
HAL Id: hal-03675086
https://hal.science/hal-03675086

Submitted on 22 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sound and Complete Certificates for Quantitative
Termination Analysis of Probabilistic Programs

Krishnendu Chatterjee, Amir Goharshady, Tobias Meggendorfer, Ðorđe Žikelić

To cite this version:
Krishnendu Chatterjee, Amir Goharshady, Tobias Meggendorfer, Ðorđe Žikelić. Sound and Com-
plete Certificates for Quantitative Termination Analysis of Probabilistic Programs. CAV 2022 – 34th
International Conference on Computer Aided Verification, Aug 2022, Haifa, Israel. �hal-03675086�

https://hal.science/hal-03675086
https://hal.archives-ouvertes.fr

Sound and Complete Certificates for Quantitative
Termination Analysis of Probabilistic Programs

Krishnendu Chatterjee1∗, Amir Kafshdar Goharshady2†(�),
Tobias Meggendorfer1, and Ðorđe Žikelić1

1 Institute of Science and Technology Austria (ISTA), Austria
krishnendu.chatterjee@ist.ac.at, tobias.meggendorfer@ist.ac.at,

djordje.zikelic@ist.ac.at
2 The Hong Kong University of Science and Technology (HKUST), Hong Kong, China

goharshady@cse.ust.hk

Abstract. We consider the quantitative problem of obtaining lower-bounds
on the probability of termination of a given non-deterministic probabilistic
program. Specifically, given a non-termination threshold p ∈ [0, 1], we aim
for certificates proving that the program terminates with probability at
least 1−p. The basic idea of our approach is to find a terminating stochastic
invariant, i.e. a subset SI of program states such that (i) the probability of
the program ever leaving SI is no more than p, and (ii) almost-surely, the
program either leaves SI or terminates.
While stochastic invariants are already well-known, we provide the first proof
that the idea above is not only sound, but also complete for quantitative
termination analysis. We then introduce a novel sound and complete char-
acterization of stochastic invariants that enables template-based approaches
for easy synthesis of quantitative termination certificates, especially in
affine or polynomial forms. Finally, by combining this idea with the exist-
ing martingale-based methods that are relatively complete for qualitative
termination analysis, we obtain the first automated, sound, and relatively
complete algorithm for quantitative termination analysis. Notably, our com-
pleteness guarantees for quantitative termination analysis are as strong as
the best-known methods for the qualitative variant.
Our prototype implementation demonstrates the effectiveness of our ap-
proach on various probabilistic programs. We also demonstrate that our
algorithm certifies lower bounds on termination probability for probabilistic
programs that are beyond the reach of previous methods.

1 Introduction

Probabilistic programs. Probabilistic programs extend classical imperative pro-
grams with randomization. They provide an expressive framework for specifying
probabilistic models and have been used in machine learning [23,40], network
analysis [21], robotics [43] and security [5]. Recent years have seen the development
of many probabilistic programming languages such as Church [24] and Pyro [8],
and their formal analysis is an active topic of research. Probabilistic programs are

∗Authors are ordered alphabetically.
†Corresponding author.

often extended with non-determinism to allow for either unknown user inputs and
interactions with environment or abstraction of parts that are too complex for
formal analysis [32].
Termination. Termination has attracted the most attention in the literature on
formal analysis of probabilistic programs. In non-probabilistic programs, it is a
purely qualitative property. In probabilistic programs, it has various extensions:
1. Qualitative: The almost-sure (a.s.) termination problem asks if the program

terminates with probability 1, whereas the finite termination problems asks if
the expected number of steps until termination is finite.

2. Quantitative: The quantitative probabilistic termination problem asks for a
tight lower bound on the termination probability. More specifically, given a
constant p ∈ [0, 1], it asks whether the program will terminate with probability
at least 1− p over all possible resolutions of non-determinism.

Previous qualitative works. There are many approaches to prove a.s. termi-
nation based on weakest pre-expectation calculus [32,28,38], abstract interpreta-
tion [35], type systems [7] and martingales [9,13,11,15,33,26,27,36]. This work is
closest in spirit to martingale-based approaches. The central concept in these
approaches is that of a ranking supermartingale (RSM) [9], which is a probabilistic
extension of ranking functions. RSMs are a sound and complete proof rule for finite
termination [22], which is a stricter notion than a.s. termination. The work of [33]
proposed a variant of RSMs that can prove a.s. termination even for programs
whose expected runtime is infinite, and lexicographic RSMs were studied in [1,14]. A
main advantage of martingale-based approaches is that they can be fully automated
for programs with affine/polynomial arithmetic [13,11].
Previous quantitative works. Quantitative analyses of probabilistic programs
are often more challenging. There are only a few works that study the quantitative
termination problem: [15,42,7]. The works [15,42] propose martingale-based proof
rules for computing lower-bounds on termination probability, while [7] considers
functional probabilistic programs and proposes a type system that allows incremen-
tally searching for type derivations to accumulate a lower-bound on termination
probability. See Section 8 for a detailed comparison.
Lack of completeness. While [15,42,7] all propose sound methods to compute
lower-bounds on termination probability, none of them are theoretically complete
nor do their algorithms provide relative completeness guarantees. This naturally
leaves open whether one can define a complete certificate for proving termination
with probability at least 1− p ∈ [0, 1], i.e. a certificate that a probabilistic program
admits if and only if it terminates with probability at least 1− p, which allows for
automated synthesis. Ideally, such a certificate should also be synthesized auto-
matically by an algorithm with relative completeness guarantees, i.e. an algorithm
which is guaranteed to compute such a certificate for a sufficiently general subclass
of programs. Note, since the problem of deciding whether a probabilistic program
terminates with probability at least 1− p is undecidable, one cannot hope for a
general complete algorithm so the best one can hope for is relative completeness.
Our approach. We present the first method for the probabilistic termination
problem that is complete. Our approach builds on that of [15] and uses stochastic
invariants in combination with a.s. reachability certificates in order to compute
lower-bounds on the termination probability. A stochastic invariant [15] is a tuple

(SI , p) consisting of a set SI of program states and an upper-bound p on the
probability of a random program run ever leaving SI . If one computes a stochastic
invariant (SI , p) with the additional property that a random program run would,
with probability 1, either terminate or leave SI , then since SI is left with probability
at most p the program must terminate with probability at least 1− p. Hence, the
combination of stochastic invariants and a.s. reachability certificates provides a
sound approach to the probabilistic termination problem.

While this idea was originally proposed in [15], our method for computing
stochastic invariants is fundamentally different and leads to completeness. In [15],
a stochastic invariant is computed indirectly by computing the set SI together
with a repulsing supermartingale (RepSM), which can then be used to compute
a probability threshold p for which (SI , p) is a stochastic invariant. It was shown
in [42, Section 3] that RepSMs are incomplete for computing stochastic invariants.
Moreover, even if a RepSM exists, the resulting probability bound need not be tight
and the method of [15] does not allow optimizing the computed bound or guiding
computation towards a bound that exceeds some specified probability threshold.

In this work, we propose a novel and orthogonal approach that computes the
stochastic invariant and the a.s. termination certificate at the same time and is
provably complete for certifying a specified lower bound on termination proba-
bility. First, we show that stochastic invariants can be characterized through the
novel notion of stochastic invariant indicators (SI-indicators). The characterization
is both sound and complete. Furthermore, it allows fully automated computa-
tion of stochastic invariants for programs using affine or polynomial arithmetic
via a template-based approach that reduces quantitative termination analysis to
constraint solving. Second, we prove that stochastic invariants together with an
a.s. reachability certificate, when synthesized in tandem, are not only sound for
probabilistic termination, but also complete. Finally, we present the first relatively
complete algorithm for probabilistic termination. Our algorithm considers polyno-
mial probabilistic programs and simultaneously computes a stochastic invariant
and an a.s. reachability certificate in the form of an RSM using a template-based
approach. Our algorithmic approach is relatively complete.

While we focus on the probabilistic termination problem in which the goal is
to verify a given lower bound 1− p on the termination probability, we note that
our method may be straightforwardly adapted to compute a lower bound on the
termination probability. In particular, we may perform a binary-search on p and
search for the smallest value of p for which 1 − p can be verified to be a lower
bound on the termination probability.

Contributions. Our specific contributions in this work are as follows:
1. We present a sound and complete characterization of stochastic invariants

through the novel notion of stochastic invariant indicators (Section 4).
2. We prove that stochastic invariants together with an a.s. reachability certificate

are sound and complete for proving that a probabilistic program terminates
with at least a given probability threshold (Section 5).

3. We present a relatively complete algorithm for computing SI-indicators, and
hence stochastic invariants over programs with affine or polynomial arithmetic.
By combining it with the existing relatively complete algorithms for RSM
computation, we obtain the first algorithm for probabilistic termination that
provides completeness guarantees (Section 6).

4. We implement a prototype of our approach and demonstrate its effectiveness
over various benchmarks (Section 7). We also show that our approach can
handle programs that were beyond the reach of previous methods.

2 Overview

Before presenting general theorems and algorithms, we first illustrate our method
on the probabilistic program in Figure 1. The program models a 1-dimensional
discrete-time random walk over the real line that starts at x = 0 and terminates
once a point with x < 0 is reached. In every time step, x is incremented by a random
value sampled according to the uniform distribution Uniform([−1, 0.5]). However,
if the stochastic process is in a point with x ≥ 100, then the value of x might also
be incremented by a random value independently sampled from Uniform([−1, 2]).
The choice on whether the second increment happens is non-deterministic. By a
standard random walk argument, the program does not terminate almost-surely.
Outline of our method. Let p = 0.01. To prove this program terminates with
probability at least 1− p = 0.99, our method computes the following two objects:
1. Stochastic invariant. A stochastic invariant is a tuple (SI , p) s.t. SI is a set of

program states that a random program run leaves with probability at most p.
2. Termination proof for the stochastic invariant. A ranking supermartingale

(RSM) [9] is computed in order to prove that the program will, with probability
1, either terminate or leave the set SI . Since SI is left with probability at most
p, the program must terminate with probability at least 1− p.

x = 0
`init : while x ≥ 0 do
`1 : r1 := Uniform([−1, 0.5])
`2 : x := x+ r1
`3 : i f x ≥ 100 then
`4 : i f ? then
`5 : r2 := Uniform([−1, 2])
`6 : x := x+ r2
`out :

Fig. 1: Our running example.

Synthesizing SI. To find a stochastic invariant, our method computes a state
function f which assigns a non-negative real value to each reachable program state.
We call this function a stochastic invariant indicator (SI-indicator), and it serves
the following two purposes: First, exactly those states which are assigned a value
strictly less than 1 are considered a part of the stochastic invariant SI . Second, the
value assigned to each state is an upper-bound on the probability of leaving SI
if the program starts from that state. Finally, by requiring that the value of the
SI-indicator at the initial state of the program is at most p, we ensure a random
program run leaves the stochastic invariant with probability at most p.

In Section 4, we will define SI-indicators in terms of conditions that ensure
the properties above and facilitate automated computation. We also show that

SI-indicators serve as a sound and complete characterization of stochastic invariants,
which is one of the core contributions of this work. The significance of completeness
of the characterization is that, in order to search for a stochastic invariant with a
given probability threshold p, one may equivalently search for an SI-indicator with
the same probability threshold whose computation can be automated. As we will
discuss in Section 8, previous approaches to the synthesis of stochastic invariants
were neither complete nor provided tight probability bounds. For Figure 1, we have
the following set SI which will be left with probability at most p = 0.01 :

SI (`) =

{
(x < 99) if ` ∈ {`init , `1, `2, `3, `out}
false otherwise.

(1)

An SI-indicator for this stochastic invariant is:

f(`, x, r1, r2) =

x+1
100 if ` ∈ {`init , `1, `3, `out} and x < 99
x+1+r1

100 if ` = `2 and x < 99

1 otherwise.
(2)

It is easy to check that (SI , 0.01) is a stochastic invariant and that for every state
s = (`, x, r1, r2), the value f(s) is an upper-bound on the probability of eventually
leaving SI if program execution starts at s. Also, s ∈ SI ⇔ f(s) < 1.

Synthesizing a termination proof. To prove that a probabilistic program
terminates with probability at least 1 − p, our method searches for a stochastic
invariant (SI , p) for which, additionally, a random program run with probability 1
either leaves SI or terminates. This idea is formalized in Theorem 2, which shows
that stochastic invariants provide a sound and complete certificate for proving
that a given probabilistic program terminates with probability at least 1− p. In
order to impose this additional condition, our method simultaneously computes
an RSM for the set of states ¬SI ∪ Stateterm , where Stateterm is the set of all
terminal states. RSMs are a classical certificate for proving almost-sure termination
or reachability in probabilistic programs. A state function η is said to be an RSM
for ¬SI ∪ Stateterm if it satisfies the following two conditions:
– Non-negativity. η(`, x, r1, r2) ≥ 0 for any reachable state (`, x, r1, r2) ∈ SI ;
– ε-decrease in expectation. There exists ε > 0 such that, for any reachable

non-terminal state (`, x, r1, r2) ∈ SI , the value of η decreases in expectation by
at least ε after a one-step execution of the program from (`, x, r1, r2).

The existence of an RSM for ¬SI ∪ Stateterm implies that the program will, with
probability 1, either terminate or leave SI . As (SI , p) is a stochastic invariant,
we can readily conclude that the program terminates with probability at least
1− p = 0.99. An example RSM with ε = 0.05 for our example above is:

η(`, x, r1, r2) =

x+ 1.1 if ` = `init
x+ 1.05 if ` = `1
x+ 1.2 + r1 if ` = `2
x+ 1.15 if ` = `3
x+ 1 if ` = `out
100 otherwise.

