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In this work, we propose a novel weighting for the interfacial consistency terms arising in a Nitsche variational form. We demonstrate through numerical analysis and extensive numerical evidence that the choice of the weighting parameter has a great bearing on the stability of the method. Consequently, we propose a weighting that results in an estimate for the stabilization parameter such that the method remains well behaved in varied settings ranging from the configuration of embedded interfaces resulting in arbitrarily small elements to such cases where a large contrast in material properties exists. An important consequence of this weighting is that the bulk as well as the interfacial fields remain well behaved in the presence of (a) elements with arbitrarily small volume fractions, (b) large material heterogeneities and (c) both large heterogeneities as well as arbitrarily small elements. We then highlight the accuracy and efficiency of the proposed formulation through numerical examples, focusing particular attention on interfacial quantities of interest.

Introduction

The efficient treatment of interfacial phenomenon has been a challenge facing the computational mechanics community. Be it evolving interface problems such as those encountered in phase transformation/solidification problems, crack propagation problems, fluid-structure interaction problems or frictional contact problems; the key challenge lies in handling the kinematics at the interface efficiently. These problems are often complicated by the presence of discontinuous fields across the interface. Classical Galerkin finite element methods then require the mesh surfaces to align with the said surfaces of discontinuity to preserve optimal convergence behaviour. This adds considerably to the computational expense where the preprocessing step of generating conforming meshes needs to be repeated every time the surface of discontinuity changes orientation.

A discontinuous Galerkin framework, on the other hand, provides a natural way of accommodating these discontinuous fields since it does not assume inter-element continuity a priori as is the case in classical Galerkin approaches. This requirement then, of course, increases the size of the resulting discrete problem. Embedded methods can be seen as a bridge between these two approaches. The key idea in these approaches is to draw from the advantages of continuous Galerkin frameworks away from the discontinuity while following a discontinuous Galerkin approach in the vicinity of the interface. This facilitates a mesh independent representation of the surface of discontinuity without losing optimal convergence rates and thus these approaches have gained in popularity in recent years. However, efficient enforcement of inter-element/interfacial kinematics is critical to preserve the optimal performance of discontinuous Galerkin/embedded methods. As outlined in the seminal review by Arnold et al. [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF], depending on the choice of numerical flux, a host of discontinuous Galerkin approaches with varying mathematical properties can be derived.

Similarly, a standard way to account for constraints on embedded surfaces is to build them into the variational statement for the problem through the use of Lagrange mutipliers. However, the stability issues arising in a Lagrange multiplier based approach are well known [START_REF] Babuška | The Finite Element Method with Lagrange Multipliers[END_REF][START_REF] Brezzi | Existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers[END_REF]. This has led researchers to look for alternative ways which circumvent the stability problems arising in a dual Lagrange multiplier based approach while retaining the attractive properties of the method -better constraint enforcement and optimal convergence behaviour.

In this regard, Nitsche's method [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keine Randbedingungen untervorfen sind[END_REF] has seen a resurgence in recent years. The idea behind a Nitsche based approach is to simply replace the Lagrange multipliers arising in a dual formulation through their physical representation, namely the normal flux at the interface. Nitsche also added an additional penalty like term to restore the coercivity of the bilinear form. In recent years, the flexibility of the approach has resulted in a wide range of applications of the method from symmetric interior penalty formulations in discontinuous Galerkin methods (see Arnold et al. [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF] for a detailed review) to embedded meshes (see Laursen et al. [START_REF] Laursen | Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations[END_REF] and Sanders et al. [START_REF] Sanders | A nitsche embedded mesh method[END_REF]) and embedded interface methods.

Hansbo and Hansbo [START_REF] Hansbo | An unfitted finite element method, based on Nitsche's method, for elliptic interface problems[END_REF] used Nitsche's method to model elliptic interface problems with discontinuous coefficients on unfitted meshes. They later extended this method to model both strongly and weakly discontinuous elasticity problems [START_REF] Hansbo | A finite element method for the simulation of strong and weak discontinuities in solid mechanics[END_REF]. Sanders et al. [START_REF] Sanders | On the methods for stabilizing constraints over enriched interfaces in elasticity[END_REF] also used a Nitsche based extended finite element approach to model problems in elasticity. The presence of a "free" parameter which governed the stability of the method was still a detriment to the method however. Griebel and Schweitzer [START_REF] Griebel | A Particle-Partition of Unity Method-Part V: Boundary Conditions[END_REF] suggested the solution of a global eigenvalue problem to provide a lower bound on the stabilization parameter.

Mourad et al. [START_REF] Mourad | A bubble-stabilized finite element method for dirichlet constraints on embedded interfaces[END_REF] and Dolbow and Franca [START_REF] Dolbow | Residual-free bubbles for embedded Dirichlet problems[END_REF] stabilized the unstable Lagrange multiplier space through the use of bubble functions and showed the similarity of the resulting formulation with that of a Nitsche approach. The existence of a lower bound on the stabilization parameter at an element level for these methods suggested that a similar strategy could then be adapted to provide estimates for the stabilization parameter in Nitsche's method as well. Dolbow and Harari [START_REF] Dolbow | An efficient finite element method for embedded interface problems[END_REF] further extended this idea and used numerical analysis to provide estimates for the stabilization parameter. Notably, they showed the existence of closed form algebraic expressions for constant strain triangular and tetrahedral elements while for other finite elements they suggested solving only a local eigenvalue problem resulting in a more computationally efficient method.

While this classical form of Nitsche's method performed optimally in most situations, there were some anomalies. In Mourad et al. [START_REF] Mourad | A bubble-stabilized finite element method for dirichlet constraints on embedded interfaces[END_REF], Dolbow and Franca [START_REF] Dolbow | Residual-free bubbles for embedded Dirichlet problems[END_REF] and Dolbow and Harari [START_REF] Dolbow | An efficient finite element method for embedded interface problems[END_REF], the authors reported high sensitivity of the normal flux when evaluated directly. In fact, Hautefeuille et al. [START_REF] Hautefeuille | Robust imposition of dirichlet boundary conditions on embedded surfaces[END_REF] showed non-convergence of the normal flux in L ∞ norm when evaluated directly. In addition, Sanders et al. [START_REF] Sanders | On the methods for stabilizing constraints over enriched interfaces in elasticity[END_REF] reported mild oscillations in the normal traction and heavy oscillatory behaviour in the tangential traction at the interface. Laursen et al. [START_REF] Laursen | Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations[END_REF] and Sanders et al. [START_REF] Sanders | A nitsche embedded mesh method[END_REF] further showed stress locking pattern when tying a soft material with a stiff one. Further, Annavarapu et al. [START_REF] Annavarapu | Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods[END_REF] showed the incompatibility of the classical Nitsche formulation with explicit dynamics simulations. Interestingly, similar issues were also reported in discontinuous Galerkin based approximations, for instance, Lew and Negri [START_REF] Lew | Optimal convergence of a discontinuousgalerkin-based immersed boundary method[END_REF] artificially prevent the boundary from cutting arbitrarily small slices of elements. Finally, we mention Burman and Hansbo's [START_REF] Burman | Fictitious domain finite element methods using cut elements: Ii. a stabilized nitsche method[END_REF] work where they add a ghost penalty term to improve the conditioning of the discrete system when applying Dirichlet boundary conditions with Nitsche's method.

