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Algebraicity and smoothness of fixed point stacks

Matthieu Romagny

To the memory of Bas Edixhoven

Abstract. We study algebraicity and smoothness of fixed point stacks for flat group schemes

which have a finite composition series whose factors are either reductive or proper, flat,

finitely presented, acting on algebraic stacks with affine, finitely presented diagonal. For

this, we extend some theorems of [SGA3.2] on functors of homomorphisms Hom(G,H) and

functors of reductive subgroups Sub(H) for an affine, possibly non-flat group scheme H .

1 Introduction

1.1 Context and motivation. In various situations of algebraic geometry, one needs to consider the
fixed points of a flat group scheme acting on an algebraic stack. Currently, probably the biggest provider
of such examples is the enumerative industry: Gromov-Witten and Donaldson-Thomas theories provide a
wealth of apparitions of fixed points in localization formulas for virtual classes in equivariant cohomology.
We refer to Joyce [Jo21] for a recent account. Accordingly, fixed point stacks pervade research articles
in the last two decades; with no attempt at exhaustivity, let us mention the works [CLCT09], [Di12],
[We11], [Sk13], [KL13], [GJK17], [OS19], [MR19], [KS20], [LS20], [BTN21], [CJW21]. The paper [Ro05]
settles the question of algebraicity of fixed point stacks only in the case of actions of proper groups, which
limitates the scope of applications (and is typically not sufficient in most works cited above). It is the
purpose of the present article to extend the results of loc. cit., providing algebraicity and smoothness
statements for fixed point stacks in greater generality. A related issue is that of representability of functors
of group homomorphisms Hom(G,H) and functors of subgroups Sub(H). In [SGA3.2], Exp. X1, § 4 such
representability is proved in the case where the target group scheme H is smooth. Unfortunately, for the
application to the fixed points of a group G acting on an algebraic stack X , it is the inertia IX → X

which plays the role of H, and this is almost never flat. We also explore these issues, working with a
possibly non-flat group H. We answer questions raised in [SGA3.2] by both relaxing the assumptions
and strengthening the results.

1.2 Main results. Throughout the paper, we denote by S the base scheme. To get to the heart of
the matter we need to recall some terminology. Following [SGA3.2], Exp. XIX, 2.7 and [AOV08], 2.2 or
[Alp13], 12.1, we say that a group scheme G→ S is:

(i) reductive if it is affine and smooth with connected, reductive geometric fibres;
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(ii) linearly reductive if it is flat, separated, of finite presentation, and the functor QCohG(S) → QCoh(S),
F 7→ FG is exact. This includes: group schemes of multiplicative type, finite locally free group schemes
of order invertible on S, abelian schemes, reductive group schemes if S is a Q-scheme, and all extensions
of such group schemes (we refer to 4.3.5 and the comments after it).

Here is our result on fixed point stacks; see 4.1.4 and 4.3.6.

1.2.1 Theorem. Let X be an S-algebraic stack with affine, finitely presented diagonal. Let G be a
flat, finitely presented S-group algebraic space acting on X .

(1) Assume that G has a finite composition series whose factors are either reductive or proper, flat, finitely
presented. Then the fixed point stack X G is algebraic, and the morphism X G → X is representable
by algebraic spaces, separated and locally of finite presentation. If G is reductive, this morphism is even
representable by schemes.

(2) Assume that X is smooth and G is linearly reductive. Then X G is smooth.

The proof necessitates results on functors of group homomorphisms. Before stating them, we bring to
the reader’s attention the subtle question of the (non-)affineness of Hom(G,H), when it is representable.
Quoting [SGA3.2], Exp. XI, Rem. 4.6 we know that if G is of multiplicative type and H is a closed
subgroup of some GLn, then Hom(G,H) is a disjoint sum of affine schemes, but ‘on se gardera de croire
cependant que les préschémas qui représentent [ces] foncteurs sont toujours des sommes d’une famille
de schémas affines sur S’ (‘the reader should refrain from thinking that the schemes representing these
functors are always a sum of a family of affine S-schemes’). In recent work of Brion, the same problem
is encountered and certain conditions (FT) and (AFT) are introduced in order to best describe this
phenomenon; see [Bri21], § 4.2. The statement in item (3) below is our contribution to this question, in
the present generality.

The following result is found in 3.1.4, 3.3.2, 4.4.2.

1.2.2 Theorem. Let G be an S-group space that has a finite composition series whose factors are
either reductive or proper, flat, finitely presented. Let H be an affine, finitely presented S-group scheme.

(1) The functor Hom(G,H) is representable by an S-algebraic space separated and locally of finite pre-
sentation.

(2) The subfunctor of monomorphisms Mono(G,H) is representable by an open subspace of Hom(G,H).
Moreover, all monomorphisms G→ H are closed immersions.

(3) If G is reductive, Hom(G,H) is representable by a scheme with the following property: each subscheme
(resp. closed subscheme) which is quasi-compact over S, is quasi-affine (resp. affine) over S.

(4) If G is linearly reductive and H is flat, the algebraic stack Hom(BG,BH) is smooth. In particular,

(i) Hom(G,H) → S is flat and locally complete intersection,

(ii) Hom(G,H) → S is smooth if moreover H → S is smooth.

We point out that while the results 1.2.2(1)–(3) are ingredients for the proof of 1.2.1(1), on the
contrary the flatness and smoothness properties in 1.2.2(4) are consequences of 1.2.1(2), which has an
independent proof.

Our third and last main result is about functors of reductive subgroups of affine, possibly non-flat
group schemes. We refer to 3.2.1 and 4.4.5.
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1.2.3 Theorem. Let H be an affine, finitely presented S-group scheme.

(1) The functor Subred(H) of reductive subgroups of H is representable by an algebraic space separated
and locally of finite presentation which is a disjoint sum indexed by the types of reductive groups:

Subred(H) =
∐
t

Subt(H).

(2) The summand of subgroups of multiplicative type

Submult(H) =
∐

t=[(M,M∗,∅,∅)]

Subt(H)

is representable by a scheme with the following property: each subscheme (resp. closed subscheme) which
is quasi-compact over S, is quasi-affine (resp. affine) over S.

(3) Assume moreover that H → S is flat. Then Submult(H) → S is flat and locally complete intersection,
and if S is of characteristic 0 then Subred(H) → S is smooth.

1.3 Comments on related work. The first general results on fixed points and homomorphism func-
tors are of course due to the work of the precursors of [SGA3.2], [SGA3.3], [Ra70]. These provide the
foundation for the results presented here.

Fixed point stacks are defined and studied in some generality for actions of proper groups in [Ro05], of
which the results of the present text can be seen as a natural continuation. In Subsection 4.5 we take the
opportunity to correct a claim made in [Ro05], Rem. 2.4 which turns out to be partially false. Namely,
say that G,N are flat, finitely presented group schemes with N a normal subgroup of G. Assume that G
acts on a stack X (we may take X algebraic and assume that the fixed point and quotient stacks below
are algebraic). Then, we provide an example where (X N )G/N and X G are not isomorphic (in fact it is
not clear how to let G/N act on X N and we discuss this issue). On the other hand we prove that there
is always an isomorphism of stacks (X /N)/(G/N) ∼−→ X /G.

In the paper [AHR20], Alper, Hall and Rydh show that when X is a Deligne-Mumford stack locally
of finite type over a field with an action of G = Gm, then X G → X is a closed immersion. This can be
easily extended to the case where X is a Deligne-Mumford stack, G is smooth with connected fibres, and
the base scheme S is arbitrary. The Deligne-Mumford assumption is essential; in 4.1.5 we show that Gm

acts on the classifying stack of αp-torsors (over a base scheme of characteristic p > 0) in such a way
that X Gm → X is not a monomorphism. On the other hand, if X has finite inertia and the group
scheme G is smooth, the valuative criterion for properness holds for X G → X . In forthcoming work
Aranha, Khan, Latyntsev, Park and Ravi use this fact to prove a (virtual) Atiyah-Bott formula under
certain hypotheses.

In [SGA3.2], another feature of the scheme M := Hom(G,H) is studied. Namely, for h ∈ H let
inn(h) : H → H be the inner automorphism k 7→ hkh−1. In [SGA3.2], Exp. XI, § 5 it is shown that if
G,H are finitely presented with G of multiplicative type and H affine and smooth, then the morphism

H ×M −→M ×M, (h, v) 7−→ (inn(h) ◦ v, v)

is smooth. In the case of a base field, this is extended by Brion [Bri21] to the situation where G is
linearly reductive and H is locally of finite type (but not necessarily affine). Following the arguments
of [SGA3.2], Exp. IX 3.6 and Exp. XI 2.3, with our running assumptions ‘affine of finite presentation’
on H, it should be possible to extend this further to the case where S is arbitrary.

Recent work of Bhatt, Halpern-Leistner, Preygel (see [Bh16] Lemma 2.5, [BHL17], Section 2, [HLP19],
Theorem 5.1.1) seems to indicate that it should be possible to extend our results to algebraic stacks with
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quasi-affine diagonal, and to target group schemes H that are quasi-affine. We did not explore this
possibility.

Moving away from linearly reductive group schemes, general results on the smoothness of fixed points
seem difficult to obtain. Recent work of Hamilton [Ha21] provides an interesting attempt in this direction.

Finally we point out that the present text encompasses the results of the preprint [Ro21] which it
supersedes.

1.4 Organization of the paper. The table of contents after the acknowledgements describes the plan
of the article.

1.5 Acknowledgements. I wish to express warm thanks to Arkadij Bojko, who provided the initial
stimulus with the question of algebraicity of fixed point stacks. I thank Michel Brion for conversations
on the topic of this article, and for bringing the paper [Bri21] to my attention. For various conversations
and feedback, I also thank Dhyan Aranha, Alice Bouillet, Pierre-Emmanuel Chaput, Philippe Gille, Luc
Illusie, Marion Jeannin, Bernard Le Stum, Laurent Moret-Bailly, Cédric Pépin, Simon Riche and Angelo
Vistoli.

This work was supported by the ANR project CLap-CLap (ANR-18-CE40-0026-01) and by the Centre
Henri Lebesgue (ANR-11-LABX-0020-01). I would like to thank the executive and administrative staff
of IRMAR and of the Centre Henri Lebesgue for creating an attractive mathematical environment.
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2 Homomorphisms from a diagonalizable group

The proof of Theorem 1.2.2 builds on the key case where G is a diagonalizable group scheme D(M). In
this section, we establish representability in that case. In Subsection 2.1 we state the result we want
to prove and we reduce it to the more specific statement 2.1.2. In Subsection 2.2 we prove a crucial

4



descent statement used in Subsection 2.3 to complete the proof of 2.1.2 by verifying the conditions of
Grothendieck’s theorem on unramified functors.

2.1 Statement and first reductions

2.1.1 Theorem. Let G,H be finitely presented S-group schemes with G diagonalizable and H affine.
Then Hom(G,H) is representable by an S-scheme separated and locally of finite presentation.

Proof : The group G is a product G = N × Gr
m where N is finite diagonalizable. For a product

G = G1×G2, the functor Hom(G,H) is the subfunctor of Hom(G1,H)×Hom(G2,H) composed of pairs
of maps that commute. Using [SGA3.2], Exp. VIII, 6.5.b) we see that this is a closed subfunctor. It
follows that if the theorem is true for G1 and G2 then it is true for G, hence it is enough to consider the
factors individually. If G = N is finite, it is classical and recalled in Lemma A.10 that Hom(N,H) is
representable by an affine S-scheme. It remains to handle the case G = Gm, which we now do.

The assumptions and conclusions of the theorem being local for the Zariski topology on S, we can
assume that S is affine. Since G and H are of finite presentation, with the usual results on limits
([EGA] IV, § 8) we see that Hom(G,H) → S is locally of finite presentation. Consequently we can
further reduce to the case where S is of finite type over Spec(Z).

For a prime number ℓ let Sℓ ⊂ S be the open subscheme where ℓ is invertible. Choose two distinct
primes ℓ, ℓ′ and write S = Sℓ ∪ Sℓ′ . Since the question of representability is local on S, it is enough to
handle Sℓ and Sℓ′ separately. In this way we reduce to the case where ℓ ∈ O×

S .
Let µℓn ⊂ Gm be the group scheme of ℓn-th roots of unity. By Lemma A.10 again, the functor

Hom(µℓn ,H) is representable by an affine S-scheme. In particular, the morphisms Hom(µℓn+1 ,H) →
Hom(µℓn ,H) are affine so the limit

L ··= lim
n

Hom(µℓn ,H)

is representable by a scheme which is affine over H, hence over S also. By restricting morphisms to the
torsion subschemes, we have a map of functors :

ϕ : Hom(Gm,H) −→ L, f 7−→ {f|µℓn
}n>0.

It is enough to prove that ϕ is representable by schemes. For this let T be an S-scheme and let T → L be
a map, that is, a compatible collection {un : µℓn,T → HT} of morphisms of T -group schemes. We want
to prove that the fibred product Hom(Gm,H) ×L T is representable. For this we change our notation,
rename T as S, reduce to the case where T is affine as before, and the result is exactly Theorem 2.1.2
below. �

We have thus reduced the proof of 2.1.1 to the following statement, whose proof occupies the rest of
the section.

2.1.2 Theorem. Let ℓ be a prime number, S = Spec(R) an affine Z[1/ℓ]-scheme of finite type, H
a finitely presented affine S-group scheme, and {un : µℓn → H}n>0 a family of morphisms of S-group
schemes such that un+1 extends un for each n. Let F be the functor defined for all S-schemes T by:

F (T ) =
{
morphisms of groups f : Gm,T → HT that extend the un,T , n > 0

}
.

