminate, we have the CC at all interfaces of two adjacent layers and traction free BC at the top and bottom surfaces of
the laminate. Specifically, at a typical interface 𝑖𝑘 as illustrated in Fig. 1(b), the field variables of layer 𝑙𝑘 at its bottom side should
equal to the field variables of layer 𝑙𝑘+1 at its top side as a result of rigid connection.

𝐒𝑙𝑘bot = 𝐒𝑙𝑘+1top (𝑘 = 1,… , 𝑛 − 1) (39)

where, the subscript ‘bot’ and ‘top’ represents bottom and top side, respectively.
Substituting Eq. (38) into Eq. (39) can lead to the following equation.

𝐙𝑙𝑘
bot𝜼

𝑙𝑘 − 𝐙𝑙𝑘+1
top 𝜼𝑙𝑘+1 = 𝟎 (𝑘 = 1,… , 𝑛 − 1) (40)

where, 𝐙𝑙𝑘
bot = 𝐙𝑙𝑘 (𝑑𝑘) ∈ C6×6, 𝐙𝑙𝑘+1

top = 𝐙𝑙𝑘+1 (0) ∈ C6×6.
For the traction free BC at the top- and bottom-most surfaces as shown in Fig. 1(b), it corresponds to the following equation.

𝝈𝑙1
top = 𝟎 and 𝝈𝑙𝑛

bot = 𝟎 (41)

Substituting Eq. (36b) into Eq. (41) can lead to Eq. (42).

𝐙𝜎,𝑙1
top 𝜼

𝑙1 = 𝟎 and 𝐙𝜎,𝑙𝑛
bot 𝜼

𝑙𝑛 = 𝟎 (42)

where, 𝐙𝜎,𝑙1
top = 𝜷𝑙1𝜦𝑙1 (0) ∈ C3×6, 𝐙𝜎,𝑙𝑛

bot = 𝜷𝑙𝑛𝜦𝑙𝑛 (𝑑𝑛) ∈ C3×6.
Sequentially applying Eq. (40) from interface 𝑖1 to 𝑖𝑛−1 as illustrated in Fig. 1(b) and combining Eq. (42), all the resulted equations

can be regularly organized to a global linear homogeneous equation set, Eq. (43), which requires the vanished determinant of the
coefficients matrix, 𝐃𝐺(𝑣, 𝜉) ∈ C6𝑛×6𝑛, finally generating the implicit dispersion equation of guided waves propagating in a laminate
as presented in Eq. (44).

BC at the top surface →

CC at the interfaces

⎧

⎪

⎪

⎨

⎪

⎪

⎩

BC at the bot. surface →

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐙𝜎,𝑙1
top

𝐙𝑙1
bot −𝐙𝑙2

top
⋱ ⋱

𝐙𝑙𝑘
bot −𝐙𝑙𝑘+1

top
⋱ ⋱

𝐙𝑙𝑛−1
bot −𝐙𝑙𝑛

top

𝐙𝜎,𝑙𝑛
bot

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜼𝑙1
⋮
𝜼𝑙𝑘
⋮
𝜼𝑙𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 𝟎 (43)

𝐺(𝑣, 𝜉) ≜ det{𝐃𝐺(𝑣, 𝜉)} = 0 (44)

where, the subscript ‘𝐺’ denotes that the dispersion equation is built with GMM.



Fig. 9. Concluding figures: (a) the strategy to determine the dichotomy property of dispersion equation, (b) the computational efficiency of solving methods
adapted to dichotomy property.

4.2. Dichotomy property of dispersion equation derived via GMM

It is clear that 𝐃𝐺(𝑣, 𝜉) in Eq. (43) is a complex-valued matrix, thus superficially its determinant 𝐺(𝑣, 𝜉) should be a complex-
valued function having real, 𝑅

𝐺(𝑣, 𝜉), and imaginary, 𝐼
𝐺(𝑣, 𝜉), parts simultaneously. However, like in the context of a single

monoclinic lamina, we have also observed the dichotomy property of 𝐺(𝑣, 𝜉), that is to say, in some ranges of 𝑣 the real part is
identically vanishing, 𝑅

𝐺(𝑣0, 𝜉) ≡ 0, while in other ranges of 𝑣, 𝐼
𝐺(𝑣0, 𝜉) ≡ 0. Strictly proving this property for an arbitrary 𝑛-layered

laminate is not reachable since the explicit expression of 𝐺(𝑣, 𝜉) is no longer available. Furthermore, in extreme conditions, the
total number of cases in a general 𝑛-layered laminate will be as large as 3𝑛 + 1 given that each layer has three critical velocities
according to Eq. (27) such that the case by case deduction is no more realizable.

