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Claudio Albanese∗ Cyril Bénézet† Stéphane Crépey‡

December 20, 2023

Abstract

The dynamic hedging theory only makes sense in the setup of one given model,
whereas the practice of dynamic hedging is just the opposite, with models fleeing
after the data through daily recalibration. In this paper we revisit Burnett (2021)
& Burnett and Williams (2021)’s notion of hedging valuation adjustment (HVA),
originally intended to deal with dynamic hedging frictions, in the direction of model
risk. We formalize and quantify Darwinian model risk as introduced in Albanese,
Crépey, and Iabichino (2021), in which traders select models producing short to
medium term gains at the cost of large but distant losses. The corresponding
HVA can be seen as the bridge between a global fair valuation model and the
local models used by the different desks of the bank. Importantly, model risk and
dynamic hedging frictions indeed deserve a reserve, but a risk-adjusted one, so
not only an HVA, but also a contribution to the KVA of the bank. The orders
of magnitude of the effects involved suggest that bad models should not so much
be managed via reserves, as excluded altogether. Model risk on CVA and FVA
metrics is also considered.

Keywords: pricing models, model risk, calibration, market risk, counterparty credit
risk, transaction costs, cross valuation adjustments (XVAs).
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1 Introduction

The 2008 global financial crisis triggered a shift from trade-specific pricing to netting-
set CVA analytics. For tractability reasons, the market models used by banks for their
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CVA analytics are simpler than the ones that they use for individual deals. Given this
coexistence of models, it is no surprise if FRTB emphasized the issue of model risk.

In the context of structured products, Albanese, Crépey, and Iabichino (2021) in-
troduced the notion of Darwinian model risk, whereby the trader of a bank prefers to a
reference fair valuation model an alternative pricing model, which renders a trade more
competitive (more attractive for clients) in valuation terms. The trader thus closes the
deal at some valuation loss, but the latter is more than compensated by gains on the
hedging side of the position. However these overall positive gains on the product and
its hedge are only a short to medium term view. In the long run, large losses are
incurred by the bank when market conditions reveal the unsoundness of the trader’s
pricing and hedging model.

Under current market practice endorsed for instance in European Parliament (2016,
L 21/54, point (2)), model risk is accounted for by setting aside as a reserve the
difference between (buying) prices in bad models and prices in good models. While
this indeed corresponds to the first layer of defence against model risk as derived in this
paper, we further argue that this is not enough, as long as hedges are still computed
using the bad models. We propose to revise model risk reserves by adding an add-
on sensitive to hedge ratios. Toward this aim, we encompass the Darwinian model
risk of Albanese, Crépey, and Iabichino (2021) in a cost-of-capital XVA framework,
proposing a reserve for model risk and dynamic hedging frictions in two parts: an
HVA component, encapsulating Burnett (2021) & Burnett and Williams (2021) within
a broader model risk perspective; this HVA can be seen as the bridge between a global
fair valuation model and the local models used by the different desks of the bank,
restoring the correct prices that should have been used by traders in the first place.
Then the reserve is risk-adjusted, via a KVA component accounting for the erroneous
hedges.

1.1 Related Literature

We refer to Detering and Packham (2016) and the references therein, in particular
(Karoui, Jeanblanc-picqué, and Shreve, 1998; Cont, 2006; Elices and Giménez, 2013),
for a discussion about model risk and the associated regulatory guidelines until 2014.
Other related references include Barrieu and Scandolo (2015), who “introduce three
quantitative measures of model risk when choosing a particular reference model within
a given class”, or Farkas, Fringuellotti, and Tunaru (2020), who “propose a general
method to account for model risk in capital requirements calculus related to market
risk”. Model uncertainty is considered at the level of individual deals by Bartl, Drapeau,
Obloj, and Wiesel (2021), who consider uncertainty in a Wasserstein ball around a
reference probability measure. While the ensuing price is robust, the associated hedge
is necessarily imperfect, and capital implications are not considered. To address the
model risk and uncertainty quantification issues, in the context of financial derivatives,
we prefer to worst-case approaches the HVA take of this paper, risk-adjusted and
eventually made Bayesian-robust the way explained in Remark 6.1. We think that
this is more scalable and does better justice to considerations of model realism than
robust approaches that are typically over-conservative, hence unusable in practice for
competitiveness reasons, let aside major computational issues at large scale.

2



The model risk specific to XVA computations is also considered in the literature.
Bichuch, Capponi, and Sturm (2020) and Silotto, Scaringi, and Bianchetti (2021) con-
sider parameters uncertainty. Singh and Zhang (2019b,a) consider uncertainty around a
reference probability measure in the Wasserstein distance, in a discrete time setting and
for a finitely supported reference measure. Regarding our baseline cost-of-capital XVA
approach, Bichuch, Capponi, and Sturm (2020) write in their introduction: “Despite
the merits of this approach, in particular not having to rely on replication arguments
for the value adjustments, it makes two critical assumptions. First, it assumes that
the counterparty-free payoffs of the contract are perfectly replicated, rather than de-
signing the replication strategy from first principles (and ignoring potential interaction
of risk factors). Second, and most importantly, they assume that the historical and
risk-neutral probability measure coincide. This, of course, exposes the calculation of
the valuation adjustments to a substantial amount of model risk, which can be ac-
counted for by the techniques proposed in this paper.” The present paper provides
an answer to their first point, by reintroducing unhedged market risk (via Darwinian
model risk) into the XVA computations (as for their second point, we do not assume
that the historical and risk-neutral probability measure coincide, cf. Definition 1.1).

1.2 Outline of the Paper and Standing Notation

Section 2 introduces Darwinian model risk at the level of individual deals. Section 3
casts the ensuing hedging valuation adjustment (HVA). Overhauling Burnett (2021)
in a setup also accounting for model risk, Section 4 deals with the HVA for dynamic
hedging frictions at the hedging set level. Section 5 addresses the related contributions
to the KVA of the bank. So far this was all restricted to market risk. Section 6 retrieves
the CVA and FVA components of the HVA, thus incorporating the HVA into the global
valuation framework of Albanese et al. (2021) & Crépey (2022), and concludes.

All processes are adapted to the filtration F = (Ft) of a reference stochastic basis.
The risk-free asset is chosen as numéraire. We denote by T , a bound on the final
maturity of the bank portfolio; δϑ, a Dirac measure at a stopping time ϑ; Xϑ, a
process X stopped at time ϑ; X(0) = X − X0, for any process X; N , the standard
normal cumulative distribution function. When no ambiguity arises we denote the
time process by t, as in N − λt to denote a compensated Poisson process of intensity
λ.

Fair Valuation In the incomplete market setup intrinsic to the XVA issue (Albanese
et al., 2021, Section 3.5), our reference probability measure R is the hybrid of pricing
and physical probability measures advocated in Albanese et al. (2021, Remark 2.3),
with related time-t expectation, value-at-risk, and expected shortfall denoted by Et,
VaRt and ESt (and for t = 0, we drop all indices t):

Definition 1.1. Let there be given a σ-field A, on which the physical probability
measure P is defined, and a financial sub-σ-field B of A, on which a risk-neutral measure
Q, equivalent to the restriction to B of the physical probability measure, is defined.
Our probability measure R in the paper is the uniquely defined probability measure on
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A, provided by Artzner, Eisele, and Schmidt (2022, Proposition 4.1.), such that (i) R
coincides with Q on B and (ii) R and P coincide conditionally on B.

Remark 1.1. Until Section 6, the bank and its clients are assumed to be default-free.
The realistic extension to defaultable entities is provided in Section 6.1. The probability
measure with respect to which Et, VaRt and ESt are defined then becomes the bank
survival probability measure associated with R in the sense of Albanese et al. (2021,
Section 4); see also Crépey (2022, Section B) for a practically equivalent reduction of
filtration viewpoint.

All (cumulative) cash flows are finite variation processes (starting from 0) and all
prices are special semimartingales in a càdlàg version. We use the calligraphic style (e.g.
Y) for cash flows and the italic style (e.g. Y ) for prices, in uppercase versus lowercase
styles to distinguish between fair versus trader valuations, e.g. Q versus q.

Definition 1.2. Given an optional, integrable process Y stopped at T , its value process
Y = va(Y) is

Yt = Et(YT − Yt), t ≤ T , (1.1)

and Y vanishes on [T ,+∞).

In particular, (Y + Y ) is a martingale on [0, T ]. Fair valuation comes in contrast with
the local models that are effectively used by the traders of the bank. The existence
and availability of a fair valuation setup is an idealization and simplification, but it is a
legitimate and useful one in the context of model risk, which as we shall see is a lot about
alpha leakages, i.e. drifts that only cumulate into sizeable effects over months or years.
The usual risk metrics, whether it is value-at-risk, expected shortfall or stressed value-
at-risk, do not detect alpha leakages because they focus on higher moments of return
distributions and on short-time horizons (such as one day). As already experienced in
the quantitative reverse stress test setup of Albanese, Crépey, and Iabichino (2023),
the only way to detect Darwinian model risk is by simulating the hedging behavior of
a bad model within a good model.

2 Darwinian Model Risk

In this section we describe our model risk setup, dubbed Darwinian model risk, for
each deal of the bank with a client.

2.1 Client Deals Cash Flows

Notation 2.1. In reference to a generic deal “·” of the bank with a client, we define:

• T ·, the maturity of the deal;

• Q·, the cumulative cash flow process contractually promised by the counterparty
to the bank;

• 0 < τ ·e ≤ T ·, a deactivation time (possibly < T · for products with knock-out
features).
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Remark 2.1. We could also consider American or game claims with exercise times
possibly < T · under the control of the bank and/or client, in which case τ ·e should be
understood as the corresponding exercise time. Callability by the bank is actually the
source of Darwinian model risk in Albanese, Crépey, and Iabichino (2021). Further
adjustments are then required to deal with possibly suboptimal stopping by the bank
(suboptimal stopping by the client can be conservatively ignored in the modeling).
These adjustments are the topic of Benezet, Crépey, and Essaket (2022). In the present
paper we assume no American early exercise features.

In the defaultable extension of the theory provided by Section 6.1, τ ·e should be
replaced everywhere by τ ·d∧ τ ·e, where τ ·d denotes a positive default time of the counter-
party of the deal (the default of the bank itself is absorbed in the switch to its survival
measure mentioned in Remark 1.1).

The following example will be continued throughout the article in order to help
understand the abstract setting and quantify various effects numerically.