Then F is representable by an S-scheme separated and locally of finite presentation.
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2.2 Descent along schematically dominant morphisms

We keep all notations as in 2.1.2. The Density Theorem ([SGA3.2], Exp. IX, Théorème 4.7 and Re-
mark 4.10) implies that F (T ) contains at most one point; that is, F → S is a monomorphism. To prove
that F is representable, we will use Grothendieck’s theorem on unramified functors. The verification
that F fulfills the conditions of the theorem will be based to a large extent on the following fact: the
map F (T ) → F (T ′) is an isomorphism for all schematically dominant morphisms of schemes T ′ → T .
This is Lemma 2.2.6 below. Its proof will use a variation on the argument used to show that formal
homomorphisms from a group scheme of multiplicative type to an affine group scheme are algebraic, see
[SGA3.2] Exp. IX, § 7. It is the purpose of this subsection to settle this.

We work over a Z[1/ℓ]-algebra A.

2.2.1 ℓ-power roots of unity. We consider the scheme of ℓ-power roots of unity:

µℓ∞ = colimµℓn .

This is the disjoint sum of the schemes of primitive roots of unity:

µℓ∞ =
∐

n>0

µ∗ℓn .

If Φn denotes the ℓn-th cyclotomic polynomial, we have A[µ∗ℓn ] = A[z]/(Φn) and

A[µℓ∞ ] =
∏

n>0

A[z]/(Φn).

The restriction of functions is a canonical injective morphism:

c : A[Gm] −֒→ A[µℓ∞ ]

which we describe further below.

2.2.2 Cyclotomic expansion of Laurent polynomials. For relative integers i 6 j let

A(i; j) =

{
P =

∑

i6s6j

asz
s ∈ A[z±1]

}

be the module of Laurent polynomials whose monomials have degree in the range {i, . . . , j}.

2.2.3 Lemma. Each nonzero Laurent polynomial P ∈ A[z±1] has a unique expression

P = r0 + r1(z − 1) + r2(z
ℓ − 1) + · · ·+ rn(z

ℓn−1

− 1)

with ri ∈ A(−⌊ϕ(ℓi)/2⌋;ϕ(ℓi)− ⌊ϕ(ℓi)/2⌋ − 1) and rn 6= 0. In other words we have a decomposition

A[z±1] =
⊕

n>0

Dn

into sub-A-modules Dn ··= A(−⌊ϕ(ℓn)/2⌋;ϕ(ℓn)− ⌊ϕ(ℓn)/2⌋ − 1) · (zℓ
n−1

− 1).
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Proof : Let deg be the degree and val the valuation. If P is constant, the result is clear. Otherwise,
there is n > 1 minimal with the property that

−⌊ϕ(ℓn)/2⌋ 6 val(P ) 6 deg(P ) < ℓn − ⌊ϕ(ℓn)/2⌋.

Let Q0 = z⌊ϕ(ℓ
n)/2⌋P , so we have:

0 6 val(Q0) 6 deg(Q0) < ℓn.

Let Bn = A(−⌊ϕ(ℓn)/2⌋;ϕ(ℓn)−⌊ϕ(ℓn)/2⌋ − 1) · z⌊ϕ(ℓ
n)/2⌋ be the z⌊ϕ(ℓ

n)/2⌋-translate of the A-module in
the statement. For each i the module Bi is finite free of rank ϕ(ℓi) = deg(Φi), hence

ρi : Bi −֒→ A[z] −→ A[z]/(Φi)

is an isomorphism and Bi can serve as a module of representatives of residue classes for Euclidean division
modulo Φi. We define a sequence of polynomials {Qi} by running the division algorithm:

• we set s0 = ρ−1
0 (Q0 modΦ0) and get a division Q0 = s0 +Φ0Q1;

• inductively, while Qi 6= 0 we set si = ρ−1
i (Qi modΦi) and get a division Qi = si +ΦiQi+1.

Since the sequence {deg(Qi)}i>0 is strictly decreasing, the process eventually stops. We obtain the desired
expression for P by setting ri = z−⌊ϕ(ℓn)/2⌋si. �

Like in the proof of Lemma 2.2.3, since rank(Di) = ϕ(ℓn) the map Dn →֒ A[z±1] → A[z±1]/(Φn) is
an isomorphism.

2.2.4 Lemma. Let c : A[Gm] → A[µℓ∞ ] =
∏

n>0A[z]/(Φn), P 7→ (P modΦ0, P modΦ1, P modΦ2, . . . )
be the map of §2.2.1.

(1) For an element qi ∈ A[z]/(Φi), write Pi the unique Laurent polynomial in Di with qi = Pi modΦi.
The image of c is the set of families (q0, q1, q2, . . . ) such that there is N such that qn = P0 + P1 + · · · +
PN modΦn for all n > N . In this case, we have (q0, q1, q2, . . . ) = c(P ) with P = P0 + P1 + · · · + PN .

(2) If A→ B is an injective ring homomorphism, the commutative square of inclusions

A[Gm] A[µℓ∞ ]

B[Gm] B[µℓ∞ ].

is cartesian.

Proof : (1) If (q0, q1, q2, . . . ) = c(P ), we can write P = P0 + P1 + · · · + PN with Pi ∈ Di. Since
Di ⊂ (zℓ

i
−1)A[z±1] and Φi divides zℓ

i
−1, we have Pi = 0 modΦj for all j > i. Therefore for all n > N

we have:
qn = P modΦn = P0 + P1 + · · ·+ PN modΦn.

Conversely if qn = P0 + P1 + · · · + PN modΦn for all n > N where Pi ∈ Di reduces to qi modulo Φi,
then obviously (q0, q1, q2, . . . ) = c(P ) with P = P0 + P1 + · · ·+ PN .

(2) This follows from the description in (1). �

We can now prove that the objects of the functor F descend along schematically dominant morphisms.
For the latter notion, we refer the reader to [EGA] IV3.11.10. The next two lemmas are two variants of
this descent statement.
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2.2.5 Lemma. Let T ′ → T be a morphism of S-schemes such that T = Spec(A) is affine and
T ′ = ∐i Spec(Ai) is a disjoint sum of affines, with A→

∏
iAi injective. Then the map F (T ) → F (T ′) is

bijective.

The result is easier when T ′ → T is quasi-compact, but the general case will be crucial for us.

Proof : Since F (T ) has at most one point, the map F (T ) → F (T ′) is injective and it is enough to prove
that it is surjective. We start with an element of F (T ′), i.e. a family of morphisms of Ai-group schemes
fi : Gm,Ai

→ HAi
each of which extends the morphisms un : µn,Ai

→ HAi
, n > 0. For simplicity, in

the sequel we write again fi : OH ⊗ Ai → Ai[z
±1] and un : OH → R[z]/(zℓ

n
− 1) the corresponding

comorphisms of Hopf algebras; this should not cause confusion. For each R-algebra A we also write
u∞,A : OH ⊗A→ A[µℓ∞ ] for the product of the un,A. These fit in a commutative diagram:

OH ⊗Ai

Ai[z
±1] Ai[µℓ∞ ].

fi
u∞,Ai

cAi

We now reduce to the case where A and the Ai are noetherian. For this let L resp. Li be the image of
R → A, resp. of R → Ai. Being quotients of R, the rings L and Li are noetherian. Moreover, since
A →

∏
Ai is injective then so is L →

∏
Li. Since the un are defined over R hence over L, we have a

commutative diagram:
OH ⊗ Li

OH ⊗ Li Li[z
±1] Li[µℓ∞ ]

Ai[z
±1] Ai[µℓ∞ ].

u∞,Li

fi,Li

fi

cLi

cAi

Since the lower right square is cartesian, there is an induced dotted arrow. In this way we see that fi is
actually defined over Li. So replacing A (resp. Ai) by L (resp. Li), we obtain the desired reduction.

Let Â ··=
∏

iAi. Taking products over i, we build a commutative diagram:

OH ⊗A A[µℓ∞ ]

OH ⊗ Â

∏
i(OH ⊗Ai)

∏
i(Ai[z

±1]) Â[µℓ∞ ]

u∞,A

∏
fi

∏
cAi

Henceforth we set C ··= OH ⊗ A and we write Φ0 the dotted composition in the diagram above. What
the diagram shows is that

C
∏

i(Ai[z
±1]) Â[µℓ∞ ]

Φ0

∏
cAi

factors through A[µℓ∞ ]. According to Lemma 2.2.4(2) applied with B = Â, this implies that

C
∏

i(Ai[z
±1]) ÂZΦ0

∏
canAi
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factors through AZ, providing a map Φ : C → AZ. From the diagrams expressing the fact that the fi
respect the comultiplications, taking products over i, we obtain a commutative diagram:

C AZ

C ⊗A C AZ ⊗A A
Z AZ×Z.

Φ

Φ⊗Φ

Let g ∈ C and write Φ(g) = (am)m∈Z. Since A is noetherian, Lemme 7.2 of [SGA3.2], Exp. IX is
applicable and shows that only finitely many of the am are nonzero, that is Φ(g) ∈ A[z±1]. Therefore Φ
gives rise to a map f : C → A[z±1]. The fact that f respects the comultiplication of the Hopf algebras
follows immediately by embedding A[z±1]⊗A[z±1] into Â[z±1]⊗Â[z±1] where the required commutativity
holds by assumption. The fact that f respects the counits is equally clear. �

2.2.6 Lemma. Let T ′ → T be a morphism of S-schemes which is schematically dominant. Then the
map F (T ) → F (T ′) is bijective.

Proof : Since F (T ) has at most one point, the map F (T ) → F (T ′) is injective and it is enough to prove
that it is surjective. By fpqc descent of morphisms, this holds when T ′ → T is a covering for the fpqc
topology. Applying this remark with chosen Zariski covers ∐Ti → T and ∐i,jT

′
ij → ∐iTi ×T T

′ → T ′, we
see that the vertical maps in the following commutative square are bijective:

F (T ) F (T ′)

∏
F (Ti)

∏
F (T ′

ij).

∼ ∼

Therefore it is enough to prove that F (Ti) →
∏

j F (T
′
ij) is bijective, for each i. Choosing Ti = Spec(Ai)

and T ′
ij = Spec(A′

ij) afffine, the assumption that T ′ → T is schematically dominant implies that Ai →∏
A′

ij is injective. In this way we are reduced to the statement of Lemma 2.2.5. �

2.3 Representability using Grothendieck’s theorem on unramified functors

Recall the statement of Grothendieck’s theorem on representation of unramified functors; all affine
schemes Spec(A) appearing are assumed to be S-schemes, and we write F (A) instead of F (Spec(A)).

2.3.1 Theorem (Grothendieck [Mu65]). Let S be a locally noetherian scheme and F a set-valued
contravariant functor on the category of S-schemes. Then F is representable by an S-scheme which is
locally of finite type, unramified and separated if and only if Conditions (F1) to (F8) below hold.

(F1) The functor F is a sheaf for the fpqc topology.

(F2) The functor F is locally of finite presentation; that is, for all filtering colimits of rings A = colimAα,
the map colimF (Aα) → F (A) is bijective.

(F3) The functor F is effective; that is, for all noetherian complete local rings (A,m), the map F (A) →
limF (A/mk) is bijective.
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(F4) The functor F is homogeneous; more precisely, for all exact sequences of rings A→ A′ ⇒ A′⊗AA
′

with A local artinian, lengthA(A
′/A) = 1 and trivial residue field extension kA = kA′ , the diagram

F (A) → F (A′)⇒ F (A′ ⊗A A
′) is exact.

(F5) The functor F is formally unramified.

(F6) The functor F is separated; that is, it satisfies the valuative criterion of separation.

For the last two conditions we let A be a noetherian ring, N its nilradical, I a nilpotent ideal such that
IN = 0, T = Spec(A), T ′ = Spec(A/I). We assume that T is irreducible and we call t its generic point.

(F7) Assume moreover that A is complete one-dimensional local with a unique associated prime. Then
any point ξ′ : Spec(A/I) → F such that

ξ′t : Spec((A/I)t) −→ Spec(A/I) −→ F

can be lifted to a point ξ∗ : Spec(At) → F , can be lifted to a point ξ : Spec(A) → F .

(F8) Assume that ξ′ : Spec(A/I) → F is such that

ξ′t : Spec((A/I)t) −→ Spec(A/I) −→ F

can not be lifted to any subscheme of Spec(At) which is strictly larger than Spec((A/I)t). Then
there exists a nonempty open set W ⊂ T such that for all open subschemes W1 ⊂ T contained in W ,
the restriction ξ′|W ′

1

: W ′
1 → F (with W ′

1 = W1 ×T T
′) can not be lifted to any subscheme of W1

which is strictly larger than W ′
1.

In what follows we apply Grothendieck’s theorem to prove 2.1.2, whose notation we use. Recall in
particular that

F (T ) = {morphisms f : Gm,T → HT that extend the un,T , n > 0}.

We verify the conditions one by one for this functor.

2.3.2 Conditions (F1), (F4), (F5), (F6), (F7). We begin by checking the easiest conditions.

(F1) This follows from fpqc descent, see e.g. [SGA1], Exp. VIII, Th. 5.2.

(F4) Since A → A′ is injective, by Lemma 2.2.5 the map F (A) → F (A′) is a bijection. This gives a
statement which is much stronger than the (F4) in the theorem.

(F5) Since F → S is a monomorphism, it is formally unramified.

(F6) Since F → S is a monomorphism, it is separated.

(F7) Since A has a unique associated prime, the map Spec(At) → Spec(A) is schematically dominant.
Hence by Lemma 2.2.5, the point ξ∗ : Spec(At) → F automatically extends to Spec(A).

