Polynomial identities involving Pascal's triangle rows

Petro Kolosov

To cite this version:

Petro Kolosov. Polynomial identities involving Pascal's triangle rows. 2022. hal-03674905

HAL Id: hal-03674905
 https://hal.science/hal-03674905

Preprint submitted on 21 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

POLYNOMIAL IDENTITIES INVOLVING PASCAL'S TRIANGLE ROWS

PETRO KOLOSOV

Abstract. In this short report we consider the famous binomial identity

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Based on it, the following binomial identities are derived

$$
\begin{gathered}
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{k}\binom{k}{j}(-1)^{k-j} m^{j}, \\
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{j}\binom{n-j}{k-j}(-1)^{k-j} m^{j},
\end{gathered}
$$

where $\binom{n}{k}$ are binomial coefficients and (m, n) are non-negative integers.

Contents

1. Introduction 1
2. Conclusions 4
3. Verification of the results 4

References 5

1. Introduction

We start from the famous relation about row sums of the Pascal triangle, that is

$$
\begin{equation*}
2^{n}=\sum_{k=0}^{n}\binom{n}{k} \tag{1.1}
\end{equation*}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ are binomial coefficients [GKPL89]. Identity (1.1) is straightforward because the Pascal's triangle is

[^0]| n / k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | | | | | | | | |
| 1 | 1 | 1 | | | | | | | |
| 2 | 1 | 2 | 1 | | | | | | |
| 3 | 1 | 3 | 3 | 1 | | | | | |
| 4 | 1 | 4 | 6 | 4 | 1 | | | | |
| 5 | 1 | 5 | 10 | 10 | 5 | 1 | | | |
| 6 | 1 | 6 | 15 | 20 | 15 | 6 | 1 | | |
| 7 | 1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 | |
| 8 | 1 | 8 | 28 | 56 | 70 | 56 | 21 | 8 | 1 |

Table 1. Pascal's triangle [CG96]. Each $k-$ th term of $n-$ th row is $\binom{n}{k} \cdot 1^{k}$. Sequence A007318 in OEIS [Slo64].

Consider a generating function such as $f_{2}(n, k)=\binom{n}{k} \cdot 2^{k}$. The function $f_{2}(n, k)$ generates the following Pascal-like triangle

n / k	0	1	2	3	4	5	6	7	8
0	1								
1	1	2							
2	1	4	4						
3	1	6	12	8					
4	1	8	24	32	16				
5	1	10	40	80	80	32			
6	1	12	60	160	240	192	64		
7	1	14	84	280	560	672	448	128	
8	1	16	112	448	1120	1792	1792	1024	256

Table 2. Triangle generated by the function $\binom{n}{k} \cdot 2^{k}$. Can be reproduced using Mathematica function GeneratePascalLikeTriangle [2, 8] at [Kol22]. Sequence A013609 in OEIS [Slo64].

Now we can notice that

$$
\begin{equation*}
3^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot 2^{k} \tag{1.2}
\end{equation*}
$$

Continue similarly we can generalize the equations (1.1), (1.2) as follows

$$
\begin{aligned}
2^{n} & =\sum_{k=0}^{n}\binom{n}{k} \cdot 1^{k} \\
3^{n} & =\sum_{k=0}^{n}\binom{n}{k} \cdot 2^{k} \\
4^{n} & =\sum_{k=0}^{n}\binom{n}{k} \cdot 3^{k} \\
& \ldots \\
m^{n} & =\sum_{k=0}^{n}\binom{n}{k} \cdot(m-1)^{k}
\end{aligned}
$$

Obviously, it is simply a form of the Binomial theorem $(m+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} m^{k}$. Therefore, we conclude this version of the Binomial theorem as

Theorem 1.1. (Binomial theorem.) The following identity involving polynomial m^{n} holds

$$
\begin{equation*}
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{k}\binom{k}{j}(-1)^{k-j} m^{j} \tag{1.3}
\end{equation*}
$$

where (m, n) are non-negative integers.