Example 2.2. We consider a financial derivative on a stock S, dubbed vulnerable put,
whereby the bank is long the payoff (K − ST )+1{ST>0} at some maturity T , for some
strike K (with T,K, S ≥ 0). In Notation 2.1, we have here

T · = T,Q·t = (K − ST )+1{ST>0}1[T,+∞), τ
·
e = T.

2.2 Client Deals Valuation

Instead of fair valuation, we assume that the trader in charge of the deal “·” within
the bank uses, at least up to some stopping time, a custom or “local” model. More
precisely:

Assumption 2.2. 1. For pricing, hedging and accounting purposes, before a posi-
tive stopping time τ ·s coined model switch time, the trader of the deal makes use
of a local pricing model, giving rise to a price process q· for the deal;

2. If τ ·s < T ·, from time τ ·s onwards, the bank uses the fair valuation Q· = va(Q·) of
the deal for pricing, hedging and accounting purposes.

Here “local” stands in contrast with the assumed global fair valuation setup, see after
Definition 1.2. Note that Assumption 2.2 is in line with the qualitative features of
Darwinian model risk introduced in Section 1. The chief goal of this work is to quantify
the latter in a suitable XVA framework.

Example 2.3. In our vulnerable put Example 2.2, with dividend yields on S and interest
rates in the economy set to 0, the role of the fair valuation model will be played by the
jump-to-ruin (jr) model

dSt = λStdt+ σStdWt − St−dNt = σStdWt − St−dMt, t ≥ 0, (2.1)

for some standard Brownian motion W , a constant volatility parameter σ > 0, and
M = N − λt, where N is a Poisson process of intensity λ > 0. So the stock S jumps
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to 0 at the first jump time θ of the driving Poisson process N . Hence, denoting by
Jθt = 1{t<θ} the indicator process of θ,

Q·t = va(Q·)t = Qjrt := Et
[
(K − ST )+JθT

]
1{t<T}, t ≥ 0. (2.2)

The role of the local pricing model will be played by a Black-Scholes (bs) model
with volatility parameter Σ continuously recalibrated to the jump-to-ruin price

P jrt := Et
[
(K − ST )+

]
1{t<T}, t ≥ 0 (2.3)

of the “vanilla component” of the vulnerable put, with payoff (K − ST )+ at time T .
We also define τ ·s := θ and q·t = P jrt . Indeed, an application of the formula (A.8) for
S = 0 and −d± = +∞ shows that P jr = K on Jθ, θ ∧ T J. As detailed in Remark A.1,
at time θ (if < T ), the implied volatility of the vanilla put ceases to be well-defined,
hence the local pricing model cannot be used anymore. Before θ, in accordance with
Assumption 2.2, the trader uses his local pricing model. But the vulnerability of the
put is immaterial in this model, hence the bs price of the vulnerable put coincides with
the vanilla put price P jrt .

Remark 2.4. So, in our example, the trader is short an extreme (default) event but
pretends he does not see it, only hedging market risk. Hence the hedged position
is still short the default event, which can be seen as an extreme case of “gamma
negative” type position. This example is devised for the sake of analytical tractabil-
ity. Yet the Darwinian model risk mechanism at hand here is essentially the same
as the one affecting huge amounts of structured derivative products, including range
accruals in the fixed-income world, autocallables and cliquets on equities, or power-
reversal dual currency options and target redemption forwards on foreign-exchange: cf.
https://www.risk.net/derivatives/6556166/remembering-the-range-accrual-bloodbath (11
April 2019, last accessed on 30 November 2023). Risk.net thus reported that Q4 of
2019, a $70bn notional of range accrual had to be unwound at very large losses by the
industry.

2.3 Client Deals Hedges

Each deal “·” can be hedged statically and/or dynamically. Accordingly (cf. Notation
2.1):

Notation 2.3. Given the client deal “·”, we define:

• P ·, the cumulative cash flow process paid by the bank on a static hedge component
of the deal;

• P · = va(P ·), the fair valuation of this static hedge;

• p·, the price process of the static hedge in the local pricing model of the deal
(before time τ ·s);

• h·, a dynamic hedging loss of the bank related to the deal, ignoring transaction
costs.
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In particular, a natural assumption regarding h· is:

Assumption 2.4. h· is a zero-valued martingale stopped at τ ·e, i.e. h· = (h·)τ
·
e and

va(h·) = 0.

Remark 2.5. We do not assume a frictionless market. But numerous deals are hedged
together inside “hedging sets” by the bank. Hence market frictions such as transaction
costs can only be addressed at the hedging set level, which will be the topic of Section
4.

The fair valuation prices Q· and P ·, being value processes of cash flow processes
stopped at maturity T ·, vanish on [T ·,+∞). Likewise:

Assumption 2.5. The processes q· and p· vanish on [T ·,+∞).

We now introduce two reference hedging schemes for the vulnerable put of Example
2.2.

Example 2.6 (Static hedging). The trader uses at time t = 0 the local (bs) pricing
model, in which the vulnerability of the put is immaterial. From the bs model view-
point, shorting the vanilla put is a perfect hedge to the vulnerable put and no dynamic
hedging is required. In Notation 2.3, this corresponds to h· = 0 and

P · = (K − ST )+1[T,+∞),

p· = P · = va(P ·) = P jr as per (2.3).
(2.4)

The definition of p· means that the local pricing model is continuously recalibrated
(before the ruin time θ) to the vanilla put fair valuation P jr, the way explained in
Example 2.3.

Example 2.7 (Delta hedging). The trader delta hedges the vulnerable put with the
stock S and the risk-free asset, in his local bs pricing model and until time θ, and there
is no static hedging. In Notation 2.3, we have

P · = P · = p· = 0 and h·t =

∫ t

0
δsdSs, (2.5)

where δt = δtJ
θ
t is the delta of the vulnerable put computed in the local pricing model

(if t < θ, i.e. as long as the latter can be calibrated). Note that, in this setting, dynamic
hedging friction costs can be considered, namely transaction costs, which will be done
in Section 4.4.

3 HVA for Individual Deals

In this section we consider the hedging valuation adjustment (HVA) triggered by each
individual deal “·” of the bank.

Under Assumptions 2.2-2.4, the deal and its hedge are liquidated at time τ ·e and
there is a model switch at τ ·s. Accordingly, using Notations 2.1 and 2.3 and setting
Js,·t = 1{t<τ ·s}:
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Definition 3.1. The raw pnl of the client originating deal derivative “·” of the bank
is the process

pnl· =
(
Q· + Js,·q· + (1− Js,·)Q·

)τ ·e
(0)
−
(
P · + Js,·p· + (1− Js,·)P ·

)τ ·e
(0)
− h·. (3.1)

This pnl accounts for the switch from local to fair valuation at the model switch time
τ ·s. It is dubbed raw in the sense that it ignores the to-be-defined HVA· liability (as well
as the dynamic hedging transaction costs, which can only be assessed at the hedging
set level).

Remark 3.1. The bank may consider liquidating the deal at τ ·s when earlier than τ ·e.
To render this case, one just needs to replace τ ·e by τ ·e ∧ τ ·s (or τ ·d ∧ τ ·e by τ ·d ∧ τ ·e ∧ τ ·s in
the defaultable extension of Section 6.1) everywhere.

We now define the first HVA layer, namely one HVA per client originating deal and
its (assumed frictionless so far) hedge.

Definition 3.2. For each deal “·”, its frictionless HVA is

HVA· = −va(pnl·). (3.2)

Lemma 3.1. We have

HVA· = va(H·), (3.3)

where

H· := (Q· +Q·)
τ ·e
(0) − (P · + P ·)

τ ·e
(0) − pnl

· (3.4)

=
(
Js,·
(
Q· − q· − (P · − p·)

))τ ·e
(0)

+ h·. (3.5)

Proof. (3.1) and (3.4) yield (3.5). Moreover, by the observation following Definition

1.2, (Q· + Q·)
τ ·e
(0) and (P · + P ·)

τ ·e
(0) are zero-valued martingales. Hence (3.3) proceeds

from (3.2).

Proposition 3.2. We have

HVA· =
(
Js,·
(
P · − p· − (Q· − q·)

))τ ·e −D·,
H· + HVA·(0) = h· −D·(0),

(3.6)

where

D·t = Et
(
1{τ ·e<τ ·s∧T ·}

(
P · − p· − (Q· − q·)

)
τ ·e

)
, t ≥ 0. (3.7)

In particular,

HVA·0 =
(
P · − p· − (Q· − q·)

)
0
− E

(
1{τ ·e<τ ·s∧T ·}

(
P · − p· − (Q· − q·)

)
τ ·e

)
. (3.8)
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Proof. By (3.5) and Assumption 2.4, we have for t ≥ 0:

HVAt = Et
(
Js,·τ ·e

(
P ·τ ·e − p

·
τ ·e
− (Q·τ ·e − q

·
τ ·e

)
))
− Js,·t∧τ ·e

(
P ·t∧τ ·e − p

·
t∧τ ·e − (Q·t∧τ ·e − q

·
t∧τ ·e)

)
,

where Js,·τ ·e = 1{τ ·e<τ ·s} can be replaced by 1{τ ·e<τ ·s∧T ·} due to Assumption 2.5. This
proves the first line in (3.6), which in turn implies that

(HVA· +D·)(0) =
(
Js,·
(
P · − p· − (Q· − q·)

))τ ·e
(0)

= H· − h·,

by (3.5).

Remark 3.2. This HVA· corresponds to the current market practice for handling model
risk, in the form of a reserve put aside at initial time. In actual practice, rather than
paying q·0 to the client (as implied by (3.1)) while the client would provide HVA·0 as
reserve capital to the bank, the trader pays Q·0 to the client and puts by himself HVA·0
in the reserve capital account, which is equivalent (at least if D·0 = 0 and P · = p·, as
then HVA·0 = q·0 −Q·0).

As will now be illustrated in our vulnerable put example (cf. Remark 2.4), in line
with the qualitative features of Darwinian model risk drawn in Section 1, the net
(pnl· − HVA·(0)) martingale (by Definition 1.2) is typically of the “gamma negative”
type, i.e. the trader makes systematic profits in the short-to-medium term followed by
a large loss at τ ·s. This is at least the case unless risk-adjusted model risk provisions,
as per Section 5, are used.