2.3.3 Condition (F2). Let F := Hom(Gm,H) be the functor of all morphisms of group schemes
Gm → H, that is, not just those that extend the collection un. It is standard that F is locally of finite
presentation, see [EGA] IV3.8.8.3. Should the affine scheme limnHom(µℓn ,H) be locally of finite type
over S, it would follow that F → S is locally of finite presentation ([EGA] IV1.1.4.3(v)). However this is
not the case in general, and the verification of (F2) needs more work.
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So let A = colimAα be a filtering colimits of rings. We want to prove that colimF (Aα) → F (A) is
bijective. We look at the diagram

colimF (Aα) F (A)

colimF (Aα) F (A).∼

Since F is locally of finite presentation, the bottom row is an isomorphism. We deduce that the upper
row is injective. We shall now prove that the upper row is surjective, and in fact that the diagram is
cartesian.

2.3.4 Lemma. Let f : Gm,A → HA be a morphism extending un,A : µℓn,A → HA for all n > 0. Then
there exists an index α such that f descends to a map fα : Gm,Aα → HAα extending un,Aα for all n > 0.

Proof : Since G and H are finitely presented, the morphism f is defined at finite level, that is there exists
an index α and a morphism of Aα-group schemes g : Gm,Aα → HAα whose pullback along Spec(A) →
Spec(Aα) is f . Since the groups are affine, the morphism g is given by a map of rings g♯ : OH ⊗ Aα →
Aα[z

±1]. Fix a presentation OH = R[x1, . . . , xs]/(P1, . . . , Pt). Then :

• u♯n is determined by the elements zn,j ··= u♯n(xj) ∈ R[z]/(zℓ
n
− 1) satisfying Pk(zn,1, . . . , zn,s) = 0

for k = 1, . . . , t,

• g♯ is determined by the elements yj = g♯(xj) ∈ Aα[z
±1] satisfying Pk(y1, . . . , ys) = 0 for k = 1, . . . , t.

Moreover, to say that f extends un,A means that we have the equality zn,j = πn(yj) in A[z]/(zℓ
n
− 1),

for all j, where
πn : Aα[z

±1] → A[z]/(zℓ
n

− 1)

is the projection. So we have to prove that we may enlarge the index α in such a way that g extends
un,Aα for all n > 0.

For n0 > 0 an integer, consider the finite free R-module E0 = R(−⌊ℓn0/2⌋; ℓn0 − ⌊ℓn0/2⌋ − 1) in the
notation of 2.2.2. Then πn0|E0

is an isomorphism and for all n > n0 we can define

χn = πn ◦ (πn0|E0
)−1 : R[z]/(zℓ

n0
− 1) −→ R[z]/(zℓ

n

− 1).

By base change, these objects are defined over any R-algebra. We choose n0 large enough so that E0⊗RAα

contains the Laurent polynomials y1, . . . , ys.
In the present context, the condition that f extends all the maps un,A : Gn,A → HA is a finiteness

constraint imposed by f on {un} (whereas in other places of our arguments it is best seen as a condition
imposed by {un} on f). Indeed, from the relations zn,j = πn(yj) in A, we deduce that

zn,j = χn(zn0,j) in A[z]/(zℓ
n

− 1) for all n > n0,

namely χn(zn0,j) = (πn ◦ (πn0|E0
)−1)(πn0

(yj)) = πn(yj) = zn,j . We claim that we may increase α to
achieve that these equalities hold in Aα[z]/(z

ℓn − 1), for all n > n0 and all j. In order to see this, note
that the elements δn,j := zn,j − χn(zn0,j) are defined over R, and as we have just proved, they belong
to the kernel of the morphism R[z]/(zℓ

n
− 1) → A[z]/(zℓ

n
− 1). Let I ⊂ R be the ideal generated by

the coefficients of the expressions of δn,j on the monomial basis, for varying n > n0 and j. Since R is
noetherian, I is generated by finitely many elements. These elements vanish in A, hence they vanish
in Aα provided we increase α a little, whence our claim.
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The relations zn,j = πn(yj) in A[z]/(zℓ
n
− 1) with j = 1, . . . , s and n 6 n0 being finite in number, we

may increase α so as to ensure that all of them hold in Aα[z]/(z
ℓn − 1). Then for n > n0 we have

zn,j = χn(zn0,j) = χn(πn0
(yj)) = πn(yj) in Aα[z]/(z

ℓn0
− 1)

again. That is, g extends the maps un,Aα for all n > 0. �

2.3.5 Condition (F3). Let (A,m) be a noetherian complete local ring. We want to prove that the map
F (A) → limF (A/mk) is bijective. We write again F := Hom(Gm,H). We look at the diagram

F (A) limF (A/mk)

F (A) limF (A/mk).∼

From [SGA3.2], Exp. IX, Th. 7.1 we know that F is effective, that is the bottom arrow is bijective. We
deduce that the upper row is injective. We shall now prove that the upper row is surjective, and in fact
that the diagram is cartesian. So let fk : Gm,A/mk → HA/mk be a collection of A/mk-morphisms such
that fk extends un,A/mk : µℓn,A/mk → HA/mk for all n > 0, and let f : Gm,A → HA be a morphism that
algebraizes the fk. We must prove that f extends un,A, for each n. For this let in : µℓn,A → Gm,A be
the closed immersion. The two maps f ◦ in and un coincide modulo mk for each k > 1, hence so do the
morphisms of Hopf algebras

(f ◦ in)
♯, u♯n : OH ⊗A→ A[z]/(zℓ

n

− 1).

Since A[z]/(zℓ
n
− 1) is separated for the m-adic topology, we deduce that (f ◦ in)

♯ = u♯n and hence
f ◦ in = un. This concludes the argument.

2.3.6 Remark. We could also appeal to the following more general result extending the injectivity
part of [EGA] III1.5.4.1: let (A,m) be a noetherian complete local ring, and S = Spec(A). Let X,Y be
S-schemes of finite type with X pure and Y separated. Let f, g : X → Y be S-morphisms. If we have
the equality of completions f̂ = ĝ, then f = g. For the notion of a pure morphism of schemes we refer
to Appendix A. For the proof of the italicized statement, by [EGA1new], 10.9.4 the morphisms f and g
agree in an open neighbourhood of Spec(A/m). Then the arguments in the proof of [Ro12], Lemma 2.1.9
apply verbatim.

2.3.7 Condition (F8). This condition will be verified with the help of the following lemma.

2.3.8 Lemma. Let T be a scheme and T ′ a closed subscheme. Let ξ′ : T ′ → F be a point. Then there
is a largest closed subscheme ZT ⊂ T such that ξ′ extends to ZT . Moreover, its formation is Zariski local:
if U ⊂ T is an open subscheme and U ′ = U ∩ T ′, we have ZT ∩ U = ZU .

Proof : Throughout, for all open subschemes U ⊂ T we write U ′ = U ∩ T ′ and all closed subschemes Z
of U such that ξ′|U ′ extends to Z are implicitly assumed to contain U ′. We proceed by steps.

Let U = Spec(A) be an affine open subscheme of T . Consider the family of all closed subschemes
Zα = V (Iα) ⊂ U to which ξ′|U ′ extends. Consider the ideal I = ∩Iα and define ZU = V (I). Since the

map A/I →
∏
A/Iα is injective, applying Lemma 2.2.5, we see that ξ′|U ′ extends to ZU . By its very

definition the closed subscheme ZU is largest.
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Let U, V be two affine opens of T with U ⊂ V . We claim that ZV ∩ U = ZU . Indeed, since ξ′|V ′

extends to ZV then ξ′|U ′ extends to ZV ∩U , hence ZV ∩U ⊂ ZU . Conversely, let Z be the schematic image
of ZU → U → V . The latter map being quasi-compact, the map ZU → Z is schematically dominant. By
Lemma 2.2.6 it follows that ξ′ZU

extends to Z. By maximality this forces Z ⊂ ZV , hence ZU ⊂ ZV ∩ U .
Let U, V be arbitrary affine opens of T . We claim that ZU ∩ V = ZV ∩ U . Indeed, by the previous

step, for all affine opens W ⊂ U ∩ V we have ZU ∩ V ∩W = ZW = ZV ∩ U ∩W .
Let ZT be the closed subscheme of T obtained by gluing the ZU when U varies over all affine opens;

thus ZT ∩U = ZU by construction. Now ξ′ extends to ZT , because ξ′|U extends to ZU for each U , and we
can glue these extensions. Moreover ZT is maximal with this property, because if ξ′ extends to some closed
subscheme Z ⊂ T then for each affine U the element ξ′|U extends to Z ∩U , hence Z ∩U ⊂ ZU = ZT ∩U ,
hence Z ⊂ ZT .

The fact that ZT ∩ U = ZU for all open subschemes U follows by restricting to affine opens. �

In order to verify Condition (F8), we write T = Spec(A) and T ′ = Spec(A/I). The assumption that
ξ′t : Spec((A/I)t) → Spec(A/I) → F does not lift to any subscheme of Spec(At) which is strictly larger
than Spec((A/I)t) means that the inclusion T ′ ⊂ ZT is an equality at the generic point. It follows that
T ′∩W = ZT ∩W = ZW for some open W . Applying Lemma 2.3.8 to variable opens W1 ⊂W , we obtain
T ′ ∩W1 = ZT ∩W1 = ZW1

, which shows that W fulfills the required condition and we are done. �

This concludes the proof of Theorem 2.1.2 and thus also of Theorem 2.1.1.

3 Homomorphisms from a group with reductive and proper composi-

tion factors

In this section we build on Theorem 2.1.1 to prove our main results on the functors of homomorphisms
of group schemes and functors of reductive subgroups: to wit, Theorems 1.2.2 and 1.2.3 from the Intro-
duction.

3.1 Homomorphisms from a reductive group

In this section G and H are S-group schemes.

3.1.1 Lemma. Assume that G → S is reductive and H → S is separated and of finite presenta-
tion. Let Hom(G,H) be the functor of morphisms of group schemes, and Mono(G,H) the subfunctor of
monomorphisms. Then the following hold.

(1) The inclusion Mono(G,H) ⊂ Hom(G,H) is representable by open immersions.

(2) If G→ S has no geometric fibre of characteristic 2 containing a direct factor isomorphic to SO2n+1

for some n > 1, then for each maximal torus T ⊂ G the following commutative diagram is cartesian:

Mono(G,H) Hom(G,H)

Mono(T,H) Hom(T,H).

The refined statement (2) will not be needed in the paper, but we find it worth reporting.
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Proof : We handle both cases (1) and (2) simultaneously, with only a little variation in the end.
The question of representability of Mono(G,H) by an open subscheme of Hom(G,H) is étale-local

over S so we may assume that S is affine and that there exists a maximal torus T ⊂ G ([SGA3.2],
Exp. XII, Th. 1.7). Also since G and H are finitely presented, we may assume that S is noetherian.

Let f : G → H and K ··= ker(f). Restricting to the open locus where f|T is a monomorphism
([SGA3.2], Exp. IX, Cor. 6.6) we may also assume that K ∩ T = 1.

Let S0 ⊂ S be the locus of points s such that Ks is trivial. We claim it is enough to prove that S0
is open. Indeed, in this case K ×S S0 → S0 is finite and the augmentation ideal of its structure sheaf is
zero in each fibre, hence zero. It follows that K ×S S0 is trivial and S0 represents the subfunctor of S
defined by the condition that f is a monomorphism.

We proceed to prove that S0 is open in S. Since it is constructible and S is noetherian, it is enough to
prove that it is stable by generization, see [EGA] IV3.9.6.1. Let s s0 be a specialization with s0 ∈ S0
and let S′ → S be a morphism from a trait (spectrum of a discrete valuation ring) whose image witnesses
this specialization. Let S′′ → S′ be a ramified extension whose residue field contains the field of definition
of the geometric nilpotent ideal of Ks′′ , so in particular (Ks′′)red is a smooth subgroup scheme of the
generic fibre Ks′′ . Replacing S by S′′ we can assume that S is a trait and (Ks)red is a smooth subgroup.
We have to prove that Ks is trivial, assuming that Ks0 = 1 in case (1) and that Ks0 ∩Ts0 = 1 in case (2).

Let (Ks)
◦
red be the reduced identity component. By the assumption K∩T = 1 together with conjugacy

of maximal tori, the normal, smooth connected subgroup (Ks)
◦
red contains no torus, hence is unipotent.

Since Gs is reductive, we find (Ks)
◦
red = 1. This shows that Ks is finite. If L ⊂ Ks is a subgroup of

multiplicative type which is either étale or infinitesimal, there is a maximal torus of Gs containing L: in
the étale case this is standard, and in the infinitesimal case this is Th. 1.1 of Geiss and Voigt [GV04].
After a further étale extension S′/S if needed, a suitable conjugate of L lies in K ∩ T , hence L = 1. It
follows that Ks is finite unipotent.

The neutral component K◦
s is infinitesimal unipotent. When G→ S has no characteristic 2 geometric

fibre containing a direct factor isomorphic to SO2n+1, the main result of Vasiu [Va05] says that Gs has no
infinitesimal unipotent group scheme, hence K◦

s = 1. In the general case, letting Gd = ker(F d : G→ G(d))
be the d-th Frobenius kernel of G → S, we have K◦

s ⊂ (Gd)s for large enough d. Since Gd is finite flat
over S, the scheme-theoretic closure C ⊂ Gd of K◦

s is finite flat also. Since H is separated we have
C ⊂ K and from the assumption Ks0 = 1 we deduce that the rank of C → S is 1, that is C = 1. Thus
K◦

s = Cs = 1 and the upshot is that Ks is étale (and finite unipotent).
Then the automorphism scheme Aut(Ks) is étale, so by connectedness of Gs the conjugation action

Gs → Aut(Ks) is trivial. Therefore Ks is central, and since the center of Gs is a torus, it is trivial. �

3.1.2 Remark. Let S be the spectrum of a field k of characteristic 2 and V = ke0 ⊕ · · · ⊕ ke2n the
standard vector space of dimension 2n + 1. Let G = SO(q) be the orthogonal group of the quadratic
form q(x0, . . . , x2n) = x20 + x1xn+1 + · · · + xnx2n. The polarization ψ(x, y) := q(x + y) − q(x) − q(y) is
alternating with kernel V0 = ke0, inducing a nondegenerate alternating form ψ0 on W0 = V/V0. This
gives rise to an isogeny f : SO2n+1 = SO(q) → Sp2n = Sp(ψ0) whose kernel is isomorphic to α2n

2 , see
[Va05], § 2.1. Let T ⊂ SO2n+1 be a maximal torus. The restriction of f to T is a monomorphism; in
other words, the commutative square of Lemma 3.1.1 is not cartesian.