In order not to stuck in intractable mathematical pitfall, we propose a sampling strategy to investigate the dichotomy property of
dispersion equation in a numerical way through making qualitative analysis. Inspired by the investigation on the single monoclinic
lamina, the dichotomy property of dispersion equation in the context of laminate stems from the property of the intermediate
parameters of each layer, which is actually controlled by the common phase velocity 𝑣 once each layer’s material properties are
given. Thus, no matter what value the fixed 𝑣0 is, the implicit function 𝐺(𝑣0, 𝜉) defined in Eq. (44) with 𝜉 being the argument can
be divided into real part 𝑅

𝐺(𝑣0, 𝜉) and imaginary part 𝐼
𝐺(𝑣0, 𝜉), no matter which part being the vanished one, it will not be totally

zero in practice due to numerical error. However, we can uniformly sample 𝑚 points for the two functions within the interested
range

[

𝜉min, 𝜉max
]

, and find the maximum absolute function value from these sampling points for each part.

𝑀𝑅 = max
1≤𝑖≤𝑚

|𝑅
𝐺(𝑣0, 𝜉𝑖)|, 𝑀𝐼 = max

1≤𝑖≤𝑚
|𝐼

𝐺(𝑣0, 𝜉𝑖)| for 𝜉𝑖 ∈
[

𝜉min, 𝜉max
]

(45)

Finally, the dichotomy property is determined by comparing the true maximum values between the two parts, meanwhile, the
effective part can be obtained by using the following rule.

– If 𝑀𝑅 ≫ 𝑀𝐼 , the effective part is 𝑅
𝐺(𝑣0, 𝜉) and 𝐼

𝐺(𝑣0, 𝜉) ≡ 0;
– If 𝑀𝑅 ≪ 𝑀𝐼 , the effective part is 𝐼

𝐺(𝑣0, 𝜉) and 𝑅
𝐺(𝑣0, 𝜉) ≡ 0.

The sampling strategy is achievable due to the fact that the vanished part, though polluted by numerical error, is lower than
the effective part by several orders of magnitude. Furthermore, this sampling strategy is very easy to implement and it is also an
universal strategy to determine the dichotomy property of dispersion equation not only applicable for GMM but also for TMM,
SMM and the single lamina (for both cases 𝛥 ≤ 0 and 𝛥 > 0) as concluded in Fig. 9(a). In this figure, using the enumeration strategy
to determine the dichotomy property of a single-layered plate reflects the know-why of this property, and adopting the sampling
strategy embodies the know-how to characterize this property for a complex structure in practice.

With the deterministic dichotomy property for any case, the dispersion equation can be solved by sweeping 𝜉 at a fixed 𝑣0 or
sweeping 𝑣 at a fixed 𝜉0 via bisection or phase change methods, as summarized in Fig. 9(b), in which two stars represent a higher
computational efficiency than one star. This subfigure is also validated in Section 6.2.

5. Overcoming common numerical issues using dichotomy property

After studying the dichotomy property, some numerical issues frequently reported in literature can be overcome with the help
of dichotomy property. Two typical issues are the instability of the phase change method and the instability of TMM.



Fig. 10. Dispersion curves propagating at 0◦ for the [0]50 orthotropic laminate.

5.1. Overcoming numerical instability of the phase change method

In [20] numerical instabilities were encountered when generating the dispersion curves of a 50-layered orthotropic laminate via
GMM, see Fig. 10(b). This laminate has a special layup [0]50, i.e., each layer orients at the same fiber direction. The authors of [20]
alleged that the numerical instabilities were caused by the large number of layers under study, and the maximum ability of their
method to compute a laminate must be no more than 13 layers in order to obtain satisfying results for GMM.

