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Abstract. A famous experiment by Pan et al. (Nature 403, 515 (2000)) on a three-photon Bell state
is considered to prove the existence of entanglement without relying on Bell inequalities. We show that
the theory this proof is based on contains errors in the calculations that are beyond repair. Indeed, the
formalism to describe the internal dynamics of electrons (at rest) and photons in quantum mechanics (QM)
is based on the representations of the rotation group. For electrons, who have spin 1/2, the representation
is SU(2), for photons, who have spin 1 it is SO(2). Rotations are just a subject of elementary Euclidean
geometry, which does not contain any physics, let alone “quantum magic”. Therefore all quantum paradoxes
that oppose classical mechanics and QM (when it is purely based on the algebra of SU(2)), can only be
due to logical errors and a lack of understanding of the group representation theory. The three-photon
Bell state is extended but not non-local and as such does not imply a “spooky action at a distance”. (This
version supersedes the previous version which contained an error).

PACS. 03.65.Ta, 03.65.Ud, 03.67.-a

1 Motivation

In [1] we have been able to derive the Dirac equation from scratch using group representation theory. The proof is
mathematically rigorous. It just uses the Ansatz that the electron spins. This seems to run contrary to some well-
known objections formulated by Lorentz but we have been able to explain why these are not compelling. Quantum
mechanics (QM) is reputed to be full of mysteries. It is therefore very surprising that no special stunning assumptions
were required to obtain the mathematical proof for this fundamental equation. There is no quantum magic involved at
all. The derivation is entirely classical and there is no evidence of any contradiction with the theory of relativity. QM
seems to be just a part of relativity expressed in a somewhat counterintuitive language, i.e. the formalism of group
representation theory. We have also been able to explain the Stern-Gerlach experiment classically [2]. These results
suggest that QM could be just based on classical reasoning expressed in group representation theory. But this idea
is firmly contradicted by a vast body of experimental results reporting violations of Bell inequalities designed to test
hidden-variable theories [3,4,5,6,7] We have therefore made a study of the Bell inequalities in order to reach a better
understanding of the limitations of our approach. We found out that the derivation of the inequalities used by Aspect
et al. contains an error [8]. A further confirmation of this is that we have been able also to calculate Malus’ law by
classical reasoning [9]. This is reassuring because entanglement questions realism and/or locality, which are corner
stones of the foundations of the theory of relativity. But herewith the problems are not over yet. Entanglement has
also been reported in measurements with more than two particles where the argument does not rely on a violation
of Bell inequalities. Famous in this respect is an experiment [10] based on work of Greenberger, Horne and Zeilinger
(GHZ) [11]. We have investigated it and are now able to show that the theory underlying this experiment also contains
errors such that the experimental results do not constitute a proof for the existence of entanglement.
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2 Some preliminaries about SU(2)

First we need some preliminaries about the representation SU(2) of the rotations in R3. More extensive details are
given in [1,12] In SU(2) a rotation through an angle ϕ around an axis specified by a unit vector s is given by the
Rodrigues formula:

R(s, ϕ) = cos(ϕ/2)1− ı sin(ϕ/2)[ s·σ ]. (1)

Here 1 is the 2×2 unit matrix and it is easily checked that det R = 1. The notation [ s·σ ] is not a true scalar product.
It is just a shorthand for sxσx + syσy + szσz, where:

σx =

[
1

1

]
, σy =

[
−ı

ı

]
, σz =

[
1
−1

]
. (2)

are the Pauli matrices. In fact, a reflection A with respect to a plane A defined by the unit vector a = (ax, ay, az) ⊥ A
is in this formalism represented by:

A = [ a·σ ] =

[
az ax − ıay

ax + ıay −az

]
, det A = −1. (3)

The Rodrigues equation is obtained by calculating the product R = BA of two reflections. It is based on the fact
that the product of two reflections is a rotation, see e.g. [1], p.10, Fig.1. For a rotation through an angle ϕ around the
z-axis, the Rodrigues equation implies:

R(ϕ, ez) = cos(ϕ/2)1− ı sin(ϕ/2)σz =

[
e−ıϕ/2

e+ıϕ/2

]
. (4)

By putting ϕ = ωt one obtains this way the description of an object that spins around the z-axis:

R(ωt, ez) =

[
e−ıωt/2

e+ıωt/2

]
. (5)

It describes the spinning motion in the very same way as a varying position vector r(t) describes the displacement of
an object along its orbit in classical mechanics. It is by using this method to describe a spinning electron that we have
been able to derive in [1] the Dirac equation from scratch. One just has to introduce E = m0c

2 = ~ω/2.
As is easily checked on Eq. 3, det A = −1. For all group elements g with representation matrix G of the group

generated by the reflections we have therefore det G ∈ {−1,+1}. The group contains rotations (obtained from an even
number of reflections), reversals (obtained from an odd number of reflections) and reflections, which are the special
reversals which square to 1. An SU(2) rotation matrix has the abstract form:[

u −v∗
v u∗

]
, uu∗ + vv∗ = 1. (6)

This can easily be checked on the Rodrigues formula. It is readily verified on Eq. 6 that the first column of an SU(2)
matrix contains already the information about the whole matrix. It can therefore be used as a shorthand for the group
representation matrices. These shorthands are the spinors. Spinors in SU(2) correspond to the first columns of the
representation matrices. They therefore represent group elements. Spinors are group elements. They are a very useful
and compact tool to write rotations. Like x2 + y2 = R2 is the expression for a circle in algebraic geometry, a spinor
can express rotational motion in the algebra of representation theory. In both cases this correspondence between the
algebra and the geometry permits a very useful dialogue between the geometry and the algebra. The spinors of the
dynamical rotation matrix 5 are then:

e−ıωt/2 ↑= e−ıωt/2
[

1
0

]
, e+ıωt/2 ↓= e+ıωt/2

[
0
1

]
, (7)

where ↑ and ↓ are the electron spin-up and spin-down states of the electron in QM. It may surprise that there are
two signs for ω in the algebra. The reason for this is that the formalism describes the same spinning motion both
in right-handed and left-handed reference frames (given by the second columns of the SU(2) matrices). The inverse
motion introduces two further spinors. As the dynamical rotation matrices describe the spin dynamics of the electron,
also the spinors describe these dynamics.
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3 Spinors do not form a vector space

The group of rotations in R3 form a non-abelian group. For any group (G , ◦), where ◦ is the composition law defined
on the set G , a linear combination of group elements

∑n
j=1 cjgj , where cj ∈ K, K ∈ {R,C}, gj ∈ G , is not defined by

the axioms for a group. In fact, the operations of summing and multiplying by a scalar are not part of the structure
of a group. They are defined by the richer and more encompassing structure of a vector space and non-abelian groups
are not vector spaces but curved manifolds.