3.1.3 Lemma. Assume that G → S is reductive and H → S is separated, of finite presentation, flat
and pure. Let Isom(G,H) be the functors of isomorphisms of group schemes.

(1) The inclusion Isom(G,H) ⊂ Mono(G,H) is representable by closed immersions of finite presentation,

(2) The inclusion Isom(G,H) ⊂ Hom(G,H) is representable by immersions locally of finite presentation.
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Proof : (1) By [SGA3.2], Exp. XVI, Cor. 1.5.a) any monomorphism f : G → H is a closed immersion.
Thus Isom(G,H) ⊂ Mono(G,H) is the subfunctor defined by the condition that the surjective map of
sheaves OH → f∗OG is an isomorphism. It follows from [RG71], Première partie, Th. (4.1.1) that this
condition is representable by closed immersions of finite presentation.

(2) Follows from (1) and Lemma 3.1.1. �

3.1.4 Theorem. Assume that G → S is reductive and H → S is affine and of finite presentation.
Then, the following hold.

(1) Hom(G,H) is representable by an S-scheme separated and locally of finite presentation.

(2) Each subscheme (resp. closed subscheme) of Hom(G,H) which is quasi-compact over S is quasi-affine
(resp. affine) over S.

Proof : The fact that Hom(G,H) → S is locally of finite presentation is checked using the usual results
on limits from [EGA] IV, § 8. Hence it will be enough to complete the following three steps:

(i) prove that Hom(G,H) is a separated S-algebraic space;

(ii) prove (2) (with “subspace” replacing “subscheme”);

(iii) deduce that Hom(G,H) is a scheme.

(i) This question is étale-local over S so by [SGA3.3], Exp. XIX, Th. 2.5 we may assume that there exists
a split maximal torus T ⊂ G. Then it follows from [SGA3.3], Exp. XXIV, Cor. 7.1.9 that the restriction
map Hom(G,H) → Hom(T,H) is representable and affine. Since Hom(T,H) → S is representable and
separated by Theorem 2.1.1, we see that Hom(G,H) → S is representable by a separated S-algebraic
space.

(ii) Let Y ⊂ Hom(G,H) be a subspace which is quasi-compact over S. In order to show that Y is
quasi-affine over S we can afford an étale base change S′ → S, so we can assume that there exists a split
maximal torus T ⊂ G. Let Tn = ker(n : T → T ) be the finite flat torsion subschemes. The limit

L = lim Hom(Tn,H)

is an affine S-scheme. As in [SGA3.2] 7.1.1 we choose a pinning of G with a set of simple roots ∆ of
cardinality n, and associated elements uα ∈ U×

α (S), wα ∈ NormG(T )(S) for α ∈ ∆ (see loc. cit. for the
precise definition of these elements). It follows from [SGA3.2], Proposition 7.1.2 that the morphism

Hom(G,H) Hom(T,H)×H2n

f
(
f|T , (f(uα), f(wα))α∈∆

)

is a closed immersion. Using the Density Theorem we have a sequence of monomorphisms

F := Hom(G,H) Hom(T,H)×H2n L′ := L×H2n.

Let Z ⊂ L′ be the schematic image of Y → L′; this is a closed subscheme, hence affine over S. Since Y
is quasi-compact and L′ is separated, then Y → L′ is quasi-compact. Thus the morphism Y → Z is
schematically dominant ([SP22], Tag 01R8). It then follows from Lemma 2.2.6 that Y → Hom(T,H)
factors uniquely through a map Z → Hom(T,H). Thus the closed immersion Z → L′ factors through a
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closed immersion Z → Hom(T,H) ×H2n. Then Y → Z is an immersion; in particular it is quasi-affine
so Y is quasi-affine over S. If at the start it is assumed that Y ⊂ Hom(G,H) is an S-quasi-compact closed
subspace, then Y → Z is a closed immersion; being also schematically dominant, it is an isomorphism,
hence Y is affine over S in this case.

(iii) Let Hom(G,H) = ∪Zi be a covering by quasi-compact open subspaces. According to (ii) the Zi are
quasi-affine over S. In particular they are schemes, hence Hom(G,H) is a scheme. �

3.2 Functor of reductive subgroups

Recall that a type is by definition an isomorphism class t = [R] of root datum ([SGA3.2], XXII.2.6.1),
the latter being a quadruple R = (M,M∗, R,R∗) composed of finite type free Z-modules in duality
M,M∗ and finite subsets R ⊂ M , R∗ ⊂ M∗ in duality called root system and coroot system ([SGA3.2],
XXI.1.1.1). For example, the type of a diagonalizable group T = D(M) is t = [(M,M∗,∅,∅)].

3.2.1 Theorem. Assume that H → S is an affine group scheme of finite presentation.

(1) The functor Subred(H) of reductive subgroups of H is representable by an algebraic space separated
and locally of finite presentation which is a disjoint sum

Subred(H) =
∐
t

Subt(H)

indexed by the types of reductive groups.

(2) The summand of subgroups of multiplicative type

Submult(H) =
∐

t=[(M,M∗,∅,∅)]

Subt(H)

is representable by a scheme with the following property: each subscheme (resp. closed subscheme) of
Submult(H) which is quasi-compact over S, is quasi-affine (resp. affine) over S.

Proof : (1) The disjoint sum decomposition reflects the fact that the type of a reductive group is locally
constant on the base ([SGA3.2], XXII.2.8). Thus it is enough to establish that Subt(H) is representable.

Let G(t) be the split reductive group scheme of type t as in [SGA3.3], XXV.1.1. By Theorem 3.1.4,
the functor Hom(G(t),H) is representable by a scheme. It follows from Lemma 3.1.1, item (1) that the
subfunctor

Mono(G(t),H) ⊂ Hom(G(t),H)

of monomorphisms of group schemes is an open subscheme. Moreover, since G(t) is reductive and H is
finitely presented and separated, by [SGA3.2], XVI.1.5.a) any monomorphism f : G(t) → H is a closed
immersion, inducing an isomorphism between G(t) and a closed subgroup scheme K →֒ H. By taking a
monomorphism f to its image K, we obtain a morphism of functors:

π : Mono(G(t),H) −→ Subt(H).

Let A = Aut(G(t)) be the functor of automorphisms of G(t); this is a smooth, separated S-group scheme
by [SGA3.3], XXIV.1.3. It acts freely on Mono(G(t),H) by the rule af = f ◦ a−1 for a ∈ Aut(G(t)) and
f ∈ Mono(G(t),H). Let Mono(G(t),H)/A be the quotient sheaf. Since the morphism π is A-equivariant,
it induces a morphism

i : Mono(G(t),H)/A −→ Subt(H).

We claim that i is an isomorphism. It is enough to prove that it is an isomorphism of fppf sheaves:
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• surjectivity: let K ⊂ H be a reductive subgroup scheme. Around each point s ∈ S, after étale
localization there is a maximal torus T ([SGA3.3], XIX.2.5) and after further Zariski localization
there is a root system for T providing a splitting for K ([SGA3.3], XXII.2.1). So we can assume
that K is split and isomorphic to G(t). We obtain a monomorphism G(t) ≃ K ⊂ H which provides
a point of Mono(G(t),H) lifting K.

• injectivity: if fi : G(t) → H are two monomorphisms with the same image K, then f−1
2 ◦ f1 :

G(t) → K → G(t) is an automorphism of G(t).

Now by Artin’s Theorem (see [SP22], Tag 04S5) the quotient Mono(G(t),H)/A is an algebraic space
locally of finite presentation, hence so is Subt(H). Moreover, using that monomorphisms G(t) → H are
closed immersions we see that Subt(H) is separated. This concludes the proof of (1).

(2) Let us write SubM (H) ··= Subt(H) when t = [(M,M∗,∅,∅)]. To prove that SubM (H) is repre-
sentable by a scheme, let L := limSubM/nM (H) be the limit of the functors of finite flat multiplicative
type subgroups of type M/nM . Since SubM/nM (H) is representable and affine (Lemma A.10), the func-
tor L is an affine scheme. By mapping any subgroup G →֒ H to the collection of subgroups Gn →֒ H
where Gn = ker(n : G → G), we define a morphism of functors u : SubM (H) → L. By the Density
Theorem, this is a monomorphism. As SubM (H) → S is locally of finite type, so is u. In particular u
is a separated, locally quasi-finite morphism. By [SP22], Tag 0418 all such morphisms are representable
by schemes, hence SubM (H) is a scheme. Finally, in order to prove that each subscheme (resp. closed
subscheme) which is quasi-compact over S is quasi-affine (resp. affine) over S, we proceed as in the proof
of 3.1.4. �

3.3 Homomorphisms from a group with reductive and proper composition factors

3.3.1 Lemma. Let 1 → N → G → Q → 1 be an exact sequence of flat, finitely presented S-group
schemes with N → S pure. Let H be an affine, finitely presented S-group scheme and f0 : N → H a
morphism of group schemes. Assume that

(i) Q is reductive, or

(ii) Q is proper.

Then the functor Homf0(G,H) of morphisms of group schemes f : G→ H extending f0 is representable
by a locally finitely presented, separated S-algebraic space.

Proof : Let Γ0 ⊂ N × H ⊂ G × H be the graph of f0. Since Γ0 ≃ N is pure, by Corollary A.8 its
normalizer Norm(Γ0) ⊂ G×H is a closed, finitely presented subgroup scheme of G×H. Let π : G×H → G
be the projection and π′ : Norm(Γ0)/Γ0 → G/N = Q the morphism it induces.

Step 1: the map π′ : Norm(Γ0)/Γ0 → Q is affine. Since the closed immersion Norm(Γ0) →֒ G × H
induces a closed immersion of algebraic spaces Norm(Γ0)/Γ0 →֒ (G×H)/Γ0 (beware that the target does
not a priori carry a group structure), it is enough to prove that (G ×H)/Γ0 → Q is affine. It is enough
to check this after the fppf base change G→ Q. For this, we consider the morphism:

(G×H)×Q G H ×G

((g1, h), g2) (f0(g2g
−1
1 )h, g2)

α
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(note that g2g
−1
1 is a section of N). This is invariant by the action of Γ0 on (G×H)×QG by translation

on the first factor. By commutation of the quotient G × H → (G × H)/Γ0 with the flat base change
G→ Q, from α we deduce a morphism

((G ×H)/Γ0)×Q G
β

−−→ H ×G.

It is easy to see that the map (h, g) 7→ (g, h, g) provides an inverse to β which therefore is an isomorphism.
Since the right-hand side is affine over G, this concludes Step 1.

Step 2: conclusion. Attaching to a morphism f : G → H its graph Γ yields a correspondence between
the functor Homf0(G,H) on one side, and the functor of subgroups Γ ⊂ G ×H containing Γ0 and such
that π|Γ : Γ → G is an isomorphism, on the other side. Note that Γ ⊂ Norm(Γ0) because N is normal
in G; hence the latter functor is in correspondence with the functor of subgroups Γ′ of Norm(Γ0)/Γ0 such
that π′|Γ′ : Γ′ → Q is an isomorphism. It remains to prove that the latter is representable.

In case (i), by Step 1 the map Norm(Γ0)/Γ0 → Q → S is affine. By Theorem 3.2.1 the functor of
reductive subgroups of Norm(Γ0)/Γ0 is representable. The subfunctor of those subgroups Γ′ for which
π′|Γ′ : Γ′ → Q is an isomorphism is representable by a locally finitely presented subscheme by Lemma 3.1.3.

In case (ii) recall from Lemma A.11 that the functor of proper, flat, finitely presented subgroups of
Norm(Γ0)/Γ0 is representable. According to Olsson [Ol06], Lemma 5.2, the subfunctor of those sub-
groups Γ′ for which π′|Γ′ : Γ

′ → Q is an isomorphism is representable by an open subscheme. �

3.3.2 Theorem. Assume that G→ S has a finite composition series whose factors are either reductive
or proper, flat, finitely presented, and that H → S is affine and of finite presentation.

(1) Hom(G,H) is representable by an S-algebraic space separated and locally of finite presentation.

(2) Mono(G,H) is representable by an open subspace of Hom(G,H). Moreover, all monomorphisms
G→ H are closed immersions.

Proof : According to Corollaries A.3 and A.5, all group schemes having a finite composition series as
indicated are pure. We prove (1) and (2) for group schemes admitting a composition series of length n,
by induction on n. If n = 0 we have G = 1 and both statements are clear, so we now assume that G
admits a composition series of length n > 1. Thus there is an exact sequence 1 → N → G → Q → 1
where Q is reductive or proper and N admits a composition series of length n− 1.

(1) By induction the functor Hom(N,H) is representable by an S-algebraic space separated and locally of
finite presentation, so it is enough to prove that the restriction homomorphism Hom(G,H) → Hom(N,H)
is representable, separated and locally of finite presentation. This is exactly what Lemma 3.3.1 says.