In this work, we aim to propose a unified solution to some of those numerical issues. We concentrate on "jump" type constraints in particular and propose a modified numerical flux based on a weighting other than a simple arithmetic average. The idea of using a weighted form has been tried under different contexts before. Notably, Zunino and co-workers [START_REF] Zunino | Discontinuous galerkin methods based on weighted interior penalties for second order pdes with non-smooth coefficients[END_REF][START_REF] Burman | A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems[END_REF][START_REF] Ern | A discontinuous galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF] proposed and analyzed a stiffness weighted interior penalty approach to model the case of vanishing diffusivity in advection-diffusion-reaction equations. The work of Cai et al. [START_REF] Cai | Discontinuous galerkin finite element methods for interface problems: A priori and a posteriori error estimations[END_REF] also analyzes a stiffness weighted interior penalty approach for heterogenous problems and establishes robust error estimators. Also in the context of embedded meshes, Sanders et al. [START_REF] Sanders | A nitsche embedded mesh method[END_REF] successfully used a stiffness weighted approach to alleviate stress locking problems exhibited by classical Nitsche's method. More recently, Zunino et al. [START_REF] Zunino | An unfitted interface penalty method for the numerical approximation of contrast problems[END_REF] also analyzed an unfitted Nitsche method and proposed an approach which results in a method that remains robust for the worst case among small cut elements and large heterogeneities.

However, the novelty of our approach lies in (a) establishing a clear relationship between the weights and the stabilization parameter -thereby allowing us to make a choice for the weights which least affects the stability of the method in the face of both small cut elements and large material heterogeneities and (b) numerically demonstrating the critical dependence of the interfacial quantities of interest on the stabilization parameter. In particular, we demonstrate, through numerical examples, that the standard choice of weights results in a stabilization parameter which, although establishes spatial stability, might not necessarily yield a stable interfacial field.

We begin by defining the model problem and the variational form in the next section. In Section 3, we discuss the spatial discretization as well as provide a lower bound on the stabilization parameter. We also show the relationship between the stability of the method and the weighting parameter in this section. In Section 4, we demonstrate the robustness of the proposed method against the classical Nitsche approach on several benchmark examples. Finally, in Section 5, we provide concluding remarks and outlook for our work. 

Γ 1 d Γ 2 d Γ 2 n Γ 1 n Γ * Ω 1 Ω 2 n

Model problem and variational formulation

We begin by considering a particular Poisson's problem in the bulk domains Ω 1 and Ω 2 :

∇ • κ m ∇u m = -f m in Ω m , u m = u m d on Γ m d , κ m ∇u m • n m = 0 on Γ m n , (1) 
that are coupled together at the interface by the conditions:

[[κ∇u]] • n 2 = j on Γ * , [[u]] = ī on Γ * . (2) 
where, ī and j are sufficiently smooth functions on the interface. The definitions of Ω 1 , Ω 2 , Γ m d and Γ m n are as shown in Figure 1. The interface Γ * acts as a partitioning boundary between the two bulk domains Ω 1 and Ω 2 . The normals n m are considered as outward pointing from their corresponding domains and the shorthand notation [[u]] corresponds to the jump, u 2 -u 1 .

While the particular focus of our interest in this study is the imposition of the jump conditions given by (2), the numerical instabilities that arise while imposing pure Dirichlet and jump constraints is also evident in the more general case of imposing stiff Neumann constraints as reported in Simone [START_REF] Simone | Partition of unity-based discontinuous elements for interface phenomena: computational issues[END_REF] and in Béchet et al. [START_REF] Béchet | A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method[END_REF] . It is therefore instructive to develop an approach which is equally capable of handling jump constraints as given by (2) as well as stiff Neumann constraints. To that end, we consider the interfacial conditions:

κ 1 ∇u 1 • n 1 = 1 ǫ ([[u]] -ī) + γ 2 j on Γ * , κ 2 ∇u 2 • n 2 = - 1 ǫ ([[u]] -ī) + γ 1 j on Γ * . (3) 
Physically, 1/ǫ can be interpreted as the stiffness of cohesive springs arising while modeling a traction-separation law at the interface or the regularization parameter in the Coulomb frictional laws. As can be seen from equation [START_REF] Brezzi | Existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers[END_REF], in the limiting case of ǫ = 0, the Robin type constraints collapse into jump constraints given by equation [START_REF] Babuška | The Finite Element Method with Lagrange Multipliers[END_REF]. Here (γ 1 , γ 2 ) are not problem specific parameters but are real numbers such that γ 1 + γ 2 = 1. A possible strategy for identifying these parameters will be discussed in Section 3.

Weak form

To arrive at the variational form for Nitsche's method, we can either proceed through a dual Lagrange multiplier approach and replace the Lagrange multipliers by their physical interpretation given as the normal flux at the interface as described previously in [START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF][START_REF] Hautefeuille | Robust imposition of dirichlet boundary conditions on embedded surfaces[END_REF] or alternatively, we can adopt a weighted residual approach as described in [START_REF] Fernández-Méndez | Imposing Dirichlet boundary conditions in mesh-free method[END_REF][START_REF] Juntunen | Nitsches method for general boundary conditions[END_REF]. We follow the latter approach and begin by defining the solution spaces, U = U 1 × U 2 and weighting spaces, W = W 1 × W 2 such that:

U m = u ∈ H 1 (Ω m ), u = u m d on Γ m d , W m = w ∈ H 1 (Ω m ), w = 0 on Γ m d .
Multiplying the governing equations in bulk by the weighting function, integrating by parts, applying the divergence theorem and summing the re-sulting equations from both the bulk domains we have

m Ω m ∇w m κ m ∇u m dΩ - m Γ * w m κ m ∇u m • n m dΓ = m Ω m w m f m dΩ. (4)
A similar procedure for the boundary conditions on Γ * yields

m ǫ Γ * w m κ m ∇u m •n m dΓ = Γ * [[w]]( ī-[[u]]) dΓ+ m ǫ Γ * (1-γ m )w m j dΓ. (5)
The presence of ǫ on the highest order term lends a singularly perturbed character to the weighted residual form of the interfacial coupling conditions as given by equation [START_REF] Laursen | Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations[END_REF]. For ǫ = 0 or ǫ → 0, in such problems we tend to neglect the flux terms arising from the boundary conditions, when in fact they are of a comparable order to the rest of the terms in the equation. Often, in order to regain information on the highest order term in such singularly perturbed problems, there is a need to recast the equations through some rescaling. To that end, we divide equation ( 5) by ǫ + β, where β is any positive number greater than zero, and obtain

m ǫ ǫ + β Γ * w m κ m ∇u m • n m dΓ = 1 ǫ + β Γ * [[w]]( ī -[[u]]) dΓ + m ǫ ǫ + β Γ *
(1 -γ m )w m j dΓ. [START_REF] Sanders | A nitsche embedded mesh method[END_REF] Now, summing the equations ( 4) and ( 6) yields:

m Ω m ∇w m κ m ∇u m dΩ - β ǫ + β m Γ * w m κ m ∇u m • n m dΓ + 1 ǫ + β Γ * [[w]][[u]] dΓ = m Ω m w m f m dΩ + 1 ǫ + β Γ * [[w]] ī dΓ + ǫ ǫ + β Γ * j w 1-γ dΓ. (7)
From the interfacial constraints (2), the two following expressions can be derived:

κ 1 ∇u 1 • n 1 + κ 2 ∇u 2 • n 2 = j, κ 2 ∇u 2 • n 2 = κ∇u γ • n 2 + γ 1 j. ( 8 
)
Using these two relations, the boundary integral term of weighted fluxes in ( 7) can be re-written as follows:

m Γ * w m κ m ∇u m • n m dΓ = Γ * w 1 j dΓ + Γ * [[w]]κ 2 ∇u 2 • n 2 dΓ = Γ * w 1 + γ 1 [[w]] j dΓ + Γ * [[w]] κ∇u γ • n 2 dΓ = Γ * j w 1-γ dΓ + Γ * [[w]] κ∇u • n 2 dΓ.
(9) Replacing this last expression in [START_REF] Hansbo | An unfitted finite element method, based on Nitsche's method, for elliptic interface problems[END_REF] [START_REF] Griebel | A Particle-Partition of Unity Method-Part V: Boundary Conditions[END_REF] where, the shorthand notation 1 , refers to the weighted average of a quantitiy (•) across the interface. Finally, on symmetrizing, the variational form can be stated as: Find u h ∈ U such that for all v h ∈ W such that:

leads to m Ω m ∇w m κ m ∇u m dΩ - β ǫ + β Γ * [[w]] κ∇u γ • n 2 dΓ + 1 ǫ + β Γ * [[w]][[u]] dΓ = m Ω m w m f m dΩ + 1 ǫ + β Γ * [[w]] ī dΓ + Γ * j w 1-γ dΓ,
• γ = γ 2 (•) 2 + γ 1 (•)
m Ω m ∇w m κ m ∇u m dΩ - β ǫ + β Γ * [[w]] κ∇u γ • n 2 dΓ - β ǫ + β Γ * [[u]] κ∇w γ • n 2 dΓ + 1 ǫ + β Γ * [[w]][[u]] dΓ - ǫβ ǫ + β Γ * κ∇u γ • n 2 κ∇w γ • n 2 dΓ = m Ω m w m f m dΩ - β ǫ + β Γ * ī κ∇w γ • n 2 dΓ + 1 ǫ + β Γ * [[w]] ī dΓ + Γ * j w 1-γ dΓ. (11)
From [START_REF] Mourad | A bubble-stabilized finite element method for dirichlet constraints on embedded interfaces[END_REF], we can see that the unscaled equations, with β = 0, return the standard penalty like techniques for enforcing stiff Neumann and Dirichlet/jump constraints which are no longer well defined for ǫ = 0. On the other hand, the rescaled equations provide us with a well defined variational form even for ǫ = 0, and is given by:

m Ω m ∇w m κ m ∇u m dΩ - Γ * [[w]] κ∇u γ • n 2 dΓ - Γ * [[u]] κ∇w γ • n 2 dΓ +α Γ * [[w]][[u]] dΓ = m Ω m w m f m dΩ - Γ * ī κ∇w γ • n 2 dΓ + α Γ * [[w]] ī dΓ + Γ * j w 1-γ dΓ, (12) 
where, we have redefined α = 1/β as the stabilization parameter. In fact, if we now choose γ 1 = γ 2 = 0.5, we recover Nitsche's variational form as presented in Dolbow and Harari [START_REF] Dolbow | An efficient finite element method for embedded interface problems[END_REF] for enforcing jump constraints across an interface. In the remainder of the paper, we concentrate on this special case of ǫ = 0 alone. At this point, we also remark on the similarity of the above variational form with that of a symmetric interior penalty discontinuous Galerkin approach. The only difference then lies in evaluating the boundary integrals which would arise at every internal boundary in a symmetric interior penalty approach as opposed to the case described here where they result only over the embedded surface.

The coercivity of Nitsche's variational form and consequently the performance of Nitsche's method depends critically on the stabilization parameter. Interestingly, in a discrete setting, estimates on the stabilization parameter are themselves dictated by the choice of weights, γ 1 and γ 2 for the weighted average operator in the variational form. We use numerical analysis to provide an optimal estimate for the stabilization parameter and also prescribe the best choice of weights for a robust numerical method in the next section.

Spatial discretization

We discretize the bulk domains Ω 1 and Ω 2 into a set of non-overlapping simplices. The interface Γ * is allowed to be embedded in the domain in the sense that it is allowed to cut through the elements. We construct a piecewise planar approximation to the interface and locate it through a zero iso-surface for a signed distance level set function in the domain. The interface is thus naturally discretized as the vertex set of intersection points between the zero iso-surface and the element edges. Any element with all its nodes having a positive level set value is considered to belong to Ω 2 while any element with all its nodes having a negative level set value is considered to belong to Ω 1 . For elements that are cut by the embedded surface, we create a duplicate set of nodes as proposed in Hansbo and Hansbo [START_REF] Hansbo | An unfitted finite element method, based on Nitsche's method, for elliptic interface problems[END_REF]. Essentially, we then have a discretized geometry that is defined separately on both the subdomains with an overlapping character in the vicinity of the embedded surface. To lend further clarity to the proposed formulation, we represent the overlapping element formulation for a cut tetrahedron with a triangular surface element in Figure 2. A similar element can of course be constructed when the embedded surface results in a quadrilateral surface element. The black circles are the physical nodes corresponding to the background mesh and the hollow circles are the ghost nodes. The blue circles represent the discretization of the embedded interface within an element. The discrete interface is constructed to be piecewise-planar throughout the mesh, and is based on a zero level-set. The discrete interfacial normal n in each element is then given by that of the discrete interfacial plane.