Hence when we make linear combinations of group representation matrices
∑n
j=1 cjD(gj) this may well be defined

algebraically but it remains geometrically meaningless, because
∑n
j=1 cjgj , which would be its counterpart in the

isomorphism between gj and D(gj) is just not defined. To attribute a meaning to
∑n
j=1 cjgj , we must embed the

group in a vector space V where the operations become allowed. By the presence of the operation ◦, the vector space
(V , ·,+) then actually becomes an algebra (V , ·,+, ◦) on the set V .

Despite the extension of G to the embedding vector space V with the calculus of its algebra, the elements of
V \G will in general remain meaningless. An example of this is given by general relativity where space-time is a
curved manifold which we could embed mathematically in a “flat” vector space R5 but where the points of R5 that
do not belong to space-time are physically meaningless. It is for these reasons that general relativity is formulated
intrinsically without any reference to an embedding vector space. The same ideas apply also to the three-dimensional
curved manifold of the rotation group. We have shown in [13] that embedding the three-dimensional manifold of the
rotation group in a vector space leads to different results in SU(2) and in SO(3). One can calculate h(r) for a vector
r ∈ R3, where h is defined as the sum of two group elements h = g1 + g2. The values one obtains then for h(r) are
not the same in SU(2) and SO(3). This is hardly surprising as vectors transform quadratically rather than linearly in
SU(2).

4 Probabilities and the Born rule

But we cannot pretend to ignore that physics uses such linear combinations all the time with excellent results. There
must therefore exist a justification for this. We have in this respect been able to show that the linear combinations
can be given a meaning in terms of sets. This can be deduced from the fact that for finite groups one defines so-called
all-commuting or Casimir operators:∑

h∈C

D(h), for which: ∀g ∈ G : D(g) [
∑
h∈C

D(h) ] = [
∑
h∈C

D(h) ] D(g). (8)

Here C = {h1, h2, · · ·hk} ⊂ G is a so-called normal subgroup and the equation then just translates the definition of a
normal subgroup:

∀g ∈ G : g ◦ C = C ◦ g, (9)

into a priori meaningless algebra, by writing down purely formally:

g ◦ {h1, h2, · · ·hk} = {h1, h2, · · ·hk} ◦ g as: g ◦ (h1 + h2 + · · ·+ hk) = (h1 + h2 + · · ·+ hk) ◦ g. (10)

Based on this observation it becomes natural to introduce the notion that the sum defines a set and can be used to
represent a set of group elements. In SU(2), the linear combination

∑n
j=1 cjD(gj) describes then a set containing |cj |2

copies of gj . These copies could be objects that are in the orientation (or the state) described by gj , as illustrated
by Eq. 7. The reason for using the rule |cj |2 is that we associate each element of the set with a spinor ξ = [ ξ0, ξ1 ]>,

and that spinors satisfy ξξ† = 1. When we want to count group elements or the objects they represent, we must
count the spinors associated with them. This can be done by counting the spinors in terms of the units ξξ† = 1 they
intrinsically carry with them in their algebraic structure. Hence, originally we must conceive that |cj |2 ∈ N∪ {0}. But
by using frequencies instead of counts we can give also meaning to |cj |2 ∈ R. It becomes then a probability and we
obtain a justification for the Born rule. The sums that correspond to the sets are not true sums for which carrying
out the algebra would be defined. They must be considered as mere juxtapositions, just like elements of sets are
occurring by mere juxtaposition in those sets. In other words, this procedure explains the rule for incoherent summing
of probabilities. For coherent summing we have not found a group-theoretical justification, such that coherent summing
will always call for special caution and treatment. All this shows how crucial it is to be aware of the fact that sums and
multiplications by scalars are in principle not defined for group elements. It is an unsuspected eye-opener that unlocks
the door to a probability calculus on sets, which otherwise could have remained beyond our conceptual grasps. The
sets will be beams or statistical ensembles of particles represented by waves (because they have a periodic internal
motion). Hence, when we will describe a Bell state 1√

2
(↑↑↑ + ↓↓↓) for three photons below, it will not mean that the
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three photons are simultaneously ↑↑↑ and ↓↓↓ in a mixed superposition state and that the measurement optics bangs
them into a pure state. It just describes a beam of triplets of photons, whereby half of them are ↑↑↑ and half of them
are ↓↓↓. But an even more important lesson to be learned from all this is that probability calculus on group elements
can follow different rules from those we are used to with more mundane physical quantities like scalars or vectors.
After all a rotation is a function that maps points of R3 to points of R3. That is not a usual physical object one can
see or grasp with one’s hand. The new probability rules are by and large at odds with common sense of traditional
textbook teachings, but they are not impenetrable to classical thinking.

5 Sets as eigenvectors of reflection matrices

5.1 Phase factors

To summarize what we explained in the previous sections, it is a priori meaningless to use ↑ and ↓ as two basis vectors
for the set of spinors. But as QM uses this kind of linear algebra all the time with good results, some mathematical
justification for these successes had to exist. We have shown that such a justification can be given a meaning in terms
of sets. Some other reflexes from linear algebra on vector spaces must be unlearned.

In fact, as we learn in linear algebra that eigenvectors are defined up to a phase factor, these phase factors are often
dropped in QM. But that is because linear algebra is defined for vector spaces. The spinors of SU(2) are not vectors.
Their phase factors contain very relevant information about the angular frequency of the spinning motion ϕ = ωt and
therefore also about the dynamics. E.g. the rest energy of the electron is ~ω/2. That information is entirely locked up
inside the phase factor. If we drop that information because we are unable to realize that the calculations on group
elements of a non-abelian group (which is a curved manifold) and the calculations on vectors (which belong to a flat
vector space) are entirely different things despite the fact that we are using the same matrix tools to make these
calculations, we will no longer have access to that information. And that is exactly the trick our eyes and instruments
are playing us because what we observe is governed by the Born rule which throws the phase factors out of the window.
We should not treat the phase factor with the same contempt but rather acknowledge the interesting information it
contains.

5.2 Eigenvectors

Let us now discuss the eigenvectors and eigenvalues of reflection operators A for which det A = −1. Reflections do not
have group elements for eigenstates, because a reflection turns a rotation into a reversal and a reversal into a rotation.
Therefore sets will be needed to render it possible to define eigenvectors. Let us illustrate this with the example of the
reflection operator σz. We have then σz1 = σz and σzσz = 1, which illustrates that a reflection turns a rotation into
a reversal and a reversal into a rotation. Therefore we can only obtain eigenvectors under the form of sets. One such
set is S+ = {1, σz}. For this set we have σz{1, σz} = {1, σz}, or σzS+ = S+. Expressed algebraically under the form
of a sum this becomes: σz(1 + σz) = (1 + σz). The set S+ = {1, σz} is this way an eigenvector of σz with eigenvalue
1 but its individual members 1 and σz are not eigenvectors of σz.