(3)

Simultaneous synthesis. Our method employs a template-based approach and
synthesizes the SI and the RSM simultaneously. We assume that our method is
provided with an affine/polynomial invariant I which over-approximates the set of
all reachable states in the program, which is necessary since the defining conditions
of SI-indicators and RSMs are required to hold at all reachable program states.
Note that invariant generation is an orthogonal and well-studied problem and can
be automated using [12]. For both the SI-indicator and the RSM, our method first
fixes a symbolic template affine/polynomial expression for each location in the
program. Then, all the defining conditions of SI-indicators and RSMs are encoded
as a system of constraints over the symbolic template variables, where reachability
of program states is encoded using the invariant I, and the synthesis proceeds by
solving this system of constraints. We describe our algorithm in Section 6, and
show that it is relatively complete with respect to the provided invariant I and
the probability threshold 1 − p. On the other hand, we note that our algorithm
can also be adapted to compute lower bounds on the termination probability by
combining it with a binary search on p.
Completeness vs relative completeness. Our characterization of stochastic in-
variants using indicator functions is complete. So is our reduction from quantitative
termination analysis to the problem of synthesizing an SI-indicator function and a
certificate for almost-sure reachability. These are our core theoretical contributions
in this work. Nevertheless, as mentioned above, RSMs are complete only for finite
termination, not a.s. termination. Moreover, template-based approaches lead to
completeness guarantees only for solutions that match the template, e.g. poly-
nomial termination certificates of a bounded degree. Therefore, our end-to-end
approach is only relatively complete. These losses of completeness are due to Rice’s
undecidability theorem and inevitable even in qualitative termination analysis. In
this work, we successfully provide approaches for quantitative termination analysis
that are as complete as the best known methods for the qualitative case.

3 Preliminaries

We consider imperative arithmetic probabilistic programs with non-determinism.
Our programs allow standard programming constructs such as conditional branch-
ing, while-loops and variable assignments. They also allow two probabilistic con-
structs – probabilistic branching which is indicated in the syntax by a command
‘if prob(p) then . . . ’ with p ∈ [0, 1] a real constant, and sampling instructions
of the form x := d where d is a probability distribution. Sampling instructions
may contain both discrete (e.g. Bernoulli, geometric or Poisson) and continuous
(e.g. uniform, normal or exponential) distributions. We also allow constructs for (de-
monic) non-determinism. We have non-deterministic branching which is indicated
in the syntax by ‘if ? then . . . ’, and non-deterministic assignments represented
by an instruction of the form x := ndet([a, b]), where a, b ∈ R ∪ {±∞} and [a, b]
is a (possibly unbounded) real interval from which the new variable value is chosen
non-deterministically. We also allow one or both sides of the interval to be open.
The complete syntax of our programs is presented in Appendix A.
Notation. We use boldface symbols to denote vectors. For a vector x of dimension
n and 1 ≤ i ≤ n, x[i] denotes the i-th component of x. We write x[i← a] to denote

an n-dimensional vector y with y[i] = a and y[j] = x[j] for j 6= i.

Program variables. Variables in our programs are real-valued. Given a finite set
of variables V , a variable valuation of V is a vector x ∈ R|V |.
Probabilistic control-flow graphs (pCFGs). We model our programs via
probabilistic control-flow graphs (pCFGs) [15,13]. A probabilistic control-flow graph
(pCFG) is a tuple C = (L, V, `init ,xinit , 7→, G,Pr ,Up), where:
– L is a finite set of locations, partitioned into locations of conditional branching
LC , probabilistic branching LP , non-det branching LN and assignment LA.

– V = {x1, . . . , x|V |} is a finite set of program variables;
– `init is the initial program location;
– xinit ∈ R|V | is the initial variable valuation;
– 7→⊆ L× L is a finite set of transitions. For each transition τ = (`, `′), we say

that ` is its source location and `′ its target location;
– G is a map assigning to each transition τ = (`, `′) ∈ 7→ with ` ∈ LC a guard
G(τ), which is a logical formula over V specifying whether τ can be executed;

– Pr is a map assigning to each transition τ = (`, `′) ∈ 7→ with ` ∈ LP a probability
Pr(τ) ∈ [0, 1]. We require

∑
τ=(`,_) Pr(τ) = 1 for each ` ∈ LP ;

– Up is a map assigning to each transition τ = (`, `′) ∈ 7→ with ` ∈ LA an update
Up(τ) = (j, u) where j ∈ {1, . . . , |V |} is a target variable index and u is an
update element which can be:
• the bottom element u = ⊥, denoting no update;
• a Borel-measurable expression u : R|V | → R, denoting a deterministic
variable assignment;
• a probability distribution u = d, denoting that the new variable value is

sampled according to d;
• an interval u = [a, b] ⊆ R ∪ {±∞}, denoting a non-deterministic update.
We also allow one or both sides of the interval to be open.

We assume the existence of the special terminal location denoted by `out . We
also require that each location has at least one outgoing transition, and that each
` ∈ LA has a unique outgoing transition. For each location ` ∈ LC , we assume
that the disjunction of guards of all transitions outgoing from ` is equivalent to
true, i.e.

∨
τ=(l,_)G(τ) ≡ true. Translation of probabilistic programs to pCFGs

that model them is standard, so we omit the details and refer the reader to [13].
The pCFG for the program in Figure 1 is provided in Appendix B.

States, paths and runs. A state in a pCFG C is a tuple (`,x), where ` is a
location in C and x ∈ R|V | is a variable valuation of V . We say that a transition
τ = (`, `′) is enabled at a state (`,x) if ` 6∈ LC or if ` ∈ LC and x |= G(τ). We
say that a state (`′,x′) is a successor of (`,x), if there exists an enabled transition
τ = (`, `′) in C such that (`′,x′) can be reached from (`,x) by executing τ , i.e.
we can obtain x′ by applying the updates of τ to x, if any. A finite path in C is
a sequence (`0,x0), (`1,x1), . . . , (`k,xk) of states with (`0,x0) = (`init ,xinit) and
with (`i+1,xi+1) being a successor of (`i,xi) for each 0 ≤ i ≤ k − 1. A state (`,x)
is reachable in C if there exists a finite path in C that ends in (`,x). A run (or
execution) in C is an infinite sequence of states where each finite prefix is a finite
path. We use StateC , FpathC , RunC , ReachC to denote the set of all states, finite
paths, runs and reachable states in C, respectively. Finally, we use Stateterm to
denote the set {(`out ,x) | x ∈ R|V |} of terminal states.

Schedulers. The behavior of a pCFG may be captured by defining a probability
space over the set of all runs in the pCFG. For this to be done, however, we need to
resolve non-determinism and this is achieved via the standard notion of a scheduler.
A scheduler in a pCFG C is a map σ which to each finite path ρ ∈ FpathC assigns
a probability distribution σ(ρ) over successor states of the last state in ρ. Since
we deal with programs operating over real-valued variables, the set FpathC may
be uncountable. To that end, we impose an additional measurability assumption
on schedulers, in order to ensure that the semantics of probabilistc programs with
non-determinism is defined in a mathematically sound way. The restriction to
measurable schedulers is standard. Hence, we omit the formal definition.
Semantics of pCFGs. A pCFG C with a scheduler σ define a stochastic process
taking values in the set of states of C, whose trajectories correspond to runs in C.
The process starts in the initial state (`init ,xinit) and inductively extends the run,
where the next state along the run is chosen either deterministically or is sampled
from the probability distribution defined by the current location along the run and
by the scheduler σ. These are the classical operational semantics of Markov decision
processes (MDPs), see e.g. [28,1]. A pCFG C and a scheduler σ together determine
a probability space (RunC ,FC ,Pσ) over the set of all runs in C. For details, see
Appendix C. We denote by Eσ the expectation operator on (RunC ,FC ,Pσ). We
may analogously define a probability space (RunC(`,x),FC(`,x),PσC(`,x)) over the set
of all runs in C that start in some specified state (`,x).
Probabilistic termination problem. We now define the termination problem
for probabilistic programs considered in this work. A state (`,x) in a pCFG C is
said to be a terminal state if ` = `out . A run ρ ∈ RunC is said to be terminating if
it reaches some terminal state in C. We use Term ⊆ RunC to denote the set of all
terminating runs in RunC . The termination probability of a pCFG C is defined as
infσ Pσ[Term], i.e. the smallest probability of the set of terminating runs in C with
respect to any scheduler in C (for the proof that Term is measurable, see [42]). We
say that C terminates almost-surely (a.s.) if its termination probability is 1. In this
work, we consider the Lower Bound on the Probability of Termination (LBPT)
problem that, given p ∈ [0, 1], asks whether 1−p is a lower bound for the termination
probability of the given probabilistic program, i.e. whether infσ Pσ[Term] ≥ 1− p.

4 A Sound and Complete Characterization of SIs

In this section, we recall the notion of stochastic invariants and present our
characterization of stochastic invariants through stochastic indicator functions. We
fix a pCFG C = (L, V, `init ,xinit , 7→, G,Pr ,Up). A predicate function in C is a map
F that to every location ` ∈ L assigns a logical formula F (`) over program variables.
It naturally induces a set of states, which we require to be Borel-measurable for the
semantics to be well-defined. By a slight abuse of notation, we identify a predicate
function F with this set of states. Furthermore, we use ¬F to denote the negation
of a predicate function, i.e. (¬F)(`) = ¬F (`). An invariant in C is a predicate
function I which additionally over-approximates the set of reachable states in C,
i.e. for every (`,x) ∈ ReachC we have x |= I(`). Stochastic invariants can be viewed
as a probabilistic extension of invariants, which a random program run leaves only
with a certain probability. See Section 2 for an example.

Definition 1 (Stochastic invariant [15]). Let SI a predicate function in C
and p ∈ [0, 1] a probability. The tuple (SI , p) is a stochastic invariant (SI) if the
probability of a run in C leaving the set of states defined by SI is at most p under
any scheduler. Formally, we require that

supσ Pσ
[
ρ ∈ RunC | ρ reaches some (`,x) with x 6|= SI (`)

]
≤ p.

Key challenge. If we find a stochastic invariant (SI , p) for which termination
happens almost-surely on runs that do not leave SI , we can immediately conclude
that the program terminates with probability at least 1− p (this idea is formalized
in Section 5). The key challenge in designing an efficient termination analysis based
on this idea is the computation of appropriate stochastic invariants. We present a
sound and complete characterization of stochastic invariants which allows for their
effective automated synthesis through template-based methods.

We characterize stochastic invariants through the novel notion of stochastic
invariant indicators (SI-indicators). An SI-indicator is a function that to each state
assigns an upper-bound on the probability of violating the stochastic invariant if
we start the program in that state. Since the definition of an SI-indicator imposes
conditions on its value at reachable states and since computing the exact set of
reachable states is in general infeasible, we define SI-indicators with respect to a
supporting invariant with the later automation in mind. In order to understand
the ideas of this section, one may assume for simplicity that the invariant exactly
equals the set of reachable states. A state-function in C is a function f that to
each location ` ∈ L assigns a Borel-measurable real-valued function over program
variables f(`) : R|V | → R. We use f(`,x) and f(`)(x) interchangeably.

Definition 2 (Stochastic invariant indicator). A tuple (fSI , p) comprising a
state function fSI and probability p ∈ [0, 1] is a stochastic invariant indicator
(SI-indicator) with respect to an invariant I, if it satisfies the following conditions:

(C1) Non-negativity. For every location ` ∈ L, we have x |= I(`)⇒ fSI (`,x) ≥ 0.
(C2) Non-increasing expected value. For every location ` ∈ L, we have:

(C1
2) If ` ∈ LC , then for any transition τ = (`, `′) we have x |= I(`) ∧G(τ)⇒

fSI (`,x) ≥ fSI (`′,x).
(C2

2) If ` ∈ LP , then x |= I(`)⇒ fSI (`,x) ≥
∑
τ=(`,`′)∈ 7→ Pr(τ) · fSI (`′,x).

(C3
2) If ` ∈ LN , then x |= I(`)⇒ fSI (`,x) ≥ maxτ=(`,`′)∈ 7→ fSI (`

′,x).
(C4

2) If ` ∈ LA with τ = (`, `′) the unique outgoing transition from `, then:
– If Up(τ) = (j,⊥), x |= I(`)⇒ f(`,x) ≥ f(`′,x).
– If Up(τ) = (j, u) with u : R|V | → R an expression, we have x |= I(`)⇒
f(`,x) ≥ f(`′,x[xj ← u(xi)]).

– If Up(τ) = (j, u) with u = d a distribution, we have x |= I(`) ⇒
f(`,x) ≥ EX∼d[f(`′,x[xj ← X])].

– If Up(τ) = (j, u) with u = [a, b] an interval, we have x |= I(`) ⇒
f(`,x) ≥ supX∈[a,b]{f(`′,x[xj ← X])}.

(C3) Initial condition. We have f(`init ,xinit) ≤ p.

Intuition. (C1) imposes that f is nonnegative at any state contained in the
invariant I. Next, for any state in I, (C2) imposes that the value of f does not
increase in expectation upon a one-step execution of the pCFG under any scheduler.

Finally, the condition (C3) imposes that the initial value of f in C is at most
p. Together, the indicator thus intuitively over-approximates the probability of
violating SI . An example of an SI-indicator for our running example in Figure 1 is
given in (2). The following theorem formalizes the above intuition and is our main
result of this section. In essence, we prove that (SI , p) is a stochastic invariant
in C iff there exists an SI-indicator (fSI , p) such that SI contains all states at
which fSI is strictly smaller than 1. This implies that, for every stochastic invariant
(SI , p), there exists an SI-indicator such that (SI ′, p) defined via SI ′(`) = (x |=
I(`) ∧ fSI (`,x) < 1) is a stochastic invariant that is at least as tight as (SI , p).

Theorem 1 (Soundness and Completeness of SI-indicators). Let C be a
pCFG, I an invariant in C and p ∈ [0, 1]. For any SI-indicator (fSI , p) with respect
to I, the predicate map SI defined as SI (`) = (x |= I(`) ∧ fSI (`,x) < 1) yields a
stochastic invariant (SI , p) in C. Conversely, for every stochastic invariant (SI , p)
in C, there exist an invariant ISI and a state function fSI such that (fSI , p) is
an SI-indicator with respect to ISI and for each ` ∈ L we have SI (`) ⊇ (x |=
ISI (`) ∧ fSI (`,x) < 1).

