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Transition to turbulence generally involves successive bifurcations from steady laminar solution
to spatio-temporal chaos. For the case of slightly curved duct flows, the scale separation allows
to separate the Navier-Stokes equations into two sets, namely the laminar solution and turbulent
fluctuations. The laminar flow is sensitive to the weak curvature and is governed by the Dean num-
ber, while the small scale turbulent disturbances are insensitive to the curvature and are governed
by the Reynolds number. The laminar solution is subject to super critical bifurcation leading to
temporal chaos for increasing Dean number. On the other hand, the turbulent fluctuations show
a sub-critical bifurcation depending on the Reynolds number. The separation between laminar,
temporally chaotic solution and turbulent disturbances allows to separate the secondary flow in ac-
cordance to Prandtl’s classification. The frequency analysis of the respective head losses illustrates
the nonreciprocal influence of the temporal-chaos onto the spatio-temporal turbulence.

Duct flows have been investigated for more than two
centuries with the aim of tackling a wide variety of prob-
lems, from water supply to blood circulation [1]. In
1845, Stokes obtained an analytical solution for a gravity-
driven flow in an inclined tube [2]. That solution was ob-
tained assuming a steady state, namely a laminar flow.
The Stokes solution gives a head loss per unit of length
proportional to the bulk velocity, in agreement with ob-
servations for relatively low velocities. The departure
from the Stokes solution for larger velocities was ex-
plained in 1883 by Osborne Reynolds who showed that
two very different regimes of flow are present, laminar
and turbulent [3]. Moreover, he showed that the tran-
sition is characterised by a single dimensionless number,
called the Reynolds number by Sommerfeld [4].

In order to determine the critical Reynolds number for
the flow, the linear stability analysis of the laminar so-
lution appeared promising, especially after the success-
ful study by Taylor on the stability analysis of a vis-
cous liquid contained between two rotating cylinders [5].
However, for pipe flows, preliminary studies [6] provided
evidence that the laminar solution is stable in a regime
where turbulence is generally observed. In fact, Meseguer
& Trefethen [7], with a very efficient numerical method,
showed that circular pipe flows are asymptotically stable
up to Reynolds number 107, for any infinitesimal per-
turbations. This inconsistency between linear stability
results and the observations led to question the single
mode asymptotic analysis, namely the long time behav-
ior considering the least stable mode. However, the non
self-adjoint nature of the linearized equations can lead
to a significant transient energy growth before the even-
tual stable asymptotic behavior takes place. Concretely,
small velocity perturbations in the direction normal to
the shear redistribute the streamwise momentum, that
lift-up effect leads to an algebraic growth of kinetic en-
ergy of three-dimensional disturbances. Such new formu-
lation of the problem moves the issue on the initial condi-
tion. One solution is to look for the optimal perturbation,

namely the one that maximises the energy growth. This
was introduced by Butler & Farrell [8] for plane shear flow
and Schmidt & Henningson [9] for pipe flow. The opti-
mal perturbations consist in streamwise elongated vor-
tices which generate streamwise streaks. The streaks are
then amplified, while the vortices are damped by viscos-
ity. In absence of nonlinear feed-back to regenerate the
vortices, the perturbations eventually evolves to asymp-
totic modal behaviour.

In order to determine the threshold of the initial per-
turbation energy above which the linear amplification is
supplemented by nonlinear bootstrap, optimal pertur-
bations have been extended to nonlinear equations for
square duct flow [10]. However, parametric studies with
direct numerical simulations on random initial perturba-
tions have shown that the threshold is not unique for a
given Reynolds number. In fact, the border separating
the basin of attraction of the laminar state and the tur-
bulence was found to be fractal [11]. Hence the definition
of a critical Reynolds number depends on the receptivity
process and needs a statistical approach.

Recently, Avila et al. [12] considered turbulence as sta-
tistically sustained when the lifetime of the spreading
turbulence is greater than the lifetime of the decaying
turbulence. In order to determine the onset of sustained
turbulence, Avila et al. [12] obtained these two charac-
teristic time scales, averaged over many experiments and
simulations for various Reynolds numbers. As expected,
the spreading probability increases with the Reynolds
number while the probability to relaminarize decreases
with it. Hence, the intersection of these two curves, at
Re = 2040 ± 10, marks the transition between transient
and sustained turbulence in pipe flow. In contrast to
the classical Landau-Ruelle-Takens view that turbulence
arises from an increase in the temporal complexity of fluid
motion, Avila et al. [12] show the transition as a spatial
proliferation of chaotic domains.