3.1 HVA for the Vulnerable Put Under the Static Hedging Scheme

We first consider the static hedging scheme of Example 2.6. Applying (3.1)-(3.6) with
h· = 0 there (as no dynamic hedge is involved), one computes

pnl· = −1{θ≤T}K1[T,+∞) + (1− Jθ)(Qjr − P jr)

= −1{θ≤T}K1[T,+∞) − (1− Jθ)K1[0,T )

= −1{θ≤T}K1[T,+∞)1[θ,+∞) − (1− Jθ)K1[0,T )1{θ≤T} = −(1− Jθ)K1{θ≤T}
H· = Jθ

(
Qjr − P jr

)
−
(
Qjr − P jr

)
0

= −JθK(1− e−λ(T−t)) +K(1− e−λT )

HVA· = Jθ
(
P jr −Qjr

)
= JθK(1− e−λ(T−t)), HVA·0 = K(1− e−λT ).

(3.9)

The raw pnl process in (3.9) and the corresponding pnl net of HVA·(0) satisfy (starting

at 0)

dpnl·t = −K1{t≤T}δθ(dt) = 1{t≤θ∧T}
(
− λKdt− (KdNt − λKdt)

)
dpnl·t − dHVA·t = K1{t≤θ∧T}e

−λ(T−t)(λdt− δθ(dt)
)
.

(3.10)

Consistently with the qualitative Darwinian model risk pattern featured in Section
1, the seemingly positive drift 1{t≤θ∧T}λKe

−λ(T−t)dt in the second line is only the

compensator of the loss −1{t≤θ∧T}Ke−λ(T−t)dNt that hits the bank in case the jump-
to-ruin event materializes.
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Numerical Application For λ = 1%, T = 10y and K = 1, (3.9) yields

HVA0 = K(1− e−0.1) ≈ 0.095. (3.11)

3.2 HVA for the Vulnerable Put Under the Delta Hedging Scheme

We now consider the dynamic delta hedging scheme of Example 2.7. Applying (3.1)-
(3.6) with P · = p· = 0 there (as there is no static hedge involved), we compute with
h· =

∫ t
0 δsdSs:

pnl· = 1{θ·>T}(K − ST )+1[T,+∞) + JθP jr − P jr
0 − h

·,

H· = Jθ(Qjr − P jr)− (Qjr − P jr)0 + h·

= −JθK(1− e−λ(T−t))1[0,T ) +K(1− e−λT ) + h·,

HVA· = Jθ(P jr −Qjr) = JθK(1− e−λ(T−t)), HVA·0 = K(1− e−λT ).

(3.12)

The raw pnl· in (3.12), satisfies, for t < θ,

dpnl·t = δT (dt)(K − ST )+ + dP jrt − δtdSt,

whereas at θ (if ≤ T ) the bank incurs a loss

pnl·θ − pnl·θ− = −P jrθ− + h·θ− − h·θ = −P bsθ− + ∆bs
θ−(Sθ− − Sθ)

= −P bsθ− + ∆bs
θ−Sθ− = −KN (−d−(θ, Sθ−; 0,Σθ−)) < 0

(3.13)

(cf. the Black-Scholes formula for puts and (A.2)), consistent again with the blow-up
pattern of Darwinian model risk featured in Section 1.

Numerical Application In the above example, while the static hedge is perfect
before θ and the continuous-time delta hedge is not (due to the continuous recalibration
of the local pricing model), one observes a smaller loss at θ < T in the delta hedging
case:

P jrθ− −∆bs
θ−Sθ− = KN (−d−(θ, Sθ−; 0,Σθ−)) ≤ K = P bsθ ,

cf. (3.13), (3.10), and the left panel in Figure 4.1.

Remark 3.3. The statically hedged position is delta and vega neutral. Hence our
vulnerable put example yields a case where delta-vega hedging the option actually
increases model risk with respect to delta-hedging it.

4 HVA for Dynamic Hedging Frictions

The above processes h· are meant for standard dynamic hedging cash flows ignoring
nonlinear frictions such as transaction costs. Indeed, as these are nonlinear, they can
only be addressed at the level of each book of contracts or exposures that are hedged
together, or hedging sets “?”. In this section we consider the cost of the dynamic
hedging frictions assessed at each hedging set level.
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Figure 4.1: Vulnerable put example: [left] the red histogram is the density of −pnl·1 +
HVA·1−HVA·0 conditional on model switch occurring before time 1, i.e. on {0 < θ ≤ 1},
for delta hedging (without frictions at this stage). The vertical blue line corresponds to
the deterministic loss −pnl·1 + HVA·1 −HVA·0 = K + HVA·1 −HVA·0 for static hedging,
also conditional on {0 < θ ≤ 1}. The numerical parameters are as above (3.11). Note
that, in both cases, HVA·1 −HVA·0 = 0−K(1− e−λT ) ' −0.095 holds on {0 < θ ≤ 1}.
[right] Monte-Carlo approximation of HVA·0 and HVAf

0 .

Definition 4.1. Let f =
∑

? f
?, the sum of the hedging frictions f? on each hedging

set “?”, and

HVAf = va(f) =
∑
?

HVA? , where HVA? = va(f?). (4.1)

Remark 4.1. From an organizational viewpoint, the computation of the HVA· compo-
nents could be delegated to each related trader (under regulatory control). The HVAf

component(s) calculations would require a dedicated (regulated) HVA desk, as such
computations need a mix of data from the different trading desks of the bank.

Hereafter we derive a specification for the cumulative friction costs f? and for
the ensuing HVA?, by passage to the continuous-time limit starting from a classical
discrete-time specification. This sheds more rigor in the seminal contribution of Burnett
(2021), who derives a PDE for the transaction costs at the limit, while only rebalancing
when the delta of the underlying portfolio is shifted by a fixed and constant threshold
D > 0 (so it seems that Burnett (2021)’s limiting HVA should rather increase at
discrete rebalancing times only, rather than being given by a PDE). Our approach also
allows computing HVA? numerically in a model risk setup accounting for the impact
of recalibration on transaction costs, which is not considered in Burnett (2021).
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4.1 Fair Valuation Setup

In this section we work in the setup of the following fair valuation model stated under
the probability measure R, with the risk-free asset as a numéraire:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

dJt =
L∑
=1

(− Jt−)dνt , λ

t = λ(t,Xt−),

(4.2)

where W is a multivariate Brownian motion and νt is the number of transitions of the
“Markov chain like” component J to the state  on (0, t], with compensated martingale
dνt − λ


tdt of ν. Jumps could also be introduced in X but we refrain from doing so

for notational simplicity. This setup encompasses the jr fair valuation model in our
vulnerable put example. It also includes XVA models, with space for client default
indicator processes in the J components of X , as required in view of our extension of
the setup in Section 6.1.

We assume that the function-coefficients µ, σ, λ are continuous maps such that the
above-model is well-posed, referring to Crépey (2013, Proposition 12.3.7) for a set of
explicit assumptions ensuring it. In particular:

Assumption 4.2. 1. The maps λ, 1 ≤  ≤ L, are bounded by a constant Λ ≥ 0.

2. The map (t, x, ) 7→ (µ, σ)(t, x, ) is Lipschitz in x ∈ Rd, uniformly in (t, ), and
the map (t, ) 7→ (µ, σ)(t, 0, ) is bounded.

Hence (see e.g. Élie (2006, (II.83) page 123)) there exists a constant C1 ≥ 0 such that

E
[
|Xt −Xs|2

] 1
2 ≤ C1(t− s)

1
2 . (4.3)

In addition, for all 1 ≤ l ≤ d,

C l := sup
t∈[0,T ]

E
[
(X l

t)
2
] 1

2
< +∞. (4.4)

4.2 Transaction Costs For Discrete Rebalancing

We assume that a trader values a hedging set “?” as q?t = q?(t,Xt), for some smooth
map q?, and that the trader delta-hedges its position with respect to the d-dimensional
risky asset X, discretely at the times of the uniform grid (ih)0≤i≤n with h = T ?

n for

some n ≥ 1, where T ? ≤ T is the final maturity of this hedging set.

Remark 4.2. More generally, one can consider delta-hedging only with respect to some
components of X. It is actually what we will do in Section 4.4 while delta-hedging in
Black-Scholes with respect to S̃ only in X = (S̃,Σ; Jθ) there (see (A.1) and (4.10)). The
extension is straightforward, as it is (at least for our purpose) equivalent to considering
no transaction costs for those non-delta-hedged assets, i.e. setting the corresponding
diagonal entries of k to 0 below.

12



We work in a setting similar to Kabanov and Safarian (2009, Chapter 1, Section
2), with proportional transaction costs scaled to the rebalancing time by a factor

√
h,

where h is the distance between two rebalancing dates.

Remark 4.3. In their case, scaling proportional transactions costs by hα, with α ∈ (0, 1
2 ],

allows showing, in the Black and Scholes model, that perfect replication of a vanilla
call can be achieved in the limit as the number of rebalancing dates goes to infinity,
by delta-hedging the portfolio’s value computed with a modified volatility. In our case,
scaling the transaction costs by

√
h allows passing to the continuous time limit and

deriving the dynamics of the transaction costs and the PDE for the HVA? with trading
indeed occurring continuously, and not only along a sequence of stopping times as in
Burnett (2021).

Abbreviating ∂xl into ∂l, let at =
(
alt
)

1≤l≤d with alt = ∂lq
?(t,Xt), 0 ≤ t ≤ T ?, 1 ≤

l ≤ d.

Assumption 4.3. The transaction cost to rebalance the hedging portfolio from a =(
al
)

1≤l≤d at time t into a+δa = (al+δal)1≤l≤d at time t+h isX>t+hδa+1
2X
>
t+hk(δa)abs

√
h,

where (δa)abs := (|δal|, 1 ≤ l ≤ d) and k := diag(kl, 1 ≤ l ≤ d) for some constants
kl ≥ 0, 1 ≤ l ≤ d.

The transaction costs are thus proportional to the risky asset prices (measured in
units of the risk-free asset price). In the context of proportional transaction costs,
Assumption 4.3 is classical (Kabanov and Safarian, 2009, page 8).

Remark 4.4. Unless there is no Markov-chain-like component J involved in X , the
replication hedging ratios in setups such as (4.2) also involve finite differences (as
opposed to partial derivatives only in the above): see e.g. Proposition A.4. However
practitioners typically only use partial derivatives as their hedging ratios, motivating
the present framework, which encompasses in particular the use-case of Section 5.5.