Proof sketch. Since the proof is technically involved, we present the main ideas
here and defer the details to Appendix E. First, suppose that I is an invariant
in C and that (fSI , p) is an SI-indicator with respect to I, and let SI (`) = (x |=
I(`) ∧ fSI (`,x) < 1) for each ` ∈ L. We need to show that (SI , p) is a stochastic
invariant in C. Let supσ Pσ(`,x)[Reach(¬SI)] be a state function that maps each
state (`,x) to the probability of reaching ¬SI from (`,x). We consider a lattice
of non-negative semi-analytic state-functions (L,v) with the partial order defined
via f v f ′ if f(`,x) ≤ f ′(`,x) holds for each state (`,x) in I. See Appendix D for
a review of lattice theory. It follows from a result in [42] that the probability of
reaching ¬SI can be characterized as the least fixed point of the next-time operator
X¬SI : L → L. Away from ¬SI , the operator X¬SI simulates a one-step execution
of C and maps f ∈ L to its maximal expected value upon one-step execution of C
where the maximum is taken over all schedulers, and at states contained in ¬SI the
operator X¬SI is equal to 1. It was also shown in [42] that, if a state function f ∈ L is
a pre-fixed point of X¬SI , then it satisfies supσ Pσ(`,x)[Reach(¬SI)] ≤ f(`,x) for each
(`,x) in I. Now, by checking the defining properties of pre-fixed points and recalling
that fSI satisfies Non-negativity condition (C1) and Non-increasing expected value
condition (C2) in Definition 2, we can show that fSI is contained in the lattice
L and is a pre-fixed point of X¬SI . It follows that supσ Pσ(`init ,xinit)

[Reach(¬SI)] ≤
fSI (`init ,xinit). On the other hand, by initial condition (C3) in Definition 2 we
know that fSI (`init ,xinit) ≤ p. Hence, we have supσ Pσ(`init ,xinit)

[Reach(¬SI)] ≤ p so
(SI , p) is a stochastic invariant.

Conversely, suppose that (SI , p) is a stochastic invariant in C. We show in
Appendix E that, if we define ISI to be the trivial true invariant and define
fSI (`,x) = supσ Pσ(`,x)[Reach(¬SI)], then (fSI , p) forms an SI-indicator with respect
to ISI . The claim follows by again using the fact that fSI is the least fixed
point of the operator X¬SI , from which we can conclude that (fSI , p) satisfies
conditions (C1) and (C2) in Definition 2. On the other hand, the fact that (SI , p)
is a stochastic invariant and our choice of fSI imply that (fSI , p) satisfies the
initial condition (C3) in Definition 2. Hence, (fSI , p) forms an SI-indicator with
respect to ISI . Furthermore, SI (`) ⊇ (x |= ISI (`) ∧ fSI (`,x) < 1) follows since

1 > fSI (`,x) = supσ Pσ(`,x)[Reach(¬SI)] implies that (`,x) cannot be contained in
¬SI so x |= SI (`). This concludes the proof. ut

Based on the theorem above, in order to compute a stochastic invariant in C for
a given probability threshold p, it suffices to synthesize a state function fSI that
together with p satisfies all the defining conditions in Definition 2 with respect to
some supporting invariant I, and then consider a predicate function SI defined via
SI (`) = (x |= I(`)∧ fSI (`,x) < 1) for each ` ∈ L. This will be the guiding principle
of our algorithmic approach in Section 6.
Intuition on characterization. Stochastic invariants can essentially be thought
of as quantitative safety specifications in probabilistic programs – (SI , p) is a
stochastic invariant if and only if a random probabilistic program run leaves SI
with probability at most p. However, what makes their computation hard is that
they do not consider probabilities of staying within a specified safe set. Rather,
the computation of stochastic invariants requires computing both the safe set and
the certificate that it is left with at most the given probability. Nevertheless, in
order to reason about them, we may consider SI as an implicitly defined safe set.
Hence, if we impose conditions on a state function fSI to be an upper bound on the
reachability probability for the target set of states (x |= I(`) ∧ fSI (`,x) < 1), and
in addition impose that fSI (`init ,xinit) ≤ p, then these together will entail that p
is an upper bound on the probability of ever leaving SI when starting in the initial
state. This is the intuitive idea behind our construction of SI-indicators, as well
as our soundness and completeness proof. In the proof, we show that conditions
(C1) and (C2) in Definition 2 indeed entail the necessary conditions to be an upper
bound on the reachability probability of the set (x |= I(`) ∧ fSI (`,x) < 1).

5 Stochastic Invariants for LBPT

In the previous section, we paved the way for automated synthesis of stochas-
tic invariants by providing a sound and complete characterization in terms of
SI-indicators. We now show how stochastic invariants in combination with any
a.s. termination certificate for probabilistic programs can be used to compute
lower-bounds on the probability of termination. Theorem 2 below states a general
result about termination probabilities that is agnostic to the termination certificate,
and shows that stochastic invaraints provide a sound and complete approach to
quantitative termination analysis.

Theorem 2 (Soundness and Completeness of SIs for Quantitative Ter-
mination). Let C = (L, V, `init ,xinit , 7→, G,Pr ,Up) be a pCFG and (SI , p) a
stochastic invariant in C. Suppose that, with respect to every scheduler, a run in C
almost-surely either terminates or reaches a state in ¬SI , i.e.

infσ Pσ
[
Term ∪ Reach(¬SI)

]
= 1. (4)

Then C terminates with probability at least 1− p. Conversely, if C terminates with
probability at least 1− p, then there exists a stochastic invariant (SI , p) in C such
that, with respect to every scheduler, a run in C almost-surely either terminates or
reaches a state in ¬SI .

Proof sketch. The first part (soundness) follows directly from the definition of
SI and (4). The completeness proof is conceptually and technically involved and
presented in Appendix H. In short, the central idea is to construct, for every n
greater than a specific threshold n0, a stochastic invariant (SI n, p+ 1

n) such that a
run almost-surely either terminates or exists SI n. Then, we show that ∩∞n=n0

SI n
is our desired SI . To construct each SI n, we consider the infimum termination
probability at every state (`,x) and call it r(`,x). The infimum is taken over
all schedulers. We then let SI n be the set of states (`,x) for whom r(`,x) is
greater than a specific threshold α. Intuitively, our stochastic invariant is the set of
program states from which the probability of termination is at least α, no matter
how the non-determinism is resolved. Let us call these states likely-terminating.
The intuition is that a random run of the program will terminate or eventually
leave the likely-terminating states with high probability. ut
Quantitative to qualitative termination. Theorem 2 provides us with a recipe
for computing lower bounds on the probability of termination once we are able
to compute stochastic invariants: if (SI , p) is a stochastic invariant in a pCFG C,
it suffices to prove that the set of states Stateterm ∪ ¬SI is reached almost-surely
with respect to any scheduler in C, i.e. the program terminates or violates SI. Note
that this is simply a qualitative a.s. termination problem, except that the set of
terminal states is now augmented with ¬SI . Then, since (SI , p) is a stochastic
invariant, it would follow that a terminal state is reached with probability at least
1− p. Moreover, the theorem shows that this approach is both sound and complete.
In other words, proving quantitative termination, i.e. that we reach Stateterm with
probability at least 1− p is now reduced to (i) finding a stochastic invariant (SI , p)
and (ii) proving that the program C′ obtained by adding ¬SI to the set of terminal
states of C is a.s. terminating. Note that, to preserve completeness, (i) and (ii)
should be achieved in tandem, i.e. an approach that first synthesizes and fixes SI
and then tries to prove a.s. termination for ¬SI is not complete.
Ranking supermartingales. While our reduction above is agnostic to the type
of proof/certificate that is used to establish a.s. termination, in this work we use
Ranking Supermartingales (RSMs) [9], which are a standard and classical certificate
for proving a.s. termination and reachability. Let C = (L, V, `init ,xinit , 7→, G,Pr ,Up)
be a pCFG and I an invariant in C. Note that as in Definition 2, the main purpose
of the invariant is to allow for automated synthesis and one can again simply
assume it to equal the set of reachable states. An ε-RSM for a subset T of states is
a state function that is non-negative in each state in I, and whose expected value
decreases by at least ε > 0 upon a one-step execution of C in any state that is not
contained in the target set T . Thus, intuitively, a program run has an expected
tendency to approach the target set T where the distance to T is given by the value
of the RSM which is required to be non-negative in all states in I. The ε-ranked
expected value condition is formally captured via the next-time operator X (See
Appendix E). An example of an RSM for our running example in Figure 1 and the
target set of states ¬SI ∪Stateterm with SI the stochastic invariant in Equation (1)
is given in Equation (3).

Definition 3 (Ranking supermartingales). Let T be a predicate function defin-
ing a set of target states in C, and let ε > 0. A state function η is said to be an
ε-ranking supermartingale (ε-RSM) for T with respect to the invariant I if it
satisfies the following conditions:

– Non-negativity. For each location ` ∈ L and x ∈ I(`), we have η(`,x) ≥ 0.
– ε-ranked expected value. For each location ` ∈ L and x |= I(`) ∩ ¬T (`), we

have η(`,x) ≥ X(η)(`,x) + ε.

Note that the second condition can be expanded according to location types in the
exact same manner as in condition C2 of Definition 2. The only difference is that
in Definition 2, the expected value had to be non-increasing, whereas here it has
to decrease by ε. It is well-known that the two conditions above entail that T is
reached with probability 1 with respect to any scheduler [9,13].

Theorem 3 (Proof in Appendix I). Let C be a pCFG, I an invariant in C and
T a predicate function defining a target set of states. If there exist ε > 0 and an
ε-RSM for T with respect to I, then T is a.s. reached under any scheduler, i.e.

infσ Pσ(`init ,xinit)

[
Reach(T)

]
= 1.

The following theorem is an immediate corollary of Theorems 2 and 3.

Theorem 4. Let C be a pCFG and I be an invariant in C. Suppose that there exist
a stochastic invariant (SI , p), an ε > 0 and an ε-RSM η for Stateterm ∪ ¬SI with
respect to I. Then C terminates with probability at least 1− p.

Therefore, in order to prove that C terminates with probability at least 1 − p,
it suffices to find (i) a stochastic invariant (SI , p) in C, and (ii) an ε-RSM η for
Stateterm ∪ ¬SI with respect to I and some ε > 0. Note that these two tasks are
interdependent. We cannot simply choose any stochastic invariant. For instance,
the trivial predicate function defined via SI = true always yields a valid stochastic
invariant for any p ∈ [0, 1], but it does not help termination analysis. Instead, we
need to compute a stochastic invariant and an RSM for it simultaneously.
Power of completeness. We end this section by showing that our approach
certifies a tight lower-bound on termination probability for a program that was
proven in [42] not to admit any of the previously-existing certificates for lower
bounds on termination probability. This shows that our completeness pays off
in practice and our approach is able to handle programs that were beyond the
reach of previous methods. Consider the program in Figure 2 annotated by an
invariant I. We show that our approach certifies that this program terminates
with probability at least 0.5. Indeed, consider a stochastic invariant (SI , 0.5) with
SI (`) = true if ` 6= `3, and SI (`3) = false, and a state function defined via
η(`init , x) = − log(x)+ log(2)+ 3, η(`1, x) = − log(x)+ log(2)+ 2, η(`2, x) = 1 and
η(`3, x) = η(`out , x) = 0 for each x. Then one can easily check by inspection that
(SI , 0.5) is a stochastic invariant and that η is a (log(2)−1)-RSM for Stateterm∪¬SI
with respect to I. Therefore, it follows by Theorem 4 that the program in Figure 2
terminates with probability at least 0.5.

6 Automated Template-based Synthesis Algorithm

We now provide template-based relatively complete algorithms for simultaneous and
automated synthesis of SI-indicators and RSMs, in order to solve the quantitative
termination problem over pCFGs with affine/polynomial arithmetic. Our approach

x = ndet((0, 1))
`init : while x < 1 do {0 < x < 2}
`1 : x := 2 · x {0 < x < 1}
`2 : i f prob (0.5) then {1 ≤ x < 2}
`3 : while true do skip od {1 ≤ x < 2}
`out : {1 ≤ x < 2}

Fig. 2: A program that was shown in [42] not to admit a repulsing supermartin-
gale [15] or a gamma-scaled supermartingale [42], but for which our method can
certify the tight lower-bound of 0.5 on the probability of termination.

builds upon the ideas of [2,11] for qualitative and non-probabilistic cases.
Input and assumptions. The input to our algorithms consists of a pCFG C
together with a probability p ∈ [0, 1], an invariant I,‡ and technical variables δ and
M , which specify polynomial template sizes used by the algorithm and which will
be discussed later. In this section, we limit our focus to affine/polynomial pCFGs,
i.e. we assume that all guards G(τ) in C and all invariants I(`) are conjunctions of
affine/polynomial inequalities over program variables. Similarly, we assume that
every update function u : R|V | → R used in deterministic variable assignments is
an affine/polynomial expression in R[V].

Output. The goal of our algorithms is to synthesize a tuple (f, η, ε) where f is an
SI-indicator function, η is a corresponding RSM, and ε > 0, such that:
– At every location ` of C, both f(`) and η(`) are affine/polynomial expressions

of fixed degree δ over the program variables V .
– Having SI (`) := {x | f(`,x) < 1}, the pair (SI , p) is a valid stochastic invariant

and η is an ε-RSM for Stateterm ∪ ¬SI with respect to I.
As shown in Sections 4 and 5, such a tuple w = (f, η, ε) serves as a certificate that
the probabilistic program modeled by C terminates with probability at least 1− p.
We call w a quantitative termination certificate.
Overview. Our algorithm is a standard template-based approach similar to [2,11].
We encode the requirements of Definitions 2 and 3 as entailments between affine/poly-
nomial inequalities with unknown coefficients and then apply the classical Farkas’
Lemma [18] or Putinar’s Positivstellensatz [39] to reduce the synthesis problem to
Quadratic Programming (QP). Finally, we solve the resulting QP using a numerical
optimizer or an SMT-solver. Our approach consists of the four steps below. Step 3
follows [2] exactly. Hence, we refer to [2] for more details on this step.
Step 1. Setting up templates. The algorithm sets up symbolic templates with
unknown coefficients for f, η and ε.
– First, for each location ` of C, the algorithm sets up a template for f(`) which is a

polynomial consisting of all possible monomials of degree at most δ over program
variables, each appearing with an unknown coefficient. For example, consider
the program in Figure 1 of Section 2. This program has three variables: x, r1 and
r2. If δ = 1, i.e. if the goal is to find an affine SI-indicator, at every location `i of
the program, the algorithm sets f(`i, x, r1, r2) := ĉi,0+ ĉi,1 ·x+ ĉi,2 ·r1+ ĉi,3 ·r2.
Similarly, if the desired degree is δ = 2, the algorithm symbolically computes:

‡We assume an invariant is given as part of the input. Invariant generation is an
orthogonal and well-studied problem and can be automated using [17,12].

f(`i, x, r1, r2) := ĉi,0 + ĉi,1 · x+ ĉi,2 · r1 + ĉi,3 · r2 + ĉi,4 · x2 + ĉi,5 · x · r1 + ĉi,6 ·
x · r2 + ĉi,7 · r21 + ĉi,8 · r1 · r2 + ĉi,9 · r22. Note that every monomial of degree
at most 2 appears in this expression. The goal is to synthesize suitable real
values for each unknown coefficient ĉi,j such that f becomes an SI-indicator.
Throughout this section, we use the .̂ notation to denote an unknown coefficient
whose value will be synthesized by our algorithm.

