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Abstract: In many real-life problems, it is difficult to acquire or label large amounts of data, resulting
in so-called few-shot learning problems. However, few-shot classification is a challenging problem
due to the uncertainty caused by using few labeled samples. In the past few years, many methods
have been proposed with the common aim of transferring knowledge acquired on a previously
solved task, which is often achieved by using a pretrained feature extractor. As such, if the initial task
contains many labeled samples, it is possible to circumvent the limitations of few-shot learning. A
shortcoming of existing methods is that they often require priors about the data distribution, such as
the balance between considered classes. In this paper, we propose a novel transfer-based method
with a double aim: providing state-of-the-art performance, as reported on standardized datasets in
the field of few-shot learning, while not requiring such restrictive priors. Our methodology is able to
cope with both inductive cases, where prediction is performed on test samples independently from
each other, and transductive cases, where a joint (batch) prediction is performed.

Keywords: few-shot learning; inductive and transductive learning; transfer learning; optimal transport

1. Introduction

Thanks to their outstanding performance, deep learning methods have been widely
considered for vision tasks such as image classification and object detection. In order to
reach top performance, these systems are typically trained using very large labeled datasets
that are representative enough of the inputs to be processed afterward.

However, in many applications, it is costly to acquire or annotate data, resulting in the
impossibility of creating such large labeled datasets. Under this condition, it is challenging
to optimize deep learning architectures considering the fact they typically are made of way
more parameters than the dataset can efficiently tune. This is the reason why in the past
few years, few-shot learning (i.e., the problem of learning with few labeled examples) has
become a trending research subject in the field. In more detail, there are two settings that
authors often consider: (a) “inductive few-shot”, where only a few labeled samples are
available during training, and prediction is performed on each test input independently,
and (b) “transductive few-shot”, where prediction is performed on a batch of (non-labeled)
test inputs, allowing to take into account their joint distribution.

Few-shot learning is critical to many applications. To name a few, it has been con-
sidered for vision [1–3], audio [4–6], language [7–9], and medical imaging [10–12]. More
generally, few-shot learning can be used to provide proofs-of-concept while limiting the
costs of data labeling or to help in pseudo-annotation of datasets. This importance of the
problem of few-shot learning explains the abundant literature across the recent years.

Many works in the domain are built based on a “learning to learn” guidance, where
the pipeline is to train an optimizer [13–15] with different tasks of limited data so that the
model is able to learn generic experience for novel tasks. Namely, the model learns a set of
initialization parameters that are in an advantageous position for the model to adapt to a
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new (small) dataset. Recently, the trend evolved towards using well-thought-out feature
extractors, called backbones [1,2,16–19], that are trained one time on a large generic dataset
in order to produce easily classified feature vectors.

A main problem of the existing methods is that they typically require priors about
the data balance between considered classes to perform at their best [1,20]. These methods
could be patched to work efficiently under other regimes but would still require the knowl-
edge of data distribution between classes. In this work, we introduce a new methodology
with a double aim: 1—providing state-of-the-art performance, as reported using standard-
ized benchmarks in the field of few-shot learning, and 2—not requiring any priors about
data distribution among classes.

To achieve this goal, we introduce a novel methodology, summarized in Figure 1, that
combines feature preprocessing, self-distillation and an optimal transport-based framework.
The utility of these ingredients is demonstrated using ablation tests.
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Figure 1. Illustration of the proposed method. A feature extractor is trained using a generic dataset.
Obtained features on the few-shot dataset are then preprocessed using PEME (Power, Euclidian nor-
malization, Mean subtraction, Euclidean normalization) to better align with a Gaussian distribution.
They are then either directly fed to a classifier (inductive case), or processed through an optimal trans-
port inspired algorithm using self-distillation and Boosted Min-Size Sinkhorn (transductive case).

The outline of the paper is as follows. In Section 2, we introduce related work and
discuss the novelty of the proposed approach. In Section 3, we introduce the proposed
methodology. Section 4 contains several experiments and benchmark results, along with
corresponding discussions. Finally, Section 5 presents the conclusion.

2. Related Work

A large volume of works in few-shot classification is based on meta learning [15] meth-
ods, where the training data are transformed into few-shot learning episodes to better fit in
the context of a few examples. In this branch, optimization-based methods [13–15,21–23]
train a well-initialized optimizer so that it quickly adapts to unseen classes with a few
epochs of training. Other works [24,25] apply data augmentation techniques to artifi-
cially increase the size of the training data in order for the model to generalize better to
unseen data.

In the past few years, there has been a growing interest in transfer-based methods.
The main idea consists of training feature extractors able to efficiently segregate novel
classes it has never seen. For example, in [2,18], the authors train the backbone with a
distance-based classifier [26] that takes into account the inter-class distance. In [2], the
authors utilize self-supervised learning techniques [27] to co-train an extra rotation classifier
for the output features, improving the accuracy in few-shot settings. More recent works
adopt a two-stage training procedure [28–30] where the authors first batch-train a model,
then use episodic training to better adjust class prototypes. There are also methods that
train a model with a combination of different ingredients [31,32], e.g., distillation [33,34]
under a teacher-student framework to better find the nuances between samples. Aside
from approaches focused on training a more robust model, other approaches are built
on top of a pre-trained feature extractor (backbone). For instance, in [35], the authors
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implement a nearest class mean classifier to associate an input with a class whose centroid
is the closest in terms of the `2 distance. In [20], an iterative approach is used to adjust the
class prototypes. In [19], the authors build a graph neural network to gather the feature
information from similar samples. Generally, transfer-based techniques often reach the best
performance on standardized benchmarks.

Although many works involve feature extraction, few have explored the features in
terms of their distribution [2,36,37]. Often, assumptions are made that the features in a class
align to a certain distribution, even though these assumptions are seldom experimentally
discussed. In our work, we analyze the impact of the feature distributions and how they
can be transformed for better processing and accuracy. We also introduce a new algorithm
to improve the quality of the association between input features and corresponding classes
in typical few-shot settings.