The discrete-time hedging valuation adjustment for frictions (HVAh) is then a pro-
cess compensating the bank (on average) for these transaction costs.

Definition 4.4. The HVA for frictions associated to discrete hedging along the time-
grid (thi := ih)0≤i≤n is defined as the (nonnegative) process HVAh such that HVAh

thn
= 0

and, for 0 ≤ i < n,

HVAh
thi

= Ethi
[
fh
thn
− fh

thi

]
= Ethi

[
fh
thi+1
− fh

thi
+ HVAh

thi+1

]
= Ethi

[
ϕh
thi+1

+ HVAh
thi+1

]
, (4.5)

where fh
thi

=
∑i

u=0 ϕ
h
uh, with

ϕh
thi

=

√
h

2
X>
thi

k(δathi
)abs, 0 < i < n, ϕh

0 = ϕh
thn

= 0,

and (δathi
)abs = (|al

thi
− al

thi−1
|, 1 ≤ l ≤ d).

We set HVAh
t := HVAh

b t
h
ch, 0 ≤ t ≤ T

?.
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Remark 4.5. We neglect the transaction costs at time t = 0, given by (assuming d = 1
for simplicity)

√
hk

2X0|a0−a0−| (where a0− is the initial quantity of risky asset possessed

before entering the deal), and at time t = T ? = thn, given by
√

hk
2XT ? |a(n−1)h| (to

liquidate the hedging portfolio).

Note that (4.5) yields a numerical scheme to compute the discrete HVA process itera-
tively, backward in time starting from HVAh

thn
= 0.

4.3 Transaction Costs in the Continuous-Time Rebalancing Limit

The results of this part specify the cumulative friction costs f? and the ensuing HVA?

that arise in the above setup when the rebalancing frequency of the hedge goes to
infinity, i.e. when h→ 0.

Definition 4.5. For all t ∈ [0, T ?], let ϕt := ϕ(t,Xt) with, for all (t, x, ) ∈ [0, T ?] ×
Rd × {1, · · · , L},

ϕ(t, x, ) =
1√
2π
x>k(Γσ)abs(t, x, ), (4.6)

where (Γσ)abs := (|∂x(∂lq
?)σ|, 1 ≤ l ≤ d). Let then f?t =

∫ t
0 ϕsds and

HVA?
t = va(f?)t = Et

[∫ T ?

t
ϕsds

]
. (4.7)

Note that the map HVA? defined by HVA?(t, x, ) := E [HVA?
t | Xt = (x, k)] solves the

PDE

HVA?(T ?, ·) = 0 on R× {1, . . . , L},
(∂t + G)HVA? + ϕ = 0 on [0, T ?)× R× {1, . . . , L},

(4.8)

where we denote, for any smooth map u = u(t, x, ), Gu = Fu +
∑L

=1 (u(·, )− u)λk,

with Fu := ∂tu+ ∂xuµ+ 1
2tr
[
σσ>∂2

x2u
]
, in which ∂x is the row-gradient with respect

to x, ∂2
x2 the Hessian matrix with respect to x and tr the trace operator.

We make the following technical hypotheses on the local valuation map q?:

Assumption 4.6. (i) There exists 0 < α < 1
2 such that, for all 1 ≤ l ≤ d and

1 ≤  ≤ L, the maps (t, x) 7→ ∂lq
?(t, x, ) and (t, x) 7→ (∂x(∂lq

?))σ(t, x, ) are α-Hölder
continuous in t and Lipschitz continuous in x;
(ii) There exists C2 > 0 such that, for any u ∈ {∂lq?, ∂x(∂lq

?)σ | 1 ≤ l ≤ d},

sup
(t,x,,j)

|u(t, x, )− u(t, x, j)| ≤ C2 <∞;

(iii) supt∈[0,T ?] E
[
|(∂t + F)(∂lq

?)(t,Xt)|2
] 1

2 ≤ C2 <∞, 1 ≤ l ≤ d.

Theorem 4.1. Under Assumptions 4.2, 4.3 and 4.6, we have (almost surely):

HVAh
t −−−→

h→0
HVA?

t , 0 ≤ t ≤ T ?.
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Proof. see Section B.
Theorem 4.1 is interesting from a theoretical viewpoint and important in practice

to guarantee the meaningfulness (stability for small h) of the numbers HVAh
t to be

computed numerically based on (4.5). As we now illustrate, (4.5) (hence, Section 4.2)
is equally important as Theorem 4.1 (or Section 4.3, i.e. this part), as (4.7) would
be virtually impossible to implement without the connection to HVAh provided by
the underlying discrete setup: transaction costs with model risk are a case where the
approximation to a limiting problem in continuous time is problematic unless one knows
where the limiting problem is coming from in the first (discrete) place.

4.4 HVAf for the Vulnerable Put Under the Delta Hedging Scheme

Continuing in the setup of Section 3.2, regarding frictions, we assume (unrealistically
but with some genericity as explained in Remark 2.4) the bank portfolio reduced to the
vulnerable put and its dynamic delta-hedge in S (with T ? = T in particular). So, before
θ (which is enough as nothing happens beyond θ in this model), we have X = (S̃,Σ; Jθ),
where S̃ is the auxiliary Black-Scholes model (A.1), and q? = P bs(t, S; Σ), the price
of the vanilla put with strike K and maturity T in the Black and Scholes model with
volatility Σ, with associated hedge ratio δbst = ∂SP

bs(t, St; Σt).

Corollary 4.2. Assume that trading is permitted only at the discrete dates thi := ih, 1 ≤
i ≤ n, with h = T

n (for any n ≥ 1). Assume further that implementing the delta hedging
strategy triggers a cumulative cost at time thi induced by proportional transaction costs,
hence a discrete-time hedging valuation adjustment for frictions, respectively given by,
for 0 ≤ i ≤ n,

fh
thi

:=

i∑
j=1

k

√
h

2
Sthj

∣∣∣∂SP bs(thj , Sthj
; Σthj

)− ∂SP bs(thj−1, Sthj−1
; Σthj−1

)
∣∣∣ ,

HVAh
thi

:= Ethi
[
fh
thn
− fh

thi

]
.

(4.9)

Then, as h goes to 0, the discrete HVA for frictions HVAh
b t
h
ch converges almost surely

to HVAf = va(f) on [0, T ], for the process f such that

dft = Jθt
k√
2π
St

∣∣∣σΓbst + ςt∂
2
Σ,SP

bs(t, St; Σt)
∣∣∣ dt, (4.10)

where Γbst = ∂2
S2P

bs(t, St; Σt) ≥ 0, while ς is the diffusion coefficient of the implied
volatility process Σ.

Proof. By application of Theorem 4.1 (cf. (4.6)) to X = (S̃,Σ; Jθ) and k1 = k ≥ 0,
k2 = 0 (as the position is not ”delta-hedged” with respect to Σ in the jr model, see
Remark 4.2).

Interestingly, the cost of delta-hedging in the bs model computed within the jr model
also depends on the derivative of the delta with respect to the implicit volatility, or
implied “vanna”, ∂2

Σ,SP
bs. This comes from the continuous recalibration of the trader’s
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model to the vanilla put price in the fair valuation model, i.e. from the simulation,
within the fair valuation model, of the behaviour of the trader using its local model
(see after Definition 1.2). Because of this impact of recalibration into transaction costs,
(4.10), i.e. our model-risky version of Burnett (2021) & Burnett and Williams (2021),
would be quite demanding to implement directly, whereas its discrete counterpart (4.9)
is rather straightforward. It is therefore (4.9) that should be used in practice, the
consistency between the two being insured by Theorem 4.1 and Corollary 4.2. Again,
the difficulty to implement (4.10) numerically comes from the fact that the trader delta-
hedges with respect to its local model. If delta-hedge was performed with respect to
the fair valuation model, then it would be equally easy to use (4.10) or (4.9). These
comments are applicable to any estimation of the transaction costs accounting for the
recalibration shift of (local) model parameters.

Numerical Application The numerical parameters are the same as above (3.11),
along with S0 = K = 1 and σ = 0.3, and with k = 0.1 in (4.10). We perform

Monte-Carlo simulations with M = 50, 000 paths to estimate HVAh
0 = E

[
fh
thn

]
as per

(4.5)-(4.9), for a monthly time-discretization, i.e. n = 120 and h = T
n = 1

12 . As a sanity
check, we also price by Monte Carlo HVA·0 already known from (3.12) and (3.11). We
can see from the right panel in Figure 4.1, where the horizontal red line corresponds to
HVA·0 = 1− e−0.1, that HVA·0 dominates over HVAf

0 .

5 KVA Adjustment for Model Risk and Frictions

After compensation by the HVA, the price is right (cf. Remark 3.2), but the hedge is
still wrong (as it is still the one corresponding to the wrong price). Under a cost-of-
capital valuation approach, the reserve for model risk and dynamic hedging frictions
would not reduce to HVA terms. This reserve should also be risk-adjusted.

5.1 Trading Loss Process of the Bank

Let procmtm :=
∑
· proc

·, for each process proc = pnl, h,H,HVA, D. Accounting for
raw pnls, hedging frictions, and HVA compensators for all, we obtain the overall trading
loss of the bank

L = −pnlmtm + HVAmtm
(0) + f + HVAf

(0). (5.1)

Let also

M =
∑
·

(
(Q·)τ

·
e

(0) − (P ·)τ
·
e

(0)

)
, H = Hmtm + f,

MtM =
∑
·

(
(Q·)

τ ·e
(0) − (P ·)

τ ·e
(0)

)
, HVA = HVAmtm + HVAf .

(5.2)

Lemma 5.1. We have

L = −(M+ MtM(0)) +H+ HVA(0), (5.3)
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and

H+ HVA(0) = hmtm −Dmtm
(0) + f + HVAf

(0),

L = −
∑
·

(
(Q· +Q·)

τ ·e
(0) − (P · + P ·)

τ ·e
(0) − h

· +D·(0)

)
+ f + HVAf

(0).
(5.4)

Proof. (5.3) follows from (5.2) and the first line in (3.4). The first line in (5.4)
proceeds from (5.2) by the last line in (3.6). Using in (5.3) this first line in (5.4) yields

L = −(M+ MtM(0)) + hmtm −Dmtm
(0) + f + HVAf

(0),

where by (5.2)

−(M+ MtM(0)) + hmtm −Dmtm
(0) = −

∑
·

(
(Q· +Q·)

τ ·e
(0) − (P · + P ·)

τ ·e
(0) − h

· +D·(0)

)
.