In this section, we recompute the dispersion curves of this laminate by using the same GMM and corrected phase change method
(CPCM), as shown in Fig. 10(a) (the material properties used is listed in Appendix D and the absence of 𝛥 > 0 for this material
has been checked.). It can be seen that our results do not suffer from instability issue anymore. The reason is that when solving
dispersion equation built with GMM via phase change method, at the region of missing roots in Fig. 10(b), phase correction measure
should be taken. However in Ref. [20], the direct phase change method was employed thus suffering of numerical instability issue
is inevitable.

5.2. Overcoming numerical instability of TMM

TMM usually suffers from instability issue known as the so-called ‘‘large 𝑓𝑑 problem’’ which refers to the unstable solutions
at a large product value of frequency 𝑓 and plate thickness 𝑑. One typical example citing from [27] is plotted on Fig. 11(b) for
illustration, in the frequency–wavenumber domain. In this graph, the red curve divides the graph into two parts, with the left part of
solutions via TMM and right part via SMM, because either method suffered from instability in its opposite part as explained in [27].
Note that Fig. 11(b) corresponds to a single-layered unidirectional composite plate at 45◦ direction, and the material properties of
this plate is given in Appendix D.

Before generating the final dispersion curves using our method, we checked firstly the presence of 𝛥 > 0 by making the curve of
𝛥 with respect to 𝑣 as shown in Fig. 12(a), as long as substituting the given material parameters into Eqs. (9) and (A.1). Fig. 12(a)
shows the presence of 𝛥 > 0 when 𝑣 ∈ (0, 𝑣𝛥) where 𝑣𝛥 = 1648.05 such that 𝛥(𝑣𝛥) = 0. For this special case, there is a need to
explore whether or not the dichotomy property still holds. Nonetheless, the complexity of this case hinders the theoretical manner
on dichotomy property that is used in the enumeration strategy. Thus, making numerical validation is the sensible way. For this
purpose, we arbitrarily assign 𝑣0 = 1000 that consequently leads to 𝛥 = 24.05 and 𝛼21 = −11.89, 𝛼23 = −0.69 − 0.20i, 𝛼25 = −0.69 + 0.20i.
Clearly, 𝛼21 is a real number and 𝛼23 and 𝛼25 are mutually complex-conjugated. Then, the function curve of 𝑎(𝑣0 = 1000, 𝜉) can be
generated in Fig. 12(b) as real and imaginary part, respectively. This sub-figure clearly shows the preservation of dichotomy property
in the special case 𝛥 > 0, with the real part effective that is identified automatically through the sampling strategy formalized in
Eq. (45).

In order to match the frequency–wavenumber domain in Fig. 11(b), we take advantage of the same domain dispersion equation,
Eq. (35a), to retrieve the dispersion curves of the single-layered unidirectional composite plate as delineated in Fig. 11(a) lying
in the right part being the propagating waves, which is achieved via bisection method through sweeping 𝑓 at a series of fixed 𝜉0
or sweeping 𝜉 at a series of fixed 𝑓0. It can be seen that the instability issue does not occur in our computation, thus proving the
stability and robustness of our method that accounts for the dichotomy property.

What needs to be clarified is that the terminology ‘propagating waves’ in Fig. 11(a) means that the waves can persistently
propagate in the plate without energy loss, in contrast to it, the counterpart ‘evanescent waves’ refers to the heavily attenuated
waves since the energy of this kind of waves is quickly dissipated, as a result, its range of propagation is limited to the near field of



Fig. 11. Dispersion curves in frequency–wavenumber domain propagating at 45◦ of the single-layered unidirectional composite plate.

Fig. 12. Dichotomy property of dispersion equation at 𝑣0 = 1000m∕s that invokes 𝛥 > 0.

the source. The evanescent waves have received increasing attention in the recent years [36,37], but both references only focused on
isotropic materials by working out the conventional Rayleigh–Lamb dispersion equation instead of composites, in terms of theoretical
analysis, thanks to the complexity of the evanescent waves propagating in composite plate. In the following paragraph, we describe
how to analytically obtain the dispersion curves of the evanescent waves propagating in the single-layered composite plate, as shown
in Fig. 11(a).