The finite element discretization is now constructed on this overlapping domain again as prescribed in [START_REF] Hansbo | An unfitted finite element method, based on Nitsche's method, for elliptic interface problems[END_REF]. The approximation and the weighting functions are then given by:

u h = m i∈I m H m N i u i , w h = m i∈I m H m N i w i , (13) 
where, I m is the set of all nodes whose support overlap the domain Ω m and H m is the characteristic function given by

H m (x) = 1 if x ∈ Ω m , 0 otherwise. ( 14 
)

Discrete equations

On introducing the discretization for the approximation and the weighting spaces as specified above into the variational form [START_REF] Dolbow | Residual-free bubbles for embedded Dirichlet problems[END_REF], it is straightforward to obtain the following linear algebraic system:

  K 1 b + K 1 n + K s 1 K c K c T K 2 b + K 2 n + K 2 s     u 1 u 2   =   f 1 b + f 1 n + f 1 s f 2 b + f 2 n + f 2 s   (15) 
Comparing with the standard finite element discrete form, the equations above consist of the Nitsche contributions K m n , contribution from the stabilization terms K m s and the coupling terms K c . The bulk stiffness terms K m b remain identical to the classical finite element stiffness expressions and are given by assembling the element level contributions, which are given as:

k m b = Ω m e B T κ m B dΩ e for m = 1, 2, (16) 
where the matrix B contains the gradient of the shape functions. The contributions arising from the stabilization terms, K m s is given by assembling:

k m s = α e Γ e * N T N dΓ e for m = 1, 2. ( 17 
)
The Nitsche contributions to the stiffness matrix are given by assembling:

k m n = -γ m e Γ e * N T κ m (n m ) T B dΓ e -γ m e Γ e * B T n m κ m N dΓ e for m = 1, 2. ( 18 
)
Finally, the coupling terms arising in the discrete system are assembled from the following element level contributions:

k c = -α e Γ e * N T N dΓ e -γ 2 e Γ e * N T κ 2 (n 2 ) T B dΓ e -γ 1 e Γ e * B T n 1 κ 1 N dΓ e , (19) 
where we define both the stabilization parameter α e and the weighting parameters (γ 1 e , γ 2 e ) at an element level to facilitate a computationally efficient way of providing a lower bound on the parameter. We discuss this further in Section 3.2.

The discrete forcing vector also has terms arising from bulk and interfacial quantities. The bulk forcing vector is given by assembling:

f m b = Ω m e N T f m dΩ e for m = 1, 2. ( 20 
)
The Nitsche and the stabilization contributions to the forcing vector are obtained by assembling: (21)

f 1 n = γ 1 e Γ e *

Estimate for the stabilization parameter

We follow Dolbow and Harari [START_REF] Dolbow | An efficient finite element method for embedded interface problems[END_REF] and provide a lower bound on the stabilization parameter that ensures a coercive bilinear form. To that end, we introduce the definitions of "energy" norm of a quantity over a domain and L 2 norm of a quantity over a surface

|u h | 2 Ω,κ = m Ω m ∇u m • κ m ∇u m dΩ, |u h | 2 Γ * = Γ * u h u h dΓ. ( 22 
)
In the discrete setting, the variational form (12) can be written as:

a(w h , u h ) = l(w h ), (23) 
where, a(w h , u h ) and l(w h ) are given by:

a(w h , u h ) = m Ω m ∇w mh κ m ∇u mh dΩ - Γ * [[w h ]] κ∇u h γ • n 2 dΓ - Γ * [[u h ]] κ∇w h γ • n 2 dΓ + α Γ * [[w h ]][[u h ]] dΓ, (24) 
l(w h ) = m Ω m w mh f m dΩ - Γ * ī κ∇w h γ • n 2 dΓ + α Γ * [[w h ]] ī dΓ + Γ * j w h 1-γ dΓ. ( 25 
)
From the definitions of the norms [START_REF] Zunino | An unfitted interface penalty method for the numerical approximation of contrast problems[END_REF] and the bilinear form [START_REF] Béchet | A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method[END_REF], it is easy to see that the discrete energy is given by

a(u h , u h ) = |u h | 2 Ω,κ + α|[[u h ]]| 2 Γ * -2 Γ * [[u h ]] κ∇u h γ • n 2 dΓ, ≥ |u h | 2 Ω,κ + α|[[u h ]]| 2 Γ * -2|[[u h ]]| Γ * | κ∇u h γ • n 2 | Γ * , ≥ (|u h | Ω,κ -C I |[[u h ]]| Γ * ) 2 + (α -C 2 I )|[[u h ]]| 2 Γ * . (26) 
The second line follows from Cauchy-Schwarz inequality. The last line follows from the generalized inverse estimate presented in Barbosa and Hughes [START_REF] Barbosa | The finite element method with lagrange multipliers on the boundary: circumventing the babuskabrezzi condition[END_REF], which states the existence of a mesh-dependent configuration constant such that

| κ∇u h γ • n 2 | Γ * ≤ C I |u h | Ω,κ . (27) 
We now use the generalized inverse estimate [START_REF] Juntunen | Nitsches method for general boundary conditions[END_REF] to provide a lower bound on C 2 I . First, we insist on the coercivity elementwise which places a stronger constraint on the stabilization parameter than that necessitated by global coercivity requirements. However, these element level calculations facilitate analytical estimates for constant strain triangular and tetrahedral elements resulting in a more efficient method. For a constant strain triangle or a tetrahedron, on assuming that the material constant κ m remains constant within an element we obtain

|u h | 2 Ω,κ = m meas(Ω m e )κ m |∇u mh | 2 . ( 28 
)
Similarly for average flux at the interface we have:

| κ∇u h γ • n 2 | 2 Γ * e = meas(Γ * e )(γ 1 e κ 1 ∇u 1 h • n 2 + γ 2 e κ 2 ∇u 2 h • n 2 ) 2 , ≤ meas(Γ * e )(γ 1 e κ 1 |∇u 1 h | + γ 2 e κ 2 |∇u 2 h |) 2 , ≤ meas(Γ * e )((γ 1 e κ 1 |∇u 1 h |) 2 (1 + δ) + (γ 2 e κ 2 |∇u 2 h |) 2 (1 + 1/δ)). ( 29 
)
where the first line follows from the definition of average flux at the interface, second from the definition of a unit normal. The third line follows on using Young's inequality for any δ > 0. If we choose