Let us highlight the main contributions of this work. (1) We propose a novel pre-
processing method to be applied to raw extracted features in order to make them more
aligned with Gaussian assumptions. (2) We introduce a Wasserstein-based method to
better align the distribution of features with that of the considered classes and combine it
with self-distillation. (3) We show that the proposed method can bring a large increase in
accuracy with a variety of feature extractors and datasets, leading to state-of-the-art results
in the considered benchmarks. This work is an extended version of [1], with the main
difference that here we consider the broader case where we do not know the proportion of
samples belonging to each considered class in the case of a transductive few-shot, leading
to a new algorithm called the Boosted Min-size Sinkhorn. We also propose more efficient
preprocessing steps, leading to overall better performance in both inductive and transduc-
tive settings. Finally, we introduce the use of logistic regression with self-distillation in our
methodology instead of a simple nearest class mean classifier.

3. Materials and Methods

In this section, we introduce the problem statement. We also discuss the various steps
of the proposed method, including training the feature extractors, preprocessing the feature
representations, and classifying them. Note that we made the code of our method available
at https://github.com/yhu01/BMS (accessed on 1 February 2022).

3.1. Problem Statement

We consider a typical few-shot learning problem. Namely, we are given a base dataset
Dbase and a novel dataset Dnovel such that Dbase ∩Dnovel = ∅. Dbase contains a large number
of labeled examples from K different classes and can be used to train a generic feature
extractor. Dnovel , also referred to as a task or episode in other works, contains a small
number of labeled examples (support set S), along with some unlabeled ones (query set Q),
all from n new classes that are distinct from the K classes in Dbase. Our goal is to predict the
classes of unlabeled examples in the query set. The following parameters are of particular
importance to define such a few-shot problem: the number of classes in the novel dataset n
(called n-way), the number of labeled samples per class s (called s-shot) and the number of
unlabeled samples per class q. Therefore, the novel dataset contains a total of l + u samples,
where l = ns are labeled, and u = nq are unlabeled. In the case of an inductive few-shot,
the prediction is performed independently on each one of the query samples. In the case
of a transductive few-shot [20,38], the prediction is performed considering all unlabeled
samples together. Contrary to our previous work [1], we do not consider knowing the
proportion of samples in each class in the case of a transductive few-shot.

3.2. Feature Extraction

The first step is to train a neural network backbone model using only the base dataset.
In this work, we consider multiple backbones with various training procedures. Once
the considered backbone is trained, we obtain robust embeddings that should generalize
well to novel classes. We denote by fϕ the backbone function, obtained by extracting the

https://github.com/yhu01/BMS


Algorithms 2022, 15, 147 4 of 20

output of the penultimate layer from the considered architecture, with ϕ being the trained
architecture parameters. Thus, considering an input vector x, fϕ(x) is a feature vector with
d dimensions that can be thought of as a simpler-to-manipulate representation of x. Note
that, importantly, in all backbone architectures used in the experiments of this work, the
penultimate layers are obtained by applying a ReLU function so that all feature components
coming out of fϕ are nonnegative.

3.3. Feature Preprocessing

As mentioned in Section 2, many works hypothesize, explicitly or not, that the features
from the same class are aligned with a specific distribution (often Gaussian-like). However,
this aspect is rarely experimentally verified. In fact, it is very likely that features obtained
using the backbone architecture are not Gaussian. Indeed, usually, the features are obtained
after applying a ReLU function [39] and exhibit a positive and yet skewed distribution
mostly concentrated around 0 (more details can be found in the next section).

Multiple works in the domain [20,35] discuss the different statistical methods (e.g.,
batch normalization) to better fit the features into a model. Although these methods may
have provable assets for some distributions, they could worsen the process if applied to
an unexpected input distribution. This is why we propose to preprocess the obtained raw
feature vectors so that they better align with typical distribution assumptions in the field.
Denote fϕ(x) = [ f 1

ϕ(x), . . . , f h
ϕ(x), . . . , f d

ϕ(x)] ∈ (R+)
d, x ∈ Dnovel as the obtained features

on Dnovel , and let f h
ϕ(x), 1 ≤ h ≤ d denote its value in the hth position. The preprocessing

methods applied in our proposed algorithms are as follows:
(E) Euclidean normalization. Also known as L2-normalization, which is widely used

in many related works [19,35,37], this step scales the features to the same area so that large
variance feature vectors do not predominate the others. Euclidean normalization can be
given by:

fϕ(x)←
fϕ(x)
‖ fϕ(x)‖2

(1)

(P) Power transform. The power transform method [1,40] simply consists of taking
the power of each feature vector coordinate. The formula is given by:

f h
ϕ(x)← ( f h

ϕ(x) + ε)β, β 6= 0 (2)

where ε = 1 × 10−6 is used to make sure that fϕ(x) + ε is strictly positive in every posi-
tion, and β is a hyper-parameter. The rationale of the preprocessing above is that power
transform, often used in combination with euclidean normalization, has the functionality
of reducing the skew of the distribution and mapping it to a close-to-Gaussian distribution,
adjusted by β. After experiments, we found that β = 0.5 gives the most consistent results
for our considered experiments, which corresponds to a square-root function that has a
wide range of usage on features [41]. We will analyze this ability and the effect of power
transform in more detail in Section 4. Note that power transform can only be applied if
considered feature vectors contain nonnegative entries, which will always be the case in
the remainder of this work.

(M) Mean subtraction. With mean subtraction, each sample is translated using m ∈
(R+)

d, the projection center. This is often used in combination with euclidean normalization
in order to reduce the task bias and better align the feature distributions [20]. The formula
is given by:

fϕ(x)← fϕ(x)−m (3)

The projection center is often computed as the mean values of feature vectors related
to the problem [20,35]. In this paper, we compute it either as the mean feature vector
of the base dataset (denoted as Mb) or the mean vector of the novel dataset (denoted as
Mn), depending on the few-shot settings. Of course, in both of these cases, the rationale
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is to consider a proxy to what would be the exact mean value of feature vectors on the
considered task.

In our proposed method, we deploy these preprocessing steps in the following order:
Power transform (P) on the raw features, followed by a Euclidean normalization (E). Then,
we perform mean subtraction (M) followed by another Euclidean normalization at the end.
The resulting abbreviation is PEME, in which M can be either Mb or Mn, as mentioned
above. In our experiments, we found that using Mb in the case of inductive few-shot
learning and Mn in the case of transductive few-shot learning consistently led to the most
competitive results. More details on why we used this methodology are available in the
experiment section.