In the mathematical formulation, both the propagating and evanescent waves are the solutions of the dispersion equation,
respectively representing the real-valued wavenumber 𝜉 and the purely imaginary-valued wavenumber i𝜁 wherein 𝜁 is a real number.
The dispersion equation regarding to the evanescent waves can be formed by substituting 𝜉 = i𝜁 into Eq. (24a) or (24b) to generate
(𝑣, i𝜁 ) = 0, ignoring the symmetry. In Appendix C, we have proved that (𝑣, i𝜁 ) still holds the dichotomy property. For the
dispersion equation in frequency–wavenumber domain, we further substitute 𝜉 = i𝜁 into Eq. (35a) to generate D(𝑓, i𝜁 ) = 0, whose
dichotomy property can be theoretically or numerically proved but not presented in this paper for brevity.

With the closed-form dispersion equation of the evanescent waves in frequency–wavenumber domain, the dispersion curves can
be obtained by solving the effective part through sweeping 𝑓 at a series of fixed 𝜁0 or sweeping 𝜁 at a series of fixed 𝑓0, by virtue
of bisection or phase change method, as illustrated in Fig. 11(a) lying in the left part being the evanescent waves. It can be seen
that the evanescent waves connect with the propagating waves at zero wavenumber. Furthermore, some evanescent modes connect
two different propagating modes possessing the same symmetry. For example, the first anti-symmetric evanescent mode connects
the propagating A0 and SHA0 modes, and the first symmetric evanescent mode connect the propagating SHS1 and SHS2 modes.
This phenomenon has also been observed in [37] but via semi-analytical finite element (SAFE) method for most of non-isotropic



Table 2
The computational time of the 50-layered plate (unit: seconds).

Bisection method Phase change method

Sweep 𝑣 Sweep 𝜉 Sum Sweep 𝑣 Sweep 𝜉 Sum

6437s 3052s 9489s 6729s 3071s 9800s

2284p 1058p 3342p 2338p 1052p 3390p

sSerial computing technique is applied.
pParallel computing technique is applied.

materials. Our theoretical analysis on the unidirectional composite plate contribute a plus to the theory of guided waves propagation
in composite materials.

Finally, the emphasis should be placed on the multi-layered composite laminate in terms of the dispersion equation of the
evanescent waves built by GMM, which possesses the dichotomy property as well. Thus, as the analysis for propagating waves
in a laminate, the sampling strategy should be a simple and efficient tool to retrieve the dispersion curves of the evanescent waves.

6. Discussion

6.1. Parallelization of GMM

Even if not so apparent, GMM can be perfectly parallelized. One can observe Fig. 8 to obviously assess that the two sweeping
schemes, i.e., sweeping 𝜉 and sweeping 𝑣, are mutually independent. Moreover, in both sweeping scheme, the sweeping process
between the different fixed variables is mutually independent as well. For the example of sweeping 𝜉, the two equations (𝑣(1)0 , 𝜉) = 0
and (𝑣(2)0 , 𝜉) = 0 can be solved concurrently as there is no any communication between the two equations. It is also true when
sweeping 𝑣, the two equations (𝑣, 𝜉(1)0 ) = 0 and (𝑣, 𝜉(2)0 ) = 0 can be solved concurrently. This fact indicates that the two sweeping
processes belongs to the classical Perfectly Parallel Problem [38]. Thus, execution of GMM can be parallelized during programming the
algorithm to intentionally cope with the computational efficiency issue. Applying the parallel computing techniques for GMM can
be easily achieved since there are many numerical computing toolboxes or packages available from the widely used programming
languages such as Matlab and Python.