– The algorithm creates an unknown variable ε̂ whose final value will serve as ε.
– Finally, at each location ` of C, the algorithm sets up a template for η(`) in the

exact same manner as the template for f(`). The goal is to synthesize values
for ε̂ and the ĉ variables in this template such that η becomes a valid ε̂-RSM
for Stateterm ∪ ¬SI with respect to I.

Step 2. Generating entailment constraints. In this step, the algorithm sym-
bolically computes the requirements of Definition 2, i.e. C1–C3, and their analogues
in Definition 3 using the templates generated in the previous step. Note that
all of these requirements are entailments between affine/polynomial inequalities
over program variables whose coefficients are unknown. In other words, they are
of the form ∀x A(x) ⇒ b(x) where A is a set of affine/polynomial inequalities
over program variables whose coefficients contain the unknown variables ĉ and ε̂
generated in the previous step and b is a single such inequality. For example, for
the program of Figure 1, the algorithm symbolically computes condition C1 at line
`1 as follows: ∀x I(`1,x) ⇒ f(`1,x) ≥ 0. Assuming that the given invariant is
I(`1,x) := (x ≤ 1) and an affine (degree 1) template was generated in the previous
step, the algorithm expands this to:

∀x 1− x ≥ 0⇒ ĉ1,0 + ĉ1,1 · x+ ĉ1,2 · r1 + ĉ1,3 · r2 ≥ 0. (5)

The algorithm generates similar entailment constraints for every location and every
requirement in Definitions 2 and 3.
Step 3. Quantifier elimination. At the end of the previous step, we have a system
of constraints of the form

∧
i

(
∀x Ai(x)⇒ bi(x)

)
. In this step, the algorithm sets

off to eliminate the universal quantification over x in every constraint. First,
consider the affine case. If Ai is a set of linear inequalities over program variables
and bi is one such linear inequality, then the algorithm attempts to write bi as
a linear combination with non-negative coefficients of the inequalities in Ai and
the trivial inequality 1 ≥ 0. For example, it rewrites (5) as λ̂1 · (1 − x) + λ̂2 =

ĉ1,0+ ĉ1,1 ·x+ ĉ1,2 · r1+ ĉ1,3 · r2 where λ̂i’s are new non-negative unknown variables
for which we need to synthesize non-negative real values. This inequality should
hold for all valuations of program variables. Thus, we can equate the corresponding
coefficients on both sides and obtain this equivalent system:

λ̂1 + λ̂2 = ĉ1,0 (the constant factor)
−λ̂1 = ĉ1,1 (coefficient of x)

0 = ĉ1,2 = ĉ1,3 (coefficients of r1 and r2)
(6)

This transformation is clearly sound, but it is also complete due to the well-known
Farkas’ lemma [18]. Now consider the polynomial case. Again, we write bi as
a combination of the polynomials in Ai. The only difference is that instead of
having non-negative real coefficients, we use sum-of-square polynomials as our

multiplicands. For example, suppose our constraint is

∀x g1(x) ≥ 0 ∧ g2(x) ≥ 0⇒ g3(x) > 0,

where the gi’s are polynomials with unknown coefficients. The algorithm writes

g3(x) = h0(x) + h1(x) · g1(x) + h2(x) · g2(x), (7)

where each hi is a sum-of-square polynomial of degree at mostM. The algorithm sets
up a template of degree M for each hi and adds well-known quadratic constraints
that enforce it to be a sum of squares. See [2, Page 22] for details. It then expands
(7) and equates the corresponding coefficients of the LHS and RHS as in the
linear case. The soundness of this transformation is trivial since each hi is a sum-
of-squares and hence always non-negative. Completeness follows from Putinar’s
Positivstellensatz [39]. Since the arguments for completeness of this method are
exactly the same as the method in [2], we refer the reader to [2] for more details
and an extension to entailments between strict polynomial inequalities.
Step 4. Quadratic programming. All of our constraints are converted to
Quadratic Programming (QP) over template variables, e.g. see (6). Our algo-
rithm passes this QP instance to an SMT solver or a numerical optimizer. If a
solution is found, it plugs in the values obtained for the ĉ and ε̂ variables back into
the template of Step 1 and outputs the resulting termination witness (f, η, ε).

We end this section by noting that our algorithm is sound and relatively
complete for synthesizing affine/polynomial quantitative termination certificates.

Theorem 5 (Soundness and Completeness in the Affine Case). Given an
affine pCFG C, an affine invariant I, and a non-termination upper-bound p ∈ [0, 1],
if C admits a quantitative termination certificate w = (f, η, ε) in which both f
and η are affine expressions at every location, then w corresponds to a solution
of the QP instance solved in Step 4 of the algorithm above. Conversely, every
such solution, when plugged back into the template of Step 1, leads to an affine
quantitative termination certificate showing that C terminates with probability at
least 1− p over every scheduler.

Theorem 6 (Soundness and Relative Completeness in the Polynomial
Case). Given a polynomial pCFG C, a polynomial invariant I which is a compact
subset of R|V | at every location `, and a non-termination upper-bound p ∈ [0, 1], if
C admits a quantitative termination certificate w = (f, η, ε) in which both f and η
are polynomial expressions of degree at most δ at every location, then there exists
an M ∈ N, for which w corresponds to a solution of the QP instance solved in Step
4 of the algorithm above. Conversely, every such solution, when plugged back into
the template of Step 1, leads to a polynomial quantitative termination certificate
of degree at most δ showing that C terminates with probability at least 1− p over
every scheduler.

Proof. Step 2 encodes the conditions of an SI-indicator (Definition 2) and RSM
(Definition 3). Theorem 4 shows that an SI-indicator together with an RSM is a
valid quantitative termination certificate. The transformation in Step 3 is sound
and complete as argued in [2, Theorems 4 and 10]§. The affine version relies on

§We need a more involved transformation for strict inequalities. See [2, Theorem 8].

Table 1: Summary of our experimental results on a subset of our benchmark set.
See Appendix J for benchmark details and for the results on all benchmarks.
Benchmark

(Appendix J)
Short Explanation p LBPT

1− p
Runtime

(s)
Figure 1 Our running example 0.01 0.99 2.38
Figure 7 Nested probabilistic and non-deterministic branches

leading to infinite loop with maximum probability 0.25
0.25 0.75 1.40

Figure 9 An a.s. terminating biased random walk with
uniformly distributed steps

0 1 0.73

Figure 10 A random walk that starts at x = 10 and takes a step
of Uniform(−2, 1) each time. Terminates if x < 0 and

loops forever as soon as x ≥ 100.

0.12 0.88 1.10

Figure 11 A 2-D random walk starting at (50, 50). In each
iteration, x is incremented, while y is increased by
Uniform(−1, 1). Terminates when x > 100. Loops

when y ≤ 0.

0.07 0.93 3.52

Figure 14 A 3-D random walk. In each iteration, each of x, y, z
are incremented with a higher probability than
decremented. Terminates when x+ y + z < 0.

0.999 0.001 3.22

Figure 15 An example with both probabilistic and
non-deterministic assignments

0.51 0.49 2.73

Figure 16 A variant of Figure 15 with unbounded
non-determinism in an assignment

0.51 0.49 2.70

Figure 17 A probabilistic branch between an a.s. terminating
loop and a loop with small termination probability

0.4 0.6 5.17

Figure 18 A skewed random walk with two barriers, only one of
which leads to program termination

0.51 0.49 5.26

Figure 19 Taken from [15] and conceptually similar to Figure 5 0.24 0.76 0.94
Figure 22 A more complicated and non-a.s.-terminating random

walk taken from [15]
0.1 0.9 1.15

Figure 23 A 2-D variant of Figure 22, also from [15] 0.08 0.92 4.01

Farkas’ lemma [18] and is complete with no additional constraints. The polynomial
version is based on Putinar’s Positivstellensatz [39] and is only complete for large
enough M , i.e. a high-enough degree for sum-of-square multiplicands. This is why
we call our algorithm relatively complete. In practice, small values of M are enough
to synthesize w and we use M = 2 in all of our experiments. ut

7 Experimental Results

Implementation. We implemented a prototype of our approach in Python and
used SymPy [34] for symbolic computations and the MathSAT5 SMT Solver [16]
for solving the final QP instances. We also applied basic optimizations, e.g. checking
the validity of each entailment and thus removing tautological constraints.
Machine and parameters. All results were obtained on an Intel Core i9-10885H
machine (8 cores, 2.4 GHz, 16 MB Cache) with 32 GB of RAM running Ubuntu
20.04. We always synthesized quadratic termination certificates and set δ =M = 2.

Benchmarks. We generated a variety of random walks with complicated behavior,
including nested combinations of probabilistic and non-deterministic branching and
loops. We also took a number of benchmarks from [15]. Due to space limitations,
in Table 1 we only present experimental results on a subset of our benchmark set,
together with short descriptions of these benchmarks. Complete evaluation as well
as details on all benchmarks are provided in Appendix J.
Results and discussion. Our experimental results are summarized in Table 1,
with complete results provided in Appendix J. In every case, our approach was able
to synthesize a certificate that the program terminates with probability at least
1− p under any scheduler. Moreover, our runtimes are consistently small and less
than 6 seconds per benchmark. Our approach was able to handle programs that are
beyond the reach of previous methods, including those with unbounded differences
and unbounded non-deterministic assignments to which approaches such as [15]
and [42] are not applicable, as was demonstrated in [42]. This adds experimental
confirmation to our theoretical power-of-completeness result at the end of Section 5,
which showed the wider applicability of our method. Finally, it is noteworthy that
the termination probability lower-bounds reported in Table 1 are not tight. There
are two reasons for this. First, while our theoretical approach is sound and complete,
our algorithm can only synthesize affine/polynomial certificates for quantitative
termination, and the best polynomial certificate of a certain degree might not
be tight. Second, we rely on an SMT-solver to solve our QP instances. The QP
instances often become harder as we decrease p, leading to the solver’s failure even
though the constraints are satisfiable.

8 Related Works
Supermartingale-based approaches. In addition to qualitative and quantita-
tive termination analyses, supermartingales were also used for the formal analysis
of other properties in probabilistic programs, such as, liveness and safety prop-
erties [10,4,15,44], cost analysis of probabilistic programs [37,46] and sensitivity
analysis [45]. While all these works demonstrate the effectiveness of supermartingale-
based techniques, below we present a more detailed comparison with other works
that consider automated computation of lower bounds on termination probability.
Comparison to [15]. The work of [15] introduces stochastic invariants and demon-
strates their effectiveness for computing lower bounds on termination probability.
However, their approach to computing stochastic invariants is based on repulsing
supermartingales (RepSMs), and is orthogonal to ours. RepSMs were shown to be
incomplete for computing stochastic invariants [42, Section 3]. Also, a RepSM is
required to have bounded differences, i.e. the absolute difference of its value is any
two successor states needs to be bounded from above by some positive constant.
Given that the algorithmic approach of [15] computes linear RepSMs, this implies
that the applicability of RepSMs is compromised in practice as well, and is mostly
suited to programs in which the quantity that behaves like a RepSM depends
only on variables with bounded increments and sampling instructions defined by
distributions of bounded support. Our approach does not impose such a restriction,
and is the first to provide completeness guarantees.
Comparison to [42]. The work of [42] introduces γ-scaled submartingales and
proves their effectiveness for computing lower bounds on termination probability.

Intuitively, for γ ∈ (0, 1), a state function f is a γ-scaled submartingale if it is a
bounded nonnegative function whose value in each non-terminal state decreases in
expected value at least by a factor of γ upon a one-step execution of the pCFG.
One may think of the second condition as a multiplicative decrease in expected
value. However, this condition is too strict and γ-scaled submartingales are not
complete for lower bounds on termination probability [42, Example 6.6].
Comparison to [7]. The work of [7] proposes a type system for functional prob-
abilistic programs that allows incrementally searching for type derivations and
accumulating a lower bound on termination probability. In the limit, it finds arbi-
trarily tight lower bounds on termination probability, however it does not provide
any completeness or precision guarantees in finite time.
Other approaches. Logical calculi for reasoning about properties of probabilistic
programs (including termination) were studied in [30,20,19] and extended to pro-
grams with non-determinism in [32,28,38,29]. These works consider proof systems
for probabilistic programs based on the weakest pre-expectation calculus. The ex-
pressiveness of this calculus allows reasoning about very complex programs, but the
proofs typically require human input. In contrast, we aim for a fully automated ap-
proach for probabilistic programs with polynomial arithmetic. Connections between
martingales and the weakest pre-expectation calculus were studied in [25]. A sound
approach for proving almost-sure termination based on abstract interpretation is
presented in [35].
Cores in MDPs. Cores are a conceptually equivalent notion to stochastic invari-
ants introduced in [31] for finite MDPs. [31] presents a sampling-based algorithm
for their computation.