Proof. Recall the induction over m, let be a base case $m=2$, hereby

$$
\begin{equation*}
2^{n}=\sum_{k=0}^{n}\binom{n}{k}(2-1)^{k} \tag{1.4}
\end{equation*}
$$

Reviewing an equation (1.4) we can see that

$$
\begin{equation*}
(\underbrace{2+1}_{m=3})^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot(\underbrace{(2-1)+1}_{m-1})^{k} \tag{1.5}
\end{equation*}
$$

Continue similarly it is straightforward that $m^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot(m-1)^{k}$. However, we are able to expand the part $(m-1)^{k}$ by means of Binomial theorem [AS72], that is

$$
(m-1)^{k}=\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} m^{j}=\sum_{j=0}^{k}\binom{k}{j}(-1)^{k} m^{k-j}
$$

So that now we are able to merge both results $m^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot(m-1)^{k}$ and $(m-1)^{k}=$ $\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} m^{j}=\sum_{j=0}^{k}\binom{k}{j}(-1)^{k} m^{k-j}$ to receive

$$
\begin{aligned}
m^{n} & =\sum_{k=0}^{n}\binom{n}{k} \cdot(m-1)^{k}=\sum_{k=0}^{n}\binom{n}{k} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} m^{j} \\
& =\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{k}\binom{k}{j}(-1)^{k-j} m^{j} \\
& =\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{k}\binom{k}{j}(-1)^{k} m^{k-j}
\end{aligned}
$$

Theorem (1.1) may be verified using Mathematica command PolynomialIdentity [m, n] at [Kol22]. This completes the proof.

Moreover, by means of the binomial identity [[Gro16], Chapter 4]

$$
\binom{n}{k}\binom{k}{j}=\binom{n}{j}\binom{n-j}{k-j}
$$

The polynomial m^{n} is identical to

$$
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{j}\binom{n-j}{k-j}(-1)^{k-j} m^{j}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{j}\binom{n-j}{k-j}(-1)^{k} m^{k-j}
$$

2. Conclusions

The following binomial identities are derived

$$
\begin{gathered}
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{k}\binom{k}{j}(-1)^{k-j} m^{j}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{k}\binom{k}{j}(-1)^{k} m^{k-j} \\
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{j}\binom{n-j}{k-j}(-1)^{k-j} m^{j}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{j}\binom{n-j}{k-j}(-1)^{k} m^{k-j}
\end{gathered}
$$

Moreover, above results are verified by means of specified Mathematica scripts available at github.com/kolosovpetro/PolynomialIdentitiesInvolvingPascalsTriangleRows.

3. Verification of the results

Main results of this paper may be verified using Mathematica scripts from [Kol22] as follows

- PolynomialIdentity [m, n] verifies

$$
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{k}\binom{k}{j}(-1)^{k-j} m^{j}
$$

- PolynomialIdentity1[m, n] verifies

$$
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{j}\binom{n-j}{k-j}(-1)^{k-j} m^{j}
$$

- PolynomialIdentity2[m, n] verifies

$$
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{k}\binom{k}{j}(-1)^{k} m^{k-j}
$$

- PolynomialIdentity3[m, n] verifies

$$
m^{n}=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n}{j}\binom{n-j}{k-j}(-1)^{k} m^{k-j}
$$

References

[AS72] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington, DC, USA, tenth printing edition, 1972.
[CG96] JH Conway and RK Guy. Pascal's triangle. The Book of Numbers. New York: Springer-Verlag, pages 68-70, 1996.
[GKPL89] Ronald L Graham, Donald E Knuth, Oren Patashnik, and Stanley Liu. Concrete mathematics: a foundation for computer science. Computers in Physics, 3(5):160-162, 1989.
[Gro16] Jonathan L Gross. Combinatorial methods with computer applications. CRC Press, 2016.
[Kol22] Petro Kolosov. "Polynomial identities involving Pascal's triangle rows" Source files. published electronically at https://github.com/kolosovpetro/ PolynomialIdentitiesInvolvingPascalsTriangleRows, 2022.
[Slo64] N. J. A. Sloane. The on-line encyclopedia of integer sequences. published electronically at https: //oeis.org, 1964.
Email address: kolosovp94@gmail.com
URL: https://razumovsky.me/

[^0]: Date: May 21, 2022.
 2010 Mathematics Subject Classification. 26E70, 05A30.
 Key words and phrases. Binomial coefficients, Binomial theorem, Pascal's triangle, Binomial sums, Binomial distribution, Binomial identities.