The velocity field can be decomposed into a laminar
part U plus the turbulent fluctuations u′. That sepa-



2

ration is trivial for straight duct flows since the lami-
nar solution remains stationary and the non streamwise
components are nil for all Reynolds numbers. In the
present article we consider a slightly square curved duct,
which introduces a new parameter: the curvature ratio
ε = h/R � 1 (see the scheme in figure 1). The cur-
vature ratio is thus zero for a straight duct and tends
to unity for a duct elbow. Usual non-dimensional set of

FIG. 1. Scheme and notations.

Cartesian coordinates (x, y, z) and velocity components
u = (u, v, w) are adopted in streamwise, wall-normal and
spanwise directions respectively. In this work the defini-
tions for the Reynolds and Dean numbers are the fol-
lowing: Re = Ubh/ν, De = Re

√
h/R, where Ub is the

bulk velocity and ν is the dynamic viscosity. The square
duct configuration presents the advantage of having only
a limited number of symmetries as compared to circu-
lar pipe flows. Despite these differences, the dynamics
are in general analogous to those in circular pipes, for
example the square duct flow is also linearly stable for
any Re [10, 13]. For overviews on the subject, see Berger
et al. [14], who present an extensive review on laminar
flow in curved pipes, while Kalpakli Vester et al. [15] con-
centrate on the research concerning turbulent and transi-
tional flows while providing a thorough historical review.

The aim of the present work is to understand the inter-
action between two separate phenomena that take place
at the same time in turbulent flows in weakly bent pipes:
the super-critical bifurcation to chaos of the laminar state
(governed by the Dean number) and the sub-critical tran-
sition to turbulence (governed by the Reynolds number).

The weak curvature permits the decomposition of
Navier-Stokes equation into a laminar set, sensitive to
curvature effects and a turbulent set, not explicitly de-
pendent on the curvature ratio. Indeed, the curvature in-
fluences the turbulent fluctuations only through the lam-
inar part, which may be temporally complex. The model
is obtained in the low curvature assumption, based on
scales separation, neglecting the terms lower than

√
h/R.

The laminar component is solution of the following

equations [16]:

Vy +Wz = 0

Ut + V Uy +WUz = −dP0

dx
+Re−1∆2U

Vt + V Vy +WVz −
(
De

Re
U

)2

= −Py +Re−1∆2V

Wt + VWy +WWz = −Pz +Re−1∆2W

(1)

with ∆2 = ∂2/∂y2 + ∂2/∂z2. The curvature is repre-
sented uniquely by the centrifugal term of the cylindrical
Navier-Stokes equations, −(De/Re U)2. Validations of
this simplified model against available data in the litera-
ture are reported in [16]. The laminar solution is stream-
wise homogeneous, nonetheless the curvature may induce
streamwise travelling-waves with very large streamwise
scale and low amplitude. For the results shown in this
article, the influence of these travelling-waves are negli-
gible, thus we keep a two-dimensional laminar flow for
simplicity.

The turbulent fluctuations satisfy the equations:

∇ · u′ = 0

u′t + (U + u′) · ∇u′ + u′ · ∇U = −dp
′
0

dx
ex −∇p′ +

∇2u′

Re
(2)

This decomposition should be distinguished from the
classical Reynolds Averaged Navier-Stokes equations. In
RANS equations, mean flow is forced by the turbulent
fluctuations, which is not the case for the laminar equa-
tions (1). As a result, the present model allows to inves-
tigate separately the curvature and turbulent effects.

Equations (1) and (2) are completed with no-slip
boundary conditions on the four walls and a periodic
boundary condition in the streamwise direction. Two
different streamwise pressure gradients are present. The
laminar pressure gradient −dP0/dx is adjusted in such
way that the non-dimensional laminar bulk velocity is
unitary (Ub =

∫
yz
U dy dz = 1). The pressure gradient

of the fluctuations −dp0/dx is adjusted to ensure that
u′b = 0. The equations are solved with a spectral method
in space and a backward Euler scheme in time [16].

The equations (1) for the laminar component involve
two control parameters: the Reynolds numberRe and the
Dean number De. Nonetheless, it is possible to express
the same equations only in terms of the Dean number
by using boundary-layer type scaling (see [16]). Here, we
keep the same scaling for the two systems (1) and (2) for
convenience.

Thus, the laminar flow is fully characterised by the
Dean number in the low curvature limit. Winters [17]
presented for the first time a bifurcation diagram of the
problem. Wang and Yang [18] provided a very detailed
bifurcation diagram and identified regions of periodic and
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chaotic oscillations. The first bifurcation from a steady
regime to an unsteady, periodic regime occurs at De =
128 through a saddle-node bifurcation. Starting from
De = 193 we observe two periods which are incommen-
surable, characteristic of an aperiodic regime. Then the
system quickly evolves into chaos from De ≈ 195 [19].