When facing an inductive problem, a simple classifier such as a Nearest-Class-Mean
classifier (NCM) can be used directly after this preprocessing step. The resulting method-
ology is denoted PEMbE-NCM. However, in the case of transductive settings, we also
introduce an iterative procedure, denoted BMS for Boosted Min-size Sinkhorn, meant to
leverage the joint distribution of unlabeled samples. The resulting methodology is denoted
PEMnE-BMS. The details of the BMS procedure are presented thereafter.

3.4. Boosted Min-Size Sinkhorn

In the case of transductive few-shot, we introduce a method that consists of iteratively
refining estimates for the probability each unlabeled sample belongs to any of the consid-
ered classes. This method is largely based on the one we introduced in [1], except it does
not require priors about sample distributions in each of the considered classes. Denoting
i ∈ [1, . . . , l + u] as the sample index in Dnovel and j ∈ [1, . . . , n] as the class index, the goal
is to maximize the following log post-posterior function:

L(θ) = ∑
i

log P(l(xi) = j|xi; θ)

=∑
i

log
P(xi, l(xi) = j; θ)

P(xi; θ)

∝ ∑
i

log
P(xi|l(xi) = j; θ)

P(xi; θ)
,

(4)

Here, l(xi) denotes the class label for sample xi ∈ Q ∪ S, P(xi; θ) denotes the marginal
probability, and θ represents the model parameters to estimate. Assuming a Gaussian
distribution on the input features for each class, here we define θ = wj, ∀j where wj ∈ Rd

stand for the weight parameters for class j. We observe that Equation (4) can be related
to the cost function utilized in optimal transport [42], which is often considered to solve
classification problems, with constraints on the sample distribution over classes. To that
end, a well-known Sinkhorn [43] mapping method is proposed. The algorithm aims at
computing a class allocation matrix among novel class data for a minimum Wasserstein
distance. Namely, an allocation matrix P ∈ R(l+u)×n

+ is defined where P[i, j] denotes the
assigned portion for sample i to class j, and it is computed as follows:

P = Sinkhorn(C, p, q, λ)

= argmin
P̃∈U(p,q)

∑
ij

P̃[i, j]C[i, j] + λH(P̃), (5)

where U(p, q) ∈ R(l+u)×n
+ is a set of positive matrices for which the rows sum to p and the

columns sum to q, p denotes the distribution of the amount that each sample uses for class
allocation, and q denotes the distribution of the amount of samples allocated to each class.
Therefore, U(p, q) contains all the possible ways of allocation. In the same equation, C can
be viewed as a cost matrix that is of the same size as P, each element in C indicates the cost
of its corresponding position in P. We will define the particular formula of the cost function
for each position C[i, j], ∀i, j in details later on in the section. As for the second term on



Algorithms 2022, 15, 147 6 of 20

the right of (5), it stands for the entropy of P̃: H(P̃) = −∑ij P̃[i, j] log P̃[i, j], regularized
by a hyper-parameter λ. Increasing λ would force the entropy to become smaller, so
that the mapping is less diluted. This term also makes the objective function strictly
convex [43,44] and thus a practical and effective computation. From lemma 2 in [43], the
result of the Sinkhorn allocation has the typical form P = diag(u) · exp(−C/λ) · diag(v).
It is worth noting that here we assume a soft class allocation, meaning that each sample
can be “sliced” into different classes. We will present our proposed method in detail in the
following paragraphs.

Given all that is presented above, in this paper, we propose an Expectation–Maximization
(EM) [45] based method, which alternates between updating the allocation matrix P and
estimating the parameter θ of the designed model, in order to minimize Equation (5) and
maximize Equation (4). For a starter, we define a weight matrix W with n columns (i.e., one
per class) and d rows (i.e., one per dimension of feature vectors), and for column j in W, we
denote it as the weight parameters wj ∈ Rd for class j in correspondence with Equation (4).
It is initialized as follows:

wj = W[:, j] = cj/‖cj‖2, (6)

where
cj =

1
s ∑

x∈S,`(x)=j
fϕ(x). (7)

We can see that W contains the average of feature vectors in the support set for each
class, followed by a L2-normalization on each column so that ‖wj‖2 = 1, ∀j.

Then, we iterate multiple steps that we describe thereafter.

a Computing costs

As previously stated, the proposed algorithm is an EM-like one that iterately updates
model parameters for optimal estimates. Therefore, this step, along with Min-size Sinkhorn
presented in the next step, is considered as the E-step of our proposed method. The goal
is to find membership probabilities for the input samples; namely, we compute P that
minimizes Equation (5).

Here, we assume Gaussian distributions, and features in each class have the same vari-
ance and are independent from one another (covariance matrix Σ = Iσ2). We observe that,
ignoring the marginal probability, Equation (4) can be boiled down to negative L2 distances
between extracted samples fϕ(xi), ∀i and wj, ∀j, which is initialized in Equation (6) in our
proposed method. Therefore, based on the fact that wj and fϕ(xi) are both normalized to
be unit length vectors ( fϕ(xi) being preprocessed using PEME introduced in the previous
section), here we define the cost between sample i and class j to be the following equation:

C[i, j] ∝ ( fϕ(xi)−wj)
2

= 1−wT
j fϕ(xi),

(8)

which corresponds to the cosine distance.

b Min-size Sinkhorn

In [1], we proposed a Wasserstein distance-based method in which the Sinkhorn
algorithm is applied at each iteration so that the class prototypes are updated iteratively
in order to find their best estimates. Although the method showed promising results, it is
established on the condition that the distribution of the query set is known, e.g., a uniform
distribution among classes on the query set. This is not ideal, given the fact that any priors
about Q should be supposedly kept unknown when applying a method. The methodology
introduced in this paper can be seen as a generalization of that introduced in [1] that does
not require priors about Q.

In the classical settings, the Sinkhorn algorithm aims at finding the optimal matrix P,
given the cost matrix C and regulation parameter λ presented in Equation (4)). Typically, it
initiates P from a softmax operation over the rows in C, then it iterates between normalizing
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columns and rows of P, until the resulting matrix becomes close to doubly stochastic
according to p and q. However, in our case, we do not know the distribution of samples
over classes. To address this, we firstly introduce the parameter k, initialized so that k← s,
meant to track an estimate of the cardinal of the class containing the least number of samples
in the considered task. Then, we propose the following modification to be applied to the
matrix P once initialized: we normalize each row as in the classical case but only normalize
the columns of P for which the sum is less than the previously computed min-size k [20].
This ensures at least k elements are allocated for each class, but not exactly k samples as in
the balanced case.