δ = meas(Ω 1 e )κ 2 (γ 2 e ) 2 meas(Ω 2 e )κ 1 (γ 1 e ) 2 , | κ∇u h γ • n 2 | 2 Γ * e ≤ meas(Γ * e ) m meas(Ω m e )κ m |∇u mh | 2 κ 2 (γ 2 e ) 2 meas(Ω 2 e ) + κ 1 (γ 1 e ) 2 meas(Ω 1 e ) . (30) 
Then from ( 30), ( 28) and ( 27) the mesh dependent parameter C I obeys the following relation:

C 2 I ≥ meas(Γ * e ) κ 2 (γ 2 e ) 2 meas(Ω 2 e ) + κ 1 (γ 1 e ) 2 meas(Ω 1 e ) . ( 31 
)
Now from [START_REF] Fernández-Méndez | Imposing Dirichlet boundary conditions in mesh-free method[END_REF], choosing α e ≥ C 2 I makes the bilinear form coercive and consequently provides stability to the method.

From (31), we can see that the stabilization parameter depends directly on the weighting parameters γ 1 e and γ 2 e . From a consistency perspective, we are only constrained in our choice of weights such that they sum to unity. However, from a stability perspective we notice that an arbitrary choice would necessitate a large value for the stabilization parameter providing an unstable character to the method. For instance, if the weights are identically chosen as γ 1 e = γ 2 e = 0.5 as is done in classical Nitsche's method, we notice that (a) as meas(Ω m e ) → 0 (b) as κ m tends to a large value or (c) a combination of the above would result in an unusually large estimate for the element level stabilization parameter.

With classical Nitsche's method, this has often resulted in numerical issues which have surfaced in different contexts and have been reported in Laursen et al. [START_REF] Laursen | Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations[END_REF] for embedded meshes, in Annavarapu et al. [START_REF] Annavarapu | Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods[END_REF] for explicit dynamics with embedded interfaces, in Dolbow and Harari [START_REF] Dolbow | An efficient finite element method for embedded interface problems[END_REF], Mourad et al. [START_REF] Mourad | A bubble-stabilized finite element method for dirichlet constraints on embedded interfaces[END_REF] and Sanders et al. [START_REF] Sanders | On the methods for stabilizing constraints over enriched interfaces in elasticity[END_REF] through an uncharacteristic sub-optimal convergence in the interfacial field for certain embedded interface problems.

Here, we propose that a smarter choice for the weights would alleviate these numerical issues and provide us with a more robust form of Nitsche's method. We propose a choice of

γ m e = meas(Ω m e )/κ m meas(Ω 1 e )/κ 1 + meas(Ω 2 e )/κ 2 for m = 1, 2, (32) 
which yields

C 2 I ≥ meas(Γ * e ) meas(Ω 1 e )/κ 1 + meas(Ω 2 e )/κ 2 (33) 
Clearly, now even for the pathological cases encountered with classical Nitsche's method that we mentioned above, this choice of weights provides us with a well-defined estimate for the stabilization parameter that remains of the same order of magnitude as the classical finite element stiffness terms. We present a detailed numerical senstivity study in the next section which further emphasizes this choice. Based on the parametric studies conducted in Embar et al. [START_REF] Embar | Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements[END_REF], we choose α = 2C 2 I , where C 2 I is obtained on considering the equality sign in (33).

As an additional remark, we also note that though the above analysis was conducted particularly for cut elements, it generalizes without modifications for the case when an interface aligns with the background mesh surfaces as is the case with symmetric interior penalty discontinuous Galerkin methods. Therefore, even for those methods, while a simple arithmetic average would work well for homogenous materials and a purely stiffness weighted approach for only material heterogeneities, the proposed weighting would prove more beneficial in handling both large material and mesh anisotropies.

Finally, we conclude by remarking that for bilinear quadrilaterals and other higher order elements, since the flux within an element no longer remains a constant, we cannot provide analytical estimates for the stabilization parameter. However, a qualitative dependence between the weights and the stabilization parameter can still be established in a similar way. For such elements an additional element level eigenvalue calculation could be performed to evaluate the stabilization parameter, as illustrated in Embar et al. [START_REF] Embar | Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements[END_REF].

Numerical examples

In this section, we revisit several numerical examples studied previously in [START_REF] Dolbow | An efficient finite element method for embedded interface problems[END_REF][START_REF] Sanders | On the methods for stabilizing constraints over enriched interfaces in elasticity[END_REF][START_REF] Laursen | Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations[END_REF][START_REF] Hautefeuille | Robust imposition of dirichlet boundary conditions on embedded surfaces[END_REF][START_REF] Sanders | A nitsche embedded mesh method[END_REF][START_REF] Dolbow | Residual-free bubbles for embedded Dirichlet problems[END_REF], where classical Nitsche's method was shown to perform poorly for certain pathological cases. We highlight the robustness of the proposed formulation over those very examples by contrasting its performance with the more conventional form prevalent in literature. Throughout the section and in the figure legends, we denote the weighted form of Nitsche's method by γ Nitsche and the standard form by Nitsche. The accuracy in bulk field is evaluated by means of the standard L 2 error norm while the accuracy in the gradient is evaluated by means of the energy semi-norm. For the interfacial flux quantities, we also utilize L ∞ norm as a measure of accuracy.

Sensitivity study

As a first example, we examine the following model problem as considered by Hansbo and Hansbo [START_REF] Hansbo | An unfitted finite element method, based on Nitsche's method, for elliptic interface problems[END_REF]:

∇ • κ m ∇u m = -f m in Ω m , u = 0 on Γ d = {x : z = 0|1}, κ m ∇u m • n = 0 on Γ n = {x : x = 0|1; y = 0|1}, [[κ∇u]] • n = 0 on Γ * = {x : ψ(x) = 0}, [[u]] = u 2 (x) -u 1 (x) on Γ * = {x : ψ(x) = 0}. ( 34 
)
Choosing f 1 = f 2 = 1, the equation admits an analytical solution given by:

u(x) =            (3κ 1 + κ 2 )z 4κ 1 (κ 1 + κ 2 ) - z 2 2κ 1 in Ω 1 = {x : ψ(x) < 0}, κ 2 -κ 1 + (3κ 1 + κ 2 )z 4κ 2 (κ 1 + κ 2 ) - z 2 2κ 2 in Ω 2 = {x : ψ(x) > 0}.
We now study the sensitivity of the interfacial flux with respect to (a) the interface location within a cut element (b) contrast in material properties across the interface; over a structured three dimensional tetrahedral mesh with six divisions in each direction. In order to carefully examine the sensitivity with respect to the interface location, we move a planar interface within one layer of elements from one internal boundary to another as shown in Figure 3(a). For each of these interfacial locations, we vary the material parameters such that the ratio between κ 2 and κ 1 ranges from 10 -6 to 10 6 .