In the following we consider two Dean numbers: 160
and 220, associated respectively to periodic and chaotic
laminar states. In figure 2, we show the temporal evolu-
tion of the velocity difference ‖δu‖ between two trajecto-
ries initially infinitesimally close. For the periodic regime
(De=160), the difference remains small while for chaotic
regime an exponential increase is observed, illustrating
the sensitive dependence upon initial conditions for the
laminar solution at De=220.
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FIG. 2. The separation between two neighbouring trajectories
plotted against time for two Dean numbers. At De=220, the
sensitivity to initial condition illustrates the chaotic nature of
the laminar solution.

The Reynolds number is fixed at 2500, large enough
to observe developed turbulence. Although the bifurca-
tion for laminar state state is supercritical, the turbulent
state remains sub-critical, as observed for straight ducts,
indeed, simulations with a linearized version of the equa-
tions 2 result in vanishing fluctuations.

As a first result, we consider the curvature effect of the
duct on internal flow patterns at De=160. The organised
fluid motions can be regarded as comprising two compo-
nents, a primary streamwise flow and a secondary flow.
These secondary flows are distinguished into first and sec-
ond kind after Prandtl. The first kind secondary flow is
a consequence of curvature. The centripetal acceleration
−(De/Re U)2 is in equilibrium with the vertical pressure
gradient −∂P/∂y. Because of the side walls, the pressure
is non-homogeneous in the lateral direction −∂P/∂z 6= 0
which induces a cross-flow. That mechanism is responsi-
ble of the so-called Dean two cells vortices [20–22]. More-
over, when the radial pressure gradient is strong enough,
it can give rise to additional Taylor-Görtler vortices on
the concave outer wall illustrated in figure 3, that shows

the time averaged laminar component of the flow. The
presence of additional vortices results in complex lam-
inar states which experience successive bifurcations be-
tween steady, unsteady and temporally chaotic regimes
governed by the Dean number.
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FIG. 3. Time averaged cross flow vortices. Laminar solution,
Re=2500, De=160.

The vortices of the second kind are a consequence of
turbulence, as discovered by Prandtl in 1927. In turbu-
lent regimes the average velocity field contains nonzero
transverse components induced by the Reynolds shear
stress [23]. Secondary motions in square ducts are known
to come in the form of eight counter-rotating eddies
bringing high-momentum fluid from the duct core to-
wards the corners [24, 25]. Vortices of the second kind
also occur in the presence of curvature; figure 4 shows
the time averaged turbulent component of the flow. This
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FIG. 4. Time averaged cross flow vortices. Turbulent part,
Re=2500, De=160.

observation is made possible by the introduction of the
decomposition between the unsteady laminar and turbu-
lent components. If such decomposition is not applied
the laminar and turbulent effects can be hardly discrimi-
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nated, which prevents the observation of the second kind
motions. In a bent pipe their shape is topologically simi-
lar to the one of a straight duct, with the presence of eight
streamwise vortices, that differ in position and size. The
two pairs closer to the outer wall present vortices simi-
lar in size, whose separator is not aligned with the duct
bisector as in the straight case, but has a different an-
gle. This feature is even mode evident for the two pairs
closer to the inner wall, in which the upper vortex is much
stronger than the lower one.

The laminar-turbulent decomposition also permits to
analyse the pressure drop driving the flow. Both cur-
vature and turbulent fluctuations increase the drag, and
therefore also the pressure drop required to ensure a uni-
tary bulk velocity. In figures 5 and 6, the temporal spec-
tra of the laminar component −dP0/dx and the turbu-
lent component −dp′0/dx are depicted for De=160 and
220 respectively.
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FIG. 5. Spectrum, laminar periodic (red discontinuous line)
vs turbulent (blue continuous line), at Re=2500, De=160.
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FIG. 6. Spectrum, laminar chaotic (red discontinuous line)
vs turbulent (blue continuous line), at Re=2500, De=220.

At De=160, the laminar pressure drop spectrum

presents the characteristics of a periodic signal, with
sharp peaks at the fundamental frequency and the har-
monics, while the turbulent signal shows a rather broad-
band spectrum. Figure 6 illustrates a different behaviour,
the laminar part is characterised by two non commensu-
rable frequencies (and their harmonics) while the turbu-
lent part shows frequency synchronisation with the dom-
inant laminar frequencies.

In conclusion, the laminar-turbulent decomposition al-
lows to distinguish between the effects of curvature and
turbulent fluctuations. Moreover, the model also reveals
an alternative scenario for the transition to turbulence.
In contrast to the classical Landau-Ruelle-Takens view
that turbulence arises from an increase in the temporal
complexity of fluid motion, starting with steady laminar
flow, as described in [26, 27]; here we show that in a con-
figuration with two control parameters the transition to
chaos can be independently observed for both laminar
and turbulent components.
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