9 Conclusion

We study the quantitative probabilistic termination problem in probabilistic pro-
grams with non-determinism and propose the first relatively complete algorithm
for proving termination with at least a given threshold probability. Our approach
is based on a sound and complete characterization of stochastic invariants via the
novel notion of stochastic invariant indicators, which allows for an effective and
relatively complete algorithm for their computation. We then show that stochastic
invariants are sound and complete certificates for proving that a program terminates
with at least a given threshold probability. Hence, by combining our relatively
complete algorithm for stochastic invariant computation with the existing relatively
complete algorithm for computing ranking supermartingales, we present the first
relatively complete algorithm for probabilistic termination. We have implemented
a prototype of our algorithm and demonstrate its effectiveness on a number of
probabilistic programs collected from the literature.

Acknowledgements

This research was partially supported by the ERC CoG 863818 (ForM-SMArt),
the HKUST-Kaisa Joint Research Institute Project Grant HKJRI3A-055, the
HKUST Startup Grant R9272 and the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie Grant Agreement
No. 665385.

References

1. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. In: POPL (2018).
https://doi.org/10.1145/3158122

2. Asadi, A., Chatterjee, K., Fu, H., Goharshady, A.K., Mahdavi, M.:
Polynomial reachability witnesses via Stellensätze. In: PLDI (2021).
https://doi.org/10.1145/3453483.3454076

3. Ash, R., Doléans-Dade, C.: Probability and Measure Theory. Academic Press (2000)
4. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic

invariants via Doob’s decomposition. In: CAV (2016), http://dx.doi.org/10.1007/
978-3-319-41528-4_3

5. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Proving differential
privacy via probabilistic couplings. In: LICS (2016), http://doi.acm.org/10.1145/
2933575.2934554

6. Bertsekas, D.P., Shreve, S.: Stochastic optimal control: the discrete-time case (2004)
7. Beutner, R., Ong, L.: On probabilistic termination of functional programs with

continuous distributions. In: PLDI (2021). https://doi.org/10.1145/3453483.3454111
8. Bingham, E., et al.: Pyro: Deep universal probabilistic programming. J. Mach. Learn.

Res. (2019), http://jmlr.org/papers/v20/18-403.html
9. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martingales.

In: CAV (2013). https://doi.org/10.1007/978-3-642-39799-8_34
10. Chakarov, A., Voronin, Y.L., Sankaranarayanan, S.: Deductive Proofs of

Almost Sure Persistence and Recurrence Properties. In: TACAS (2016).
https://doi.org/10.1007/978-3-662-49674-9_15

11. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: CAV (2016). https://doi.org/10.1007/978-
3-319-41528-4_1

12. Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial in-
variant generation for non-deterministic recursive programs. In: PLDI (2020).
https://doi.org/10.1145/3385412.3385969

13. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
TOPLAS 40(2), 7:1–7:45 (2018). https://doi.org/10.1145/3174800

14. Chatterjee, K., Goharshady, E.K., Novotný, P., Zárevúcky, J., Žikelić, Ð.:
On lexicographic proof rules for probabilistic termination. In: FM (2021).
https://doi.org/10.1007/978-3-030-90870-6_33

15. Chatterjee, K., Novotný, P., Žikelić, Ð.: Stochastic invariants for probabilistic termi-
nation. In: POPL (2017). https://doi.org/10.1145/3009837.3009873

16. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver.
In: TACAS (2013). https://doi.org/10.1007/978-3-642-36742-7_7

17. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using non-
linear constraint solving. In: CAV (2003). https://doi.org/10.1007/978-3-540-45069-
6_39

18. Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und angewandte
Mathematik 1902(124), 1–27 (1902)

19. Feldman, Y.A.: A decidable propositional dynamic logic with explicit probabilities.
Information and Control 63(1), 11–38 (1984)

20. Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. In: STOC (1982).
https://doi.org/10.1145/800070.802191

21. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic NetKAT.
In: ESOP (2016). https://doi.org/10.1007/978-3-662-49498-1_12

22. Fu, H., Chatterjee, K.: Termination of nondeterministic probabilistic programs. In:
VMCAI (2019). https://doi.org/10.1007/978-3-030-11245-5_22

https://doi.org/10.1145/3158122
https://doi.org/10.1145/3453483.3454076
http://dx.doi.org/10.1007/978-3-319-41528-4_3
http://dx.doi.org/10.1007/978-3-319-41528-4_3
http://doi.acm.org/10.1145/2933575.2934554
http://doi.acm.org/10.1145/2933575.2934554
https://doi.org/10.1145/3453483.3454111
http://jmlr.org/papers/v20/18-403.html
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3174800
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1145/800070.802191
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-030-11245-5_22

23. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nat.
521(7553), 452–459 (2015). https://doi.org/10.1038/nature14541

24. Goodman, N.D., et al.: Church: a language for generative models. In: UAI (2008)
25. Hark, M., Kaminski, B.L., Giesl, J., Katoen, J.: Aiming low is harder: induc-

tion for lower bounds in probabilistic program verification. In: POPL (2020).
https://doi.org/10.1145/3371105

26. Huang, M., Fu, H., Chatterjee, K.: New approaches for almost-sure termination of
probabilistic programs. In: Ryu, S. (ed.) APLAS (2018). https://doi.org/10.1007/978-
3-030-02768-1_11

27. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification
for almost-sure termination of probabilistic programs. In: OOPSLA (2019).
https://doi.org/10.1145/3360555

28. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition reasoning
for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–30:68 (2018).
https://doi.org/10.1145/3208102

29. Katoen, J., McIver, A., Meinicke, L., Morgan, C.C.: Linear invariant generation for
probabilistic programs: Automated support for proof-based methods. In: SAS (2010).
https://doi.org/10.1007/978-3-642-15769-1_24

30. Kozen, D.: Semantics of Probabilistic Programs. Journal of Computer and System
Sciences 22(3), 328–350 (1981). https://doi.org/10.1016/0022-0000(81)90036-2

31. Křetínský, J., Meggendorfer, T.: Of Cores: A Partial-Exploration Framework
for Markov Decision Processes. LMCS (2020). https://doi.org/10.23638/LMCS-
16(4:3)2020

32. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems.
Monographs in Computer Science, Springer (2005). https://doi.org/10.1007/b138392

33. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-sure
termination. In: POPL (2018). https://doi.org/10.1145/3158121

34. Meurer, A., et al.: SymPy: symbolic computing in python. PeerJ Comput. Sci. (2017).
https://doi.org/10.7717/peerj-cs.103

35. Monniaux, D.: An Abstract Analysis of the Probabilistic Termination of Programs.
In: SAS (2001). https://doi.org/10.1007/3-540-47764-0_7

36. Moosbrugger, M., Bartocci, E., Katoen, J., Kovács, L.: Automated ter-
mination analysis of polynomial probabilistic programs. In: ESOP (2021).
https://doi.org/10.1007/978-3-030-72019-3_18

37. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource analysis
for probabilistic programs. In: PLDI (2018). https://doi.org/10.1145/3192366.3192394

38. Olmedo, F., Kaminski, B.L., Katoen, J.P., Matheja, C.: Reasoning about recursive
probabilistic programs. In: LICS (2016). https://doi.org/10.1145/2933575.2935317

39. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana University
Mathematics Journal 42(3), 969–984 (1993)

40. Roy, D., Mansinghka, V., Goodman, N., Tenenbaum, J.: A stochastic programming
perspective on nonparametric bayes. In: ICML (2008)

41. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartingales
for reachability in probabilistic programs. In: ATVA. pp. 476–493 (2018)

42. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartingales
for reachability in randomized programs. ACM Trans. Program. Lang. Syst. 43(2),
5:1–5:46 (2021). https://doi.org/10.1145/3450967

43. Thrun, S.: Probabilistic algorithms in robotics. AI Mag. 21(4), 93–109 (2000).
https://doi.org/10.1609/aimag.v21i4.1534

44. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative
analysis of assertion violations in probabilistic programs. In: PLDI (2021).
https://doi.org/10.1145/3453483.3454102

https://doi.org/10.1038/nature14541
https://doi.org/10.1145/3371105
https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1145/3360555
https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.23638/LMCS-16(4:3)2020
https://doi.org/10.23638/LMCS-16(4:3)2020
https://doi.org/10.1007/b138392
https://doi.org/10.1145/3158121
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1145/3450967
https://doi.org/10.1609/aimag.v21i4.1534
https://doi.org/10.1145/3453483.3454102

45. Wang, P., Fu, H., Chatterjee, K., Deng, Y., Xu, M.: Proving expected sensitivity
of probabilistic programs with randomized variable-dependent termination time. In:
POPL (2020). https://doi.org/10.1145/3371093

46. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.:
Cost analysis of nondeterministic probabilistic programs. In: PLDI (2019).
https://doi.org/10.1145/3314221.3314581

47. Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks,
Cambridge University Press, Cambridge, UK (1991)

https://doi.org/10.1145/3371093
https://doi.org/10.1145/3314221.3314581

Appendix

A Detailed Syntax

The syntax of our probabilistic programs is defined by the grammar in Figure 3.

〈stmt〉 ::= 〈assgn〉 | ’skip’ | 〈stmt〉 ’;’ 〈stmt〉
| ’if ’ 〈bexpr〉 ’then’ 〈stmt〉 ’else’ 〈stmt〉 ’fi’
| ’while’ 〈predicate〉 ’do’ 〈stmt〉 ’od’

〈assgn〉 ::= 〈pvar〉 ’:=’ 〈expr〉 | 〈pvar〉 ’:=ndet(〈dom〉)’
| 〈pvar〉 ’:= sample(〈dist〉)’

〈expr〉 ::= 〈constant〉 | 〈pvar〉 | 〈expr〉 ’·’ 〈expr〉
| 〈expr〉 ’+’ 〈expr〉 | 〈expr〉 ’−’ 〈expr〉
| 〈expr〉 ’/’ 〈expr〉 | f(〈expr〉)

〈dom〉 ::= ’Real’ | ’Real[〈constant〉, 〈constant〉]’
| ’Real(〈constant〉, 〈constant〉]’
| ’Real[〈constant〉, 〈constant〉)’
| ’Real(〈constant〉, 〈constant〉)’

〈bexpr〉 ::= 〈predicate〉 | ? | ’prob(p)’
〈predicate〉 ::= 〈literal〉 | ¬〈literal〉

| 〈predicate〉 ’and’ 〈predicate〉
| 〈predicate〉 ’or’ 〈predicate〉

〈literal〉 ::= 〈expr〉 ’./’ 〈expr〉
’./’ ::= ’≥’ | ’>’ | ’<’ | ’≤’ | ’=’

Fig. 3: Detailed Syntax of Our Probabilistic Programs.

B pCFG for the Program in Figure 1

The pCFG for our running example in Figure 1 is presented in Figure 4. Locations
in the pCFG are denoted by circles, and arrows denote transitions between locations.
Whenever the transition guard is not trivially true, it is given by a logical formula
within the box along the transition. For each transition that goes out of an
assignment location and has non-bottom update element, the variable update is
denoted by an expression along the transition.

C Detailed Semantics

A pCFG C together with a scheduler σ define a stochastic process taking values
in the set of states of C, whose trajectories correspond to runs in C. The process

`init `out

`1

`2

`3

`4

`5

`6

x < 0

x ≥ 0

r1:=Uniform([-1,0.5])

x:=x+r1

x ≥ 100

r1:=Uniform([-1,2])

x:=x+r2

x < 100

Fig. 4: pCFG of our running example in Figure 1.

evolves as follows: we start in the initial state (`init ,xinit) and inductively extended
the path. Suppose that, at time step i, the path produced so far is ρi and its last
state is (`i,xi). Depending on the type of the location `i, the next state (`i+1,xi+1)
is chosen as follows:
– If `i ∈ LC , let τ = (`i, `

′) be the unique transition enabled at (`i,xi). Then
(`i+1,xi+1) = (`′,xi);

– If `i ∈ LP , sample τ = (`i, `
′) from the set of all transitions outgoing from `i

according to the distribution defined by Pr at `i. Then (`i+1,xi+1) = (`′,xi);
– If `i ∈ LN , sample τ = (`i, `

′) from the set of all transitions outgoing from `i
according to the distribution σN (ρi). Then (`i+1,xi+1) = (`′,xi);

– If `i ∈ LA, let τ = (`i, `
′) be the unique transition outgoing from `i and let

Up(τ) = (j, u). Then:
• If u = ⊥, then (`i+1,xi+1) = (`′,xi);
• If u : R|V | → R is a Borel-measurable expression, then (`i+1,xi+1) =
(`′,xi[xj ← u(xi)]);
• If u = d is a probability distribution, then sample X according to u and
(`i+1,xi+1) = (`′,xi[xj ← X]);
• If u = [a, b] is a real interval, then sample X according to σA(πi) and

(`i+1,xi+1) = (`′,xi[xj ← X]).
Formally, a pCFG C and a scheduler σ together determine a probability space

(RunC ,FC ,Pσ(`init ,xinit)
) over the set of all runs in C, and a stochastic process Cσ =

{Cσ
i }∞i=0 in this space such that for each run ρ ∈ RunC we have that Cσ

i (ρ) is the
i-th configuration along ρ.

The sigma-algebra FC is the smallest (with respect to set inclusion) sigma-
algebra under which all the functions Cσ

i , for all i ≥ 0, are FC-measurable, i.e. for
each Cσ

i and each Borel-measurable set B ∈ B(R|V |) it holds that {ρ | Cσ
i (ρ) =

(`,x) with x ∈ B} ∈ FC . The formal construction of Pσ(`init ,xinit)
proceeds via the

standard cylinder construction [3, Theorem 2.7.2]. We denote by Eσ(`init ,xinit)
the

expectation operator in the probability space (RunC ,FC ,Pσ(`init ,xinit)
).

D Definitions from Fixed Point Theory

Some results in this work assume familiarity with fixed point theory. To that end,
we provide a brief overview of relevant definitions.
Partial order. If L is a set and v is a binary relation on L, we say that v is a
partial order if

– x v x for each x ∈ L,
– x v y ∧ y v x⇒ x = y for each x, y ∈ L, and
– x v y ∧ y v z ⇒ x v z for each x, y, z ∈ L.