The other eigenvector is the set S− = {1,−σz}. We have then σz{1,−σz} = −{1, σz}. We see that the set
S− = {1,−σz} is an eigenvector of σz with eigenvalue −1, i.e. σzS− = −S−. We can write this algebraically as
σz(1 − σz) = −(1 − σz). These eigenvectors may conceptually look somewhat hilarious. When we are talking about
eigenvectors, what we have in mind are 2× 1 matrices, not sets. But first of all we can write σz and 1 down under the
form of 2× 2 matrices and write the sets algebraically using the notation based on summing. Next, we have to remind
that spinors are 2× 1 matrices corresponding to the first columns of the 2× 2 matrices. This is the way to write the
sets as 2× 1 column matrices.

Before we do this let us first write things out in full. This tells us that using 1+ σz as a notation for S+ = {1, σz}
corresponds to:

1 + σz = 2

[
1 0
0 0

]
, where now: σz

[
1 0
0 0

]
=

[
1 0
0 0

]
, (11)

such that this indeed leads to an equivalence between σzS+ = S+ and σz(1 + σz). Furthermore, we can see that the
first column is indeed our up-state ↑. But what the usual method to calculate the eigenvectors is hiding us is that this
up-state ↑ is a superposition state. This goes unnoticed because both 1 and σz have the up-state as their first column.
But it is the simultaneous presence of these two operators which ensures that the second column is completely padded
with zeros. When you apply the same logic of sets to σx, whose eigenvectors are 1+ σx and 1− σx, the degeneracy in
the notations will be lifted. The two contributions, 1 and σx, will no longer be stacked one on top of the other, such
that they can be spotted individually. The matrix in Eq. 11 is actually one of the four basis vectors for the linear space
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of 2× 2 matrices. These four basis vectors correspond to 1√
2
(1+ σz),

1√
2
(1− σz), 1√

2
(σx + ıσy) and 1√

2
(σx − ıσy). It

is conceptually very important to be aware of the fact that the eigenvectors ↑ and ↓ are mixed states. The Bell state
1√
2
(↑↑↑ + ↓↓↓), which is an eigenvector of σz⊗σz⊗σz, represents a set with eigenvalue 1. Its pendant with eigenvalue

−1 is the other Bell state 1√
2
(↑↑↑ − ↓↓↓).

We can generalize what we have said here to any reflection operator A = [ a·σ ], for which det A = −1. Reflections
do not have group elements for eigenstates, because a reflection turns a rotation into a reversal and a reversal into
a rotation. The reflection operator A turns 1 into A and A into 1. The eigenvectors of A must therefore be sets.
The first set is S+ = {1,A}. For this set, AS+ = S+, such that S+ is an eigenvector of A corresponding to its
eigenvalue λ = 1. As a matter of fact all reflections go by the rule A2 = 1. That is just part of the definition of a
reflection. We can write the set S+ in terms of sums as: A(1 + A) = (1 + A). Similarly S− = {−1,+A}. We have
now AS− = −S−, such that S− is an eigenvector of A corresponding to its eigenvalue λ = −1. We can write this as
A(A−1) = −(A−1). We can now take the first columns of these eigenvectors, the spinors, as eigenvectors under the
form of column matrices, thereby using the expression of A given in Eq. 3. In other words, there is no need to make
calculations. One can write the eigenvectors down immediately. One can use both rotation matrices R and reflection
matrices V to perform the diagonalization. By this we mean that we can write the diagonalization of A both under
the forms RAR−1 and VAV−1. We can choose between R and V easily by playing with the signs of the eigenvectors
to obtain det R = 1 or V = −1.

5.3 Caveats

Remember that this whole discussion all started from the observation that the axioms of a group do not define linear
combinations of group elements! The set S+ contains two group elements of a different nature, a rotation (the identity
element 1 with determinant 1) and a reversal (the reflection with respect to the Oxy-plane with determinant −1). We
can attribute a + sign to the set S+ because its eigenvalue is +1. But we cannot attribute this + sign to its individual
members which according to their determinant have the sign + for the rotations and − for the reversals. When we are
attributing signs to the eigenvectors of the reflection operators we are therefore not tagging the individual particles,
but sets of particles, because S+ can equally well describe a beam of photons wherein half of them are in a det = +1
state and half of them in a det = −1 state.

In the identity σz ↑= ↑, ↑ does therefore not represent a group element, but actually the infinite set {eıϕ/21, eıϕ/2σz ‖
ϕ ∈ R}, which must be replaced by {eı(ωt+ϕ)/21, eı(ωt+ϕ)/2σz ‖ ϕ ∈ R}∪{e−ı(ωt+ϕ)/21, e−ı(ωt+ϕ)/2σz ‖ ϕ ∈ R}, where
now the phase factor ϕ can be dropped because it is only ±ω which is specifying the dynamical state. Of course
eı(ωt+ϕ)/21 is hard to understand. Hence we should replace 1 by R(0) and σz by σzR(0). As the group element in
Eq. 5 is used to represent an electron, the set e±ı(ωt+ϕ)/2S+ represents an infinity of orientations of electrons. If the
electrons could be tagged such that we could see their phase ϕ, then the group theory could account for it.

6 SU(2) is only a part of Euclidean geometry

6.1 Preamble

Depending on their contents, photon beams can be circularly or linearly polarized. As photons have spin, individual
photons must be circularly polarized [14]. Linearly polarized beams would contain then equal amounts of photons of
either type. And if the balance is not exact, the beam would be elliptically polarized. Therefore using the eigenvector
equation σz ↑= ↑ to draw conclusions about single particles is according to Subsection 5.2 wrong because it represents
σS+ = S+, but in [9] we have described how the group theory can account for particles that can be both circularly and
linearly polarized, because the spin-1 representation is obtained from the tensor product of two spin 1/2 representations
(see Appendix). The same applies mutatis mutandis for the eigenvector equation σz ↓= − ↓.