For an application such as modeling plasticity at the interface, it is important that the equivalent expression for flux obtained from Nitsche's method i.e. α[[u]] -κ∇u γ • n is evaluated accurately at each gauss point on the interface. With such an application in mind, we plot the maximum error in flux at gauss points on the interface which is akin to looking at error in the L ∞ norm.

The error contour plots for weighted and classical Nitsche's method are shown in Figures 3(b)-(c). In the plot, the horizontal axis represents the normalized variation in interface location i.e. d z /h while the vertical axis represents the log value of variation in contrast in material properties viz. log(κ 2 /κ 1 ). It is clear from the plots that classical Nitsche's method is much more sensitive to both the degree of heterogeneity as well as the position of interface within a cut element. While the variation in error for the weighted form of Nitsche's method is relatively modest with error values ranging from 20-40% for almost the entire spectrum, classical Nitsche's method exhibits severe sensitivity with error values shooting up to 18000% for the worst possible cases. The contour plot is scaled between 8-100 % for better visualization.

It is also interesting to note that this sensitivity plot for classical Nitsche's method is not entirely symmetric. It seems that classical Nitsche's method is worst affected when d z /h → 0 and κ 2 /κ 1 = 10 -6 or its corresponding situation when d z /h → 1 and κ 2 /κ 1 = 10 6 . To get a better understanding, we study the sensitivity with respect to one parameter at a time while holding the other fixed. We first plot the maximum error by varying only the interface location for a high contrast in material properties in Figure 4(a) and for identical material properties in Figure 4(b). We then vary the contrast in material properties while holding the interface location fixed such that in Figure 5(a) the interface is approaching a lower internal boundary and in Figure 5(b) the interface is approaching an upper internal boundary.

From Figure 4(b), it is clear that even for a homogeneous material, as the interface approaches either internal boundary, for classical Nitsche's method, interfacial flux is erroneous to the point that it is barely usable without some post-treatment as reported earlier by [START_REF] Mourad | A bubble-stabilized finite element method for dirichlet constraints on embedded interfaces[END_REF][START_REF] Dolbow | Residual-free bubbles for embedded Dirichlet problems[END_REF][START_REF] Hautefeuille | Robust imposition of dirichlet boundary conditions on embedded surfaces[END_REF]. On the other hand, weighted Nitsche's method remains well behaved. The only difference between classical and weighted approaches for the aforementioned case is the averaging of the flux that arises in the consistency terms in the variational form. This averaging as it turns out is the key to the numerical stability of the method.

Averaging biased towards either side mandates a large value of the sta- bilization parameter which causes the method to revert back to unstable behaviour as exhibited by penalty function approaches with a large penalty parameter. Essentially, a large value for the stabilization parameter nullifies the advantages of a weakly continuous approach and enforces the constraints a little too strongly. This further explains the asymmetry in the plots in Figures 4(a), 5(a) and 5(b). If we concentrate on the case when κ 2 /κ 1 = 10 6 and d z /h → 1, for classical Nitsche's method, we notice a spike in the error. For that case, a simple averaging is already overestimating the flux from Ω 2 and when the material parameter is large we end up amplifying that affect. On the other hand, when d z /h → 0, a simple average is underestimating the flux contribution from Ω 2 and a high value of material parameter counterbalances that to some extent resulting in better performance of classical Nitsche's method.

This suggests to us that as long as we can ensure an "unbiased" averaging in the flux for the consistency terms arising in the variational form, we retain a well behaved numerical method. Fortunately, the essence of the above qualitative discussion is captured by the expression for stabilization parameter (31) which leads us to the choice of the weights for the averaging as specified in (32).

Pure bending

We next consider a rectangular beam of length L and height H subjected to pure bending conditions as considered by Laursen et al. in [START_REF] Laursen | Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations[END_REF] and Sanders et al. in [START_REF] Sanders | On the methods for stabilizing constraints over enriched interfaces in elasticity[END_REF][START_REF] Sanders | A nitsche embedded mesh method[END_REF] and demonstrate the robustness of the proposed approach.

Ω 1 Ω 2 Γ * M M
Figure 6: Geometry and loading for the beam bending problem.

On considering idealized pure bending with no shear and centering the computational domain around (0,0), one can arrive at the analytical expressions for the displacement field given by:

u m x (x) = 2pxy E m H in Ω m , u m y (x) = -p(x 2 -νy 2 ) E m H in Ω m . ( 35 
)
where p is the maximum value of the distributed traction applied at the boundaries to produce the bending moment M. For the purpose of this numerical experiment, we choose p = 1. In addition, we consider a straight vertical interface such that ψ(x) = x -x * , partitions the domain Ω into component sub-domains Ω 1 = {x : ψ(x) < 0} and Ω 2 = {x : ψ(x) > 0}. Displacements and tractions are assumed to be continuous across the interface. We first demonstrate the stress locking phenomenon as observed in [START_REF] Laursen | Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations[END_REF][START_REF] Sanders | A nitsche embedded mesh method[END_REF]. The phenomenon is best highlighted when there is a high contrast in stiffnesses on either side of an embedded interface chosen as ψ(x) = x, as well as a corresponding scaling in the mesh densities. Figure 7 shows a zoom of a representative mesh in the vicinity of the interface. Here, we consider the material properties such that the Young's moduli E 1 = 10 9 and E 2 = 10 3 while the Poisson's ratios are identically considered as ν 1 = ν 2 = 0. The loading is prescribed by constraining the displacement field to the exact solution given by equation (35) on the Dirichlet boundary Γ d = {x : x = -L/2|L/2}. Clearly from Figure 8, we can see that classical Nitsche's method results in wildly oscillating behaviour in the bending stress and renders the results unusable when the bending stresses are desired by an analyst.