(2) By induction we have an open immersion Mono(N,H) ⊂ Hom(N,H) and it is enough to prove
that Mono(G,H) is open in the space T = Hom(G,H) ×Hom(N,H) Mono(N,H) of morphisms whose
restriction to N is monomorphic. Let f : G → H be the universal morphism over T and let N ′ =
f(N) ≃ N . The normalizer Norm(N ′) ⊂ H is a closed, finitely presented subgroup scheme of H thanks to
Corollary A.8. Moreover f maps into Norm(N ′) and induces a morphism f ′ : Q = G/N → Norm(N ′)/N ′.
Now Mono(G,H) is the subfunctor of T where f ′ is a monomorphism, which is an open subscheme by
Lemma 3.1.1 when Q is reductive and by Lemmma A.10 when Q is proper.

Finally the fact that all monomorphisms G→ H are closed immersions follows directly from the same
statements for reductive and proper groups. For reductive groups this is [SGA3.2], Exp. XVI, Cor. 1.5.a)
and for proper groups this is because proper monomorphisms are closed immersions. �
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4 Algebraicity and smoothness of fixed points stacks

Let X → S be an algebraic stack and G→ S a group algebraic space acting on it.

4.1 Algebraicity

The stack of fixed points X G has for sections over a scheme T → S the pairs (x, {αg}g∈G(T )) composed
of an object x ∈ X (T ) and a collection of isomorphisms αg : gx → x satisfying the cocycle condition
αgh = αg ◦ gαh (see [Ro05], Prop. 2.5), pictured by a commutative triangle:

gx

(gh)x x.

αggαh

αgh

An interesting viewpoint on X G is that it can be expressed as a certain Weil restriction of the universal
stabilizer StX ,G of the action of G on X . The latter is the 2-fibred product:

StX ,G X

G× X X × X .

∆

act×pr2

In particular StX ,G → X is representable by algebraic spaces. The top horizontal map of the diagram
makes StX ,G an X -group functor: for each x : T → X we have:

StX ,G(T ) =
{
(g, α); g ∈ G(T ) and α : gx ∼−→ x an isomorphism

}
,

with law of multiplication (g, α) · (h, β) ··= (gh, α ◦ gβ) and neutral element (g, α) = (1, idx). The left
vertical map is the map StX ,G → GX , (g, α) 7→ g. It is a morphism of X -group spaces with kernel equal
to the inertia stack IX ··= X ×X ×X X , whence an exact sequence of X -group functors:

1 −→ IX −→ StX ,G −→ GX .

If the diagonal X → X × X is affine and finitely presented, then so is StX ,G → GX .

4.1.1 Definition. In general, if Σ → G is a morphism of S-group spaces we write

(GResG/S Σ)(T ) =
{
group-theoretic sections of ΣT → GT

}
.

We call GResG/S Σ the group-theoretic Weil restriction of Σ along G→ S.

4.1.2 Lemma. We have an X -isomorphism X G ∼−→ GResGX/X StX ,G.

Proof : A section of X G over x : T → X is a collection ({αg}g∈G(T )) satisfying the cocycle condition
αgh = αg ◦ gαh. This is exactly a group-theoretic section of StX ,G×X T → GX ×X T . �

For the proof of Theorem 4.1.4 below we need a variant of Lemma 3.3.1.
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4.1.3 Lemma. Let 1 → N → G → Q → 1 be an exact sequence of flat, finitely presented S-group
schemes with N → S pure. Let E be an S-group scheme and π : E → G a morphism of S-group schemes
which is affine. Let f0 : N → E be a morphism of group schemes which is a section of π|N : E×GN → N .
Assume that

(i) Q is reductive, or

(ii) Q is proper.

Then the functor GResf0G/S(E) of group-theoretic sections of π extending f0 is representable by a locally
finitely presented, separated S-algebraic space.

Proof : The section f0 induces an isomorphism between N and the image subgroup Σ0 ··= f0(N). Let
Norm(Σ0) ⊂ E be its normalizer. Since Σ0 ≃ N is pure, by Corollary A.8 this is a closed, finitely
presented subgroup scheme of E. Let π′ : Norm(Σ0)/Σ0 → G/N = Q be the morphism induced by
π : E → G.

Step 1: the map π′ : Norm(Σ0)/Σ0 → Q is affine. Since Norm(Σ0)/Σ0 →֒ E/Σ0 is a closed immersion, it
is enough to prove that E/Σ0 → Q is affine. In turn, it is enough to prove this after the flat base change
G→ Q. The morphism

α : E ×Q G −→ E, (e, g) 7−→ (f0(gπ(e)
−1)e

is invariant by the action of Σ0 on E ×Q G by translation on the first factor, hence induces

(E/Σ0)×Q G
β

−−→ E.

The map e 7→ (e, π(e)) is an inverse to β which therefore is an isomorphism. Since the right-hand side is
affine over G, our claim follows.

Step 2: conclusion. We have an isomorphism of functors between GResf0G/S(E) and the functor of
subgroups Σ ⊂ E containing Σ0 such that π|Σ is an isomorphism. That functor is isomorphic to the
functor of subgroups Σ′ of Norm(Σ0)/Σ0 such that π′|Σ′ : Σ′ → Q is an isomorphism. It remains to prove
that the latter is representable.

In case (i), by Step 1 the composition Norm(Σ0)/Σ0 → Q → S is affine. By Theorem 3.2.1 the functor
of reductive subgroups of Norm(Σ0)/Σ0 is representable. The subfunctor of those subgroups Σ′ for which
π′|Σ′ is an isomorphism is representable by a locally finitely presented subscheme by Lemma 3.1.3.

In case (ii) recall from Lemma A.11 that the functor of proper, flat, finitely presented subgroups
of Norm(Σ0)/Σ0 is representable. According to Olsson [Ol06], Lemma 5.2, the subfunctor of those
subgroups Σ′ for which π′|Σ′ is an isomorphism is representable by an open subspace. �

4.1.4 Theorem. Let X → S be an algebraic stack with affine, finitely presented diagonal and let
G→ S be a group space acting on X . Assume that G→ S has a finite composition series whose factors
are either reductive or proper, flat, finitely presented. Then the fixed point stack X G → S is algebraic, and
the morphism X G → X is representable by algebraic spaces, separated and locally of finite presentation.
If G→ S is reductive, this morphism is even representable by schemes.

Proof : According to Corollaries A.3 and A.5, all group schemes having a finite composition series as
indicated are pure. Therefore the assumption implies that there is an exact sequence

1 −→ N −→ G −→ Q −→ 1
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of flat, finitely presented S-group schemes with N → S pure and Q → S either reductive or proper. By
induction on the number of factors in a composition series, it is enough to prove that the map X G → X N

is representable by algebraic spaces separated and locally of finite presentation. Let St ··= StX ,G be the
universal stabilizer of G acting on X . Let x : T → X N be a point from an S-scheme; this corresponds
to a group-theoretic section f0 : N → St of St×GN → N . The functor X G ×X N T classifies the group-
theoretic sections of St → G that extend f0. By Lemma 4.1.3, this is representable by an algebraic space
enjoying the announced properties. �

Alper, Hall and Rydh proved this result in [AHR20], Theorem 5.16 when X is a Deligne-Mumford
stack locally of finite type over a field, and G = Gm. They further showed that in this situation X G → X

is a monomorphism; this can be easily extended to the case where X is a Deligne-Mumford stack, G is
smooth with connected fibres, and the base scheme S is arbitrary. In the following example, we show
that the Deligne-Mumford assumption is essential.

4.1.5 Example. (An algebraic stack X with finite inertia with action of a torus T such that X T → X

is not a monomorphism.) Let S be a scheme of characteristic p > 0. Let X = Bαp be the classifying
stack of αp. Consider the exact sequence of commutative S-group schemes:

0 −→ αp −→ Ga
F

−→ Ga −→ 0.

The group T := Gm = Aut(Ga) acts on the first and second term naturally, and on the third term via
Frobenius, that is λ · x := λpx. In this way the sequence is an exact sequence of T -modules. There is an
induced, T -equivariant exact sequence of Picard categories:

0 −→ αp(S) −→ Ga(S) −→ Ga(S) −→ (Bαp)(S) −→ (BGa)(S) −→ (BGa)(S)

(see Giraud [Gi71], Chap. III, § 3, Prop. 3.2.1).
We claim that X T → X is not a monomorphism. Indeed, if S = Spec(R) and λ ∈ T (R) = R× then

any αp-torsor over S is of the form P = Spec(R[x]/(xp − r)) with αp-action given by a · x = a + x, for
some r ∈ R. Moreover, the torsor λ ·P is Spec(R[x]/(xp−λpr)) with action a ·x = λa+x. Let us fix such
a torsor P → S, that is, a map S → X . The fibre product X T ×X S is the functor of T -linearizations
of P . This is identified with the functor of group-theoretic sections of the extension

1 −→ αp = Aut(P ) −→ E −→ Gm −→ 1 (1)

where E = {(λ, ϕ) ; λ ∈ T and ϕ : λ ·P → P an isomorphism}. One computes that all the isomorphisms
ϕ : λ · P → P are described by a map of algebras R[x]/(xp − r) → R[x]/(xp − λpr), x 7→ u + λ−1x for
some u ∈ αp(R). Thus we see that E is the group scheme whose points are pairs (λ, u) ∈ T × αp with
law of multiplication

(λ, u) · (µ, v) = (λµ, u+ λ−1v).

The sections of the extension (1) are the maps Gm → E, λ 7→ (λ, u(λ)) where λ 7→ u(λ) is a crossed
homomorphism, that is u(λµ) = u(λ) + λ−1u(µ). Those are all of the form u(λ) = s(1 − λ−1) for some
s ∈ αp(R). In conclusion the functor of T -linearizations of P is isomorphic to αp and is not trivial,
proving that X T → X is not a monomorphism. For more material on extensions with quotient of
multiplicative type, we refer to Demazure and Gabriel [DG70], Chap. III, § 6, n° 6.
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4.2 Geometric interpretation of group cohomology in degrees 1 and 2

In this section we consider a sheaf of groups G and a sheaf of G-modules A over S (that is, an abelian
sheaf endowed with an additive action of G) and we give the interpretation of H1(G,A) and H2(G,A) in
terms of equivariant torsors and gerbes. Since this basically amounts to reviewing the classical correspon-
dences between geometric objects and cohomological classes and proving that they are G-equivariant, we
sometimes omit some details.

We denote by A◦ the underlying abelian sheaf of A, devoid of G-action.

4.2.1 Definition. An A-torsor is an A◦-torsor P endowed with an action of G such that the action
morphism A◦ × P → P is G-equivariant.

4.2.2 Lemma. There is a canonical bijection between the set of isomorphism classes of A-torsors
over S and the cohomology group H1(G,A).

In the proof below, starting from an A-torsor P we will provide a construction of a canonical extension
1 → A→ E → Z → 1 such that P is the preimage of E → Z at 1 ∈ Z. This is classical when G = 1 and
the novelty here is to make sure that the procedure is G-equivariant. Our construction is different from
those of [Ol16], 12.1.4 or [SP22, Tag 02FQ], having a more geometric flavour. Moreover, if A is a sheaf of
possibly noncommutative groups, the construction works equally well by working with (A,A)-bitorsors
instead of A-torsors, providing an extension of the result to that case.

Proof : For an A-torsor P , recall that the opposite A◦-torsor P−1 is P with the opposite A◦-action,
that is the action given by a · p = a−1p. The action of G on P commutes with the opposite A◦-action,
turning P −1 into an A-torsor. Iterating the contracted product of torsors denoted by a wedge, we define
the contracted powers of P as follows:

P∧0 := A ; P∧n+1 := P∧n ∧ P for all n > 0 ; P∧n−1 := P∧n ∧ P−1 for all n 6 0.

When endowed with the diagonal action g · (p1∧· · ·∧pn) = gp1∧· · ·∧gpn, where the pi are local sections
of P or P−1, the A◦-torsors P∧n become A-torsors for all n ∈ Z. We define:

E :=
∐

n∈,Z

P∧n.

The contracted product induces maps P∧m×P∧n → P∧m+n (for all m,n ∈ Z) which assembled together
endow E with a group law such that the map f : E → Z mapping P∧n into n is a G-equivariant group
homomorphism. Of course ker(f) = A and f−1(1) = P . The class of the extension

1 −→ A −→ E −→ Z −→ 1

defines the element of Ext1G(Z, A) ≃ H1(G,A) that completes the definition of the desired bijection. The
fact that the map is indeed bijective is easy and left to the reader. �

For a reminder of the definition of a gerbe banded by an abelian group, one can consult [Ol16], 12.2.2.

4.2.3 Definition. An A-gerbe is an A◦-gerbe G endowed with an action of G such that for all sections
x ∈ G (T ) over some S-scheme T , the given isomorphism A◦

T
∼−→ AutT (x) is GT -equivariant.

4.2.4 Lemma. There is a canonical bijection between the set of isomorphism classes of A-gerbes over S
and the cohomology group H2(G,A).
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Similarly as before, starting from an A-gerbe G we construct a length two extension 1 → A → E →
F → Z → 1. It would be very interesting to produce a canonical extension. Since we do not know how
(and fortunately we do not need) to do this, we merely adapt the proof of [Ol16], 12.2.8.