Let us now describe how this group formalism is used to describe the Stern-Gerlach experiment. We start with
electrons of two types, right-handed ones (e−ıωt/2 ↑) and left-handed ones (e+ıωt/2 ↓). In the calculations I only
considered one sense of spinning. I should perhaps have considered the other sense as well, but it would only have
duplicated the calculations. The electrons are entering a magnetic field with a gradient. This magnetic field behaves
exactly as a dynamical rotation. This rotation can again be right-handed (e−ıΩt/2 ↑) or left-handed (e+ıΩt/2 ↓). This
leads to four combinations, but only to two types of beams in terms of their energies |~(ω ±Ω)/2|. The combinations
describe spinning electrons that are precessing in a magnetic field. We end up with two different energies in the beam
which is split into two beams according to these energies by the gradient of the magnetic field. The resulting beams are
not in spin-up and spin-down but precession-up and precession-down states, which makes it far less mysterious than
the traditional spin-up and spin-down scenario we have been taught. Each of the two beams contains two algebraic
contributions. In the calculus, each group element comes with two signs and we just must allow for all possible
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combinations of the signs. It would be the same as considering the interaction of two billiard balls which both can
spin clockwise or counterclockwise. That leads also to four possibilities. One may object that one does not believe
in the existence of two types of action by magnetic fields, but all this is only about the same rotation described in
right-handed and left-handed frames as may transpire from Eq. 5 which only describes only one rotation. In any case,
the worst thing that can happen is that we are calculating the same things twice due to ignorance, without any effect
on the final conclusions.

The reflection operators of the rotation group exist also with two signs depending on the handedness of their
frames. We cannot see all this happening on the microscopic level with our own eyes, but this philosophy stands the
test of the comparison with the experimental data. All we have done in such calculations is applying the group theory
to describe spinning motions. We call it QM and learn that its predictions are in agreement with experimental data.

6.2 A tale of two triplets of spinning tops

Let us consider now a Gedankenexperiment with spinning tops. We will imagine six perfectly identical tops. They are
all white. We imagine that we can make them spin in a perfectly vertical position and that the tops are made so
perfectly regular and smooth that you would not be able to detect it visually when they are spinning. To become
aware of their spinning motion one would have to touch them.

We imagine that our tops would be able to spin without any friction such that once one has set them in motion,
they could happily spin until the end of times. To render it possible to detect the spinning motion of the tops visually
we will now imagine a right-handed reference frame Oxyz where O coincides with the centre of gravity of a top and
the top is in the vertical position. Where the three axes intersect the surface of the top we will put spots on the surface
of the top. We could give them different colours. A red one for the x-axis, a blue one for the y-axis and a black one
for the z-axis. The idea is only that they will visualize the reference frame Oxyz unambiguously. When the tops spin,
the set of three moving spots will represent a rotating reference frame visualizing the spinning motion. We proceed
this way for three of the six tops. We will then be able to follow the motion of the tops by watching the dots. Perhaps
we will need to shoot a movie of it and play the movie in slow motion, but in principle the dots should do the job.

For the three other tops we proceed somewhat differently. Instead of a right-handed frame Oxyz we use a left-
handed one. We will in this respect refer to the two possibilities in terms of right-handed and left-handed tops. We
define the initial conditions, by aligning the x and y axes of all six tops along mutually parallel directions. For the
right-handed tops the direction of the z-axis will then be given by the right-hand rule and point upwards. For the
left-handed tops the direction of the z-axis will be given by the left-hand rule and point downwards. Now we imagine
that we can put the six tops into motion simultaneously with the same angular frequency ω. For all six tops we can
imagine that the motion is counterclockwise. The spin vectors used to qualify the motions of the right-handed tops will
then be parallel with the z-axis and point upwards. However, the spin vectors for the left-handed tops will be parallel
with the z-axis and point downwards. That is because in a left-handed frame the vector product × must be calculated
with the left-hand rule, while SU(2) uses the product ∧. SU(2) attributes therefore opposite algebraic signs ±ω to
the angular frequencies ω. It takes this way into account the handedness of the frames and the tops. In SU(2), the
motion of the right-handed top is therefore described by ↑ e−ıωt/2. The motion of the left-handed top is described by
↓ e+ıωt/2. The six tops are then described by 1√

2
(↑ e−ıωt/2⊗ ↑ e−ıωt/2⊗ ↑ e−ıωt/2+ ↓ e+ıωt/2⊗ ↓ e+ıωt/2⊗ ↓ e+ıωt/2),

which is the Bell state, we noted by the shorthand 1√
2
(↑↑↑ + ↓↓↓). That ↓ e+ıωt/2 and ↑ e−ıωt/2 are really turning both

counterclockwise follows from the fact that they both occur in the matrix in Eq. 5 which describes a counterclockwise
spinning motion.

Now we can put the two triplets in simultaneous motion. We can put them e.g. in a dark room and have light
beams whereby we can arrange things in such a way that either all three right-handed tops are lit simultaneously or
alternatively all three left-handed tops are lit simultaneously. Each time, we switch only one of the two light beams
on at a time, and do it in a random sequence. But we make sure that the statistical averages for both choices are 1/2.
That would visualize successive observations of the states of triplets of photons. We will have this way visualized a
statistical ensemble of Bell states, because the algebraic description of the simultaneous motion of these two triplets
of tops in SU(2) is the Bell state.

We can identify the three tops in each triplet by naming them 1, 2 or 3. Next to both tops called “1” we put
now a vertical mirror whose normal points in the x-direction, next to both tops “2” we put a vertical mirror whose
normal points in the y-direction, and next to both tops “3” we put also a vertical mirror whose normal points in
the y-direction. That will be the scenario P described by the operator P (defined below, see Eqs. 22 and 23-26) in
SU(2) because the operators σx and σy are reflections and model therefore the actions of the mirrors. We can similarly
visualize the scenarios Q, R and S defined below in Eqs. 22 and 23-26. It would require displacing the mirrors to
change the configuration from P to Q, etc. . . . But we could actually have four triplets of right-handed tops and four
triplets of left-handed tops such that we could even visualize all experiments P , Q, R, and S simultaneously. For the
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moment, such measurements are not carried out simultaneously but I am quite sure that in the future experimental
physicists with golden fingers and unfaltering patience will manage to prepare 24 photons in the appropriate state.

We would need 24 tops and 24 mirrors to build the macroscopic model and we should be able to switch between
eight light beams rather than two. All we have to do now is to play with the light switch such that there are two
possibilities. (1) We see the four measurements P , Q, R, and S simultaneously working on the ↑↑↑ states (2) We
see the four measurements P , Q, R, and S simultaneously working on the ↓↓↓ states. As pointed out, it is actually
not necessary to carry out the measurements P , Q, R, and S simultaneously. But we have now translated exactly
the mathematics of the GHZ experiment into a macroscopic realization. If we wanted to describe this macroscopic
Gedankenexperiment with the group representation theory of SU(2) the algebra would be rigorously identical to that
of the GHZ experiment.

But if this is so, here is then the question: where are the quantum effects? Where is the non-locality? Where is the
entanglement? If you announced to the audience that you were going to show them the stunning magic of QM and
entanglement caught in the act, they might want their money back! We will see that the inconsistency supposed to be
a proof for the existence of entanglement in [10] is just due to errors in using the group representation theory.