6.2. Comparison of computational efficiencies

In this section, we compare the computational efficiencies of the two solving methods (bisection and phase change methods)
for the serial and parallel computing techniques by using the 50-layered plate in Section 5.1. Computations were performed in
MATLAB R2016a hosted on a Dell Precision T3500 workstation with the processor Intel Xeon W3530@2.8 GHz, 4 CPU cores, 18G
RAM. Computing range is shown in Fig. 10. Bi-directional sweeping scheme is used. In each direction, the sweeping line is equally
offsetted 100 times from the minimum to the maximum, and the precision of solutions is set to be the fifth decimal place. The
sweeping step length of phase velocity and wavenumber is 10 m/s and 10 [1/m], respectively. Each solving method runs 10 times
and the averaged computational time is listed in Table 2.

Table 2 shows that sweeping 𝑣 costs more time than sweeping 𝜉 irrespective of the serial or parallel computing technique. The
explanations to them are given in Section 3.3. Additionally, the speed-up ratio of the computational time between parallel and serial
computing technique is as large as 2.8 for a computer with four CPU cores, which is desired. Finally, the computational time of
CPCM is slightly greater than the counterpart of bisection method, which is due to the phase correction operation. The comparison
result of Table 2 validates Fig. 9(b).

6.3. Generalization of dichotomy property in other material classes

The methodology developed in this paper can be also applied to other material classes like triclinic material, which is full
anisotropy having 21 independent elastic coefficients, and piezoelectric material, whose dispersion equations are more complex
than composite materials. After investigation for a certain material, if dichotomy property does not present in it, both the real and
imaginary parts of dispersion function are effective in this case such that the true roots of the dispersion equation are the intersected
roots of real and imaginary parts, i.e., Eq. (23) should be applied. An example of this case for a triclinic material,4 whose parameters
are provided in Appendix D, is illustrated in Fig. 13(a). However, for this case, phase change method is still applicable without need
to take phase correction measure because phase angle changes smoothly with searching variable as illustrated in Fig. 13(b).

4 The dispersion equations of a triclinic material are not presented in this paper for the sake of brevity, but can be partly referred from [34].



Fig. 13. Function curve of the symmetric modes of dispersion equation 𝑠(𝑣0 , 𝜉) for a triclinic material at 𝑣0 = 4000m∕s.

7. Conclusions

The dispersion equation of guided waves propagating in composite plates are not a completely complex-valued equation, and it
presents the dichotomy property of being either a real- or purely imaginary-valued equation. This property is strictly investigated
firstly for a single-layered monoclinic lamina in the case 𝛥 ≤ 0 by using the enumeration strategy, showing that there exists four
cases for 𝛼1, 𝛼3, 𝛼5 depending on their properties of being real or purely imaginary number. The three parameters will lead to two
mutually-exclusive effective parts, real and imaginary parts of the dispersion equation. Bisection and phase change methods are two
efficient ways to solve the dispersion equations, but if the real part becomes to be effective one, phase correction measure should
be taken toward to the phase change method in order to overcome some numerical instability issues.

The dichotomy property is further extended to a general multi-layered composite laminate through the proposed sampling
strategy under the framework of GMM, but it is still applicable to TMM and SMM. The enumeration strategy and sampling strategy
reflect the know-why and know-how aspects of the dichotomy property, respectively. Although this paper comprehensively studies
the dichotomy property of dispersion equation in wavenumber–phase velocity domain, the counterparts in frequency–wavenumber
and frequency–phase velocity domain still hold this property, as well as in the case of evanescent wave modes. Thus, this property
has formed a closure characteristic on itself in mathematical sense as long as the damping effect is not involved.

A parallel computing technique is developed to improve the computational efficiency of the traditional GMM. With such, the
proposed methodology has the potential to become a standard method to solve the damping free dispersion equations with stable,
multipurpose and numerically efficient ways.
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Appendix A. The polynomial coefficients about 𝜶𝟐

𝐴6 = 𝐶33𝐶44𝐶55 − 𝐶33𝐶
2
45

𝐴4 =(𝐶44𝐶55 − 𝐶2
45)(𝐶55 − 𝜌𝑣2) + 𝐶33𝐶55(𝐶66 − 𝜌𝑣2) + 𝐶33𝐶44(𝐶11 − 𝜌𝑣2)