This yields the second line in (5.4).

The reserves for model risk and dynamic hedging frictions will now be risk-adjusted,
via their impact on L. Namely, the ensuing volatile swings of L (cf. (5.4)) should be
reflected in the economic capital and in the cost of capital of the bank.

5.2 Economic Capital and KVA

The theory here proceeds as in Albanese et al. (2021) & Crépey (2022). The regulator
expects that some capital, no less than a theoretical economic capital (EC) level, should
be reserved to cover the exceptional (i.e. beyond average) losses over the next year.
Namely:

Definition 5.1. The economic capital (EC) of the bank is defined as the time-t condi-
tional expected shortfall (ESt) of the random variable (Lt′ −Lt) at the confidence level
α ∈ (1

2 , 1), where L is the trading loss process of the bank and t′ = (t+ 1) ∧ T , i.e.

ECt = ESt(Lt′ − Lt) :=
Et
(
(Lt′ − Lt)1{Lt′−Lt≥VaRt(Lt′−Lt)}

)
Et1{Lt′−Lt≥VaRt(Lt′−Lt)}

. (5.5)

The capital valuation adjustment (KVA) is then defined as the level of a risk margin
required for remunerating shareholders dynamically at a constant and nonnegative
hurdle rate r ≥ 0 of their capital at risk. Since the KVA is itself loss-absorbing (as a
risk margin), hence part of capital at risk, the shareholder capital at risk corresponds to
SCR = (EC−KVA)+, while capital at risk is KVA + SCR ≥ EC (above the regulators’
minimum target level as should be). Accordingly:

Definition 5.2. The capital valuation adjustment (KVA) is defined by the inductive
relation

KVAt = rEt
∫ T

t

(
ECs −KVAs

)+
ds, t ≤ T . (5.6)

Equivalently, the KVA process vanishes at T and turns the cumulative dividend process
−(L + KVA(0)) of the bank shareholders into a submartingale with drift coefficient
r×SCR. By standard Lipschitz BSDE results, (5.6) defines a unique square integrable
KVA process, assuming EC square integrable (Crépey, 2022, Proposition B.1).
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5.3 Additional Valuation Adjustment

If there was no model risk, i.e. if the bank used fair valuation for all its purposes,
then by (3.5) all the H· processes in the above would reduce to related components
h·, all R martingales. In view of the last identity in (5.2), one would fall back on an
HVA = HVAf à la Burnett (2021) & Burnett and Williams (2021) the way detailed in
Section 4, along with the related KVA component.

Moreover, using the fair valuation model for all purposes by the bank would also im-
ply different and presumably much better hedges, triggering much less volatile swings
of L than the ones implied by local models, hence in turn much lower economic cap-
ital and KVA. An additional valuation adjustment (AVA, or model risk component
thereof, cf. European Parliament (2013), European Parliament (2016) and see also
https://www.eba.europa.eu/regulation-and-policy/market-risk/draft-regulatory-technical-
standards-on-prudent-valuation) could thus be defined as the difference between HVA+
KVA as per (5.2)-(5.6) and a baseline (∗) HVAf,∗+KVA∗ defined with the same equa-
tions, but corresponding to a loss process (to be compared with L in (5.4))

L∗ = −
∑
·

(
− (Q· +Q·)

τ ·e
(0) − (P∗,· + P ∗,·)

τ ·e
(0) − h

∗,·)+f∗ + HVAf,∗. (5.7)

So

AVA = HVA + KVA− (HVAf,∗ + KVA∗), (5.8)

where all the “·∗” quantities are assessed in the fair valuation setup. This AVA depends
on the detailed specification of the baseline setup, including the choice of the corre-
sponding hedges. As a dealer bank should not do proprietary trading, the reference
hedging case is when the sum in the first line simply vanishes in (5.7). This leads to
the following minimalist specification of (5.7):

L∗ = f∗ + HVAf,∗, (5.9)

which could be taken as a reference for defining KVA∗ and in turn the AVA via (5.8).
Under this reference specification (5.9) for the loss process L∗, market risk is assumed
fully hedged and it does therefore not contribute to the economic capital and the KVA
of the bank. Once Darwinian model risk is included into the analysis, instead, one can
see a very significant amount of market risk (and corresponding contributions to the
economic capital and KVA) due to the fact that, even after HVAmtm has been added
to restore the correct MtM values (cf. Remark 3.2), the price has become right one (i.e.
MtM) but the hedge is still wrong.

After the introduction of the HVA and its risk adjustment in the KVA, the use of bad
quality local models should imply a positive AVA in (5.8). Better models would imply
a smaller AVA, hence an increased competitiveness for the bank (real competitiveness
based on solid economic foundations, as opposed to fallacious competitiveness masking
long term risk based on bad models). Our AVA thus provides a measure of the loss
of profit for a bank, in terms of additional KVA costs, by not using better models.
Computing it could virtuously incite banks to use higher quality models.
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Remark 5.1. For that, however, there is no economic necessity for a bank of computing
a baseline HVAf,∗+ KVA∗, nor of identifying the corresponding AVA. All that matters
economically is that the bank passes to its clients the total add-on HVA + KVA =
AVA + (HVAf,∗+ KVA∗), by (5.8) (so HVA + KVA already contains HVAf,∗+ KVA∗).

We now derive the KVA (5.6) associated with the two hedging schemes of the
vulnerable put of Examples 2.6-2.7, to come on top of the HVA of Section 3.1 for the
static hedging scheme of Example 2.6 and Section 3.2 for the delta hedging scheme
of Example 2.7. These computations are done under the assumption that the bank
portfolio would solely consist of the vulnerable put and its hedge, but this (even though
unrealistic) situation has also some genericity as explained in Remark 2.4.

5.4 KVA for the Vulnerable Put Under the Static Hedging Scheme

Regarding the static hedging scheme of Example 2.6, one can derive explicit EC and
KVA formulas:

Proposition 5.2. Denoting Θ = (T + ln(α)
λ )+ ≤ T , where α is the confidence level

at which economic capital is calculated, and by r the hurdle rate of the bank, we have
EC = JθẼC and KVA = JθK̃VA, where

ẼC = 1λ>− ln(α)1[0,Θ)Ke
−λ(T−t),

K̃VA = 1λ>− ln(α)Ke
−λ(T−t)1[0,Θ)(1− e−r(Θ−t)),

KVA0 = 1λ>− ln(α)Ke
−λT1Θ>0(1− e−rΘ).

(5.10)

Proof. For t < t′ ≤ T , (5.1) and the last line in (3.9) yield

Lt′ − Lt = (−pnl· + HVA·)t′ − (−pnl· + HVA·)t

= 1{t′≥θ>t}K + 1{t′<θ}K(1− e−λ(T−t′))− 1{t<θ}K(1− e−λ(T−t))

= 1{t<θ}

(
1{t′≥θ}(K −K(1− e−λ(T−t′))) +K(1− e−λ(T−t′))−K(1− e−λ(T−t))

)
= 1{t<θ}B

t
t′ , where Bt

t′ = 1{t′≥θ}Ke
−λ(T−t′) +K(e−λ(T−t) − e−λ(T−t′)).

On {t < θ}, the Bernoulli random variable 1{t′≥θ} satisfies Et
[
1{t′≥θ} = 0

]
= e−λ(t′−t)

and, for any confidence level α > e−λ(t′−t), i.e. such that t′− t > − ln(α)
λ , VaRt(Lt′−Lt)

is the largest of the two possible values of (Lt′ − Lt), so that the latter never exceeds

VaRt(Lt′ − Lt). As a consequence, for t′ − t > − ln(α)
λ , we have by (5.5):

ESt(Lt′ − Lt) = VaRt(Lt′ − Lt) =

1{t<θ}
(
Ke−λ(T−t′) +K(eλ(T−t) − e−λ(T−t′))

)
= 1{t<θ}Ke

−λ(T−t).

For t′ − t ≤ − ln(α)
λ , we have

(Lt′ − Lt)1{Lt′−Lt≥VaRt(Lt′−Lt)} = Lt′ − Lt,

which is a time-t conditionally centered random variable as the increment of the mar-
tingale L. Hence

0 = Et(Lt′ − Lt) = Et
(
(Lt′ − Lt)1{Lt′−Lt≥VaRt(Lt′−Lt)}

)
= ESt(Lt′ − Lt).
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Setting t′ = (t+1)∧T as prescribed in (5.5) (for T = T here), so that t′− t > − ln(α)
λ ⇔

t < Θ , we obtain by Definition 5.1:

ECt = ESt(Lt′ − Lt) = 1{t<θ}1λ>−ln(α)1t<ΘKe
−λ(T−t),

which is the first line in (5.10).
Assuming λ > − ln(α) (otherwise EC = KVA = 0), let us define the process

KVA†t := rEt
∫ T

t
e−r(u−t)ECudu = rEt

∫ T

t

(
ECs −KVA†s

)
ds, t ≤ T. (5.11)

We have

KVA†t = rKEt1{t<Θ}

∫ Θ

t
e−r(u−t)1{u<θ}e

−λ(T−u)du

= rKe−λ(T−Θ)1{t<Θ}1{t<θ}

∫ Θ

t
e−r(u−t)e−λ(u−t)e−λ(Θ−u)du

= 1{t<θ}rKe
−λ(T−Θ)e−λ(Θ−t)1{t<Θ}

∫ Θ

t
e−r(u−t)du

= 1{t<θ}Ke
−λ(T−t)1t<Θ(1− e−r(Θ−t)) ≤ 1{t<θ}K1t<Θe

−λ(T−t) = ECt.

(5.12)

Back to the right-hand side in (5.11), the process KVA† therefore satisfies

KVA†t = rEt
∫ T

t

(
ECs −KVA†s

)
ds = rEt

∫ T

t

(
ECs −KVA†s

)+
ds, t ≤ T, (5.13)

which is the KVA equation (5.6). As EC and KVA† are bounded processes, hence, by
the result recalled after Definition 5.2, KVA† is the unique bounded (or even square
integrable) solution to this equation,, i.e. KVA† = KVA. The first identity in the last
line of (5.12) then yields the second line in (5.10).

For a baseline setup (cf. Section 5.3) corresponding to dynamic, assumed frictionless,
replication of the vulnerable put by the stock and the vanilla put in the jr model as
per Proposition A.4, we have HVAf,∗ + KVA∗ = 0, hence the AVA (5.8) reduces to
HVA + KVA.