Stress locking

Furthermore, we conduct a spatial convergence study on five sequentially refined unstructured meshes. The mesh on the stiffer side is approximately four times as refined as the mesh on the softer side. Also, the meshes are refined such that this contrast in mesh densities is always maintained the same for each refinement. method fails to converge which corroborates the result seen in Figure 8. It is interesting to note that an area-weighted Nitsche's method as proposed by Hansbo and Hansbo [START_REF] Hansbo | An unfitted finite element method, based on Nitsche's method, for elliptic interface problems[END_REF] for elliptic problems and Annavarapu et al. [START_REF] Annavarapu | Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods[END_REF] in the context of explicit dynamics also fails to converge. This is not surprising however as equation (31) suggests that an area-weighted approach can still lead to a large stabilization parameter for certain configurations of cut elements if there is a high degree of heterogeneity. The weighting proposed here on the other hand is expected to behave better by always keeping the stabilization terms in check as demonstrated by the optimal convergence behaviour of the proposed approach. It is also interesting to note from Figure 9(a) that classical as well as the area-weighted approaches yield sub-optimal convergence behaviour in L 2 norm in the bulk field as well.

Interfacial traction

In order to successfully model more complex interfacial behaviour like sliding with either perfect plasticity or the Coulomb frictional models, it is essential to have an accurate representation of normal as well as tangential traction at the interface. With that in mind, we now examine the interfacial traction for the aforementioned beam bending problem.

We again consider a rectangular beam subjected to pure bending as above but with length L = 16 and height H = 4 and first conduct computations on a structured triangular mesh for a non-pathological case, such that d x /h = 0.5 for classical Nitsche's method. The definition of d x is as shown in the inset of Figure 10(a). We consider 21 divisions along both x and y directions and consider the interface to be located exactly at the center of the domain, such that ψ(x) = x. The material properties are identically prescribed as E 1 = E 2 = 10 3 and ν 1 = ν 2 = 0. The exact solution is still given by equation (35) and is again prescribed as a Dirichlet boundary condition on the surfaces Γ d = {x : x = -L/2|L/2}. The normal and interfacial traction profiles are plotted in Figures 10(a)-(b) respectively for classical Nitsche's method, weighted Nitsche's method as well as for penalty method. The penalty parameter used for penalty method scales as E/h, h being the characteristic length of the mesh.

Similar plots were provided by Sanders et al. in [START_REF] Sanders | On the methods for stabilizing constraints over enriched interfaces in elasticity[END_REF], where they noticed that normal traction profile showed very mild oscillations while the tangential traction oscillated wildly for classical Nitsche's method. They rightly attributed this to the poor performance of a constant strain triangular element. However, we contend here that while a constant strain triangular element contributes in part, some of this unstable behaviour can also be attributed to the numerical instability inherent in the classical Nitsche formulation as evident from the relatively smoother profiles produced by the penalty method for the chosen penalty parameter. We acknowledge however that a large value of penalty parameter corrupts the traction profile in a much more severe way. It is therefore interesting to note from 10(a)-(b), the traction profile obtained from the weighted formulation is much smoother in both the normal and tangential directions. Tangential traction still exhibits oscillatory pattern but the amplitude of these oscillations is much lower than classical Nitsche's method.

Since the weighted form exhibits advantages even in a case that is supposedly non-pathological for classical Nitsche's method, we now perform the same analysis for a pathological case with d x = .01. We also consider a highly heterogeneous case with E 1 = 10 9 and E 2 = 10 3 . Poisson's ratio is identically considered zero in both domains. Clearly from Figures 10(c)-(d), one can appreciate that the traction obtained from classical Nitsche's method is as bad as that obtained from an unstable Lagrange multiplier implementation.

Penalty method also seems to revert back to unstable behaviour but we must mention that the penalty parameter used here scales as max(E 1 , E 2 )/h. It is likely that a smaller parameter yields better performance but the problems in a penalty function approach are twofold -(a) we see a loss in optimal convergence behaviour in both bulk and interfacial fields and (b) the accuracy of the results in both the bulk and interfacial fields are highly dependent on the penalty parameter and this choice is completely at an analyst's discretion leading to a lack of robustness.

We also compare the interfacial tractions obtained for the beam bending problem with two other choices of weighting in the Nitsche approach: (a) the area-weighted approach as proposed in references [START_REF] Hansbo | An unfitted finite element method, based on Nitsche's method, for elliptic interface problems[END_REF][START_REF] Annavarapu | Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods[END_REF] and (b) the stiffnessweighted approach as proposed in references [START_REF] Zunino | Discontinuous galerkin methods based on weighted interior penalties for second order pdes with non-smooth coefficients[END_REF][START_REF] Burman | A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems[END_REF][START_REF] Ern | A discontinuous galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF]. We again consider a highly heterogeneous case with E 1 = 10 3 and E 2 = 10 9 , while the Poisson's ratio is identically zero. Again, it is clear from the plots that the approach presented in this work leads to a much more stable traction profile than one would obtain from choosing either a simple area-weighted approach or a pure stiffness weighted approach.

It is also worth remarking that one might improve on the results obtained on using only the approach suggested in [START_REF] Hansbo | An unfitted finite element method, based on Nitsche's method, for elliptic interface problems[END_REF][START_REF] Annavarapu | Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods[END_REF] or the one suggested in [START_REF] Zunino | Discontinuous galerkin methods based on weighted interior penalties for second order pdes with non-smooth coefficients[END_REF][START_REF] Burman | A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems[END_REF][START_REF] Ern | A discontinuous galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF] throughout, by switching between them on an element by element basis as suggested by Zunino et al. [START_REF] Zunino | An unfitted interface penalty method for the numerical approximation of contrast problems[END_REF]. However, as one can appreciate from the plots shown in Figure 11 such a strategy might not be sufficient in the face of both small cut elements and large heterogeneities. Finally, we also compare the normal and tangential tractions obtained from the weighted formulation with the analytical solutions in Figures 12(a)-(b). We can clearly see that the proposed weighted formulation remains well behaved even for a severely pathological case as described here. We again notice some oscillatory behaviour in the tangential field however. At the same time, we also remark that the amplitude of oscillations remains approximately the same as that seen for the case when d x /h = 0.5 and identical material properties indicating minimal sensitivity as opposed to classical Nitsche's method.

Though this situation is designed particularly to highlight a worst case scenario for classical Nitsche's method, while modeling heterogeneities with generalized/extended finite element methods or with discontinuous Galerkin methods; one often encounters such situations and it is highly inconvenient to use tolerancing schemes to get rid of these pathological cases. It is therefore encouraging that the weighted formulation remains well behaved and allows for a method without the need for any tolerancing schemes. 