The principle of this modified Sinkhorn solution is presented in Algorithm 1.

Algorithm 1 Min-size Sinkhorn

Inputs: C, p = 1l+u, q = k1n, λ
Initializations: P = So f tmax(−λC)
for iter = 1 to 50 do

P[i, :]← p[i] · P[i,:]
∑j P[i,j] , ∀i

P[:, j]← q[j] · P[:,j]
∑i P[i,j] if ∑i P[i, j] < q[j], ∀j

end for
return P

c Updating weights

This step is considered as the M-step of the proposed algorithm, in which we use a
variant of the logistic regression algorithm in order to find the model parameter θ in the
form of weight parameters wj for each class. Note that wj, if normalized, is equivalent to
the prototype for class j in this case. Given the fact that in Equation (4), we also take into
account the marginal probability, it can be further broken down as:

P(xi; θ) = ∑
j

P(xi|l(xi) = j; θ)P(l(xi) = j), (9)

We observe that Equation (4) corresponds to applying a softmax function on the
negative logits computed through an L2-distance function between samples and class
prototypes (normalized). This fits the formulation of a linear hypothesis between fϕ(xi)
and wj for logit calculations, hence the rationale for utilizing logistic regression in our
proposed method. Note that contrary to classical logistical regression, we implement here
a form of self-distillation. Indeed, we use soft labels contained in P instead of one-hot class
indicator targets, and these targets are refined iteratively.

The procedure of this step is as follows: now that we have a polished allocation matrix
P, we firstly initialize the weights wj as follows:

wj ← uj/‖uj‖2, (10)

where
uj ←∑

i
P[i, j] fϕ(xi)/ ∑

i
P[i, j]. (11)

We can see that elements in P are used as coefficients for feature vectors to linearly
adjust the class prototypes [1]. Similar to Equation (6), here wj is the normalized newly-
computed class prototype that is a vector of length 1.

Next, we further adjust weights by applying a logistic regression, and the optimization
is performed by minimizing the following loss:

1
l + u

·∑
i

∑
j
− log(

exp (S[i, j])
∑n

γ=1 exp (S[i, γ])
) · P[i, j], (12)
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where S ∈ R(l+u)×n contains the logits, and each element is computed as:

S[i, j] = κ ·
wT

j fϕ(xi)

‖wj‖2
. (13)

Note that κ is a scaling parameter, it can also be seen as a temperature parameter that
adjusts the confidence metric to be associated with each sample. It is learnt jointly with W.

The deployed logistic regression comes with hyperparameters on its own. In our
experiments, we use an SGD optimizer with a gradient step of 0.1 and 0.8 as the momentum
parameter, and we train over e epochs. Here, we point out that e ≥ 0 is considered an
influential hyperparameter in our proposed algorithm, e = 0 indicates a simple update
of W as the normalized adjusted class prototypes (Equation (10)) computed from P in
Equation (11), without further adjustment of logistic regression. In addition, note that
when e > 0, we project columns of W to the unit hypersphere at the end of each epoch.

d Estimating the class minimum size

We can now refine our estimate for the min-size k for the next iteration. To this end,
we firstly compute the predicted label of each sample as follows:

ˆ̀(xi) = arg max
j

(P[i, j]), (14)

which can be seen as the current (temporary) class prediction.
Then, we compute:

k = min
j
{k j}, (15)

where k j = #{i, ˆ̀(xi) = j}, #{·} representing the cardinal of a set.
Summary of the proposed method: all steps of the proposed method are summarized

in Algorithm 2. In our experiments, we also report the results obtained when using a
prior about Q as in [1]. In this case, k does not have to be estimated throughout the
iterations and can be replaced with the actual exact targets for the Sinkhorn. We denote
this prior-dependent version PEMnE-BMS* (with an added ∗).

Algorithm 2 Boosted Min-size Sinkhorn (BMS)

Parameters: λ, e
Inputs: Preprocessed fϕ(x), ∀x ∈ Dnovel = Q ∪ S
Initializations: W as normalized mean vectors over the support set for each class
(Equation (6)); Min-size k← s.
for iter = 1 to 20 do

Compute cost matrix C using W (Equation (8)). # E-step
Apply Min-size Sinkhorn to compute P (Algorithm 1). # E-step
Update weights W using P with logistic regression (Equations (10)–(13)). # M-step
Estimate class predictions ˆ̀ and min-size k using P (Equations (14) and (15)).

end for
return ˆ̀

3.5. Implementation Details

In order to stress the genericity of our proposed method with regards to the chosen
backbone architecture and training strategy, we perform experiments using WRN [46], ResNet18
and ResNet12 [47], along with some other pretrained backbones (e.g., DenseNet [35,48]). For
each dataset, we train the feature extractor with base classes and test the performance using
novel classes. Therefore, for each test run, n classes are drawn uniformly at random among
novel classes. Among these n classes, s labeled examples and q unlabeled examples per
class are uniformly drawn at random to form Dnovel . The WRN and ResNet are trained
following [2]. In the inductive setting, we use our proposed preprocessing steps PEMbE
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followed by a basic Nearest Class Mean (NCM) classifier. In the transductive setting, the
preprocessing steps are denoted as PEMnE in that we use the mean vector of a novel dataset
for mean subtraction, followed by BMS or BMS* depending on whether we have prior
knowledge onf the distribution of query set Q among classes. Note that we perform a
QR decomposition on preprocessed features in order to speed up the computation for the
classifier that follows. All our experiments are performed using n = 5, q = 15, s = 1 or 5.
In our experiments, we perform 10,000 random runs to obtain the mean accuracy score and
indicate confidence scores (95%) when relevant. For our proposed PEMnE-BMS, we train
e = 0 epoch in the case of 1-shot and e = 40 epochs in the case of 5-shot. As for PEMnE-
BMS*, we set e = 20 for 1-shot and e = 40 for 5-shot. As for the regularization parameter
λ in Equation (5), it is fixed to 8.5 for all settings. The impact of these hyperparameters is
detailed in the next sections.