6.3 “What did you expect?”

We can observe on the basis of the Gedankenexperiment that the whole algebra used to calculate the results of a GHZ
experiment by QM, if done correctly, just corresponds to the group representation theory of SU(2). Rotations are part
of Euclidean geometry, the stuff kids learn at school when they are 13-14 years old. It actually does not contain any
physics, let alone that it would contain “quantum magic” ready to pop up in plain sight in a dazzling dance before
our perplexed gazes. It is just mere elementary Euclidean geometry. That should demystify it quite a bit. Is it not
somewhat hard going to claim that rotations do not have physical reality? Contrary to what has been claimed on the
basis of the theory of the GHZ experiment, it will be just impossible to create internal contradictions between QM and
classical physics within SU(2), because the QM formalism is pure geometry. The group theory is contradiction-free and
its calculations, which we are dubbing quantum theory, confirms it by testing them against experimental data. And
if some fancy calculation one may want to apply to these data does not work out, it just means that the procedures
used are lacking internal consistence, not that classical mechanics is not able to cope with the physics.

We have two methods to assign parities to objects, viz. +1 and -1 for the eigenvectors based on their corresponding
eigenvalues, and +1 and -1 for individual particles depending on their handedness betrayed by the determinant of the
matrix that presents the group elements which corresponds to their state of motion. The eigenvectors represent sets,
i.e. particle beams. If we stick to these two choices in a consistent way, no paradox can emerge. And even if we are
not able to keep the books about the tagging in the experiments because the signs keep mixing up, like the four states
that merge into only two observable beams in the Stern-Gerlach experiment, this is not good enough a reason to claim
that there is no classical physical reality to rotations.

But people who are unwittingly making errors or using double standards in the assignments may indeed produce
quantum magic. It would be like having a boy with a yellow stocking on his left foot and a red stocking on his right
foot. Turn him through an angle of 45 degrees in space and oops, the colours have swapped. That would be quantum
magic! It would not happen for real but only purely mentally in your mind because you have not been consistent in
your colour assignments. As SU(2) is only about rotations, we do not have to buy the narrative about entanglement.

7 Where did it go wrong?

7.1 Diagonalization and transformation of the reflection matrices

It is easy to check on the simple examples of Eqs. 3 and 5 that rotations do not square to unity while reflections do.
A rotation R(s, ϕ) squares to R(s, 2ϕ). In fact Eq. 6 implies RR† = 1 and R† 6= R. In general group elements H
transform under the action of other group elements G according to H→ GH. But a group element will in general not
transform a reflection into another reflection. In general it transforms a reflection into a reversal (a group element with
determinant −1 that does not square to unity) or into a rotation with determinant +1. To transform a reflection A
into another reflection by a group element G we must use a similarity transformation which preserves its geometrical
properties. In other words, a reflection A is transformed into another reflection by: A → GAG−1. Here G−1 = G†,
and G can be both a reflection V or a rotation R, as we will illustrate below in Eqs. 12, 14, 15.

In fact, the effect of an in-plane reflection in SO(2) (e.g. in the plane Oxy) can also be obtained by a rotation in
SO(3). We have learned this at school. We can consider a triangle ∆ABC in the Oxy plane, with AB 6= BC 6= CA,
and another triangle ∆A′B′C ′ obtained from it by a reflection in the plane. Despite the opposite parities in R2 the
triangles are congruent in R3. The proof requires a rather trivial form of thinking out of the box. It boils down to
breaking away from the straightjacket of R2 and turning the triangles in R3. In an analogous way, transforming the
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Oyz-plane into the Oxz-plane can be done in several ways. It can be done by a reflection with respect to the plane
x = y. The transformation can also be obtained by a rotation around the z-axis through an angle of π/2 or by a
rotation through an angle of π around the axis defined by z = 0 and x = y. This can be translated mutatis mutandis
into the transformations between the Oxy plane (defining σz) and the Oyz plane (defining σx) or the Oxz plane
(defining σy).

Using this idea, we will now show that we can make a similarity transformation between two Pauli matrices in
several ways, by using reflection or rotation matrices for the transfer matrix. These different similarity transformations
correspond conceptually to the different ways we can relate two congruent triangles or two planes in the examples,
because Pauli matrices correspond to reflections defined by planes.

The Pauli matrices σx, σy, σz represent reflections with respect to planes defined by the normals ex, ey, ez. They
square to unity. The matrices σx, σy, σz can be diagonalized as follows:

σz =

[
+1

−1

]
=

[
+1

+1

] [
+1

−1

] [
+1

+1

]
.

σx =

[
+1

+1

]
= 1√

2

[
+1 −1
+1 +1

] [
+1

−1

] [
+1 +1
−1 +1

]
1√
2
.

σy =

[
−ı

+ı

]
= 1√

2

[
+1 +ı
+ı +1

] [
+1

−1

] [
+1 −ı
−ı +1

]
1√
2
.

(12)

We have thus σz = ZΛZ−1, σx = XΛX−1 and σy = YΛY−1. The diagonalization of σz is trivial because it is already
diagonal. We note that det X = det Y = 1 such that they are rotation matrices. For X this is a rotation about the
y-axis through an angle π/2. For Y it is a rotation about the x-axis through an angle −π/2. One may note that for
all three Pauli matrices the diagonal matrix Λ is σz itself. We see thus that we can transform between them in the
following way:

σz → σx by: σz → σx = XσzX
−1

σz → σy by: σz → σy = YσzY
−1

σx → σz by: σx → σz = X−1σxX
σy → σz by: σy → σz = Y−1σyY

(13)

As we mentioned, we can also make the transformation (and therefore the diagonalization) using reflections. It looks
then this way:

σx =

[
+1

+1

]
= 1√

2

[
+1 −1
−1 −1

] [
+1

−1

] [
+1 −1
−1 −1

]
1√
2
.

σy =

[
−ı

+ı

]
= 1√

2

[
+1 +ı
−ı −1

] [
+1

−1

] [
+1 +ı
−ı −1

]
1√
2
.

(14)

The transfer matrices X′ for σx and Y′ for σy are now reflection matrices. They have a determinant equal to −1.
They are truly reflections and not reversals because they square to 1. The reflection matrix X′ that diagonalizes σx
is the reflection 1√

2
(σz − σx), i.e. the reflection with normal 1√

2
(−1, 0, 1). The matrix Y′ that diagonalizes σy is the

reflection 1√
2
(σz − σy), i.e. the reflection with normal 1√

2
(0,−1, 1). The two types of transfer matrices correspond to

the two possible types of operations relating the two triangles we mentioned above: a reflection or a rotation (here
through an angle of π/2). It is the selection of the transfer matrix in the Eqs. 12 and 14 which determines then if we
obtain the in-plane reflection by a true reflection or by a rotation through an angle π/2. We can easily flip the sign of
the determinant of the transfer matrix by fiddling with the signs of the eigenvectors. That is the reason why we can
select both a rotation and a reflection matrix to play the rôle of the transfer matrix.