Numerical Application For λ = 1%, T = 10y and r = 10%, (5.10) and (3.10) yield
as α ↓ e−0.01 ≈ 99%:

KVA0 ↓ Ke−0.1(1− e−1+0.1) ≈ 0.54K

KVA0

HVA0
↓ (1− e−0.9)

(e0.1 − 1)
≈ 5.64.

(5.14)

In the present case where f = 0 and a pure frictions HVAf à la Burnett (2021) &
Burnett and Williams (2021) vanishes, playing with the jump-to-ruin intensity λ in
Figure 5.1, we see from the top panels that the Darwinian model risk HVA alone
can be extreme. As visible on the bottom panels of Figure 5.1, the corresponding KVA
adjustment can be even several times larger. The latter holds for α > e−λ. For α ≤ e−λ,
instead, there is no tail risk at the envisioned confidence level, hence EC = KVA = 0.
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Figure 5.1: At-the-money S0 = K, denoting MtM0 = Qjr0 and assuming α ↓ e−λ
everywhere in the bottom panels (where the limiting value of the confidence level α
that underlies the KVA therefore depends of the abscissa λ): [top left] MtM0

K ; [top

right] HVA0
MtM0

; [bottom left] KVA0
HVA0

; [bottom right] AVA0
MtM0

.

5.5 KVA For the Vulnerable Put Under the Dynamic Hedging Scheme

In the dynamic hedging case of Example 2.7, we rely on numerical approximations
to estimate the economic capital and the KVA of the bank at a quantile level α set
in the numerics to 99%. In fact, in this Markovian framework, each process Z =
HVAf ,EC,VaR·(L·′ − L·) and KVA satisfies

Zt = Z̃(t, St) = Jθt Z̃(t, S̃t),

where S̃ is the auxiliary Black-Scholes model (A.1) and H̃VA
f
(t, 0) = ṼaR(t, 0) =

ẼC(t, 0) = K̃VA(t, 0) = 0, while, for all (t, S) ∈ [0, T ]× (0,∞), setting t′ = (t+ 1)∧T ,

H̃VA
f
(t, S) = E [fT − ft |St = S] ,

ṼaR(t, S) = VaR [Lt′ − Lt |St = S] ,

ẼC(t, S) = ES [Lt′ − Lt |St = S] ,

K̃VA(t, S) = rE
[∫ T

t
(ECu −KVAu)+ du

∣∣∣∣St = S

]
.

(5.15)

On this basis, one can obtain approximations ĤVA
f
, ÊC, and K̂VA of the HVAf ,

EC, and KVA processes at all nodes of a forward simulated grid (Smtk )1≤m≤M
0≤k≤10 of S,
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by neural net regressions and quantile regressions that are used backward in time for
solving the above equations numerically, the way detailed in Section C.

Numerical application We plot on Figure 5.2 the processes ÊC(·, S̃·) and K̂VA(·, S̃·)
represented by the term structures of their means (in green) and quantiles of levels
10%, 90% (in blue) and 2.5% and 97.5% (in red), both with and without frictions f , as
well as in the (deterministic) static hedging case (5.10). In particular, we obtain in the
dynamic hedging case for the same numerical parameters as the ones used in Section
4.4, a confidence level α for the EC computations set at 99%, and a hurdle rate r for
the KVA computations set at 10%:

ĤVA
·
0 ' 0.095 and ĤVA

f

0 ' 0.046, hence ĤVA0 ' 0.141,

K̂VA0 ' 0.407,
K̂VA0

ĤVA0

' 2.881.
(5.16)

As could be expected from Example 3.3 (see also Remark 3.3), there is ultimately less
risk (as assessed by economic capital and KVA, cf. (3.11) and Figure 5.2) with the delta
hedge than with the static, aka delta-vega hedge.

In the frictionless case f = 0, we obtain by the same methodology

ĤVA0 = ĤVA
·
0 ' 0.095,

K̂VA0 ' 0.433,
K̂VA0

ĤVA0

' 4.550.
(5.17)

By comparison with (5.16) (see also Figure 5.2), the dynamic hedging frictions happen
to be slightly risk-reducing, meaning that the components −pnlmtm + HVAmtm

(0) =

−pnl· + HVA·(0) and f + HVAf
(0) of (5.1) tend to be negatively correlated in this case

(for which we have no particular explanation).

6 Conclusion

6.1 Executive Summary (Encompassing Credit): A Global Valuation
Framework

Accounting methods are also models in the sense of SR-11-7 (cf. https://www.federalres
erve.gov/supervisionreg/srletters/sr1107.htm) because they produce numbers, are based
on assumptions, and have an impact on strategies. If they are misaligned with eco-
nomics they cause a misalignement of interests between executives and shareholders.
Hence, model risk is a concept that does not apply only to pricing models, but should
be extended to accounting principles for dealer banks, including the specification of
their CVA and FVA metrics (as these are liabilities to the bank, see Crépey (2022,
Section 1) and Albanese et al. (2021, Figure 1)). From this model risk perspective,
the CVA and FVA should be viewed as two additional “global trades” of the bank,
deserving HVA in the same way as individual deals “·” in the above. Introducing the
cumulative counterparty default (resp. funding) losses C (resp. F) of the CVA (resp.
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Figure 5.2: Plot of the deterministic maps t 7→ ẼC(t) [top left] and t 7→ K̃VA(t) [top
right] corresponding to the static hedging case (5.10). Plots of mean (in green) and

quantiles at levels 10% and 90% (in blue) and 2.5% and 97.5% (in red) of ÊC(t, S̃t)
in the delta hedging case without friction [Middle left] and in the delta hedging case
with frictions [bottom left]. Plots of mean (in green) and quantiles at levels 10% and

90% (in blue) and 2.5% and 97.5% (in red) of K̂VA(t, S̃t) in the delta hedging case
without friction [Middle right] and in the delta hedging case with frictions [bottom
right].
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FVA) trading desk of the bank, the overall loss trading process of the bank accounting
for the market, credit, funding, and dynamic hedging plus model risk (and dynamic
hedging frictions) cash flowsM, C, F , and H is given by the martingale (compare with
(5.3))

L = −(M+ MtM(0)) + (C + CVA(0)) + (F + FVA(0)) + (H+ HVA(0)), (6.1)

where MtM, CVA, FVA, and HVA are the fair valuation processes of M, C, F and H
(including CVA and FVA analogs Hcva and Hfva of H· in (3.4)). In the model-risk-free
and frictionless setup of Albanese et al. (2021) & Crépey (2022), H reduces to the
frictionless dynamic hedging losses of the bank, naturally assumed to be a zero-valued
martingale, hence HVA = va(H) = 0. In this paper, due to Darwinian model risk,
H also incorporates model risk and market frictions. The ensuing process H is not
a martingale anymore, whence a nontrivial hedging valuation adjustment HVA. The
resulting HVA can be seen as the bridge between a global fair valuation model and the
local models used by the different desks of the bank. The HVA risk is then risk-adjusted
by the KVA defined from (6.1) by (5.5)-(5.6). In particular, model risk is the channel
through which market risk reintroduces itself into XVA computations (see the second
paragraph of Section 1.1).

Remark 6.1. Regarding its KVA computations, a bank could also be subject to Dar-
winian model risk: To enhance its competitiveness in the short term, a bank might
be tempted to use a model understating the risk and economic capital of the bank.
A sound practice in this regard is to combine different, equally valid (realistic and co-
calibrated) models for simulating the set of trajectories underlying the economic capital
and KVA computations (Albanese et al., 2023, Section 4.3). Such a Bayesian KVA ap-
proach typically fattens the tails of the simulated distributions and avoids under-stated
risk estimates.

6.2 Take-Away Message: Bad Models Should Be Banned not Man-
aged

A major step in the financial derivatives literature is the robustness result of Karoui,
Jeanblanc-picqué, and Shreve (1998) according to which a convex position will be
hedged conservatively with the Black-Scholes model as long as the volatility is overesti-
mated. However, this assumes that the bank is a market maker in a position to impose
its own (in this case overestimated) price for the claim at hand. In this paper we con-
sider the opposite pattern where, due to the competition between banks, a trader can
only sell the option at a price lower than its true value, hence losses for the bank (un-
less the trader uses the true model). In order to quantify the above, we revisit Burnett
(2021) & Burnett and Williams (2021)’s notion of hedging valuation adjustment (HVA)
in the direction of model risk. The fact evidenced by Example 3.3 that vega hedging
may actually increase Darwinian model risk illustrates well that Darwinian model risk
cannot be hedged. It can only be provisioned against or, preferably, compressed, by
improving the quality of the models that are used by traders. In any case, a provision
for model risk should be risk-adjusted. But, as the paper illustrates, a risk-adjusted
reserve would be much greater than the “HVA uptick” (price difference) currently used
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in banks, by a factor 3 to 5 in our experiments (cf. Remark 3.2 and (5.16)-(5.17)),
and it could be even more if one accounted for the price impact of a liquidation in ex-
treme market conditions (cf. https://www.risk.net/derivatives/6556166/remembering-
the-range-accrual-bloodbath effects already mentioned in Remark 2.4). Risk-adjusted
HVA computations are also very demanding. In particular, beyond analytical toy ex-
amples such as the one of Section 5.4 (and already in the case of Section 5.5), HVA
risk-adjusted KVA computations (starting with pathwise HVAf computations) require
dynamic recalibration in a simulation setup, for assessing the hedging ratios used by
the traders at future time points as well as the time of explosion of the trader’s strat-
egy (time of model switch τ ·s). Hence, from the computational workload viewpoint too,
the best practice would be that banks only rely on high-quality models, so that such
computations are simply not needed.

To summarize, the orders of magnitude of the corrections that would be required
for duly compensating model risk (accounting not only for misvaluation but also for the
associated mishedge), as well as the corresponding computational burden for a precise
assessment of the latter, suggest that bad models should not so much be managed via
reserves, as excluded altogether.

A Pricing Equations in the Jump-to-Ruin Model

In this section we provide pricing analytics in the jr model (2.1) for S, with jump-
to-ruin time (first jump time of N) θ. We also consider the auxiliary Black-Scholes
model

dS̃t = λS̃tdt+ σS̃tdWt, (A.1)

starting from S̃0 = S0, where λ and σ (omitted in the notation for d± below when clear
from the context) were introduced after (2.1). Hence St = 1{Nt=0}S̃t, t ≥ 0. Given the

maturity T = T and strike K > 0 of an option, let, for every pricing time t and stock
value S,

d±(t, S;λ, σ) =
ln( SK ) + λ(T − t)

σ
√
T − t

± 1

2
σ
√
T − t. (A.2)

We first consider the pricing of a vanilla call option.