− 2𝐶16𝐶45𝐶33 + 2(𝐶36 + 𝐶45)(𝐶13 + 𝐶55)𝐶45

− (𝐶13 + 𝐶55)2𝐶44 − (𝐶45 + 𝐶36)2𝐶55

𝐴2 =𝐶33(𝐶11 − 𝜌𝑣2)(𝐶66 − 𝜌𝑣2) + 𝐶44(𝐶11 − 𝜌𝑣2)(𝐶55 − 𝜌𝑣2)

+ 𝐶55(𝐶66 − 𝜌𝑣2)(𝐶55 − 𝜌𝑣2) − (𝐶11 − 𝜌𝑣2)(𝐶45 + 𝐶36)2

− (𝐶66 − 𝜌𝑣2)(𝐶13 + 𝐶55)2 − 2(𝐶55 − 𝜌𝑣2)𝐶16𝐶45

+ 2𝐶16(𝐶45 + 𝐶36)(𝐶13 + 𝐶55) − 𝐶2
16𝐶33

𝐴0 =
[

(𝐶11 − 𝜌𝑣2)(𝐶66 − 𝜌𝑣2) − 𝐶2
16
]

(𝐶55 − 𝜌𝑣2)

(A.1)

Appendix B. Proof of the properties of the intermediate parameters in Section 3.1

Property 1 is trivial. One just needs to check Eq. (11) for calculating 𝑉𝑟, 𝑊𝑟 and Eq. (15) for calculating 𝛽1𝑟, 𝛽2𝑟, 𝛽3𝑟, meanwhile
keep in mind that all the algebraic manipulations in Eqs. (11) and (15) only involving in real numbers if 𝛼𝑟 is a real number.

For the Property 2, set 𝛼𝑟 = i𝑎𝑟, here 𝑎𝑟 is a real number, and substitute it into Eq. (11) to make the following derivations.

𝑉𝑟 =
𝐾11(i𝑎𝑟)𝐾23(i𝑎𝑟) −𝐾12(i𝑎𝑟)𝐾13(i𝑎𝑟)
𝐾13(i𝑎𝑟)𝐾22(i𝑎𝑟) −𝐾12(i𝑎𝑟)𝐾23(i𝑎𝑟)

=
(𝐶11 − 𝜌𝑣2 − 𝐶55𝑎2𝑟 )(𝐶36 + 𝐶45)i𝑎𝑟 − (𝐶16 − 𝐶45𝑎2𝑟 )(𝐶13 + 𝐶55)i𝑎𝑟
(𝐶13 + 𝐶55)i𝑎𝑟(𝐶66 − 𝜌𝑣2 − 𝐶44𝑎2𝑟 ) − (𝐶16 − 𝐶45𝑎2𝑟 )(𝐶36 + 𝐶45)i𝑎𝑟

=
(𝐶11 − 𝜌𝑣2 − 𝐶55𝑎2𝑟 )(𝐶36 + 𝐶45) − (𝐶16 − 𝐶45𝑎2𝑟 )(𝐶13 + 𝐶55)
(𝐶13 + 𝐶55)(𝐶66 − 𝜌𝑣2 − 𝐶44𝑎2𝑟 ) − (𝐶16 − 𝐶45𝑎2𝑟 )(𝐶36 + 𝐶45)

⇒ a real number

𝑊𝑟 =
𝐾11(i𝑎𝑟)𝐾23(i𝑎𝑟) −𝐾12(i𝑎𝑟)𝐾13(i𝑎𝑟)
𝐾12(i𝑎𝑟)𝐾33(i𝑎𝑟) −𝐾13(i𝑎𝑟)𝐾23(i𝑎𝑟)

=
(𝐶11 − 𝜌𝑣2 − 𝐶55𝑎2𝑟 )(𝐶36 + 𝐶45)i𝑎𝑟 − (𝐶16 − 𝐶45𝑎2𝑟 )(𝐶13 + 𝐶55)i𝑎𝑟
(𝐶16 − 𝐶45𝑎2𝑟 )(𝐶55 − 𝜌𝑣2 − 𝐶33𝑎2𝑟 ) − (𝐶13 + 𝐶55)i𝑎𝑟(𝐶36 + 𝐶45)i𝑎𝑟