4. Results and Discussions
4.1. Comparison with State-of-the-Art Methods

Performance on standardized benchmarks: in the first experiment, we conduct our
proposed method on different benchmarks and compare the performance with other state-
of-the-art solutions. The results are presented in Tables 1 and 2, and we observe that
our method reaches the state-of-the-art performance in both inductive and transductive
settings on all the few-shot classification benchmarks. Particularly, the proposed PEMnE-
BMS* brings important gains in both 1-shot and 5-shot settings, and the prior-independent
PEMnE-BMS also obtains competitive results on 5-shot. Note that for tieredImageNet
we implement our method based on a pre-trained DenseNet121 backbone following the
procedure described in [35]. From these experiments, we conclude that the proposed
method can bring an increase in accuracy with a variety of backbones and datasets, leading
to a state-of-the-art performance. In terms of execution time, we measured an average of
0.004 s per run. These results confirm the ability of the proposed methodology to reach state-
of-the-art performance using the standardized benchmarks of the field of few-shot learning.

Table 1. The 1-shot and 5-shot accuracy of state-of-the-art methods in the literature on miniImageNet
and tieredImageNet, compared with the proposed solution. Best results are in bold.

miniImageNet
Setting Method Backbone 1-Shot 5-Shot

Inductive

Matching Networks [49] WRN 64.03± 0.20% 76.32± 0.16%
SimpleShot [35] DenseNet121 64.29± 0.20% 81.50± 0.14%
S2M2_R [2] WRN 64.93± 0.18% 83.18± 0.11%
PT + NCM [1] WRN 65.35± 0.20% 83.87± 0.13%
DeepEMD[29] ResNet12 65.91± 0.82% 82.41± 0.56%
FEAT[28] ResNet12 66.78± 0.20% 82.05± 0.14%
PEMbE-NCM (ours) WRN 68.43± 0.20% 84.67± 0.13%

Transductive

BD-CSPN [50] WRN 70.31± 0.93% 81.89± 0.60%
LaplacianShot [51] DenseNet121 75.57± 0.19% 87.72± 0.13%
Transfer + SGC [19] WRN 76.47± 0.23% 85.23± 0.13%
TAFSSL [20] DenseNet121 77.06± 0.26% 84.99± 0.14%
TIM-GD [52] WRN 77.80% 87.40%
MCT [53] ResNet12 78.55± 0.86% 86.03± 0.42%
EPNet [54] WRN 79.22± 0.92% 88.05± 0.51%
PT + MAP [1] WRN 82.92± 0.26% 88.82± 0.13%
PEMnE-BMS (ours) WRN 82.07± 0.25% 89.51± 0.13%
PEMnE-BMS* (ours) WRN 83.35± 0.25% 89.53± 0.13%
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Table 1. Cont.

tieredImageNet
Setting Method Backbone 1-Shot 5-Shot

Inductive

ProtoNet [55] ConvNet4 53.31± 0.89% 72.69± 0.74%
LEO [56] WRN 66.33± 0.05% 81.44± 0.09%
SimpleShot [35] DenseNet121 71.32± 0.22% 86.66± 0.15%
PT + NCM [1] DenseNet121 69.96± 0.22% 86.45± 0.15%
FEAT[28] ResNet12 70.80± 0.23% 84.79± 0.16%
DeepEMD[29] ResNet12 71.16± 0.87% 86.03± 0.58%
RENet[30] ResNet12 71.61± 0.51% 85.28± 0.35%
PEMbE-NCM (ours) DenseNet121 71.86± 0.21% 87.09± 0.15%

Transductive

BD-CSPN [50] WRN 78.74± 0.95% 86.92± 0.63%
LaplacianShot [51] DenseNet121 80.30± 0.22% 87.93± 0.15%
MCT [53] ResNet12 82.32± 0.81% 87.36± 0.50%
TIM-GD [52] WRN 82.10% 89.80%
TAFSSL [20] DenseNet121 84.29± 0.25% 89.31± 0.15%
PT + MAP [1] DenseNet121 85.75± 0.26% 90.43± 0.14%
PEMnE-BMS (ours) DenseNet121 85.08± 0.25% 91.08± 0.14%
PEMnE-BMS* (ours) DenseNet121 86.07± 0.25% 91.09± 0.14%

Table 2. The 1-shot and 5-shot accuracy of state-of-the-art methods on CUB and CIFAR-FS. Best
results are in bold.

CUB
Setting Method Backbone 1-Shot 5-Shot

Inductive

Baseline++ [18] ResNet10 69.55± 0.89% 85.17± 0.50%
MAML [13] ResNet10 70.32± 0.99% 80.93± 0.71%
ProtoNet [55] ResNet18 72.99± 0.88% 86.64± 0.51%
Matching Networks [49] ResNet18 73.49± 0.89% 84.45± 0.58%
FEAT[28] ResNet12 73.27± 0.22% 85.77± 0.14%
DeepEMD[29] ResNet12 75.65± 0.83% 88.69± 0.50%
RENet[30] ResNet12 79.49± 0.44% 91.11± 0.24%
S2M2_R [2] WRN 80.68± 0.81% 90.85± 0.44%
PT + NCM [1] WRN 80.57± 0.20% 91.15± 0.10%
PEMbE-NCM (ours) WRN 80.82± 0.19% 91.46± 0.10%

Transductive

LaplacianShot [51] ResNet18 80.96% 88.68%
TIM-GD [52] ResNet18 82.20% 90.80%
BD-CSPN [50] WRN 87.45% 91.74%
Transfer + SGC [19] WRN 88.35± 0.19% 92.14± 0.10%
PT + MAP [1] WRN 91.55± 0.19% 93.99± 0.10%
LST + MAP [57] WRN 91.68± 0.19% 94.09± 0.10%
PEMnE-BMS (ours) WRN 91.01± 0.19% 94.60± 0.09%
PEMnE-BMS* (ours) WRN 91.91± 0.18% 94.62± 0.09%

CIFAR-FS
Setting Method Backbone 1-Shot 5-Shot

Inductive

ProtoNet [55] ConvNet64 55.50± 0.70% 72.00± 0.60%
MAML [13] ConvNet32 58.90± 1.90% 71.50± 1.00%
RENet[30] ResNet12 74.51± 0.46% 86.60± 0.32%
BD-CSPN [50] WRN 72.13± 1.01% 82.28± 0.69%
S2M2_R [2] WRN 74.81± 0.19% 87.47± 0.13%
PT + NCM [1] WRN 74.64± 0.21% 87.64± 0.15%
PEMbE-NCM (ours) WRN 74.84± 0.21% 87.73± 0.15%
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Table 2. Cont.