Proof : Let G be an A-gerbe. Choose an injection i : A → I into an injective sheaf of G-modules and
let K = I/A be the quotient. Since I is injective, the gerbe i∗G is neutral (see [Ol16], 12.2.9) hence
there exists a section η : S → G . Let P be the K◦-torsor of sections of G that induce η, defined as in
the proof of [Ol16], 12.2.8. Since the previous constructions are G-equivariant, the torsor P acquires a
G-action making it a K-torsor. Let 1 → K → E → Z → 1 be the extension attached to this torsor like
in the proof of 4.2.2. We obtain a length 2 extension of G-modules

1 −→ A −→ I −→ E −→ Z −→ 1

whose class in Ext2G(Z, A) ≃ H2(G,A) defines the desired bijection. Again, the verification that the
extension class does not depend on the choices of i : A→ I and η, and that the resulting map is bijective,
being classical, are left to the reader. �

4.2.5 Definition. A G-Picard stack is a Picard stack P over S endowed with a G-action such that the
addition morphism + : P × P → P is G-equivariant. We denote by P◦ the underlying Picard stack,
devoid of G-action.

4.2.6 Definition. Let P be a G-Picard stack. A P-torsor is an S-stack Q endowed with an action
of G such that the action morphism µ : P × Q → Q is G-equivariant and such that the morphism
(µ,pr2) : P × Q → Q × Q is an isomorphism (that is, the action is free and locally transitive).

If P is a G-Picard stack, the sheaf of isomorphism classes A and the sheaf of automorphisms of the
neutral object e ∈ P(S) are sheaves of G-modules.

Endowed with the contracted product, the set of isomorphism classes of P◦-torsors is a group denoted
H1(S,P◦), see [Bre90], Prop. 6.2. Similarly we can define a group of isomorphism classes of P-torsors
which we denote H1(G,P). It is proved in [Bro21], Prop. 5.11 that H2(S,A◦) = H1(S,BA◦) and this
group classifies A◦-gerbes or BA◦-torsors (clearly (BA)◦ = B(A◦)). As we did before, one can follow
the constructions of the proof of loc. cit. and notice that they are G-equivariant, thereby enhancing the
previous isomorphism to an isomorphism H2(G,A) = H1(G,BA), both groups classifying A-gerbes or
BA-torsors. Since we will not need this, we omit the details.

By assembling together torsors and gerbes, we can prove the following triviality result for torsors
under certain Picard stacks which will be the key to the proof of Theorem 4.3.6 below.

4.2.7 Lemma. Let P be a G-Picard stack over S. Let P be the sheaf of isomorphism classes and A the
sheaf of automorphisms of the neutral object e ∈ P(S). If H1(G,P ) = H2(G,A) = 0 then H1(G,P) = 0,
that is, all P-torsors over S are trivial.

Proof : Let Q → S be a P-torsor, so we have an isomorphism:

P × Q ∼−→ Q × Q.

Passing to sheaves of isomorphism classes, we obtain:

P ×Q ∼−→ Q×Q,
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that is Q → S is a P -torsor. Since H1(G,P ) = 0, by Lemma 4.2.2 this torsor has a section q : S → Q.
Let G = q∗Q, a gerbe over S. The isomorphism P × Q ∼−→ Q × Q sends (0, q) to (q, q); passing to
inertia stacks in this isomorphism we obtain

BA× G ∼−→ G × G ,

that is G → S is a BA-torsor. This means that G is an A-gerbe; let us provide the easy verifications of
this. Let T be an S-scheme and x ∈ G (T ) a section. We thus have an isomorphism:

f : A×Aut(x) ∼−→ Aut(x)×Aut(x), f(a, u) = (u, a · u).

By computing the images of (ab, idx) = (a, idx)(b, idx) in two different ways, one finds that the map
ιx : A → Aut(x), a 7→ a · idx is a morphism of groups. By using that f is bijective as a sheaf map,
we find that the same is true for ιx. Finally, by using that f is G-equivariant we obtain the same
conclusion for ιx. The collection of isomorphisms {ιx} shows that G is an A-gerbe. Since H2(G,A) = 0,
by Lemma 4.2.4 this gerbe has a section α : S → G . Using homogeneity we have Q ∼−→ Q×G which the
section (q, α) : S → Q× G trivializes and finally Q is trivial. �

4.3 Smoothness

In this subsection, we study the smoothness of fixed point stacks. For fixed point schemes, a useful
reference is [SGA3.2], Exposé XII, § 9 (the reader should be careful however that in Prop. 9.2 of loc. cit.
the assumption that X is separated over S is missing).

4.3.1 The equivariant cotangent complex. Let X → S be a smooth algebraic stack. We want to
recall the elementary description of the cotangent complex in this context; since we will have to handle
stacks endowed with a group action, it is appropriate to work with sheaves on the equivariant site. The
reader is assumed to be familiar with basics on equivariant quasi-coherent sheaves on schemes, like for
instance in [AOV08], § 2.1.

Let G → S be a flat, locally finitely presented group algebraic space acting on X → S. The
equivariant lisse-étale site is the site Lis-ÉtG(X ) whose underlying category is the category of smooth
G-schemes U → X (that is G-schemes U → S with a smooth equivariant morphism U → X ), and whose
covering families {Ui → U}i∈I are families of étale G-equivariant morphisms such that ∐i∈IUi → U is
surjective. Particular objects of this site can be obtained as pullbacks U ··= V ×X/G X of objects
V → X/G of the ordinary, non-equivariant lisse-étale site of the quotient stack. In particular, we see
that X has equivariant smooth atlases.

We define the equivariant cotangent complex LX/S of (G,X ) as an object of the derived category of

bounded complexes of G-quasi-coherent modules. Let f : U → X be an object in Lis-ÉtG(X ). Choose a
G-atlas V → X and write f ′ : U×X V → V the pullback of f . Then the sheaf Ω1

U/X |U×X V ··= Ω1
U×X V/V

descends along U ×X V → U to a G-quasi-coherent OU -module which we denote Ω1
U/X . For each object

f : U → X in Lis-ÉtG(X ), we define a length two complex with sheaves placed in degrees 0 and 1:

LX/S |U ··=
[
Ω1
U/S −→ Ω1

U/X

]
.
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If f : V → U is a morphism in Lis-ÉtG(X ), there is a commutative diagram

f∗Ω1
U/S Ω1

V/S

f∗Ω1
U/X Ω1

V/X

which induces a quasi-isomorphism

θf :
[
f∗Ω1

U/S → f∗Ω1
U/X

]
−→

[
Ω1
V/S → Ω1

V/X

]
.

Moreover, for W/V/U in G-Lis-Ét(X ) these quasi-isomorphisms satisfy the cocycle condition. The
equivariant cotangent complex is the complex defined by the data (LX/S |U , θf ).

4.3.2 Deformations of sections of X → S. In what follows we work on both the small étale site Sét
and the big fppf site Sfppf . We denote by ε : Sfppf → Sét the canonical morphism. For basics on Picard
stacks and their torsors, we refer to Deligne [SGA4.3], Exp. XVIII, § 1.4, Breen [Bre90], section 6 and
Brochard [Bro21], sections 2 and 5.

Let I be a quasi-coherent OS -module. Let Thick(S, I) be the category of thickenings of S by I, which
by definition are pairs (S →֒ S′, u) composed of a closed immersion of schemes defined by a square-zero
ideal, and an isomorphism I ≃ ker(OS′ → OS) which most often is omitted from the notation. There
is a stack Thick(S, I) on Sét, whose fibre category over U → S is Thick(U, I|U ). (Here we are forced to
work on the small étale site in order to guarantee existence of pullbacks: only for étale T → S does the
thickening S →֒ S′ lift uniquely to a thickening T →֒ T ′.) This is endowed with the structure of a Picard
stack whose neutral object is the thickening S →֒ S[I] where S[I] = Spec(OS ⊕ I) with I2 = 0.

The tangent stack of X relative to I is the stack TX/S(I) ··= Hom(S[I],X ) on Sfppf whose points
are the morphisms S[I] → X . It comes endowed with a morphism TX/S(I) → X induced by the
immersion S →֒ S[I]. If x : S → X is a section, the pullback x∗TX/S(I) is the stack of morphisms
extending x. Since X → S is smooth, the usual computation shows that x∗TX/S(I) is canonically and
equivariantly isomorphic to the stack associated as in Deligne’s exposé [SGA4.3], Exp. XVIII, § 1.4 to
the length two complex τ60RHom(x∗LX/S, I).

Let ExalX (S, I) be the category whose objects are the pairs composed of a thickening S →֒ S′ of S
by I, and a morphism x′ : S′ → X extending x (this includes the datum of a 2-isomorphism u : x′|S ≃ x).
There is a Picard stack ExalX (S, I) on Sét, whose fibre category over U → S is ExalX (U, I|U ). Moreover,
this sits in an exact sequence of Picard stacks:

0 −→ x∗TX/S(I) −→ ExalX (S, I) −→ Thick(S, I) −→ 0. (2)

Here, exactness on the right is guaranteed by the smoothness of X → S. It follows that the fibre of
ExalX (S, I) → Thick(S, I) above a given thickening S →֒ S′ is a torsor under x∗TX/S(I).

4.3.3 Group action. Now assume that x : S → X is fixed by G, which means that it is given with a
collection of isomorphisms {αg : gx ≃ x}g∈G. In this case G acts on ExalX (S, I) as follows:

g · (x′, u) = (g ◦ x′, αg ◦ gu).

The group G also acts on x∗TX/S(I) by the same formula; it acts trivially on Thick(S, I) and the exact
sequence (2) is equivariant.
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From this, it is natural to approach Theorem 4.3.6 by descending the sequence (2) to an exact
sequence on the small étale site of BG and proving smoothness via triviality of a certain x∗TX/S(I)-
torsor on BG. This indeed works well; however, since proper foundations for Picard stacks over a stacky
site such as (BG)ét are lacking, we prefer to work with equivariant objects using the material developed
in Subsection 4.2.

4.3.4 Linearly reductive group schemes. We can now introduce linearly reductive group schemes
and prove the statement of smoothness in Theorem 1.2.2. We use the notion of linear reductivity given
by Alper [Alp13], Def. 12.1; see also Brion [Bri21]. For recent results concerning affine linearly reductive
group schemes the reader may look at Alper, Hall and Rydh’s article [AHR21], Section 19.

4.3.5 Definition. A flat, finitely presented, separated group scheme G→ S is called linearly reductive
if the functor QCohG(S) → QCoh(S), F 7→ FG is exact.

Our interest for linearly reductive group schemes is that if S is affine, the higher Hochschild coho-
mology of quasi-coherent G-OS -modules vanishes, as follows from the definition:

H i(G,F) = 0 for all F ∈ QCohG(S) and i > 1.

The class of linearly reductive group schemes is stable by base change, faithfully flat descent ([Alp13],
Prop. 12.8), subgroups with affine quotient (Matsushima’s Theorem, [Alp13], Th. 12.15), and extensions
([Alp13], Prop. 12.17). It contains:

(1) group schemes of multiplicative type, by [SGA3.2], Exp. IX, Th. 3.1;

(2) finite locally free group schemes of order invertible on S, by the existence of explicit avering
operators;

(3) abelian schemes, by [Alp13], Ex. 12.4;

(4) reductive group schemes, if S is a Q-scheme, by the following results of [Alp14]: such a group
scheme is geometrically reductive (Th. 9.7.5), hence BG → S is adequately affine (Def. 9.1.1) and
cohomologically affine (Lem. 4.1.6) which is the definition of linearly reductive (Rem. 9.1.3).

4.3.6 Theorem. Let S be a scheme and X → S an algebraic stack with affine, finitely presented
diagonal. Let G → S be a linearly reductive group scheme. If X → S is smooth, the fixed point stack
X G → S is smooth.

Proof : By Theorem 4.1.4 the stack X G → S is algebraic and locally of finite presentation, hence it is
enough to prove that it is formally smooth. Let x : T → X G be a point with values in some S-scheme T
which is affine. After base-changing X along T → S and renaming, we can assume that T = S in what
follows. We have the sequence of Picard stacks over S:

0 −→ x∗TX/S(I) −→ ExalX (S, I)
π

−→ Thick(S, I) −→ 0.

Since X → S is smooth, this sequence is exact. Moreover, as explained before, these stacks are naturally
endowed with G-actions (the G-action on the stack of thickenings is trivial) and the sequence is equivari-
ant. Let ι : S →֒ S′ be a thickening; we have to prove that x has a lifting x′ : S′ → X G. The category of
liftings of x along ι is the fibre category π−1(ι) ⊂ ExalX (S, I). This is a torsor under the G-Picard stack
x∗TX/S(I), whose sheaves of isomorphism classes P and neutral automorphisms A are quasi-coherent.
Because G → S is linearly reductive, we have H1(G,P ) = H2(G,A) = 0. By lemma 4.2.7, this implies
that this torsor is trivial. In other words, it has a section x′ : S → π−1(ι) which gives the desired lifting
for x. �
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4.4 Applications

We conclude by giving several applications of Theorem 4.3.6. The first application is to the flatness or
smoothness properties of the space of homomorphisms Hom(G,H). It relies on the following well-known
fact, a proof of which we provide for the convenience of the reader.

4.4.1 Lemma. Let G,H be sheaves of groups over a base scheme S (for some topology). Then there is
an isomorphism of stacks

[Hom(G,H)/H] ∼−→ Hom(BG,BH)

where the quotient is taken for the action of H on Hom(G,H) by conjugation on the target.

Proof : We define maps in both directions. A section of the stack [Hom(G,H)/H] is a pair composed
of an H-torsor S′ → S and an H-equivariant map f : S′ → Hom(G,H). With these data we define a
map Φ : BG→ BH as follows. Let ϕ : GS′ → HS′ be the group homomorphism determined by f . To a
G-torsor E we attach the HS′-torsor FS′ ··= ES′ ∧ϕ HS′ . To say that f is equivariant is to say that for
all local sections h ∈ H, the pullback of ϕ along h : S′ → S′ is equal to h∗ϕ = ch ◦ ϕ where ch : H → H
is conjugation. Therefore, for all local sections h ∈ H we have, canonically:

h∗FS′ = ES′ ∧chϕ HS′ .