= i
(𝐶11 − 𝜌𝑣2 − 𝐶55𝑎2𝑟 )(𝐶36 + 𝐶45)𝑎𝑟 − (𝐶16 − 𝐶45𝑎2𝑟 )(𝐶13 + 𝐶55)𝑎𝑟
(𝐶16 − 𝐶45𝑎2𝑟 )(𝐶55 − 𝜌𝑣2 − 𝐶33𝑎2𝑟 ) + (𝐶13 + 𝐶55)(𝐶36 + 𝐶45)𝑎2𝑟

⇒ a purely imaginary number
In this case, set 𝑊𝑟 = i𝑤𝑟, here 𝑤𝑟 is a real number, but keep 𝑉𝑟 unchanged because it is already a real number. Substitute i𝑎𝑟,

𝑉𝑟, i𝑤𝑟 into Eq. (15) to make further derivations.

𝛽1𝑟 = 𝐶13 + 𝐶36𝑉𝑟 + 𝐶33(i𝑎𝑟)(i𝑤𝑟) = 𝐶13 + 𝐶36𝑉𝑟 − 𝐶33𝑎𝑟𝑤𝑟 ⇒ a real number
𝛽2𝑟 = 𝐶45(i𝑎𝑟) + 𝐶44(i𝑎𝑟)𝑉𝑟 + 𝐶45(i𝑤𝑟) = i(𝐶45𝑎𝑟 + 𝐶44𝑎𝑟𝑉𝑟 + 𝐶45𝑤𝑟) ⇒ an imag. number
𝛽3𝑟 = 𝐶55(i𝑎𝑟) + 𝐶45(i𝑎𝑟)𝑉𝑟 + 𝐶55(i𝑤𝑟) = i(𝐶55𝑎𝑟 + 𝐶45𝑎𝑟𝑉𝑟 + 𝐶55𝑤𝑟) ⇒ an imag. number

For the Property 3, according to the Property 1 and 2, no matter what 𝛼𝑟 being a real or purely imaginary number, 𝑉𝑟, 𝛽1𝑟 are
always real numbers for 𝑟 = 1, 3, 5. Thus, 𝐵5 defined in Eq. (25) is always a purely imaginary number because of

𝐵5 = 8i
[

𝑉1(𝛽15 − 𝛽13) + 𝑉3(𝛽11 − 𝛽15) + 𝑉5(𝛽13 − 𝛽11)
]

= i𝑃5 ⇒ an imag. number

where, 𝑃5 is definitely a real number.

Appendix C. Dichotomy property of the evanescent waves propagating in a single-layered monoclinic plate

When it comes to evanescent waves, the wavenumber becomes purely imaginary 𝜉 = i𝜁 wherein 𝜁 is a real number. Note
that wavenumber 𝜉 does not relate to the intermediate parameters that only depend on phase velocity 𝑣. Thus, studying the
dichotomy property of the evanescent waves, under the condition 𝛥 ≤ 0, can directly start from Eqs. (28)(30)(32)(34) which are
the explicit expressions showing the dichotomy properties of the propagating waves for the four cases. Substitution of 𝜉 = i𝜁 into
Eqs. (28)(30)(32)(34) and upon simplification via the identical relations sinh(i𝑥) = i sin(𝑥) and cosh(i𝑥) = cos(𝑥), the dichotomy
property of the evanescent waves for the four cases are concluded as follows.

For case 1, all 𝛼1, 𝛼3, 𝛼5 are real numbers.

𝑎(𝑣, i𝜁 ) = − [𝐵1 sinh(𝜁𝛼1ℎ) cosh(𝜁𝛼3ℎ) cosh(𝜁𝛼5ℎ) + 𝐵2 cosh(𝜁𝛼1ℎ) sinh(𝜁𝛼3ℎ) cosh(𝜁𝛼5ℎ)

+ 𝐵3 cosh(𝜁𝛼1ℎ) cosh(𝜁𝛼3ℎ) sinh(𝜁𝛼5ℎ)]𝑃5 = 𝑅
𝑎 (𝑣, 𝜁) ⇒ 𝐼

𝑎 (𝑣, 𝜁) ≡ 0
(C.1)



For case 2, only 𝛼1 is a purely imaginary number.