Suprema and infima. Given a partial order v over a set L and given a subset
K ⊆ L, we say that u ∈ L is an upper bound of K if k v u for all k ∈ K. Similarly,
we say that l ∈ L is a lower bound for K if l v k for all k ∈ K. The supremum of
K, denoted by tK, is an upper bound of K which, for any other upper bound u
of K, satisfies tK v u. Similarly, the infimum uK is a lower bound of K which,
for any other lower bound l of K, satisfies l v uK. In general, suprema and infima
of subsets of L need not exist.
Lattice. A partial order (L,v) is called a lattice if L is non-empty and for every
pair of elements x, y ∈ L the supremum x t y and the infimum x u y of {x, y} ⊆ L
exist. A lattice is said to be ω-complete if for any ascending chain x1 v x2 v . . . in
L there exists the supremum t∞i=1xi.
Monotone functions. Given a partial order (L,v), a function f : L → L is called
monotone if for every x1 v x2 in L, we have f(k1) v f(k2).
ω-continuity. Given an ω-complete lattice (L,v), a function f : L → L is said
to be ω-continuous if for every ascending chain x1 v x2 v . . . in L we have
f(
⊔
{xn}∞i=0) =

⊔
{f(xi)}∞i=0.

Fixed Points. Given an ω-complete lattice (L,v) and a function f : L → L, an
element x ∈ L is called a fixed point if f(x) = x. It is a pre-fixed point if f(x) v x
and a post-fixed point if f(x) w x. The least fixed point of f , denoted by lfpf , is
the fixed point that is smaller than any other fixed point under v. Analogously,
the greatest fixed point of f , denoted by gfpf , is the fixed point that is larger than
any other fixed point.

E Proof of Soundness and Completeness of SI-indicators

We now proceed to prove the soundness and completeness of the stochastic in-
variant characterization in Theorem 1. Our proof builds on the existing results
on reachability analysis in probabilistic programs from [42]. To that end, we first
recall the result of [42] which shows that, if we are provided with a target set of
states, then the reachability probabilities for that target set can be characterized
as the least fixed point of a suitably constructed operator that simulates one-step
execution of the program’s pCFG. In the sequel, we assume basic familiarity with
fixed point theory. For this exposition to be self-contained, we have included an
overview of the required notions from fixed point theory in Appendix D.
Lattice of state functions. We consider the lattice of nonnegative upper semi-
analytic state functions in C, that map states in the invariant I to nonnegative
(possibly infinite) values:

L = {f upper semianalytic | f : StateIC → [0,∞]}.

The class of upper semianalytic state functions extends Borel-measurable state
functions (that we considered so far), and this is a technical condition needed for
the next-time operator defined below to be closed in this lattice [42]. This technical
condition does not affect any of our results and hence we do not define this notion
formally but refer the reader to [42,6].

We define the partial order v on L in an intuitive manner. For a pair of state
functions f , f ′ in L, we write f v f ′ if f(`,x) ≤ f ′(`,x) for each state (`,x) in
I. With all operations defined state-wise, one easily sees that (L,v) is a lattice
with f ∧ f ′ = min{f, f ′} and f ∨ f ′ = max{f, f ′}. Furthermore, it is ω-complete,
meaning that each ascending chain f1 v f2 v . . . has a supremum given by
f = sup{f1, f2, . . . }. The bottom and the top elements are defined via ⊥(`,x) = 0
and >(`,x) =∞, respectively, for each state (`,x) in I.
Next-time operator. Intuitively, the next-time operator X : L → L simulates
a one-step execution of C and maps f to a state function equal to its maximal
expected value with respect to all schedulers upon this one-step execution. To
formally define it, let f ∈ L. Then, for any state (`,x) in I, depending on the type
of the location ` in C we define X(f)(`,x) as follows:
– If ` ∈ LC , let τ = (`, `′) be the transition with x |= G(τ). Then X(f)(`,x) =
f(`′,x).

– If ` ∈ LP , then X(f)(`,x) =
∑
τ=(`,`′)∈ 7→ Pr(τ) · f(`′,x).

– If ` ∈ LN , then X(f)(`,x) = maxτ=(`,`′)∈ 7→ f(`′,x).
– If ` ∈ LA with τ = (`, `′) the unique outgoing transition from ` and Up(τ) =
(j, u), then:
• If u = ⊥, then X(f)(`,x) = f(`′,x).
• If u : R|V | → R, then X(f)(`,x) = f(`′,x[xj ← u(x)]).
• If u = d, then X(f)(`,x) = EX∼d[f(`′,x[xj ← X])].
• If u = [a, b], then X(f)(`,x) = supX∈[a,b]{f(`′,x[xj ← X])}.

The fact that for an upper semianalytic state function f ∈ L we have X(f) ∈ L
was proved in [42].
Characterization of reachability probabilities. Let T be a predicate function

in C. Then define the operator XT : L → L in the lattice (L,v) as follows:

XT (f)(`,x) =

{
X(f)(`,x), if x 6|= T (`)

1, otherwise,
(8)

for each f ∈ L and x |= I(`). Thus, XT behaves analogously as X and simulates a
one-step execution of C in states not contained in T , but evaluates to 1 for states
in T . The following proposition states that reachability probabilities for the target
set T can be characterized in terms of the least fixed point of the operator XT , and
that pre-fixed points of XT can be used to bound the reachability probabilities from
above (Proposition 4.2 and Corollary 4.7 in [42], respectively). Recall, a pre-fixed
point of XT is a state function f ∈ L that satisfies XT (f) v f .

Proposition 1 ([42]). The operator XT : L → L is ω-continuous, and we have
supσ Pσ(`,x)[Reach(T)] = lfpXT (`,x) for each state (`,x) in I. For any state function
f ∈ L which is a pre-fixed point of XT and for each state (`,x) in I, we have
supσ Pσ(`,x)[Reach(T)] ≤ f(`,x).

We are now ready to prove the claim of Theorem 1.

Proof (Proof of Theorem 1). Suppose first that we are given an invariant I in C
and an SI-indicator (fSI , p) with respect to I. We want to show that, if we define a
predicate function SI via SI (`) = (x |= I(`) ∧ fSI (`,x) < 1) for each ` ∈ L, then
(SI , p) is a stochastic invariant in C. Consider the operator X¬SI : L → L in the
lattice (L,v), so that the target set of states is the complement of SI . Observe
that fSI ∈ L. Indeed, fSI (`) is Borel-measurable for each ` ∈ L hence also upper
semianalytic, and the fact that it is nonnegative at each state in I follows from
(C1) in Definition 2. We now claim that fSI is a pre-fixed point of X¬SI in L:

– If (`,x) is a state with x ∈ I(`) ∩ SI (`), then we have X¬SI (fSI)(`,x) =
X(fSI)(`,x) ≤ fSI (`,x), where the first equation follows from eq. (8), and the
second from the condition (C2) on non-increasing expected value in Definition 2.

– If (`,x) is a state with x ∈ I(`) ∩ (¬SI (`)), then by definition of SI we have
fSI (`,x) ≥ 1. But X¬SI (fSI)(`,x) = 1 by eq. (8), and so X¬SI (fSI)(`,x) ≤
fSI (`,x).

Hence fSI is a pre-fixed point of X¬SI and by Proposition 1 it follows that
supσ Pσ(`,x)[Reach(¬SI)] ≤ fSI (`init ,xinit). But from (C3) in Definition 2 of SI-
indicators we know that fSI (`init ,xinit) ≤ p, so supσ Pσ(`,x)[Reach(¬SI)] ≤ p. This
concludes the proof that (SI , p) is a stochastic invariant in C.

Now we prove the second part of the theorem. Suppose that (SI , p) is a stochastic
invariant in C. We need to show that there exist an invariant ISI and a state function
fSI such that (fSI , p) is an SI-indicator with respect to ISI and for each ` ∈ L
we have SI (`) ≡ (x |= ISI (`) ∧ fSI (`,x) < 1). We prove this by giving an explicit
construction for ISI and fSI . Define the invariant ISI to be the trivial true invariant,
i.e. ISI (`) = true for each ` ∈ L. As for fSI , for each state (`,x) in I define

fSI (`,x) = sup
σ

Pσ(`,x)[Reach(¬SI)].

First, we need to show that fSI (`) is Borel-measurable for each ` ∈ L so that

fSI is a state function. We defer this technical proof to Appendix G. Next, by
Proposition 1, we know that fSI is the least fixed point of the operator X¬SI .
This implies that (fSI , p) satisfies both conditions (C1) (Nonnegativity) and (C2)
(Non-increasing expected value) in Definition 2 with respect to the trivial invariant
ISI of all states in C. Finally, since (SI , p) is a stochastic invariant in C, we have
fSI (`init ,xinit) = supσ Pσ(`,xinit)

[Reach(¬SI)] ≤ p, so (fSI , p) satisfies the Initial
condition (C3) in Definition 2. Hence, (fSI , p) is an SI-indicator with respect
to ISI . The fact that SI (`) ⊇ (x |= ISI (`) ∧ fSI (`,x) < 1) follows since 1 >
fSI (`,x) = supσ Pσ(`,x)[Reach(¬SI)] implies that (`,x) cannot be contained in ¬SI
so x |= SI (`).

F Definitions from Probability Theory

Some of our proofs rely on additional notions from probability theory. Hence, the
following few paragraphs can be viewed as a continuation of our mathematical
preliminaries.

Conditional expectation. Let X be a random variable in a probability space
(Ω,F ,P), and let F ′ ⊆ F be a sub-σ-algebra of F . A conditional expectation of X
given F ′ is any F ′-measurable random variable Y such that E[X · IA] = E[Y · IA]
for any A ∈ F ′. Here, IA : Ω → {0, 1} is the indicator function of A defined via
IA(ω) = 1 if ω ∈ A, and IA(ω) = 0 otherwise. It is known [47] that a conditional
expectation of X given F ′ exists if either
1. X is integrable, i.e. E[X] <∞, or
2. X is nonnegative, i.e. X(ω) ≥ 0 for any ω ∈ Ω,
though these two conditions are not necessary for the existence of the conditional
expectation. Furthermore, whenever a conditional expectation exists it is almost-
surely unique, meaning that for any two F ′-measurable random variables Y and
Y ′ that satisfy the above conditions, we have that P[Y = Y ′] = 1. Thus, we may
pick a single conditional expectation and denote it by E[X | F ′].

Stopping time. A filtration in a probability space (Ω,F ,P) is a sequence (Fi)∞i=0

of sub-σ-algebras of F which is increasing under set inclusion, so that Fi ⊆ Fi+1

for each i ∈ N0. A stopping time with respect to the filtration (Fi)∞i=0 is a random
variable T : Ω → N0 ∪ {∞} such that {ω ∈ Ω | T (ω) ≤ i} ∈ Fi for each i ∈ N0.
Intuitively, a stopping time describes at which time step should a process be
stopped, and the condition {ω ∈ Ω | T (ω) ≤ i} ∈ Fi says that the decision to stop
at time i is based solely on the information available up to time i.

Canonical filtration and termination time. In the probability space (ΩC ,FC ,Pσ)
defined by the pCFG C and a fixed scheduler σ, we work with the canonical filtration
(Ri)∞i=0. For each i ∈ N0, the sub-sigma-algebra Ri of FC contains all sets A ∈ FC of
runs in Ω whose finite path prefix of length i satisfies some property. An important
example of a stopping time with respect to (Ri)∞i=0 in (ΩC ,FC ,Pσ) is the termina-
tion time TimeTerm, which is the random variable TimeTerm : ΩC → N0 ∪ {∞}
that returns the first point in time when a run in C hits the terminal location `out .
Then the program terminates a.s. if and only if infσ Pσ[TimeTerm <∞] = 1.

G Measurability Argument in the Proof of Theorem 1

Let C = (L, V, `init ,xinit , 7→, G,Pr ,Up) be a pCFG. Let T be a predicate function
defining a target set of states in C, and ε > 0. We say that a scheduler σ is ε-optimal
for the reachability objective T , if

Pσ(`,x)
[
Reach(T)

]
≥ sup

σ′
Pσ
′

(`,x)

[
Reach(T)

]
− ε

for any state (`,x) ∈ StateC .
It was shown in [41, Appendix C] that a pCFG can be translated to an equivalent

infinite horizon stochastic optimal control model [6]. In infinite horizon stochastic
optimal control models, a cost is incurred in each state, and it is known that an
ε-optimal scheduler for the objective to maximize the discounted cost exists [6,
Proposition 9.20]. The work [41, Appendix C] then shows that, once a pCFG is
translated into an infinite horizon stochastic optimal control model, costs can be
chosen in such a way that the total discounted cost with the discount factor α = 1
is equal to the supremum reachability probability over all measurable schedulers
for any given Borel-measurable target set. Hence, for every ε > 0 and a predicate
function T defining target set of states, there exits an ε-optimal scheduler for T
(recall, in Section 3 we assume that predicate functions are defined in terms of
Borel-measurable expressions).

To prove that supσ Pσ(`,x)[Reach(¬SI)] is a Borel-measurable state function, for
each n ∈ N let σn be a 1

n -optimal scheduler for the target set of states defined by
¬SI . We then have

sup
σ

Pσ(`,x)
[
Reach(¬SI)

]
= sup
n∈N

Pσn

(`,x)

[
Reach(¬SI)

]
.

Thus, it suffices to prove that each Pσn

(`,x)[Reach(¬SI)] is a Borel-measurable state
function, since a supremum of countably many Borel-measurable functions is Borel-
measurable.

Fix n ∈ N. To prove that Pσn

(`,x)[Reach(¬SI)] is a Borel-measurable state function,
observe that

Pσn

(`,x)

[
Reach(¬SI)

]
= sup
m∈N

Pσn

(`,x)

[
Reach≤m(¬SI)

]
,

where Reach≤m(¬SI) denotes the set of all runs in C whose finite prefix of length
at most m reaches a state in ¬SI . The last equality follows by first observing
that the sequence of indicator function I(Reach≤m(¬SI)) → I(Reach(¬SI)) con-
verges pointwise as m → ∞ and is a pointwise increasing sequence, and then
applying the Monotone Convergence Theorem [47]. Again, since a countable supre-
mum of Borel-measurable functions is Borel-measurable, it suffices to show that
Pσn

(`,x)[Reach
≤m(¬SI)] defines a Borel-measurable state function for each n,m ∈ N.