CIFAR-FS
Setting Method Backbone 1-Shot 5-Shot

Transductive

DSN-MR [58] ResNet12 78.00± 0.90% 87.30± 0.60%
Transfer + SGC [19] WRN 83.90± 0.22% 88.76± 0.15%
MCT [53] ResNet12 87.28± 0.70% 90.50± 0.43%
PT + MAP [1] WRN 87.69± 0.23% 90.68± 0.15%
LST + MAP [57] WRN 87.79± 0.23% 90.73± 0.15%
PEMnE-BMS (ours) WRN 86.93± 0.23% 91.18± 0.15%
PEMnE-BMS* (ours) WRN 87.83± 0.22% 91.20± 0.15%

Performance on cross-domain settings: in this experiment, we test our method in a
cross-domain setting, where the backbone is trained with the base classes in miniImageNet
but tested with the novel classes in the CUB dataset. As shown in Table 3, the proposed
method gives the best accuracy both in the case of 1-shot and 5-shot, for both inductive and
transductive settings. The ability of the proposed methodology to leverage feature vectors
trained on a different dataset points out that its efficacy is not restricted to constrained
settings where data distribution between the base and novel have to be identical.

Table 3. The 1-shot and 5-shot accuracy of state-of-the-art methods when performing cross-domain
classification (backbone: WRN). Best results are in bold.

Setting Method 1-Shot 5-Shot

Inductive

Baseline++ [18] 40.44± 0.75% 56.64± 0.72%
Manifold Mixup [59] 46.21± 0.77% 66.03± 0.71%
S2M2_R [2] 48.24± 0.84% 70.44± 0.75%
PT + NCM [1] 48.37± 0.19% 70.22± 0.17%
PEMbE-NCM (ours) 50.71± 0.19% 73.15± 0.16%

Transductive

LaplacianShot [51] 55.46% 66.33%
Transfer + SGC [19] 58.63± 0.25% 73.46± 0.17%
PT + MAP [1] 63.17± 0.31% 76.43± 0.19%
PEMnE-BMS (ours) 62.93± 0.28% 79.10± 0.18%
PEMnE-BMS* (ours) 63.90± 0.31% 79.15± 0.18%

4.2. Ablation Studies

Ablation study on the proposed method: in this section, we have a closer look at
the impact of our proposed methodology steps. The idea is to better understand the
contribution of each step to the final performance. Namely, we conduct an ablation study
on the prediction accuracy with or without (1) PEME, which is the proposed preprocessing
steps on extracted raw features, and (2) proposed Boosted Min-sized Sinkhorn algorithm
that integrates self-distillation for refined prototypes. Note that in the case of BMS*, the
algorithm is equivalent to MAP presented in [1] without the newly proposed self-distillation
method. In Table 4, we can see that both PEME and self-distillation play an important role
in improving the prediction performance. As such, this experiment supports the interest of
both steps to reach the best possible accuracy.
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Table 4. Ablation study on our proposed PEME and BMS* with self-distillation on miniImageNet
(backbone: WRN). Best results are in bold.

BMS* Accuracy
w/PEME w/Self-Distillation 1-Shot 5-Shot

75.60± 0.29% 84.13± 0.16%

X 82.92± 0.26% 88.82± 0.13%

X 80.19± 0.27% 87.40± 0.13%

X X 83.35± 0.25% 89.53± 0.13%

Generalization to backbone architectures. To further stress the interest of the ingre-
dients inn the proposed method reaching top performance, in Table 5 we investigate the
impact of our proposed method on different backbone architectures and benchmarks in
the transductive setting. For comparison purposes, we also replace our proposed BMS
algorithm with a standard K-Means algorithm where class prototypes are initialized with
the available labeled samples for each class. We can observe that: (1) the proposed method
consistently achieves the best results for any fixed backbone architecture, (2) the feature
extractor trained on WRN outperforms the others with our proposed method on different
benchmarks, (3) there are significant drops in accuracy with k-means, which stresses the
interest of BMS, and (4) the prior on Q (BMS vs. BMS*) is of major interest for 1-shot, boost-
ing the performance by an approximation of 1% on all tested feature extractors. Overall,
these experiments demonstrate the interest of the proposed methodology with respect to
existing alternatives.

Table 5. The 1-shot and 5-shot accuracy of the proposed method on different backbones and bench-
marks. Comparison with the k-means algorithm. Best results are in bold.

miniImageNet CUB CIFAR-FS
Method Backbone 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

K-MEANS
ResNet12 72.73± 0.23% 84.05± 0.14% 87.35± 0.19% 92.31± 0.10% 78.39± 0.24% 85.73± 0.16%
ResNet18 73.08± 0.22% 84.67± 0.14% 87.16± 0.19% 91.97± 0.09% 79.95± 0.23% 86.74± 0.16%

WRN 76.67± 0.22% 86.73± 0.13% 88.28± 0.19% 92.37± 0.10% 83.69± 0.22% 89.19± 0.15%

BMS (ours)
ResNet12 77.62± 0.28% 86.95± 0.15% 90.14± 0.19% 94.30± 0.10% 81.65± 0.25% 88.38± 0.16%
ResNet18 79.30± 0.27% 87.94± 0.14% 90.50± 0.19% 94.29± 0.09% 84.16± 0.24% 89.39± 0.15%

WRN 82.07± 0.25% 89.51± 0.13% 91.01± 0.18% 94.60± 0.09% 86.93± 0.23% 91.18± 0.15%

BMS* (ours)
ResNet12 79.03± 0.28% 87.01± 0.15% 91.34± 0.19% 94.32± 0.09% 82.87± 0.27% 88.43± 0.16%
ResNet18 80.56± 0.27% 87.98± 0.14% 91.39± 0.19% 94.31± 0.09% 85.17± 0.25% 89.42± 0.16%

WRN 83.35± 0.25% 89.53± 0.13% 91.91± 0.18% 94.62± 0.09% 87.83± 0.22% 91.20± 0.15%

Preprocessing impact: in Table 6, we compare our proposed feature preprocessing
PEME with other preprocessing techniques such as batch normalization, which standard-
izes extracted feature values into [0, 1] for a considered task, along with other ones being
used in [35]. The experiment is conducted on miniImageNet (backbone: WRN). For all that
is put into comparison, we run either an NCM classifier or BMS after preprocessing, de-
pending on the settings. The obtained results clearly show the interest of PEME compared
with existing alternatives, and we also observe that the power transform helps increase the
accuracy on both inductive and transductive settings.
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Table 6. Comparison of 1-shot and 5-shot accuracy on miniImageNet (backbone: WRN) when using
various preprocessing steps on the extracted features. Best results are in bold.