Proposition A.1. The jr value process (1.1)-(2.3) of the call option with payoff (ST −
K)+ at time T can be represented as

Cjrt = u(t, St)1[0,T ), t ∈ [0, T ],

where the pricing function u = u(t, S) := E
(
(ST −K)+

∣∣St = S
)

is the unique classical
solution with linear growth in S to the PDE{

u(T, S) = (S −K)+, S ≥ 0

∂tu(t, S) + λS∂Su(t, S) + σ2S2

2 ∂2
S2u(t, S)− λu(t, S) = 0, t < T, S ≥ 0.

(A.3)

For t < T ,

Cjrt = StN (d+(t, St))−Ke−λ(T−t)N (d−(t, St)). (A.4)
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Proof. We have ST = 1{θ>T}S̃T = 1{θ>T}S0 exp
(
σWT + (λ− σ2

2 )T
)

. Since (ST −
K)+ = 0 on θ ≤ T and ST = S̃T on θ > T , it follows that, on {t < θ},

Et
[
(ST −K)+

]
= Et

[
1{θ>T}(ST −K)+

]
= (A.5)

= Et
[
1{θ>T}(S̃T −K)+

]
= Et

[
e−λ(T−τ)(S̃T −K)+

]
,

by independence between W and N in (1.1). One recognizes the probabilistic expres-
sion for the time-t price of the vanilla call option in the auxiliary Black-Scholes model
(A.1), hence the proposition follows from standard Black-Scholes results.

We now consider the pricing of a put option in the jr model, in two forms: either a
vanilla put with payoff (K − ST )+, or a vulnerable put with payoff 1{θ>T}(K − ST )+.

Proposition A.2. The jr value process (1.1) of the vanilla put can be represented as

P jrt = v(t, St)1[0,T ), t ∈ [0, T ], (A.6)

where the vanilla put pricing function v = v(t, S) := E
(
(K − ST )+

∣∣St = S
)

is the
unique bounded classical solution to the PDE

v(T, S) = (K − S)+, S ≥ 0

∂tv(t, S) + λS∂Sv(t, S) + σ2S2

2 ∂2
S2v(t, S)

−λv(t, S) + λK = 0, t < T, S ≥ 0.

(A.7)

For t < T ,

P jrt = Ke−λ(T−t)N (−d−(t, St))− StN (−d+(t, St)) +K(1− e−λ(T−t)). (A.8)

Proof. Taking expectation in the decomposition ST −K = (ST −K)+ − (ST −K)−

yields the (model-free) call-put parity relationship

St −K = u(t, St)− v(t, St), t ≤ T, (A.9)

hence v = u − (S − K), from which the PDE characterization based on (A.7) for v
results from the PDE characterization based on (A.3) for u. Moreover, we deduce from
(A.4) that, for t < T ,

P jrt = Cjrt − (St −K) = St (N (d+(t, St))− 1)−K
(
e−λ(T−t)N (d−(t, St))− 1

)
= Ke−λ(T−t)N (−d−(t, St))− StN (−d+(t, St)) +K(1− e−λ(T−t)),

which is (A.8).

In accordance with (A.8):

Definition A.1. For t < θ ∧ T , given the observed spot price St = S > 0, the Black-
Scholes implied volatility Σt = Σ(t, S) of the vanilla put in the jr model is the unique
solution Σ to

Ke−λ(T−t)N (−d−(t, S;λ, σ))− SN (−d+(t, S;λ, σ)) +K(1− e−λ(T−t))

= KN (−d−(t, S; 0,Σt))− SN (−d+(t, S; 0,Σt)).
(A.10)

We also set Σ(t, 0) = 0.
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Remark A.1. For S = 0, any Σ ≥ 0 solves (A.10): for any Σ, d± = −∞ as ln( 0
K ) = −∞,

so KN (−d−)− SN (−d+) = K − S = K (for S = 0).

Proposition A.3. The value process (1.1) of the vulnerable put is given by

Qjrt = 1t<θ∧T
(
P jrt − (1− e−λ(T−t))K

)
=

1t<θ∧T

(
Ke−λ(T−t)N

(
− d−(t, St)

)
− StN

(
− d+(t, St)

))
.

(A.11)

For t < T ,

P jrt −Q
jr
t = 1t<θK(1− e−λ(T−t)) + 1t≥θK. (A.12)

Proof. We have

1{θ>T}(ST −K) = 1{θ>T}
(
(ST −K)+ − (ST −K)−

)
,

which in jr reduces to

ST − 1{θ>T}K = (ST −K)+ − 1{θ>T}(ST −K)−.

By taking time-t conditional expectations, we have, on {t < θ∧T}, that St−Ke−λ(T−t) =
Cjrt −Q

jr
t , which yields

Qjrt = Cjrt − St +Ke−λ(T−t),

out of which (still on {t < θ∧T}) the first identity in (A.11) follows from (A.9) and the
second identity in turn follows from (A.8). Besides, on {t ≥ θ}, we have Qjr = 0 and
P jr = K, whereas on {t ≥ T} we have Qjr = 0, which completes the proof of (A.11)
and (A.12).

Proposition A.4. Setting w(t, S) = v(t, S) − K(1 − e−λ(T−t)) (see Proposition A.2
and (A.12)), the vulnerable put is replicable on [0, θ∧T ] in the jr model (in the absence
of model risk and hedging frictions), by the dynamic strategy ζ in S and η in the vanilla
put given by

ζt = −
N
(
− d+(t, St)

)
1−N

(
− d−(t, St)

) , ηt = −
N
(
− d−(t, St)

)
1−N

(
− d−(t, St)

) , t < τs ∧ T, (A.13)

and the number of constant riskless assets deduced from the budget condition w(t, St)
on the strategy.

Proof. The profit-and-loss associated with the hedging strategy ζ in S and η in the
vanilla put, both assumed left-limits of càdlàg processes, evolves following (the position
being assumed to be unwound at θ)

dpnlt = 1{t≤θ}(dQ
jr
t − ζtdSt − ηtdP

jr
t )

(with pnl0 = 0). Itô formulas with (elementary) jump exploiting the results of Propo-
sitions A.2 and A.3 yield (cf. (2.1))

dpnlt = 1{t≤θ}(αtdWt + βtdMt),
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where

αt = σSt

(
∂Sw(t, St−)−ζt−ηt∂Sv(t, St−)

)
, βt = −w(t, St−)+ζtSt−+ηt

(
v(t, St−)−K

)
.

Hence the replication condition α = β = 0 reduces to the linear systems

∂Sw(t, St−)− ζt − ηt∂Sv(t, St−) = −w(t, St−) + ζtSt− + ηt
(
v(t, St−)−K

)
= 0 (A.14)

in the (ζt, ηt) (one system for each t < τs∧T ). Using (A.8) for the first line and (A.11)
and (A.12) for the second line, one verifies that (A.13) solves (A.14).

B Proof of Theorem 4.1

Lemma B.1. Under Assumptions 4.2 and 4.6, there exists C3 > 0 such that, for all
h > 0 and u ∈ {∂lq?, (∂x(∂lq

?)σ; 1 ≤ l ≤ d},

sup
0<t−s<h

E
[
|u(t,Xt)− u(s,Xs)|2

] 1
2 ≤ C3hα.

Proof. Since 1 −
∏L
=1 1{νt=νs} ≤

∑L
=1(νt − ν


s), we have, for some constant C ≥ 0

varying from line to line,

E
[
|u(t,Xt)− u(s,Xs)|2

] 1
2

≤
√

2E
[
|u(t,Xt, Jt)− u(t,Xt, Js)|2

] 1
2

+
√

2E
[
|u(t,Xt, Js)− u(s,Xs, Js)|2

] 1
2

≤ C

E

|u(t,Xt, Jt)− u(t,Xt, Js)|2
L∑
=1

(νt − νs)

 1
2

+ (t− s)α + (t− s)
1
2


≤ C

 L∑
=1

E
[∫ t

s
λrdr

] 1
2

+ (t− s)α
 ≤ C (L√Λ(t− s) + (t− s)α

)
≤ C3hα,

where we used equation (4.3) and the bound on the maps λ.
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Coming to the proof of the theorem, we have, for t = 0 for notational simplicity,

∣∣∣HVAh
0 −HVAf

0

∣∣∣ =

∣∣∣∣∣E
[

n∑
i=1

ϕh
thi

]
− E

[∫ T ?

0
ϕtdt

]∣∣∣∣∣
=

∣∣∣∣∣
√

h

2
E

[
n∑
i=1

X>
thi

k(δathi
)abs

]
− 1√

2π
E

[
n∑
i=1

∫ thi

thi−1

X>t k(Γσ)abs(t,Xt)dt

]∣∣∣∣∣
≤

d∑
l=1

kl

∣∣∣∣∣
√

h

2
E

[
n∑
i=1

X l
thi

∣∣∣althi − althi−1

∣∣∣]− 1√
2π

E

[
n∑
i=1

∫ thi

thi−1

X l
t |∂x(∂lq

?)σ|(t,Xt)dt

]∣∣∣∣∣
= h

d∑
l=1

n∑
i=1

kl

∣∣∣∣∣E
[

1

2
√

h
X l
thi

∣∣∣althi − althi−1

∣∣∣− 1

h
√

2π

∫ thi

thi−1

X l
t |∂x(∂lq

?)σ|(t,Xt)dt

]∣∣∣∣∣
≤ T ?

d∑
l=1

kl sup
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We fix 1 ≤ l ≤ d and we show that
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In fact, for all 0 ≤ s < t ≤ T ? such that t− s = h,
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(B.2)

Regarding the first term in the r.h.s. of (B.2), we have, by Assumption 4.2 and
Lemma B.1,
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2
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(B.3)

We now consider the second term in the r.h.s. of (B.2). With δ∂lq
?(t, x, j, k) :=

∂lq
?(t, x, j) − ∂lq?(t, x, k) and C l defined in (4.4), recalling that |δ∂lq?(t, x, j, k)| ≤ C2
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by Assumption 4.6, we compute by Itô’s formula:
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(B.4)

where we used
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and Lemma B.1.