𝑎(𝑣, i𝜁 ) = − i[𝐵1 sin(𝜁𝑎1ℎ) cosh(𝜁𝛼3ℎ) cosh(𝜁𝛼5ℎ) + 𝑃2 cos(𝜁𝑎1ℎ) sinh(𝜁𝛼3ℎ) cosh(𝜁𝛼5ℎ)

+ 𝑃3 cos(𝜁𝑎1ℎ) cosh(𝜁𝛼3ℎ) sinh(𝜁𝛼5ℎ)]𝑃5 = i𝐼
𝑎 (𝑣, 𝜁) ⇒ 𝑅

𝑎 (𝑣, 𝜁) ≡ 0
(C.2)

For case 3, only 𝛼1, 𝛼3 are purely imaginary numbers.

𝑎(𝑣, i𝜁 ) =[𝑃1 sin(𝜁𝑎1ℎ) cos(𝜁𝑎3ℎ) cosh(𝜁𝛼5ℎ) + 𝑃2 cos(𝜁𝑎1ℎ) sin(𝜁𝑎3ℎ) cosh(𝜁𝛼5ℎ)

− 𝐵3 cos(𝜁𝑎1ℎ) cos(𝜁𝑎3ℎ) sinh(𝜁𝛼5ℎ)]𝑃5 = 𝑅
𝑎 (𝑣, 𝜁) ⇒ 𝐼

𝑎 (𝑣, 𝜁) ≡ 0
(C.3)

For case 4, all 𝛼1, 𝛼3, 𝛼5 are purely imaginary numbers.

𝑎(𝑣, i𝜁 ) = − i[𝐵1 sin(𝜁𝑎1ℎ) cos(𝜁𝑎3ℎ) cos(𝜁𝑎5ℎ) + 𝐵2 cos(𝜁𝑎1ℎ) sin(𝜁𝑎3ℎ) cos(𝜁𝑎5ℎ)

+ 𝐵3 cos(𝜁𝑎1ℎ) cos(𝜁𝑎3ℎ) sin(𝜁𝑎5ℎ)]𝑃5 = i𝐼
𝑎 (𝑣, 𝜁) ⇒ 𝑅

𝑎 (𝑣, 𝜁) ≡ 0
(C.4)

Appendix D. The material properties used for the numerical study

For the single-layered monoclinic plate, its material properties are cited from [20] and listed as follows for convenience:

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

102.6 24.1 6.3 0 0 40
18.7 6.4 0 0 10

13.3 0 0 −0.1
3.8 0.9 0

sym 5.3 0
23.6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

GPa (D.1)

The mass density is 𝜌 = 1500 kg∕m3, the plate thickness is 𝑑 = 1mm.
For the [0]50 orthotropic laminate, its material properties are cited from [20] and listed as follows for convenience:

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

70 23.9 6.2 0 0 0
33 6.8 0 0 0

14.7 0 0 0
4.2 0 0

sym 4.7 0
21.9

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

GPa (D.2)

The mass density is 𝜌 = 1500 kg∕m3, the plate total thickness is 𝑑 = 1mm.
For the single-layered unidirectional composite plate used to study the instability of TMM, its material properties are cited

from [27] and listed as follows for convenience:

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

143.8 6.2 6.2 0 0 0
13.3 6.5 0 0 0

13.3 0 0 0
3.6 0 0

sym 5.7 0
5.7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

GPa (D.3)

The mass density is 𝜌 = 1560 kg∕m3, the plate thickness is 𝑑 = 1mm.
For the single-layered triclinic plate, its material properties are cited from [39] and listed as follows for convenience:

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

185.91 93.41 136.24 14.5 8.14 8.21
207.87 109.06 −23.18 16.57 −16.15

167.7 8.68 −24.72 11.28
59.47 5.84 16.57

sym 100.23 14.5
35.11

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

GPa (D.4)

The mass density is 𝜌 = 8938.4 kg∕m3, the plate thickness is 𝑑 = 2mm.
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