Inductive (NCM) Transductive (BMS)
Preprocessing 1-Shot 5-Shot 1-Shot 5-Shot

None 55.30± 0.21% 78.34± 0.15% 77.62± 0.26% 87.96± 0.13%
Batch Norm [60] 66.81± 0.20% 83.57± 0.13% 73.74± 0.21% 88.07± 0.13%

L2N [35] 65.37± 0.20% 83.46± 0.13% 73.84± 0.21% 88.15± 0.13%
CL2N [35] 63.88± 0.20% 80.85± 0.14% 73.12± 0.28% 86.47± 0.15%

EMbE 68.05± 0.20% 83.76± 0.13% 80.28± 0.26% 88.36± 0.13%
PEMbE 68.43± 0.20% 84.67± 0.13% 82.01± 0.26% 89.50± 0.13%
EMnE \ \ 80.14± 0.27% 88.39± 0.13%

PEMnE \ \ 82.07± 0.25% 89.51± 0.13%

Effect of power transform: we firstly conduct a Gaussian hypothesis test on each of
the 640 coordinates of raw extracted features (backbone: WRN) for each of the 20 novel
classes (dataset: miniImageNet). Following D’Agostino and Pearson’s methodology [61,62]
and p = 1e− 3, only one of the 640× 20 = 12800 tests return positive, suggesting a very
low pass rate for raw features. However, after applying the power transform, we record
a pass rate that surpasses 50%, suggesting a considerably increased number of positive
results for Gaussian tests. This experiment shows the effect of power transform being able
to adjust feature distributions into more Gaussian-like ones.

To better show the effect of this proposed technique on feature distributions, we
depict in Figure 2 the distributions of an arbitrarily selected feature for three randomly
selected novel classes of miniImageNet when using WRN, before and after applying the
power transform. In addition, we also added to the figure the feature distributions after
applying batch normalization for comparison purposes. We observe quite clearly that
(1) raw features exhibit a positive distribution mostly concentrated around 0, a similar
behavior is also observed for batch norm, and (2) power transform is able to reshape the
feature distributions to close-to-Gaussian distributions. We observe similar behaviors with
other datasets as well. Moreover, in order to visualize the impact of this technique with
respect to the position of feature points, in Figure 3, we plot the feature vectors of three
randomly selected classes from Dnovel . Note that all feature vectors in this experiment are
reduced to 3-dimensional ones corresponding to their largest eigenvalues. From Figure 3,
we can observe that the power transform, often followed by an L2-normalization, can help
shape the class distributions to become more gathered and Gaussian-like [57].

Influence of the number of unlabeled samples: in order to better understand the
gain in accuracy due to having access to more unlabeled samples, we depict in Figure 4
the evolution of accuracy as a function of q, when the number of classes n = 5 is fixed.
Interestingly, the accuracy quickly reaches a close-to-asymptotical plateau, emphasizing
the ability of the method to quickly exploit available information in the task.
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Figure 2. Distributions of an arbitrarily chosen feature for 3 novel classes with different preprocessing
techniques: raw (left), batch norm (middle) and power transform (right).
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Figure 3. Plot of feature vectors (extracted from WRN) from 3 randomly selected classes (each with
its own color). (left) Naive features. (right) Preprocessed features using power transform.
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Figure 4. Accuracy of 5-way, 1-shot classification setting on miniImageNet, CUB and CIFAR-FS as a
function of q.

Influence of hyperparameters: in order to test how much impact the hyperparameters
could have on our proposed method in terms of prediction accuracy, here we select two
important hyperparameters that are used in BMS and observe their impact. Namely, the
number of training epochs e in logistic regression and the regulation parameter λ used for
computing the prediction matrix P. In Figure 5, we show the accuracy of our proposed
method as a function of e (top) and λ (bottom). Results are reported for BMS* in 1-shot
settings, and for BMS in 5-shot settings. From the figure, we can see a slight uptick of
accuracy as e or λ increase, followed by a downhill when they become larger, implying
an overfitting of the classifier. We chose our optimal parameters from these experiments.
We note that, interestingly, the performance of the method appears quite robust to a non-
optimal choice of these parameters.
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Figure 5. Cont.
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Figure 5. Accuracy of the proposed method on miniImageNet (backbone: WRN) as a function of
training epoch e (top) and regulation parameter λ (bottom).

Convergence analysis: in this section, we discuss the convergence of the proposed
method in Algorithm 2, namely the convergence of P as a function of the number of iteration
step noted nstep. We conduct this experiment in a 5-way, 1-shot setting on miniImageNet
(backbone: WRN). In Figure 6 (left), we depict ‖∆P‖2 as a function of nstep, with ‖∆P‖2
being defined as ‖P(t+ 1)−P(t)‖2, 1 ≤ t ≤ nstep, namely the Euclidean difference between
the current P and the one computed in the previous step. Furthermore, we remind the
reader that the goal of the proposed algorithm is to minimize the energy computed in
Equation (5). Therefore, in Figure 6 (right), we depict the energy (value of Equation (5))
as a function of nstep. We can see that both ‖∆P‖2 and energy tend to stabilize with more
iteration steps.
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Figure 6. Convergence of BMS (1-shot on miniImagenet). (left) ‖∆P‖2 as a function of nstep. (right) En-
ergy (1-shot on miniImagenet) as a function of nstep.