Finally, we mentioned that we can also relate the triangles by rotations through an angle π. This gives rise to a
third way to diagonalize σx and σy. The transformations are as then follows:

σx =

[
+1

+1

]
= 1√

2

[
−ı −ı
−ı +ı

] [
+1

−1

] [
+ı +ı
+ı −ı

]
1√
2
.

σy =

[
−ı

+ı

]
= 1√

2

[
−ı −1
+1 +ı

] [
+1

−1

] [
+ı +1
−1 −ı

]
1√
2
.

(15)

For σx the rotation is around 1√
2
(1, 0, 1), for σy the rotation is around 1√

2
(0, 1, 1).



G. Coddens: Absence of evidence for entanglement in three-photon experiment 9

The Eqs. 12, 14, 15 are all telling a geometrical truth. But in general people are not aware of this and they
diagonalize casually. But what is at stake here are not two independent isolated diagonalization procedures but a
simultaneous diagonalization of the two matrices. What you are address in the GHZ experiment is a configuration
which is extended in space. You are treating the configuration, not the isolated elements. You want to carry out a
global consistency check for the possible hidden variables if they exist. It must be clear that you must carry out all your
calculations in a self-consistent way. You cannot claim simultaneously that a given element of the optics is turning the
linear polarization and another identical element reflecting the linear polarization. That is inconsistent, it is forcedly
twisting the truth and you will be confronted with your doublespeak when you are checking the global consistency
in the end and discover the internal contradiction you introduced yourself in a different guise. You may scream blue
murder, but for one thing, classical mechanics is not to blame for what you will discover, you are! You are only looking
into a mirror and all you might see is about you, not about classical mechanics.

7.2 Two mathematical errors

If one does the diagonalization carelessly we can run into problems and make calculations that are geometrically
meaningless. Of course, it seems as though errors in the diagonalization procedures could happen almost subliminally
because there are no known red flags associated with diagonalization. People are not forcedly aware of the fact that
the choice of the transfer matrices has geometrical implications. In [10], the following matrices are used to diagonalize
σx and σy:

Tx =
1√
2

[
1 +1
1 −1

]
, det Tx = −1, and: Ty =

1√
2

[
1 +ı
1 −ı

]
, det Ty = −ı. (16)

Two inconsistencies have been introduced into this algebraic formulation whilst no alarm bells were ringing. The
matrix Tx corresponds to a reflection with normal 1√

2
(1, 0, 1). But with its determinant −ı the matrix Ty does not

correspond to a group element, and is therefore totally meaningless. It is further totally illogical to diagonalize σx and
σy, which are geometrical operators of the same type, with transfer matrices of entirely different types (as revealed
by their determinants), especially in a context where the whole issue at stake is the consistency of a global scheme.1

Let us develop this latter point first. The sting is here that we should not address an extended global problem with
interconnections by using a tool kit of purely disconnected local techniques. Instead of several independent individual
diagonalizations we must at least apply one single global diagonalization scheme, by applying the same geometrical
type of transfer matrix, i.e. with the same determinant. We could qualify this principle as not readily suspected.

But let us now discuss the issue of what happened with det Ty = −ı, which should be in everyone’s cross hairs.
The matrix Ty is supposed to contain the eigenvectors of σy. But σy has the following action on these eigenvectors:[

−ı
+ı

] [
1 +ı
1 −ı

]
=

[
−ı −1
+ı −1

]
, that is:

{
w1 → −w2

w2 → −w1
, (17)

instead of: [
−ı

+ı

] [
1 1
ı −ı

]
=

[
1 −1
ı +ı

]
, that is:

{
v1 → +v1

v2 → −v2
. (18)

Cetera desint.

7.3 The correct calculation

We will show that the calculations in [10] are wrong, due to these inconsistent choices for the matrices used in the
diagonalization. We will use the following order in the calculations of the tensor products:

ξ ⊗ η =

[
ξ0
ξ1

]
⊗
[
η0
η1

]
=

[
ξ0η
ξ1η

]
(19)

1 One of the global aspects that cannot be noticed locally is the topology of the group manifold. For any element G ∈ SU(2),
also −G ∈ SU(2), where G and −G correspond to the same rotation of SO(3). It is therefore that one must rotate a wave
function through an angle of 4π, rather than 2π to get back to its initial value. Such a double covering is perhaps an astounding
mathematical truth but it can be perfectly explained, see e.g. [1], p. 12, Remark 10. The explanation given for it in [15], p.
1146, Fig. 41.6, gives the misleading impression that this inversion of the sign after a rotation through an angle 2π is related
to a kind of entanglement. It seems to link a state by wires to the rest of the Universe. But the explanation given in [1] shows
that the truth is much more mundane and that there are no such concepts at stake. The change of sign is just like the change
of sign of a normal vector after making a round trip on a Moebius ring (see e.g. [16], p. 84, Fig. 3.5).
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We will use the same order for the 2× 2 SU(2) matrices. The tensor products of column matrices will therefore be of
the following form:

[
a+
a−

]
⊗
[
b+
b−

]
⊗
[
c+
c−

]
=



a+b+c+
a+b+c−
a+b−c+
a+b−c−
a−b+c+
a−b+c−
a−b−c+
a−b−c−


(20)

We can then substitute in this identity (a, b, c) by (x, x, x), (x, y, y), (z, z, z), etc. . . to figure out the indices for the
entries of a column matrix. Here [ z+, z− ]> stands then for [ ↑, ↓ ]>. We use the transfer matrices from Eq. 12. to
calculate the components of tensor products of [x+, x− ]> and [ y+, y− ]> in their basis after the action of the operators
on the Bell state 1√

2
(↑↑↑ + ↓↓↓), e.g.:

x+y+y+
x+y+y−
x+y−y+
x+y−y−
x−y+y+
x−y+y−
x−y−y+
x−y−y−


= X⊗Y ⊗Y



z+z+z+
z+z+z−
z+z−y+
z+z−z−
z−z+z+
z−z+z−
z−z−z+
z−z−z−


, where:



z+z+z+
z+z+z−
z+z−y+
z+z−z−
z−z+z+
z−z+z−
z−z−z+
z−z−z−


=



1
0
0
0
0
0
0
1


(21)

We have four measurement protocols:

P = σx ⊗ σy ⊗ σy,
Q = σy ⊗ σx ⊗ σy,
R = σy ⊗ σy ⊗ σx,
S = σx ⊗ σx ⊗ σx.