We finally deal with the last term in the r.h.s. of (B.2). As ∂x(∂lq
?)σ(s,Xs) (Wt −Ws)

has, conditionally on Fs, the law N
(

0,h |∂x(∂lq
?)σ(s,Xs)|2

)
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We then obtain for this last term:∣∣∣∣E [ 1
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where the (random) r ∈ (s, t) in the next-to-last line is obtained via the mean value
theorem. We have, for a constant C changing from term to term,∣∣∣E [X l

s|∂x(∂lq
?)σ(s,Xs)| −X l

r|∂x(∂lq
?)σ(r,Xr, Js)|

]∣∣∣
≤ E

[
|X l

s −X l
r||∂x(∂lq

?)σ(s,Xs)|
]

+ E
[
X l
r|∂x(∂lq

?)σ(s,Xs)| − ∂x(∂lq
?)σ(r,Xr, Js)|

]
≤ C1h

1
2 sup
t∈[0,T ?]

E
[
|∂x(∂lq

?)σ(t,Xt)|2
] 1
2 + ChαE

[
X l
r

]
+ CE

[
X l
r|Xr −Xs|

]
≤ Chα,

(B.5)
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(B.6)

Using (B.3)-(B.4)-(B.5)-(B.6), we obtain, for some constant C ≥ 0,
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which proves (B.1) and therefore the theorem.
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C Neural Nets Regression and Quantile Regressions for
the Pathwise HVAf , EC, and KVA of Section 5.5

The setup and notation are the ones of Section 5.5.

C.1 HVAf Computations

The function H̃VA
f

in (5.15) is such that H̃VA
f
(T, ·) = 0, H̃VA

f
(t, 0) = 0 for all t and,

for u < t and S ∈ (0,∞),

H̃VA
f
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f
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]
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(ft − fu) + H̃VA

f
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∣∣∣∣Su = S

]
,

(C.1)

for f as per (4.10). Accordingly, we approximate on (0,∞) the functions H̃VA
f
(ti, ·)

for ti := i T10 , as follows. Set ĤVA
f
(t10, ·) = 0 and assume that we have already trained

neural networks ĤVA
f
(tk, ·), i+ 1 ≤ k < 10. Based on sampled data

(X,Y ) =

(
S̃mti , (fti+1 − fti)m + ĤVA

f
(ti+1, S

m
ti+1

)1{Sm
ti+1

>0}

)
1≤m≤M

,

where each Smti+1
is a obtained from (2.1) with initial condition Smti = S̃mti > 0 simulated

from (A.1), in view of (C.1) and of the least-squares characterization of conditional

expectation (in square integrable cases), we seek for ĤVA
f
(ti, ·) in

argminu∈NN

M∑
m=1

(
ĤVA

f
(ti+1, S

m
ti+1

)1{Sm
ti+1

>0} +
(
fti+1 − fti

)m − u(S̃mti )

)2

, (C.2)

where NN denotes the set of feedforward neural networks with three hidden layers of
10 neurons each and ReLU activation functions.

We then obtain ĤVA
f
(0, S0)= 0.04613 from ft1 + ĤVA

f
(t1, St1) as a sample mean.

The corresponding standard deviation, 95% confidence interval and relative error at
95% are σ̂f ' 6×10−3, [0.04601, 0.04624] and 1.96σ̂f

ĤVA
f

0

√
M
' 0.25%, where σ̂f denotes the

empirical standard deviation of f1 + ĤVA
f
(t1, St1).

C.2 EC Computations

Next we approximate ẼC(t, ·) on (0,∞) by the two-stage scheme of Barrera et al.
(2022, Section 4.3), for each t = ti, 1 ≤ i < 10. Recall t′ = (t + 1) ∧ T . We first train

a neural network V̂aR(t, ·) approximating ṼaR(t, ·) based on sampled data (X,Y ) =(
S̃mt , (Lt′ − Lt)

m
)

1≤m≤M
and on the pinball-type loss (y−u(x))+ +(1−α)u(x), i.e. we

seek for V̂aR(t, ·) in

argminu∈NN
1

M

M∑
m=1

(
(Lt′ − Lt)m − u(S̃mt )

)+
+ (1− α)u(S̃mt ).
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Note from (5.1) that, for t = ti, sampling Lt′ − Lt uses the already trained neural

network ĤVA
f
(ti+1, ·). For t = 1yr (where the approximation should be the worst

due to error accumulated on H̃VAf from dynamic programming), the Monte Carlo
estimate of Barrera et al. (2022, (4.10)) for the distance in p-values between the estimate

V̂aR(t, St) and the targeted (unknown) VaRt (Lt′ − Lt) is less than 3.6×10−3 ≤ 1−α =
10−2 with 95% probability.

We then train neural networks ÊC(t, ·) approximating ẼC(t, ·) on (0,∞) at times

t = ti based on sampled data (X,Y ) =
(
S̃mt , (Lt′ − Lt)m

)
1≤m≤M

and on the loss

(
(1− α)−1(y − V̂aR(t, x))+ + V̂aR(t, x)− u(x)

)2
,

i.e. we seek for ÊC(t, ·) in

argminu∈NN
1

M

M∑
m=1

(
(1− α)−1

(
(Lt′ − Lt)m − V̂aR(Smt )

)+
+ V̂aR(Smt )− u(x)

)2

.

For t = 1yr, the Monte Carlo estimate of Barrera et al. (2022, (4.8)) for the L2-norm

of the difference between the estimate ÊC(t, S̃t) and the targeted (unknown) ẼC(t, S̃t)
is smaller than 0.067 (itself significantly less then the orders of magnitude of EC visible
on the left panels of Figure 5.2) with probability 95%.

We also compute V̂aR(0, S0) = 0.0120 (which is needed for ÊC(0, S0) below) as
an empirical (unconditional) value-at-risk. The corresponding 95% confidence interval

and relative error at 95% are [0.0117, 0.0123] and 1.96

V̂aR(0,S0)d̂(V̂aR(0,S0))

√
α(1−α)
M ' 2.3%,

where d̂ denotes the empirical density of Lt1 − Lt0 . Finally we compute ÊC(0, S0) =
0.493 using the recursive algorithm of Costa and Gadat (2021, Eqn (4)). Using the
central limit theorem for expected shortfalls derived in Costa and Gadat (2021, The-
orem 1.3), a 95% confidence interval is [0.451, 0.534] and the relative error at 95%

is
√

bM
2

1.96σ̂s

(1−α)ÊC(0,S0)
' 0.08, where σ̂s denotes the empirical standard deviation of

(L1 − L0)1{(L1−L0)>V̂aR(0,S0)} and bM is defined in Costa and Gadat (2021, Assump-

tion Han,bn).

C.3 KVA Computations

Last, we approximate K̃VA(t, ·) at times t = ti on (0,∞), for i decreasing from 10 to 1,

by neural networks K̂VA(ti, ·), based on the following dynamic programming equation,
for 0 ≤ i < 10:

KVAti = Eti
[
KVAti+1 + h

∫ ti+1

ti

(ECu −KVAu)+ du

]
≈ Eti

[
KVAti+1 + h(ti+1 − ti)

(
ECti+1 −KVAti+1

)+]
.
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Starting from K̂VA(tn, ·) = 0 and having already trained the K̂VA(tj , ·), j > i > 0, we

train K̂VA(ti, ·) based on sampled data

(X,Y ) =

(
S̃mti , h(ti+1 − ti)

(
ÊC(ti+1, S

m
ti+1

)− K̂VA(ti+1, S
m
ti+1

)1{Sm
ti+1

>0}

)+

+K̂VA(ti+1, S
m
ti+1

)1{Sm
ti+1

>0}

)
1≤m≤M

and on the quadratic loss (y − u(x))2. We then compute K̂VA(0, S0) = 0.407 from

r(t1 − t0)(ÊC(t1, St1) − K̂VA(t1, St1)1{St1>0}) + K̂VA(t1, St1) as a sample mean. The
corresponding standard deviation, 95% confidence interval and relative error at 95% are
σ̂kva ' 6×10−2, [0.4056, 0.4082] and 1.96σ̂kva

K̂VA0

√
M
' 0.0028, where σ̂kva denotes the empir-

ical standard deviation of r(t1− t0)(ÊC(t1, St1)− K̂VA(t1, St1)1{St1>0})+K̂VA(t1, St1).
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Karoui, N. E., M. Jeanblanc-picqué, and S. E. Shreve (1998). Robustness of the Black
and Scholes Formula. Mathematical Finance 8 (2), 93–126.

Silotto, L., M. Scaringi, and M. Bianchetti (2021). Everything you always wanted to
know about XVA model risk but were afraid to ask. arXiv:2107.10377 .

Singh, D. and S. Zhang (2019a). Distributionally robust XVA via Wasserstein distance.
Part 2: Wrong way funding risk. arXiv:1910.03993 .

Singh, D. and S. Zhang (2019b). Distributionally robust XVA via Wasserstein distance:
Wrong way counterparty credit and funding risk. arXiv:1910.01781 .

35


	Introduction
	Related Literature
	Outline of the Paper and Standing Notation

	Darwinian Model Risk
	Client Deals Cash Flows
	Client Deals Valuation
	Client Deals Hedges

	HVA for Individual Deals
	HVA for the Vulnerable Put Under the Static Hedging Scheme
	HVA for the Vulnerable Put Under the Delta Hedging Scheme

	HVA for Dynamic Hedging Frictions
	Fair Valuation Setup
	Transaction Costs For Discrete Rebalancing
	Transaction Costs in the Continuous-Time Rebalancing Limit
	HVAf for the Vulnerable Put Under the Delta Hedging Scheme

	KVA Adjustment for Model Risk and Frictions
	Trading Loss Process of the Bank
	Economic Capital and KVA
	Additional Valuation Adjustment
	KVA for the Vulnerable Put Under the Static Hedging Scheme
	KVA For the Vulnerable Put Under the Dynamic Hedging Scheme

	Conclusion
	Executive Summary (Encompassing Credit): A Global Valuation Framework
	Take-Away Message: Bad Models Should Be Banned not Managed 

	Pricing Equations in the Jump-to-Ruin Model
	Proof of Theorem 4.1
	Neural Nets Regression and Quantile Regressions for the Pathwise HVAf, EC, and KVA of Section 5.5
	HVAf Computations
	EC Computations
	KVA Computations

	Bibliography