Tangential Traction

Length along the interface 

Popcorn interface

As a final example, we revisit the logarithmic field problem with a popcorn shaped surface considered by Hautefeuille et al. in [START_REF] Hautefeuille | Robust imposition of dirichlet boundary conditions on embedded surfaces[END_REF] and reformulate the Dirichlet problem studied there as a jump problem given below. Choosing f = -1/r 2 in Ω 2 = {x : ψ(x) > 0} and f = 0 in Ω 1 = {x : ψ(x) < 0}, it is easy to see that the exact solution is given by a constant field u 1 = 1 in Ω 1 and a logarithmic field u 2 = log r in Ω 2 where r is a radial coordinate defined with respect to the center of the field x c = (0.5, 0.5, 0.5). The computational domain is shown in Figure 13. We plot the maximum error in the average flux at the interface i.e. ∇u γ • n 2 , evaluated at each Gauss point in Figure 14. In Hautefeuille et al., it was shown that on directly calculating the normal flux from the gradient of the field, classical Nitsche's method fails to converge in the L ∞ norm. In contrast, from Figure 14 we can see that the weighted formulation proposed here converges with optimal rates. In fact, for this particular problem, in the L ∞ norm, the weighted formulation seems to have better accuracy than even the domain integral postprocessing technique to recover flux as proposed by Ji and Dolbow [START_REF] Ji | On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method[END_REF].

Conclusion

In this work, we demonstrated the lack of robustness exhibited by the classical Nitsche formulation for a certain class of embedded interface problems. Indeed, the bulk field remains reasonably well behaved even in these pathological cases and it is therefore essential to look at the behaviour of the interfacial field to comment on the robustness of the method. We applied numerical analysis to highlight the possible cause of this lack of robustness and proposed an alternate variational form based on a smarter choice for the weights in the Nitsche consistency terms.

We then demonstrated through several numerical examples the robustness of the proposed variational form and contrasted it against the standard form prevalent in literature. We report quadratic rates of convergence in the bulk field and linear rates of convergence in the interfacial fields. We also report minimal sensitivity with respect to the interface location as well as degree of heterogeneity on using the proposed form. Even though our simulations are restricted to embedded interface problems, we contend that the results hold for discontinuous Galerkin methods such as the symmetric interior penalty approaches where there is a huge contrast in material properties and/or when there is a large gradient in the mesh density. We also contend that for applications where the interfacial field is of critical importance, such as evolving interface problems and frictional contact, it is imperative to use the weighted form of Nitsche's method.

Going forward, the obvious extension would be to modify the proposed formulation to model non-linearities at the interface and handling of multiple interfaces within a single element.
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 1 Figure 1: Interface Γ * partitions the bulk domains Ω 1 and Ω 2 . The Dirichlet boundaries Γ 1 d , Γ 2 d and the Neumann boundaries Γ 1 n and Γ 2 n are shown. The complimentary part of the boundary is traction free. The normal to the boundary of each domain, n m , points outwards as shown.

  Partial element: Ω 2

Figure 2 :

 2 Figure2: Overlapping element formulation for a tetrahedral element cut by an embedded interface. The black circles are the physical nodes corresponding to the background mesh and the hollow circles are the ghost nodes. The blue circles represent the discretization of the embedded interface within an element. The discrete interface is constructed to be piecewise-planar throughout the mesh, and is based on a zero level-set. The discrete interfacial normal n in each element is then given by that of the discrete interfacial plane.
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 3 Figure 3: Contour plot of the percentage error in L ∞ norm for equivalent flux at the interface. The variation in the interfacial location d z /h is along the horizontal axis while the variation in contrast in material properties log(κ 2 /κ 1 ) is along the vertical axis. Percentage error is indicated by the color contour.

Figure 4 :

 4 Figure 4: Sensitivity in interfacial flux error with interfacial location. Percentage error in the interfacial flux in L ∞ norm is plotted along the vertical axis and the normalized interfacial location is plotted along the horizontal axis for (a) high degree of heterogeneity (b) homogeneous material.
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 5 Figure 5: Sensitivity in interfacial flux error with degree of heterogeneity. Percentage error in the interfacial flux in L ∞ norm is plotted along the vertical axis and the log ratio of material parameters is plotted along the horizontal axis for (a) an interface approaching a lower internal boundary (b) an interface approaching an upper internal boundary.
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 7 Figure 7: Representative mesh geometry zoomed near the interface for the stress locking problem.
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 9 a) plots the convergence of bulk field in L 2 norm while Figure 9(b) plots the convergence of the bending stress σ xx in the energy semi-norm. From Figure 9(b), it is clear that classical Nitsche's
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 8 Figure 8: Bending stresses top: for classical Nitsche's method and bottom: for γ Nitsche's method.

Figure 9 :

 9 Figure 9: Convergence study for the beam bending problem solved on a rectangular beam with a straight vertical interface.

Figure 10 :

 10 Figure 10: Plot of normal and tangential traction at the interface for beam bending problem. Contrast in material properties as well as distance between the closest internal boundary and the interface is varied from identical material properties (E 1 = E 2 = 10 3 ) on both sides and d x = h/2 for top-left and right to E 1 = 10 9 , E 2 = 10 3 and d x = .01 for bottom-left and right. The inset in (a) shows the definition of parameters d x and h.

Figure 11 :

 11 Figure 11: Comparison of analytical surface tractions obtained using the proposed approach with those obtained using other choices of weights. The material parameters are E 1 = 10 3 , E 2 = 10 9 and d x = .05.

Figure 12 :

 12 Figure 12: Comparison of analytical surface tractions with those obtained using γ Nitsche's method for the pathological case: E 1 = 10 9 , E 2 = 10 3 and d x = .01.

Figure 13 :

 13 Figure 13: Computational domain with Ω 2 shown in green and Ω 1 shown in blue for the logarithmic field problem with a popcorn shaped embedded surface.

  ∆u = -f in Ω = Ω 1 ∪ Ω 2 , u = log r on Γ d = {x : x = 0|1; y = 0|1; z = 0|1}, [[∇u]] • n = ∇u 2 • n 2 on Γ * = {x : ψ(x) = 0}, [[u]] = u 2 (x) -u 1 (x) on Γ * = {x : ψ(x) = 0}.

Figure 14 :

 14 Figure 14: Convergence of flux in L ∞ norm for the logarithmic field problem with a popcorn shaped embedded surface. In the figure legend, we denote the error in flux obtained from the domain integral formulation by DI.
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