(22)

The “entangled” state 1√
2

(↑↑↑ + ↓↓↓) consists of three photons which are emitted simultaneously and have been

prepared to be all in exactly the same spin state. In other words, it has been made sure that there are only two
possibilities: either they are simultaneously all up, or they are simultaneously all down, a clever experimental tour de
force. The indices only serve to explain the different operations the three photons are subjected to in the optics. Some
people would note e.g. P as σxσyσy but this is somewhat confusing because one could read it as three operations on
one particle in succession. What really happens is three distinct measurements taking place simultaneously on the
three photons who are in the same state. The result obtained is then used to derive the contradiction reported in [10].
Using the diagonalization scheme of Eq. 12, the four matrices which express the outcome of the experiments are then:

set-up P : X⊗Y ⊗Y =
1

2
√

2



+1 +ı +ı −1 −1 −ı −ı +1
+ı +1 −1 +ı −ı −1 +1 −ı
+ı −1 +1 +ı −ı +1 −1 −ı
−1 +ı +ı +1 +1 −ı −ı −1
+1 +ı +ı −1 +1 +ı +ı −1
+ı +1 −1 +ı +ı +1 −1 +ı
+ı −1 +1 +ı +ı −1 +1 +ı
−1 +ı +ı +1 −1 +ı +ı +1


(23)

set-up Q : Y ⊗X⊗Y =
1

2
√

2



+1 +ı −1 −ı +ı −1 −ı +1
+ı +1 −ı −1 −1 +ı +1 −ı
+1 +ı +1 +ı +ı −1 +ı −1
+ı +1 +ı +1 −1 +ı −1 +ı
+ı −1 −ı +1 +1 +ı −1 −ı
−1 +ı +1 −ı +ı +1 −ı −1
+ı −1 +ı −1 +1 +ı +1 +ı
−1 +ı −1 +ı +ı +1 +ı +1


(24)



G. Coddens: Absence of evidence for entanglement in three-photon experiment 11

set-up R : Y ⊗Y ⊗X =
1

2
√

2



+1 −1 +ı −ı +ı −ı −1 +1
+1 +1 +ı +ı +ı +ı −1 −1
+ı −ı +1 −1 −1 +1 +ı −ı
+ı +ı +1 +1 −1 −1 +ı +ı
+ı −ı −1 +1 +1 −1 +ı −ı
+ı +ı −1 −1 +1 +1 +ı +ı
−1 +1 +ı −ı +ı −ı +1 −1
−1 −1 +ı +ı +ı +ı +1 +1


. (25)

set-up S : X⊗X⊗X =
1

2
√

2



+1 −1 −1 +1 −1 +1 +1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 +1 +1 +1 +1 +1 +1


(26)

These four matrices describe the action on any state expressed in the basis σz ⊗ σz ⊗ σz. The Bell state has only two
components in this basis, such that we obtain:

[ X⊗Y ⊗Y ][↑↑↑ + ↓↓↓] =
1

2



1
0
0
−1

0
ı
ı
0


, [ Y ⊗X⊗Y ][↑↑↑ + ↓↓↓] =

1

2



1
0
0
ı
0
−1
ı
0


,

[ Y ⊗Y ⊗X ][↑↑↑ + ↓↓↓] =
1

2



1
0
0
ı
0
ı
−1

0


, [ X⊗X⊗X ][↑↑↑ + ↓↓↓] =

1

2



0
1
1
0
1
0
0
1


. (27)

The three columns corresponding to the tensor products X⊗Y⊗Y, Y⊗X⊗Y, and Y⊗Y⊗X are representing just
the same states after a relabelling induced by changing the order of the terms in the calculation of the tensor products.
Physically, they represent the three possible permutations of the combined positions of the two mirrors represented by
σy, or just relabelling the tops. We see that these columns do indeed contain the same coefficients in a different order.
Following the strategy of [10] we can calculate the products of the components inside one of these single columns,
because they are a global indicator of the coefficients that occur in a product. Let us note these products as (XY Y ),
(Y XY ), (Y Y X), (XXX). The products obtained for the three columns of the type XY Y all yield 1. And the global
product (XY Y )(Y XY )(Y Y X) of these three products yields the same result as (XXX). Both (XY Y )(Y XY )(Y Y X)
and (XXX) contain the same number of X terms. We therefore do not obtain an inconsistency of the type signalled
in [10]. In fact, it is all geometry, such that there is nothing that can go wrong as long as we do things correctly. A
hypothetical inconsistency would not oppose QM to classical mechanics, but classical mechanics to classical mechanics.
We have performed this consistency check for the three diagonalization schemes Eq. 12, 14 and 15.

We may further note that the Pauli matrices are reflection operators. Therefore we must transform them according
to a scheme of the type:

σz ⊗ σz ⊗ σz → [ X⊗Y ⊗Y ] [σz ⊗ σz ⊗ σz ] [ X⊗Y ⊗Y ]−1, (28)

if we want that the end result is again a reflection operator. Such operations cannot be carried out on spinors which
can only be acted on from the left. To make the similarity transformation one must then use the procedure explained
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in the diagram of [1], p.38, Eq. 84, i.e. reconstructing the square matrix, perform the similarity transformation and
after that writing the result in spinor form again. When we make calculations:

σz ⊗ σz ⊗ σz → [ X⊗Y ⊗Y ] [σz ⊗ σz ⊗ σz ], (29)

we transform the reflections into reversals when we choose X and Y to be rotations, and into rotations when we choose
X and Y to be reflections. All this is geometrically meaningful, but it may not correspond to the physical reality of what
happens to the photons. The physical reality corresponds to Eq. 28 rather than Eq. 29, due to the fact that reflections
are transformed “quadratically”, according to A→ GAG−1 rather than linearly according to A→ GA. Eq. 28 is just
part of the calculation needed to express how the eigenvector equation [σz ⊗ σz ⊗ σz ][ 1√

2
(↑ ⊗ ↑ ⊗ ↑ + ↓ ⊗ ↓ ⊗ ↓ ) ]

= [ 1√
2

(↑ ⊗ ↑ ⊗ ↑ + ↓ ⊗ ↓ ⊗ ↓ ) ] for the Bell state will be transformed under changes of basis from σz to σx or σy.

Using the linear, “halved” formalism A→ GA, thereby reasoning on reflections as on rotations, introduces reversals
(when G is a rotation) or rotations (when G is a reflection). These group elements have no bearing on the final result
GAG−1. As explained, different diagonalizations will lead to different “intermediate states” GA in the “halved”
formalism. In the analogy, these “intermediate states” reveal, which way the triangle traveled before it landed on its
mirror image to enact the identification. That is, they tell if we mapped the triangles one onto another by a reflection
or by a rotation. It is the final result GAG−1, expressing that the triangles are congruent, which counts, not the way
the triangle traveled.