Proposed method on backbones pre-trained with external data: in this experiment, we
compare our proposed method BMS* with the work in [63] that pre-trains the backbone
with the help of external illumination data for augmentation, followed by PT + MAP in [1]
for class center estimation. Here, we use the same backbones as [63] and replace PT + MAP
with our proposed BMS* under the same conditions. Results are presented in Table 7. Note
that we also show the re-implemented results of [63], and our method reaches superior
performance on all tested benchmarks using external data in [63].

Table 7. The proposed method on backbones pre-trained with external data. Note that -re denotes
the re-implementation of an existing method. Best results are in bold.

Benchmark Method 1-Shot 5-Shot

miniImageNet
Illu-Aug [63] 82.99± 0.23% 89.14± 0.12%
Illu-Aug-re 83.53± 0.25% 89.38± 0.12%
PEMnE-BMS* (ours) 83.85± 0.25% 90.07± 0.12%

CUB
Illu-Aug [63] 94.73± 0.14% 96.28± 0.08%
Illu-Aug-re 94.63± 0.15% 96.06± 0.08%
PEMnE-BMS* (ours) 94.78± 0.15% 96.43± 0.07%

CIFAR-FS
Illu-Aug [63] 87.73± 0.22% 91.09± 0.15%
Illu-Aug-re 87.76± 0.23% 91.04± 0.15%
PEMnE-BMS* (ours) 87.83± 0.23% 91.49± 0.15%
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Proposed method on Few-Shot Open-Set Recognition: Few-Shot Open-Set Recogni-
tion (FSOR) as a new trending topic deals with the fact that there are open data mixed in
query set Q that do not belong to any of the supposed classes used for label predictions.
Therefore, this often requires a robust classifier that is able to correctly classify the non-open
data as well as rejecting the open ones. In Table 8, we apply our proposed PEME for
feature preprocessing, followed by an NCM classifier and compare the results with other
state-of-the-art alternatives. We observe that our proposed method is able to surpass the
others in terms of accuracy and AUROC.

Table 8. Accuracy and AUROC of the proposed method for Few-Shot Open-Set Recognition. Best
results are in bold.

miniImageNet tieredImageNet
1-Shot 5-Shot 1-Shot 5-Shot

Method Acc AUROC Acc AUROC Acc AUROC Acc AUROC

ProtoNet [55] 64.01% 51.81% 80.09% 60.39% 68.26% 60.73% 83.40% 64.96%
FEAT [28] 67.02% 57.01% 82.02% 63.18% 70.52% 63.54% 84.74% 70.74%
NN [64] 63.82% 56.96% 80.12% 63.43% 67.73% 62.70% 83.43% 69.77%

OpenMax [65] 63.69% 62.64% 80.56% 62.27% 68.28% 60.13% 83.48% 65.51%
PEELER [66] 65.86% 60.57% 80.61% 67.35% 69.51% 65.20% 84.10% 73.27%

SnaTCHer [67] 67.60% 70.17% 82.36% 77.42% 70.85% 74.95% 85.23% 82.03%
PEMbE-NCM (ours) 68.43% 72.10% 84.67% 80.04% 71.87% 75.44% 87.09% 83.85%

4.3. Proposed Method on Merged Features

In this section, we investigate the effect of our proposed method on merged features.
Namely, we perform a direct concatenation of raw feature vectors extracted from multiple
backbones at the beginning, followed by BMS. In Table 9, we chose the feature vectors
from three backbones (WRN, ResNet18 and ResNet12) and evaluated the performance
with different combinations. We observe that (1) a direct concatenation, depending on the
backbones, can bring about 1% gain in both 1-shot and 5-shot settings compared with the
results in Table 5 with feature vectors extracted from one single feature extractor. (2) BMS*
reached new state-of-the-art results on few-shot learning benchmarks with feature vectors
concatenated from WRN, ResNet18 and ResNet12, given that no external data are used.

Table 9. The 1-shot and 5-shot accuracy on miniImageNet, CUB and CIFAR-FS on our proposed
PEMnE-BMS with multi-backbones (backbone training procedure follows [2], ’+’ denotes a concate-
nation of backbone features).

miniImageNet CUB CIFAR-FS
Backbone 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

RN18 + RN12 80.32% 89.07% 92.31% 95.62% 85.44% 90.58%
WRN + RN12 82.63% 90.43% 92.69% 95.96% 87.11% 91.50%
WRN + RN18 83.05% 90.57% 92.66% 95.79% 87.53% 91.70%
WRN + RN18 + RN12 82.90% 90.64% 93.32% 96.31% 87.62% 91.84%
WRN + RN18 + RN12 * 84.37% 90.69% 94.26% 96.32% 88.44% 91.86%
6×WRN * 85.54% 91.53% \ \ \ \
*: BMS*.

To further study the impact of the number of backbones on prediction accuracy, in
Figure 7 we depict the performance of our proposed method as a function of the number of
backbones. Note that, here, we operate on feature vectors of 6 WRN backbones (dataset:
miniImageNet) concatenated one after another, which makes a total of 6 slots corresponding
to a 640× 6 = 3840 feature size. Each of them is trained the same way as in [2], and we
randomly select the multiples of 640 coordinates within the slots to denote the number
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of concatenated backbones used. The performance result is the average of 100 random
selections, and we test with both BMS and BMS* for 1-shot, and BMS* for 5-shot. From
Figure 7, we observe that, as the number of backbones increases, there is a relatively steady
growth in terms of accuracy in multiple settings of our proposed method, indicating the
interest of BMS in merged features.
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Figure 7. Accuracy of the proposed method in different settings as a function of the number of
backbones (dataset: miniImageNet).

5. Conclusions

In this paper, we introduced a new pipeline to solve the few-shot classification prob-
lem. It comes with the two following assets: first, it is able to reach state-of-the-art accuracy
on standardized benchmarks of the field, and second, it does not require any explicit priors
about data distribution between classes, as opposed to many previous works in the domain.
Using extensive experiments, we demonstrated that the proposed methodology can be
used in a variety of settings, including cross-domain, multiple backbones, open-set recog-
nition . . .. Using ablation tests, we showed the importance of the introduced steps in the
methodology. The proposed methodology comes with only a few extra hyperparameters,
on which our experiments suggest that a fine tuning is not necessarily required. Thus we
believe that the proposed method is applicable to many practical engineering problems.
In future work, we would like to better understand the fundamental reasons why the
proposed preprocessing is able to boost performance. We would also like to find automatic
ways to tune the hyperparameters.
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