But for fixed n,m ∈ N, this set can be defined inductively in terms of finitely
many expected value operators, due to finiteness of m (note, scheduler σn is fixed,
so we need not take a supremum). Hence a simple induction on m shows that
Pσn

(`,x)[Reach
≤m(¬SI)] defines a Borel-measurable state function for each n,m ∈ N,

which concludes the proof.

H Proof of Completeness in Theorem 2

In this section, we prove the completeness part of the claim in Theorem 2. Suppose
that p ∈ [0, 1] and that C is a pCFG that terminates with probability at least 1− p.
We need to prove that there exists a stochastic invariant (SI , p) in C, such that a
run in C with respect to every scheduler almost-surely reaches either some terminal
state or a state in ¬SI .

If p = 1, then letting SI (`) = R|V | for each location ` in C and V the set
of variables in C trivially satisfies the theorem claim. Otherwise, let n0 ∈ N be
the smallest natural number such that p + 1

n0
< 1. To show that there exists a

stochastic invariant (SI , p) with the desired property, we construct for each n ≥ n0
a stochastic invariant (SI n, p +

1
n) such that a run in C with respect to every

scheduler almost-surely reaches either some terminal state or a state in ¬SI n. We
then show that, by taking all of the constructed stochastic invariants and defining
SI (`) := ∩∞n=n0

SI n(`) for each location ` in C, the tuple (SI , p) defines a stochastic
invariant such that a run in C with respect to every scheduler almost-surely reaches
either some terminal state or a state in ¬SI , as desired. We will explain in the
construction and proof of desired properties for (SI n, p+ 1

n) why we need to impose
that n ≥ n0.

Construction of (SI n, p + 1
n). Let StateC denote the set of all states in C. For

every state (`,x) ∈ StateC , we define

r(`,x) = inf
σ

Pσ(`,x)
[
Term

]
to denote the infimum termination probability over all schedulers in C when the
initial state is (`,x). The state function r is Borel-measurable, and the proof
proceeds analogously as in Appendix G. The only difference in the proof is that
we consider ε-optimal schedulers for the infimum reachability probability over all
measurable schedulers for a given Borel-measurable target set, and their existence
was also shown in [41, Appendix C].

Now, fix n ≥ n0 and define αn ∈ (0, 1) via the equality p+ 1
n = p

1−αn
. Define

SI n = {(`,x) ∈ StateC | r(s) > αn}. We show that (SI n, p +
1
n) is a stochastic

invariant such that a run in C with respect to every scheduler almost-surely reaches
either some terminal state or a state in ¬SI n. Our proof follows from Claim 1,
which shows that (SI n, p+ 1

n) is a stochastic invariant, and Claim 2, which shows
that a run in C with respect to every scheduler almost-surely reaches either some
terminal state or a state in ¬SI n.
Claim 1. (SI n, p+ 1

n) is a stochastic invariant in C.
Proof of Claim 1. By theorem assumption, the program terminates with probability
at least 1− p, thus we have r(`init ,xinit) ≥ 1− p. On the other hand, by our choice
of n0 and the assumption that n ≥ n0, we have p

1−αn
= p+ 1

n ≤ p+
1
n0
< 1 and so

1− p > αn. Combining the two inequalities, we conclude that r(`init ,xinit) > αn
and the initial state is contained SI n. Note that this is the part of the proof
(ensuring that SI n contains the initial state) in which it is essential to have n ≥ n0.

We are left to show that SI is left with probability at most p. Let t =
supσ Pσ[Reach(¬SI n)] be the supremum probability of reaching ¬SI n over all
schedulers in C. In order to show that (SI n, p + 1

n) is a stochastic invariant, we

need to prove that t ≤ p+ 1
n . We prove this by contradiction.

Suppose, on the contrary, that t > p+ 1
n . Then there exits a scheduler σ¬SIn for

which Pσ¬SIn [Reach(¬SI)] > p+ 1
n . Consider a scheduler σ′¬SIn

that follows σ¬SIn

until a state in ¬SI n is reached, upon which it starts following a scheduler that
minimizes the probability of termination. By the definition of SI n and the choice
of the scheduler σ′¬SIn

, it then follows that, with respect to the scheduler σ′¬SIn
, C

does not terminate with probability at least Pσ¬SIn [Reach(¬SI n)] · (1− αn). On
the other hand, it is a theorem assumption that C terminates with probability
at least 1 − p with respect to every scheduler, and hence does not terminate
with probability at most p with respect to every scheduler. Hence, we have that
Pσ¬SIn [Reach(¬SI n)] · (1− αn) ≤ p, and so Pσ¬SI [Reach(¬SI)] ≤ p

1−αn
= p+ 1

n by
our choice of αn. This leads to contradiction, and Claim 1 follows.
Claim 2. infσ Pσ[Term ∪ Reach(¬SI n)] = 1.
Proof of Claim 2. Our proof of Claim 2 assumes familiarity with the notions of
conditional expectation, filtration and stopping time from probability theory, as
well as the notion of canonical filtration in the probability space induced by a
probabilistic program. An overview of all the required notions is presented in
Appendix F.

Fix a scheduler σ. In order to prove Claim 2, we need to show that Pσ[Term ∪
Reach(¬SI n)] = 1. Our proof proceeds in several steps.

Step 1: Definition of k∗σ. Define a state function k∗σ via

k∗σ(`,x) = min
k∈N0

{
Pσ(`,x)[termination in at most k steps] > αn

}
for every (`,x) ∈ SI n, and k∗σ(`,x) = 0 otherwise.

In order for this to be a state function, we need to show that k∗σ(`,x) is indeed
finite in each state in SI n, and that the resulting function is measurable.

To prove finiteness, let (`,x) ∈ SI n. By definition of SI n, we know that
r(`,x) > αn. Hence,

αn < r(`,x) = inf
σ′

Pσ
′

(`,x)

[
Term

]
≤ Pσ(`,x)

[
Term

]
=

∞∑
k=0

Pσ(`,x)
[
termination in exactly k steps

]
= sup
k∈N0

Pσ(`,x)
[
termination in at most k steps

]
.

Hence, Pσ(`,x)[termination in at most k steps] > αn, holds for a sufficiently large k
and so k∗σ(`,x) is finite.

To prove that k∗σ is measurable observe that, for each (`,x), we have

k∗σ(`,x) = min
k∈N0

{
P≤k,σ[terminate ¬SI n] > αn

}
· I(`,x)∈SIn

with P≤k,σ[·] being the operator defined as the probability of reaching some target
set of states in at most k steps. As the measurability of this operator was proved
in [42], the minimum is taken over a countable set and the indicator function is

measurable, the measurability of k∗σ follows.

Step 2: A sequence of stopping times (Ti)∞i=0. We now inductively define a sequence
of stopping times (Ti)

∞
i=0 with respect to the canonical filtration (Ri)∞i=0 in the

probability space (RunC ,FC ,Pσ) as follows:

– Set T0(ρ) = 0 for each ρ ∈ RunC .
– For each i ≥ 1, define Ti for each ρ ∈ RunC via

Ti(ρ) =

Ti−1(ρ) + k∗(ρTi−1(ρ), σ), if ρ does not leave SI

or terminate in the first
Ti−1(ρ) + k∗(ρTi−1(ρ), σ) steps,

Ti−1(ρ), otherwise

where we use ρTi−1(ρ) to denote the Ti−1(ρ)-th state along ρ. Intuitively, Ti(ρ)
denotes the sum of the lengths of the first i finite paths of length k∗((`,x), σ),
unless the program run ρ leaves SI n or terminates.

The measurability of each Ti follows by induction and by the measurability of k∗σ. To
show that each Ti is a stopping time with respect to the canonical filtration (Ri)∞i=0,
we need to show that for every t ∈ N0 we have {ρ ∈ RunC | Ti(ρ) ≤ t} ∈ Rt. This
follows since the fact whether Ti(ρ) ≤ t for a run ρ ∈ RunC is determined by the
first t states along ρ.

Step 3: Stopping time T ∗. Next, consider the filtration (FTi)
∞
i=0 defined by the

sequence (Ti)
∞
i=0 of stopping times. That is, for each i ∈ N0, we define FTi via

FTi
:= ∪∞t=0{A ∩ {Ti ≤ t} | A ∈ Rt}.

This set is non-empty since each stopping time Ti is a.s. finite (which follows by
induction on i and the fact that k∗σ is finite in every state). Furthermore, each
FTi can be proved to be a σ-algebra by checking that all the defining conditions
are satisfied. Hence, (FTi)

∞
i=0 is an increasing sequence of σ-algebras and defines a

filtration. Thus, we may define a stopping time T ∗ with respect to the filtration
(FTi)

∞
i=0 via

T ∗(ρ) = inf
k∈N0

{
ρ terminates or leaves SI n in the first Tk(ρ) steps

}
.

The fact that T ∗ is measurable and a stopping time follows since it is the first
hitting time of the set ¬SI n ∪Stateterm with respect to the filtration (FTi)

∞
i=0, and

it is a standard result on stopping times that the first hitting time of a set is a
stopping time [47, Section 10.8].

Step 4: Proof that Pσ[Term ∪ Reach(¬SI)] = 1. We are finally ready to prove the
desired claim. By the definitions of k∗σ, (Ti)∞i=0 and T ∗, it follows that

Pσ[T ∗ ≤ k + 1 | FTk
] > αn

holds for each k ∈ N0. Since αn > 0 does not depend on the index k, it follows
from a known result on stopping times [47, Lemma 10.11] that Eσ[T ∗] <∞. But

Eσ[T ∗] < ∞ implies Pσ[T ∗ < ∞] = 1 and we have {ρ ∈ RunC | T ∗(ρ) < ∞} =
Term ∪ Reach(¬SI n), so Claim 2 follows.

Proof that (SI , p) is a stochastic invariant with ¬SI ∪ Stateterm reached
a.s. Indeed, due to our definitions of stochastic invariants and predicate functions
in Section 4, SI n(`) ⊆ R|V | is Borel-measurable for each n ≥ n0 and a location
` in C. Hence, SI (`) = ∩∞n=n0

SI n ⊆ R|V | is also Borel-measurable as a countable
intersection of Borel-measurable sets. Next, we need to show that (SI , p) is a
stochastic invariant, i.e. that SI contains the initial state and that a random
run leaves SI with probability at most p. The fact that SI contains the initial
program state follows since all SI n’s contain the initial state due to (SI n, p+

1
n)

being stochastic invariants. Now, let t = supσ Pσ[Reach(¬SI)]. Since SI ⊆ SI n and
(SI n, p +

1
n) is a stochastic invariant, we have that t = supσ Pσ[Reach(¬SI n)] ≥

supσ Pσ[Reach(¬SI n)] ≥ p + 1
n for each n ≥ n0. Thus, by letting n → ∞, we

conclude that t ≥ p so (SI , p) is a stochastic invariant. Finally, to show that a run
in C with respect to every scheduler almost-surely reaches either some terminal state
or a state in ¬SI , set n = n0 and observe that by assumption a run almost-surely
reaches either some terminal state or a state in ¬SI n0

⊆ ¬SI . This concludes the
proof that (SI , p) yields a desired stochastic invariant.

I Proof of Theorems 3

In order to prove the theorem, we first need to recall the mathematical notion of
ranking supermartingales. This section assumes familiarity with the probability
theory preliminaries presented in Appendix F.
Ranking supermartingales. Let (Ω,F ,P) be a probability space, (Fi)∞i=0 a
filtration in it and ε > 0. Let T be a stopping time in (Ω,F ,P) with respect
to the filtration (Fi)∞i=0. A stochastic process (Xi)

∞
i=0 is said to be an ε-ranking

supermartingale (ε-RSM) with respect to the stopping time T if it satisfies the
following conditions:

– Each Xi is Fi-measurable.
– We have Xi(ω) ≥ 0 for each i ≥ 0 and ω ∈ Ω.
– Each Xi is integrable, i.e. E[|Xi|] = E[Xi] <∞.
– For each i ≥ 0 and ω ∈ Ω, we have E[Xi+1 | Fi](ω) ≤ Xi(ω)− ε · I(T (ω) < i).

The following theorem is a classical result on ranking supermartingales for their
use in the probabilistic program analysis.

Theorem 7 ([22]). Let (Ω,F ,P) be a probability space, (Fi)∞i=0 a filtration and
ε > 0. Let T be a stopping time in (Ω,F ,P) with respect to the filtration (Fi)∞i=0.
Suppose that there exists an ε-RSM (Xi)

∞
i=0 with respect to T . Then P[T <∞] = 1.

We are now ready to prove Theorem 3.
Proof of Theorem 3. By the theorem assumption, there exist ε > 0 and a state
function η in C which is an ε-RSM for the target set of states T with respect to
the invariant I. We need to show that, with respect to any scheduler in C, a state
in T is reached with probability 1.

Fix a scheduler σ. Recall, C and σ together give rise to a probability space

(ΩC ,FC ,Pσ) over the set of runs in C. In order to prove the theorem claim, we
define the stopping time TimeReachT with respect to the canonical filtration
(Ri)∞i=0 to be the first time of reaching the target set of states T . We then use η
to construct an ε-RSM with respect to TimeReachT , which by Theorem 7 implies
that Pσ[TimeReachT] <∞ and therefore that T is reached with probability 1 with
respect to the scheduler σ. Since σ was arbitrary, the theorem claim follows.

For each run ρ ∈ RunC , let (`
ρ
i ,x

ρ
i) be the i-th state along ρ. Define a stochastic

process (Xi)
∞
i=0 in (ΩC ,FC ,Pσ) as follows

Xi(ρ) =

{
η(`ρi ,x

ρ
i), if TimeReachT (ρ) < i,

η(`ρTimeReachT (ρ),x
ρ
TimeReachT (ρ)), otherwise.

(9)

We show that (Xi)
∞
i=0 is indeed an ε-RSM with respect to TimeReachT by verifying

that each of the four defining conditions of the mathematical notion of ε-RSMs is
satisfied:
– Each Xi is defined in terms of the i-th state along a program run, hence is
Ri-measurable.