This implies that the isomorphism of HS′-torsors

(idES′
, ch) : ES′ ∧ϕ HS′ −→ ES′ ∧chϕ HS′

is an isomorphism FS′
∼−→ h∗FS′ . This gives descent data for FS′ with respect to S′ → S, and we call

Φ(E) the descent F → S. Conversely let Φ : BG → BH be a morphism of stacks and let S′ ∈ BH be
the image of the trivial torsor G by Φ. After the pullback S′ → S the torsor F becomes trivial and the
map AutS(G) → AutS(Φ(G)) becomes a morphism of groups:

ϕ′ : GS′ = AutS′(GS′) −→ AutS′(FS′) = AutS′(HS′) = HS′.

This amounts to a morphism u : S′ → Hom(G,H). For each local section h ∈ H, we have S′-group
schemes a : GS′ → S′ and b : HS′ → S′ and the pullbacks h∗GS′ , h∗GS′ are isomorphic to GS′ ,HS′ with
structure maps h−1 ◦ a and h−1 ◦ b. This shows that h∗ϕ′ is ch ◦ϕ′, hence u is H-equivariant. It provides
a point of the quotient [Hom(G,H)/H]. The two maps so described are inverse to each other. �

4.4.2 Corollary. Let G → S be a linearly reductive S-group scheme. Let H be a flat, affine, finitely
presented S-group scheme. Then the stack Hom(BG,BH) → S is algebraic and smooth. In particular,

(i) Hom(G,H) → S is flat and locally complete intersection,

(ii) Hom(G,H) → S is smooth if moreover H → S is smooth.

Proof : The stack X = BH has affine, finitely presented diagonal and it is smooth because its natural
atlas S → BH has smooth source (see [SP22, Tag 0DLS]). Letting G act trivially on it, we obtain
X G = Hom(S,BH)G = Hom(BG,BH) which is smooth by Theorem 4.3.6. The group scheme H → S
is locally complete intersection in case (i) and smooth in case (ii); since Hom(G,H) → Hom(BG,BH)
is an H-torsor by Lemma 4.4.1, the announced properties are deduced. �

The reader can find other examples of Hom stacks in 4.5.2(1) below.
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4.4.3 Remark. (Smoothness in case (ii) by deformation theory.) Because Hom(G,H) → S is locally
of finite presentation, in order to prove that it is smooth when H is smooth, it is enough to verify the
infinitesimal lifting criterion. Given a nilimmersion of affine schemes T →֒ T ′ over S, and a T -morphism
f : GT → HT , we seek to lift it to a T ′-morphism f ′ : GT ′ → HT ′ . Changing notation, we can assume
that T = S, T ′ = S′ which are affine schemes. Let I = ker(OS′ → OS) be the square-zero kernel.
By Illusie [Il72], Chap. VII, Th. 3.3.1 the obstruction to lifting f lives in H2(BG/S, f∗ℓ∨H ⊗ I) where
ℓH ∈ D(BH) is the equivariant co-Lie complex of H → S; here the operations on complexes f∗, (−)∨, ⊗
are understood in the derived sense. Therefore it is enough to prove that this cohomology group is zero.
Let us write once for all

K := f∗ℓ∨H ⊗ I.

Note that Hi(BG/S,K) denotes relative cohomology with respect to the map S → BG, as in [Il71],
Chap. III, § 4. This is related to ordinary cohomology Hi(BG,K) via a long exact sequence of which we
write the part which is useful for our calculation:

. . . −→ H1(S,K) −→ H2(BG/S,K) −→ H2(BG,K) −→ H2(S,K) −→ . . .

We claim that H2(BG,K) = 0. To compute this group, we use the second hypercohomology spectral
sequence:

IIEi,j
2 = H i(BG,Hj(K)) =⇒ Hi+j(BG,K).

We know that quasi-coherent cohomology on BG coincides with group cohomology of G. Hence, by the
assumption on G we have H i(BG,F ) = H i(G,F ) = 0 for i > 1 for all quasi-coherent sheaves F on BG.
It follows that the spectral sequence collapses at E2, giving isomorphisms

Hn(BG,K) ≃ H0(BG,Hn(K)) = ΓG(Hn(K))

for all n, where ΓG(−) denotes G-invariant global sections. We claim that the sheaf Hn(K) vanishes for
all n > 2. The complex f∗ℓ∨H has perfect amplitude in [0, 1] ([Il72], Chap. VII, § 3.1); thus replacing I
by a flat resolution · · · → I−2 → I−1 → I0 and computing the total complex of f∗ℓ∨H ⊗ I we find that it
has no cohomology in degrees > 2, as claimed.

To compute H1(S,K) we can proceed similarly. Since S is affine, the quasi-coherent sheaves Hj(K)
have no higher cohomology. It follows that the hypercohomology spectral sequence degenerates at E2,
giving isomorphisms Hn(S,K) ≃ H0(S,Hn(K)). In case 4.4.2(i) the complex f∗ℓ∨H is locally represented
by a two-term complex of quasi-coherent sheaves [F0 → F1]; then the total complex has a term F1⊗ I0 in
degree 1 and we can not conclude to the vanishing of H1(S,K). In case 4.4.2(ii) however, the complex ℓH
is quasi-isomorphic to the sheaf of invariant differentials ω1

H/S viewed as a complex concentrated in

degree 0 and H1(S,K) vanishes. In this case H2(BG/S,K) = 0 and we are done.
Should one want to study potential cases of smoothness of Hom(G,H) in case (i), a natural approach

would be to undertake a more detailed analysis of H1(S,K).

4.4.4 Examples. (Non-smooth examples.) Here are various examples of schemes Hom(G,H); the cases
in (2) and (3) were communicated by Michel Brion and Angelo Vistoli.

(1) When H is not flat the scheme Hom(G,H) can exhibit all kind of behaviour: it can be smooth, or
on the contrary not even flat. To give examples, let R be a discrete valuation ring with residue field k.
If M is a k-group scheme with affine identity component, we let M ♮ be the scheme obtained by gluing the
trivial R-group scheme {1}R with M along the unit section {1}k of the special fibre. This is an R-group
scheme with affine identity component, which is non-flat when M 6= {1}k. Then, one has:
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(i) Hom(Gm,R, (Ga,k)
♮) →֒ Hom(Gm,R,Ga,R) = 1 hence Hom(Gm,R, (Ga,k)

♮) = 1 which is smooth;

(ii) Hom(Gm,R, (Gm,k)
♮) = (Zk)

♮ by a direct computation; this is not flat.

(2) Let S = Spec(k) where k is a separably closed, non algebraically closed field of characteristic p.
Take G = Gm and H a nontrivial extension of Gm by αp; such extensions are described in [SGA3.2],
Exp. XVII, Exemple 5.9.c). If Hom(G,H) is representable by a smooth scheme T , then T (k) is a point
because each homomorphism G→ H is trivial (for otherwise its image would split the extension). Since
the extension is split on the algebraic closure k̄, we have T (k̄) = Hom(Gm,k̄,Gm,k̄) = Z. But since T is
smooth T (k) is dense in T , a contradiction.

(3) Here is an example where G and H are both finite and linearly reductive, and the field k is
algebraically closed of characteristic p. Suppose that ∆ is a finite connected diagonalizable k-group
scheme, H is a nontrivial group of automorphisms of ∆, and consider the semidirect product G := ∆⋊H.
Then Hom(G,G) is representable and finite, and contains Aut(G) as an open subscheme. It is shown in
[AOV08], Lemma 2.19 that the connected component of the identity in Aut(G) is ∆/∆H , which is not
reduced, so Hom(G,G) can not be smooth.

We now give an application to functors of subgroups.

4.4.5 Corollary. Let H → S be an affine, flat group scheme of finite presentation. Then the functor
of subgroups of multiplicative type Submult(H) is flat and locally complete intersection over S. If S is of
characteristic 0 then Subred(H) is smooth over S.

Proof : Recall that Submult(H) =
∐

t
Subt(H) is a sum indexed by the types t = [(M,M∗,∅,∅)]. Since

G(t) is of multiplicative type, it is linearly reductive hence Hom(G(t),H) is flat and locally complete
intersection by 4.4.2. Since Mono(G(t),H) is open in the latter, by Lemma 3.1.1, it is flat and locally
complete intersection also. Finally, remember that in the proof of Theorem 3.2.1 we expressed Subt(H)
as the quotient of Mono(G(t),H) by the smooth group scheme Aut(G(t)) acting freely; the result follows.

If S is of characteristic 0, the same arguments apply, using that for an arbitrary type t the reductive
group schemes G(t) are linearly reductive and the flat group scheme H is smooth.. �

The final application extends 4.4.2 as well as [Ro05], Cor. 3.11.

4.4.6 Corollary. (Stacks of equivariant objects.) Let X → S be an algebraic stack with affine, finitely
presented diagonal. Let G → S be a group space admitting a finite composition series whose factors are
either reductive or proper, flat, finitely presented.

(1) The stack X [G] of pairs (x, α) comprising an object of X and an action α : G→ Aut(x) is algebraic.
Moreover X G → X is representable by algebraic spaces, separated and locally of finite presentation.

(2) The substack X {G} composed of pairs such that the action α is faithful is open.

(3) If X → S is smooth and G is linearly reductive, then X [G] → S and X {G} → S are smooth.

Proof : Letting G act trivially on X , we see that the fixed point stack is exactly X [G]. By Theo-
rem 4.1.4, this is algebraic and the substack X {G} is open. Finally the smoothness in (3) follows from
Theorem 4.3.6. �
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4.5 Failure of transitivity (erratum to [Ro05])

In [Ro05], Rem. 2.4 it is asserted that if N ⊂ G is a normal subgroup scheme, then:

(i) the group G/N acts on X N and we have an isomorphism of stacks X G ∼−→ (X N )G/N ;

(ii) the group G/N acts on X /N and we have an isomorphism of stacks (X /N)/(G/N) ∼−→ X /G.

In this subsection we wish to correct this statement: in fact, surprisingly point (i) is incorrect (Lemma 4.5.1)
while point (ii) is correct (Proposition 4.5.3). To the author’s knowledge the erroneous statement (i) is
not used anywhere, but (ii) is used in the papers [LMM14], [Sch17], [Sch18], [AI19].

To understand what happens, recall that an action µ : G × X → X is called strictly trivial if µ is
equal to the second projection, which we write µ = triv. The action is called weakly trivial if there exists a
G-isomorphism (f, σ) : (X , µ) ∼−→ (X , triv) with f = idX ; here σxg is an isomorphism g.f(x) ∼−→ f(g.x),
as in [Ro05], Def. 2.1. By the 2-universal properties of quotients and fixed points, the stacks X N and
X /N come equipped with actions of G, the restriction to N of which are weakly trivial. However, in
order to induce an action of G/N one needs to find G-equivariant models of X N and X /N on which
the action of N is strictly trivial, and it is not clear if this is possible at all.

We first provide a counterexample to (i). The example highlights the fact that G-fixed point stacks
retain information on the extension structure of G which is not captured by (X N )G/N .

4.5.1 Lemma. Let G,N,A be S-group schemes of multiplicative type with G → S fibrewise connected
and N ⊂ G a normal subgroup. Let X = BA be the classifying stack of A, endowed with the trivial
action of G. Then:

(1) We have an isomorphism of stacks X N = BA×Hom(N,A) such that the canonical map X N → X

is the first projection.

(2) Each action of G on X N making X N → X equivariant is isomorphic to the trivial action.

(3) Letting G/N act trivially on X N , we have an isomorphism of stacks

(X N )G/N = BA×Hom(G/N,A) ×Hom(N,A)

and the canonical map X G → (X N )G/N is given by (E,α) 7→ (E, 0, α|N ). In particular, this is not an
isomorphism if Hom(G/N,A) 6= 0.

Proof : (1) Since N acts trivially, a section of (BA)N over S is a pair (E, {αn}n∈N(S)) composed
of an A-torsor E → S and a collection of isomorphisms αn : E → E satisfying the cocycle condition
αnm = αn ◦αm for all n,m ∈ N(S). Since Aut(E) = A, this boils down to a pair (E,α) where α : N → A
is a morphism of groups.

(2) Write f : X N → X for the map (E,α) 7→ E. Assume given a G-action (X N , µ) such that f extends
to a G-equivariant morphism (f, σ) : X N → X . For each S-scheme T and points (E,α) ∈ X N (T ),
g ∈ G(T ) write the image g·(E,α) as (E(g,E, α), a(g,E, α)) where E(g,E, α) is an A-torsor and a(g,E, α)
is an N -linearization. Now let (E,α) and g be fixed and write E = E(g,E, α), a = a(g,E, α) for brevity.
We have an isomorphism σ ··= σE,α

g : E → E. Define α′ by α′(n) : E → E, α′(n) = σ−1 ◦ a(n) ◦ σ. By
setting g ⋆(E,α) = (E,α′) we define a new G-stack (X N , µ′) for which f is strictly (and not just weakly)
invariant, together with a G-isomorphism (X N , µ′) ∼−→ (X N , µ) provided by the σE,α

g . Moreover the
dependence in g for a

′ = a
′(g,E, α) is morphic, that is g 7→ a

′(g,E, α) is an action of G on Hom(N,A).
Since G is connected and Hom(N,A) is étale, this action is trivial.
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(3) Reasoning as in (1) we find that (X N )G/N = BA×Hom(G/N,A)×Hom(N,A). The expression for
the map X G → (X N )G/N is dictated by the universal properties. �

4.5.2 Examples. Here are examples where the map X G → (X N )G/N is an isomorphism.

(1) (Hom stacks) Assume that X = Hom(Y,Z) where Y,Z are algebraic stacks, and we are given an
action of G on Y , inducing an action on X . By taking for Z the stack of vector bundles (or coherent
modules, or curves, etc) we obtain for X G the stack of equivariant bundles (or coherent modules, etc)
on Y . We claim that if N ⊂ G is a normal subgroup then the map X G → (X N )G/N is an isomorphism.
Indeed, it follows from the 2-universal property of quotient stacks and Proposition 4.5.3 that we have
canonical isomorphisms:

X
G = Hom(Y,Z)G ≃ Hom(Y/G,Z) ≃ Hom((Y/N)/(G/N), Z) ≃ Hom(Y/N,Z)G/N ≃ (X N )G/N .