One must actually select the operations that correspond to the physical reality of what really happens to 1√
2

(↑↑↑
+ ↓↓↓) under the transformation. But the physical reality corresponds to Eq. 28 instead of 29. In any case, using
operators X and Y that are not of the same type is with certainty in blatant conflict with any physical reality in the
“halved” formalism because σx and σy are supposed to model the workings of two optical elements of exactly the same
type in mathematical language. And using transfer matrices that are not group elements has no geometrical reality at
all, let alone that it would correspond to a physical reality.

The Bell state is an eigenvector of σz ⊗ σz ⊗ σz and as such is a set, which also transpires from its algebraic
expression. The scenario of a set might at face value be contradicted by what we observe for a single photon, which is
why we point out in the Appendix that a photon might have the symmetry of a set in its own right.

It cannot be stressed enough that Eqs. 23-27 are not the bedrock of our argument. The crux of our argument is
that all results of calculations of the type shown in Eqs. 23-27 are mere properties of the rotation group. As such they
are valid independent of their application to physics. It is therefore totally wrong to consider them at any stage as
physics. They are just geometry. E.g. we can apply the geometrical transformations on the spinors ζ1, ζ2, ζ3 which
are used to describe the three photons, all at the origin O of the reference frame or in three separate places A, B,
C that are far apart like is done in the experiment. The result will of course be the same. Therefore, the fact that
the state is extended cannot play the rôle it is given in [10]. It is consequently just plain wrong to attribute any
result of such calculations to some magical quantum effect of entanglement defeating classical realism. In other words,
if the calculation in [10] had been completely error-free, the surprising result obtained (if possible) would still not
have been the signature of some spooky action at a distance in physics. It would have been a not readily suspected
property of the rotation group. It would have required perhaps some further investigation to figure out what it meant
geometrically. We already pointed out in Subsection 6.3 that this is the core of our argument. The only aim of the
Gedankenexperiment was exactly to get this message across, by providing the reader with the geometrical meaning of
the operators. E.g. also the fact that the wave function changes sign under a rotation through an angle of 2π is in
this respect not some stunning physics but just geometry. As explained in Footnote 1 it is related to the topology of
the manifold of the rotation group. We were therefore a priori unfazed by the reductio ad absurdum proposed by the
authors of [10].

Needless to say that this was very difficult to figure out by reasoning logically. There were too many details about
the calculations lacking. Also some coincidences, which occur in [10] due to the choice of the meaningless matrix Ty,
disappear in a correct calculation. It is only on consulting [17] that the penny dropped. Of course, the smoking guns
were det Ty = −ı, the use of the halved formalism in Eq. 29 and the obvious analogy with the Gedankenexperiment.

8 Conclusion

As we anticipated, the GHZ argument had to be wrong because the whole formalism of SU(2) which is being used is
mere Euclidean geometry. Whatever riddle or paradox we may ever run into some day in using SU(2), it will always
be only geometry and not physics, and therefore will never have anything to do with entanglement. Just like now, the
argument will then not be a proof for the existence of non-locality.

Our analysis shows that the calculation used in [10] in order to claim that the experiment would constitute a proof
for the existence of entanglement is fatally flawed. The Bell state is extended, like Euclidean geometry is, but does not
imply any form of “spooky action at the distance”. The contradiction obtained only pinpoints that an inappropriate
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use has been made of the spinor algebra, which requires a completely different way of thinking than we have become
used to in vector algebra.

With the results we analyzed up to now the theory of relativity remains unscathed and QM appears to be just a
part of it. This is a relief because it is hard to see by what the theory of relativity should be replaced if it were wrong.
It has been ever so successful. Even Einstein’s gravitational-wave predictions were confirmed by experiment a hundred
years later.

We think that the fact that our results are in agreement with the tenet that QM is pure group theory is very
important because it permits to understand at least a part of QM and check the calculations in a dialogue between the
algebra and the geometry like in algebraic geometry. It permits to spot errors in an argument as the present example
clearly illustrates. It solves also a lot of conceptual problems that were reputed unsolvable and therefore were dubbed
quantum mysteries. These conceptual problems were generated by replacing the natural geometrical meaning of the
algebra by ad hoc parallel interpretations, most of the time as a result of misreading the algebraic calculations on a
manifold as a calculus on a vector space.

Appendix - Group theory for photons

The polarization dynamics of the photon must be described by SU(2) ⊗ SU(2). In fact, the representation SU(2) can
be used to describe the dynamics of an electron with spin 1/2, but photons have spin 1. The representations of the
rotation group corresponding to spin n ∈ N are obtained from rank-2n tensor products of 2× 2 rotation matrices R ∈
SU(2) and 2× 1 spinor matrices ξ according to:

2n⊗
j=1

Rj , where: ( ∀j ∈ [1, 2n] ∩ N ) ( Rj = R), and:

2n⊗
j=1

ξj , where: (∀j ∈ [1, 2n] ∩ N ) ( ξj = ξ ). (30)

They are tensor products of 2n identical copies. Hence for spin 1 we need SU(2) ⊗ SU(2). It is the rank-2 tensor
product which doubles the spin from 1/2 to 1. The tensor product SU(2) ⊗ SU(2) yields a 4 × 4 matrix formalism.
But one line and one column in this formalism are redundant duplicates due to the fact that we are constructing
tensor products of identical copies. After eliminating this line and this column one obtains the representation SO(3).
To describe photons we only need the subgroup SO(2) ⊂ SO(3). That is because photons travel at the speed of light
with the effect that the polarization dynamics are restricted to a plane perpendicular to the direction of the motion.
Of course that plane changes direction when the photon is reflected. Despite its spin 1 a photon has only two substates
rather than three and this can be understood in terms of the restriction of SO(3) to the two-dimensional subgroup
SO(2). In the product representation SO(2) all angles are doubled with respect to those that occur in SU(2), just
like in SO(3) all angles are doubled with respect to SU(2). Three-dimensional rotation matrices are expressed in the
rotation angle ϕ, not in ϕ/2 as in the Rodrigues formula. The resulting formalism is isomorphic to the restriction
of SU(2) to the Oxy plane, but with doubled angles, such that the group SU(2) can be used to describe the spin
dynamics in the polarization plane. The group theory describes this way the photon as a set of two spin-1/2 particles.
We do not need to take this literally, it just describes some symmetry, but it is a convenient language to describe that
symmetry. We have stated that only a set of two circularly polarized particles could be linearly polarized but in our
construction and in the language used, the two particles are the two spin-1/2 particles which make up a photon. In
this language, the photon is in its interiors itself a mini Bell state of two 1/2 particles.
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