– We have E[X0] = η(`init ,xinit) <∞ since the codomain of η are real numbers.
Once we show in the fourth item below that E[Xi+1 | Fi](ρ) ≤ Xi(ρ) − ε ·
I(TimeReachT (ρ) < i) for each i and ρ ∈ RunC , by taking the expected value
on both sides and by recalling the definition of conditional expectation, it will
follow that E[Xi+1] ≤ E[Xi] for each i. Hence, a simple induction shows that
E[Xi] ≤ E[X0] <∞ for each i.

– By the Nonnegativity condition in Definition 3, we know that η(`,x) ≥ 0 for
any location ` and a variable valuation x |= I(`). For any ρ ∈ RunC and any
i ≥ 0, the state (`ρi ,x

ρ
i) is reachable and hence by the definition of invariants

we have xρi |= I(`ρi). Thus, η(`
ρ
i ,x

ρ
i) ≥ 0 for any run ρ and i ≥ 0. It follows

from eq. (9) that Xi(ρ) ≥ 0 for any run ρ and i ≥ 0.
– We need to show that E[Xi+1 | Fi](ρ) ≤ Xi(ρ)− ε · I(TimeReachT (ρ) < i) for

each i and ρ ∈ RunC . Fix i ≥ 0 and ρ ∈ RunC .
If TimeReachT (ρ) ≥ i, then it follows by the definition of (Xi)

∞
i=0 both sides

of the formula are equal to η(`ρTimeReachT (ρ),x
ρ
TimeReachT (ρ)) and the claim

follows.
If TimeReachT (ρ) < i, we have

E[Xi+1 | Fi](ρ) ≤ X(η)(`ρi ,x
ρ
i) ≤ η(`

ρ
i ,x

ρ
i)− ε

= Xi(ρ)− ε · I(TimeReachT (ρ) < i),

as wanted, where the second inequality holds by the ε-ranked expected value
condition in Definition 3.

Hence (Xi)
∞
i=0 is an ε-RSM with respect to TimeReachT , and the theorem claim

follows. From Theorem 7 we may now conclude that Pσ[TimeReachT] < ∞ and
therefore that T is reached with probability 1 with respect to the scheduler σ. Since
σ was arbitrary, the theorem claim follows. ut

J Details of Benchmarks

In this section, we provide a detailed list of benchmarks that we used in our
experimental evaluation, together with their invariants. We then present the results

of the experimental evaluation of our prototype tool on the whole benchmark set
in Table 2

x = 0
while x ≥ 0 do {x ≥ −1}

r1 := Uniform([−1, 0.5]) {x ≥ 0}
x := x+ r1 {x ≥ 0}
i f x ≥ 100 then {x ≥ −1}

r2 := Uniform([−1, 2]) {x ≥ 100}
x := x+ r2 {x ≥ 100}

Fig. 5: A Deterministic Variant of Our Running Example

i f prob (0 . 5) then
while true do

skip

Fig. 6: A Probabilistic Branch with an Infinite Loop

i f prob (0.5) then
i f prob (0.5) then

i f ? then
while true do

skip

Fig. 7: Nested Probabilistic and Non-deterministic Branches

x = 0
while x ≤ 10 do {x ≤ 11}

i f prob (0 . 2 5) then {x ≤ 10}
x := x+ 1 {x ≤ 10}

Fig. 8: An Almost-surely Terminating Loop

x = 100
while x ≥ 0 do {x ≥ −2}

r := Uniform([−2, 1]) {x ≥ 0}
x := x+ r {x ≥ 0}

Fig. 9: An Almost-surely Terminating Random Walk

x := 10
while x ≥ 0 do {x ≥ −2}

r := Uniform([−2, 1]) {x ≥ 0}
x := x+ r {x ≥ 0}
i f x ≥ 100 then {x ≥ −2}

while x ≥ 100 do {x ≥ 100}
skip {x ≥ 100}

Fig. 10: Biased Random Walk

x := 50 , y := 50
while x ≤ 100 do {101 ≥ x ≥ 50 ∧ y ≥ 0}

x := x+ 1 {100 ≥ x ≥ 50 ∧ y ≥ 0}
r := Uniform([−1, 1]) {101 ≥ x ≥ 50 ∧ y ≥ 0}
y := y + r {101 ≥ x ≥ 50 ∧ y ≥ 0}
i f y ≤ 0 then {101 ≥ x ≥ 50 ∧ y ≥ −1}

while y ≤ 0 do {101 ≥ x ≥ 50 ∧ 0 ≥ y ≥ −1}
skip {101 ≥ x ≥ 50 ∧ 0 ≥ y ≥ −1}

Fig. 11: Two-dimensional Random Walk

x := 10
while x ≥ 0 do {x ≥ −2}

r := Uniform([−2, 1]) {x ≥ 0}
x := x+ r {x ≥ 0}
i f x ≥ 100 then {x ≥ −2}

while x ≥ 100 do {x ≥ 100}
r := Uniform([−1, 2]) {x ≥ 100}
x := x+ r {x ≥ 99}

Fig. 12: Skewed Random Walk

x := 5
while x ≥ 0 do {x ≥ −2}

i f ? then {x ≥ 0}
r := Uniform([−2, 1]) {x ≥ 0}

else
r := Uniform([−2, 3]) {x ≥ 0}

x := x+ r {x ≥ −2}

Fig. 13: Non-deterministic Random Walk

x := 1 , y := 1 , z := 1
while x+ y + z ≥ 0 do {x+ y + z ≥ −3}

i f prob (0 . 8) then {x+ y + z ≥ −3}
x := x+ 1 {x+ y + z ≥ −3}

else
x := x− 1 {x+ y + z ≥ −3}

i f prob (0 . 8) then {x+ y + z ≥ −3}
y := y + 1 {x+ y + z ≥ −3}

else
y := y − 1 {x+ y + z ≥ −3}

i f prob (0 . 8) then {x+ y + z ≥ −3}
z := z + 1 {x+ y + z ≥ −3}

else
z := z − 1 {x+ y + z ≥ −3}

Fig. 14: Three-dimensional Random Walk

x := ndet([−5, 5]) {true}
i f x ≥ 0 then {−5 ≤ x ≤ 5}
y := Uniform([−5, 5]) {0 ≤ x ≤ 5}
i f x+ y ≤ 0 then {0 ≤ x ≤ 5 ∧ −5 ≤ y ≤ 5}

i f ? then {0 ≤ x ≤ 5 ∧ −5 ≤ y ≤ 5 ∧ x+ y ≤ 0}
while true do {0 ≤ x ≤ 5 ∧ −5 ≤ y ≤ 5 ∧ x+ y ≤ 0}

skip {0 ≤ x ≤ 5 ∧ −5 ≤ y ≤ 5 ∧ x+ y ≤ 0}

Fig. 15: Non-determinism and Probability

x := ndet([−5,+∞)) {true}
i f x ≥ 0 then {−5 ≤ x}
y := Uniform([−5, 5]) {0 ≤ x}
i f x+ y ≤ 0 then {0 ≤ x ∧ −5 ≤ y ≤ 5}

i f ? then {0 ≤ x ∧ −5 ≤ y ≤ 5 ∧ x+ y ≤ 0}
while true do {0 ≤ x ∧ −5 ≤ y ≤ 5 ∧ x+ y ≤ 0}

skip {0 ≤ x ∧ −5 ≤ y ≤ 5 ∧ x+ y ≤ 0}

Fig. 16: Unbounded Non-determinism and Probability

x = 10
i f prob (0 . 6) then {x = 10}

while x ≥ 0 do {x ≥ −2}
x := x+Uniform([−2, 1]) {x ≥ 0}

else
while x ≥ 0 do {x ≥ −1}

x := x+Uniform([−1, 2]) {x ≥ 0}

Fig. 17: A Probabilistic Branch with Two Loops

x = 50
while 1 ≤ x ≤ 99 do {0 ≤ x ≤ 100}

i f prob (0 . 5 1) then {1 ≤ x ≤ 99}
x := x− 1 {1 ≤ x ≤ 99}

else
x := x+ 1 {1 ≤ x ≤ 99}

i f x ≥ 100 then {x · (x− 100) = 0}
while true do {x = 100}

skip {x = 100}

Fig. 18: A Loop with Two Endpoints

x = 10
while x ≥ 0 do {x ≥ −2}

i f x ≤ 100 then {x ≥ 0}
x := x+Uniform([−2, 1]) {0 ≤ x ≤ 100}

else
x := x+Uniform([−1, 2]) {x ≥ 100}

Fig. 19: A Generalized Asymmetric Random Walk taken from [15].

x = 10
while x ≥ 1 do {x ≥ 0}

i f prob (0 . 7 5) then {x ≥ 1}
x := x− 1 {x ≥ 1}

else
x := x+ 1 {x ≥ 1}

Fig. 20: An Asymmetric Random Walk taken from [15].

x = 10
while x ≥ 0 do {x ≥ −2}

i f prob (0 . 5) then {x ≥ 0}
x := x+ 1 {x ≥ 0}

else
x := x− 2 {x ≥ 0}

Fig. 21: Variant of Figure 20 taken from [15].

x = 10
while x ≥ 0 do {x ≥ −2}

i f x ≤ 1000 then {x ≥ 0}
i f prob (0 . 5) then {0 ≤ x ≤ 1000}

x := x− 2 {0 ≤ x ≤ 1000}
else

x := x+ 1 {0 ≤ x ≤ 1000}
else

i f prob (0 . 5) then {x ≥ 1001}
x := x− 1 {x ≥ 1001}

else
x := x+ 2 {x ≥ 1001}

Fig. 22: A More Complicated Non-a.s.-terminating Random Walk taken from [15].

x = 1000, y = 10
while y ≥ 1 do {y ≥ 0 ∧ x ≥ 1}

i f prob (0 . 5) then {y ≥ 1 ∧ x ≥ 1}
i f prob (0 . 7 5) then {y ≥ 1 ∧ x ≥ 1}

x := x+ 1 {y ≥ 1 ∧ x ≥ 1}
else

x := x− 1 {y ≥ 1 ∧ x ≥ 1}
else

i f prob (0 . 7 5) then {y ≥ 1 ∧ x ≥ 1}
y := y − 1 {y ≥ 1 ∧ x ≥ 1}

else
y := y + 1 {y ≥ 1 ∧ x ≥ 1}

while x ≤ 0 do {y ≥ 0 ∧ x ≥ 0}
x := 0 {y ≥ 0 ∧ x = 0}

Fig. 23: A Two-dimensional Variant of Figure 22. Taken from [15].

x = y = z = 100
while x ≥ 0 and y ≥ 0 and z ≥ 0 do {x, y, z ≥ −1}

i f prob (0 . 9) then {x, y, z ≥ 0}
i f prob (0 . 5) then {x, y, z ≥ 0}

x := x− 1 {x, y, z ≥ 0}
y := y − 1 {x ≥ −1 ∧ y, z ≥ 0}

else
z := z − 1 {x, y, z ≥ 0}

else
i f prob (0 . 5) then {x, y, z ≥ 0}

x := x+ 0.1 {x, y, z ≥ 0}
y := y + 0.2 {x ≥ 0.1 ∧ y, z ≥ 0}

else
z := z + 0.1 {x, y, z ≥ 0}

Fig. 24: A Three-dimensional Random Walk taken from [15].

Table 2: Experimental results on the whole benchmark set.
Benchmark

(Appendix J)
Short Explanation p LBPT

1− p
Runtime

(s)
Figure 1 Our running example 0.01 0.99 2.38
Figure 5 A deterministic variant of our running example 0.01 0.99 0.93
Figure 6 A simple probabilistic branch that leads to an infinite

loop with probability 0.5
0.5 0.5 0.85

Figure 7 Nested probabilistic and non-deterministic branches
leading to an infinite loop with maximum probability

0.25

0.25 0.75 1.40

Figure 8 An a.s. terminating loop. In each iteration x is
incremented with probability 0.25 and the program

terminates when x > 10.

0 1 0.97

Figure 9 An a.s. terminating biased random walk with
uniformly distributed steps

0 1 0.73

Figure 10 A random walk that starts at x = 10 and takes a step
of Uniform(−2, 1) each time. Terminates if x < 0 and

loops forever as soon as x ≥ 100.

0.12 0.88 1.10

Figure 11 A 2-dimensional random walk starting at (50, 50). In
each iteration, x is incremented, while y is increased
by Uniform(−1, 1). Terminates when x > 100. Loops

when y ≤ 0.

0.07 0.93 3.52

Figure 12 A skewed random walk starting at 10. At each
iteration, if x < 100, we take a step of size

Uniform(−2, 1), otherwise we take Uniform(−1, 2).
Terminates when x < 0.

0.16 0.84 1.20

Figure 13 A random walk with a barrier whose every step is
non-deterministically sampled either from

Uniform(−2, 1) or Uniform(−2, 3).

0.99 0.01 1.55

Figure 14 A 3-dimensional random walk. In each iteration, each
of x, y, z are incremented with a higher probability
than decremented. Terminates when x+ y + z < 0.

0.999 0.001 3.22

Figure 15 An example with both probabilistic and
non-deterministic assignments

0.51 0.49 2.73

Figure 16 A variant of Figure 15 with unbounded
non-determinism in an assignment

0.51 0.49 2.70

Figure 17 A probabilistic branch between an a.s. terminating
loop and a loop with small termination probability

0.4 0.6 5.17

Figure 18 A skewed random walk with two barriers, only one of
which leads to program termination

0.51 0.49 5.26

Figure 19 Taken from [15] and conceptually similar to Figure 5 0.24 0.76 0.94
Figure 20 An asymmetric random walk taken from [15] 0 1 1.05
Figure 21 Variant of Figure 20, also taken from [15] 0 1 1.07
Figure 22 A more complicated and non-a.s.-terminating random

walk taken from [15]
0.1 0.9 1.15

Figure 23 A 2-dimensional variant of Figure 22, also from [15] 0.08 0.92 4.01
Figure 24 A 3-dimensional a.s.-terminating random walk

from [15]
0 1 4.38

	Sound and Complete Certificates for Quantitative Termination Analysis of Probabilistic Programs