(2) (Product groups) Assume that G = H ×K is a product group acting on X . Identify G/H with K.
Then the canonical map X G ∼−→ (X H)K is an isomorphism. The objects of the stacks on both sides
can be identified with collections (x, {αh}h∈H , {βk}k∈K) where the isomorphisms αh : x → h−1x and
βk : x→ k−1x commute with each other.

In view of this, point (ii) may now seem surprising. We now give the proof. The main idea is to
strictify the action by systematically embedding an N -torsor E into the induced G-torsor IndGN (E).

4.5.3 Proposition. Let G → S be a group scheme and N ⊂ G a normal subgroup scheme, both flat
and locally of finite presentation. Let X → S be an algebraic stack with an action of G. Then there is
an action of G/N on the quotient stack X /N such that the morphism X /N → X /G is invariant and
induces an isomorphism (X /N)/(G/N) ∼−→ X /G.

Note that the algebraicity statement [Ro05], Th. 4.1 assumes too strong assumptions on G and N
(namely they are required to be separated and of finite presentation) than is necessary for the proof of
loc. cit. to go through.

Proof : Our main task is to find a G-equivariant model X /N ≃ Y such that the N -action on Y is
strictly trivial, so that there is an induced action of G/N . To this aim, recall that the points of X /N
with values in an S-scheme T are the pairs composed of an N -torsor E → T and an N -equivariant map
a : E → X . Let Y be the S-stack whose T -points are the triples (F → T,E′ ⊂ F, b : F → X ) with

• a G-torsor F → T ;

• a subspace E′ ⊂ F which is N -stable and an N -torsor over S;

• a G-equivariant map b : F → X .

There is a morphism λ : X /N −→ Y which sends (E → T,E → X ) to the triple given by

• F = IndGN (E) = G×N E is the induction of the N -torsor E to G, that is F = (G×E)/N where N
acts by n(g, e) = (gn−1, ne);

• E′ is the image of the monomorphism E → F , e 7→ (1, e); this may alternatively be seen as the
preimage of 1 under the map F → G/N , (g, e) 7→ (g mod N);
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• b : F → X is induced by the map G× E → X , (g, e) 7→ g · a(e).

There is a morphism µ : Y → X /N that sends the triple (F → T,E′ ⊂ F, b : F → X ) to (E′ → T, a =
b|E′ : E′ → X ). We see that µ ◦ λ ≃ idX /N by applying the definitions of the objects. We can see
also that λ ◦ µ ≃ idY because if F → T is a G-torsor and E′ ⊂ F is N -stable and an N -torsor over S,
then the morphism G ×N E′ → F induced by the inclusion E′ ⊂ F is a morphism of G-torsors, hence
automatically an isomorphism. Hence X /N ≃ Y . Henceforth we write (X /N)str = Y .

The stack (X /N)str is endowed with a natural G-action by g · (F,E′, b) = (F, g(E′), b) where g(E′) ⊂
F is the image of E′ by g : F → F . As a consequence of the fact that N is normal in G, the subspace
g(E′) ⊂ F is N -stable, which ensures that it is an N -torsor and g · (F,E′, b) is a well-defined point of
(X /N)str. We now prove that µ : (X /N)str → X /N is G-equivariant. For this, recall that the G-action
on X /N is described by g · (E, a) = (gE, g ◦ a) where gE is the N -torsor with underlying space E and
action defined by h ⋆ e ··= g−1hge. Now pick sections (F,E′, b) ∈ (X /N)str(T ) and g ∈ G(T ). From the
equivariance property of b we see that g provides an isomorphism of N -torsors:

gE′ g(E′)

X .

g

g◦b b

This shows that µ is G-equivariant. Of course, the restricted action of N on (X /N)str is strictly trivial,
hence there is an action of G/N . We leave it to the reader to verify that the map (X /N)str → X /N →
X /G induces an isomorphism (X /N)str/(G/N) ∼−→ X /G. �

A Some results around purity

We shall make use of the results of [SGA3.2], Exp. VIII, § 6 on the representability of Weil restriction of
closed subschemes and its consequences for fixed points, transporters, normalizers, etc. It is convenient
to state a version of these results that is flexible enough to cover our needs, namely Theorem A.6 and
its corollaries. This is best achieved using the notion of pure morphism. This is defined in [RG71] for
schemes and extends without difficulty to algebraic spaces (or even stacks but we have no need for this);
see for instance [Ro11], Appendix B. We recall the definition and the main facts we shall use.

Most of this material is also covered in [SGA3.1], Exp. VIB, § 6 and [SGA3.2], Exp. XII, § 9.

A.1 Definition. A morphism of schemes or algebraic spaces X → S locally of finite type is called pure
if for each point s ∈ S with henselization (S̃, s̃) → (S, s), and each point x̃ ∈ X̃ := X ×S S̃ which is an
associated point in its fibre, the closure of x̃ in X̃ meets the special fibre X ⊗ k(s̃).

For example, if X → S is proper then it is pure, because the image in S̃ of the closure of x̃ is
closed and nonempty, hence contains s̃. Another important example is given in [RG71], Première partie,
Ex. (3.3.4)(iii). For the convenience of the reader, we provide this example with detailed explanation.

A.2 Lemma. Let X → S be a morphism which is flat, locally of finite presentation, with geometrically
irreducible fibres without embedded components. Then X is S-pure.

Note that irreducible implies nonempty by definition.
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Proof : By definition, replacing S by its henselization at an arbitrary point s, we may assume that S
is local henselian and we have to prove that the closure of a point x′ ∈ X which is associated in its
fibre Xs′ , s′ = f(x′), meets the special fibre Xs. Let Z be the closure of s′ in S. Since S is local, Z
meets s and hence we may replace S by Z and assume that S is irreducible with generic point s′. Since
X → S is open with irreducible fibres, it follows that X is irreducible, see [SP22, Tag 004Z]. Now the
fibre Xs′ is irreducible without embedded component, hence the assassin Ass(Xs′) is a single point, that
is Ass(Xs′) = {x′}. This means that x′ is the generic point of the generic fibre, hence the generic point
of X. It follows that its closure is equal to X, and meets the special fibre. �

A.3 Corollary. Let G→ S be a group algebraic space which is flat, locally of finite presentation, with
connected fibres. Then G is S-pure.

Proof : A connected group space over a field is a scheme and is geometrically irreducible ([SGA3.1],
Exp. VIA, Thm. 2.6.5). Moreover any group scheme over a field is locally complete intersection ([SGA3.1],
Exp. VIIB, Cor. 5.5.1) hence without embedded points. It follows from the above lemma that G→ S is
pure. �

A.4 Lemma. Let X → Y → S be morphisms locally of finite type. Assume that X → Y is flat and
pure, and Y → S is pure. Then the composition X → S is pure.

Proof : We may assume that S is henselian with closed point s0. Let x ∈ X be a point and y ∈ Y
its image. Assume that x ∈ Ass(X/S). By flatness of X → S, this means that x ∈ Ass(X/Y ) and
y ∈ Ass(Y/S), see [RG71] (3.2.4). By purity of Y → S, the closure of y in Y meets the special fibre
in a point y0. Then the henselization (Ỹ , ỹ0) → (Y, y0) hits the point y; let ỹ ∈ Ỹ be a lift of y.
Let x̃ ∈ X̃ ··= X ×Y Ỹ be a lift of x. By invariance of the assassin under étale localization ([RG71]
Lemma 3.4.5) and stability of purity by base change ([RG71] Corollaire 3.3.7), upon replacing {Y, y,X, x}
by {Ỹ , ỹ, X̃, x̃} we may assume that Y is henselian. Since X → Y is pure, the closure of x in X meets
the special fibre Xy0 . Since Xy0 ⊂ Xs0 we are done. �

A.5 Corollary. Let 1 → G′ → G→ G′′ → 1 be an extension of flat group spaces of finite presentation.
If G′ → S and G′′ → S are pure, then G→ S is pure.

Proof : The morphism G→ G′′ is a torsor under the flat, pure, finitely presented G′′-group space G′
G′′ .

By flat descent of purity ([RG71] Corollaire 3.3.7), it follows that G → G′′ is pure. Then the result
follows from Lemma A.4. �

Corollaries A.3 and A.5 show that if an S-group algebraic space has a finite composition series whose
factors are reductive or proper, flat, finitely presented, then it is pure. This includes finitely presented
group schemes of multiplicative type, because they are canonically an extension of a finite, flat group
scheme of multiplicative type by a torus.

A.6 Theorem. Let X → S be a morphism of finite presentation, flat and pure, and let Z → X be a
closed immersion. Then the Weil restriction ResX/S Z is representable by a closed subscheme of S. If
moreover Z → X is of finite presentation, then ResX/S Z → S also.

33

http://stacks.math.columbia.edu/tag/004Z


Proof : For an arbitrary immersion Z → X, see [AR12], Prop. B.3. The complement when Z → X is
of finite presentation, is standard; see for instance [LMB00], Proposition 4.18. �

The next two corollaries appear in [SGA3.1], Exp. VI, § 6.9.

A.7 Corollary. Let X,Y be S-schemes with X → S flat, pure, finitely presented and Y → S is
separated. Then the functor Hom(X,Y ) is separated over S: for any two S-morphisms f, g : X → Y
the equalizer Eq(f, g) ⊂ S defined by the condition f = g is representable by a closed subscheme of S. If
moreover the diagonal of Y is of finite presentation, then Eq(f, g) →֒ S also.

Proof : Apply Theorem A.6 to the closed immersion (f, g)−1(∆Y ) →֒ X where the source is the preimage
of the diagonal ∆Y →֒ Y × Y by (f, g) : X → Y × Y . �

A.8 Corollary. Let G → S be a group scheme and H →֒ G a closed subgroup scheme which is flat,
pure, of finite presentation over S. Then the functor NormG(H) defined as the normalizer of H in G
is representable by a closed subgroup scheme of G. If moreover H →֒ G is of finite presentation, then
NormG(H) →֒ G also.

Proof : Apply Theorem A.6 to the Weil restriction along the projection H × G → G of the closed
immersion c−1(H) →֒ H ×G where c : H ×G→ G, (h, g) 7→ ghg−1 is the conjugation map. �

A.9 Corollary. Let H → S be a group scheme which is separated and of finite presentation. Let L ⊂ H
be a proper, flat, finitely presented closed subscheme. Then the subfunctor of S defined by the condition
that L is a subgroup scheme is representable by a closed, finitely presented subscheme of S.

Proof : Let e : S → H be the neutral section of H. Let a = m|L×L : L × L → H × H → H be the
restriction of the multiplication of H. Let b = i|L : L → H → H be the restriction of the inversion. To
say that L is a subgroup scheme is to say that the closed immersions e−1(L) →֒ S, a−1(L) →֒ L×L and
b−1(L) →֒ L are isomorphisms. By three applications of Theorem A.6 we see that these conditions are
represented by a closed subscheme of S. �

A.10 Lemma. Let G → S be a proper, flat, finitely presented group scheme. Let H → S be a group
scheme which is separated and of finite presentation.

(1) The functor Hom(G,H) is representable by an S-algebraic space separated and locally of finite pre-
sentation.

(2) If moreover G is finite and H is affine, then Hom(G,H) is affine and of finite presentation.

(3) The inclusion Mono(G,H) ⊂ Hom(G,H) is representable by open immersions.

Proof : (1) Let T = HomSch(G,H) be the functor of morphisms of schemes. This is representable by
an S-algebraic space separated and locally of finite presentation, as follows from e.g. [SP22, Tag 0D1C].
Let f : GT → HT be the universal point. Then Hom(G,H) is the subfunctor of T that equalizes the two
maps f ◦mG and mH ◦ (f × f). This is representable by a closed subscheme by Corollary A.7.

(2) This is [SGA3.2], Exp. XI, Prop. 3.12.b) whose statement requires G to be of multiplicative type but
whose proof does not use this assumption – and explicitly points it out.
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(3) Let T = Hom(G,H) and let f : G → H be the universal homomorphism over T . The kernel
N = ker(f) is a closed subgroup scheme of G of finite presentation, and the functor Mono(G,H) is the
subfunctor of T which renders the neutral section e : T → N an isomorphism. The latter condition is
equivalent to N → T being a closed immersion; since N → T is proper, it follows from [SP22, Tag 05XA]
that the subfunctor of interest is representable by an open subscheme of T . �

A.11 Lemma. Let H → S be a group scheme which is separated and of finite presentation. Then
the S-functor of subgroup schemes L ⊂ H which are proper, flat, finitely presented is representable by an
algebraic space separated and locally of finite presentation.

Proof : Let T = Hilb be the Hilbert scheme of proper, flat, finitely presented closed subschemes
of H. This is representable by an algebraic space separated and locally of finite presentation, see [SP22,
Tag 0D01]. It follows from Corollary A.9 that the functor of subgroup schemes is representable by a
closed subscheme of T . �
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