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POLYNOMIAL IDENTITIES INVOLVING PASCAL’S TRIANGLE ROWS

PETRO KOLOSOV

Abstract. In this short report we consider the famous binomial identity

2n =

n∑
k=0

(
n

k

)
Based on it, the following binomial identities are derived

mn =

n∑
k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)k−jmj ,

mn =

n∑
k=0

k∑
j=0

(
n

j

)(
n− j

k − j

)
(−1)k−jmj ,

where
(
n
k

)
are binomial coefficients and (m, n) are non-negative integers.
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1. Introduction

We start from the famous relation about row sums of the Pascal triangle, that is

2n =
n∑

k=0

(
n

k

)
, (1.1)

where
(
n
k

)
= n!

k!(n−k)!
are binomial coefficients [GKPL89]. Identity (1.1) is straightforward

because the Pascal’s triangle is
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n/k 0 1 2 3 4 5 6 7 8

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 21 8 1

Table 1. Pascal’s triangle [CG96]. Each k−th term of n−th row is
(
n
k

)
·1k. Sequence

A007318 in OEIS [Slo64].

Consider a generating function such as f2(n, k) =
(
n
k

)
· 2k. The function f2(n, k) generates

the following Pascal-like triangle

n/k 0 1 2 3 4 5 6 7 8

0 1
1 1 2
2 1 4 4
3 1 6 12 8
4 1 8 24 32 16
5 1 10 40 80 80 32
6 1 12 60 160 240 192 64
7 1 14 84 280 560 672 448 128
8 1 16 112 448 1120 1792 1792 1024 256

Table 2. Triangle generated by the function
(
n
k

)
· 2k. Can be reproduced using

Mathematica function GeneratePascalLikeTriangle[2, 8] at [Kol22]. Sequence
A013609 in OEIS [Slo64].

Now we can notice that

3n =
n∑

k=0

(
n

k

)
· 2k (1.2)

https://oeis.org/A007318
https://oeis.org/A013609
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Continue similarly we can generalize the equations (1.1), (1.2) as follows

2n =
n∑

k=0

(
n

k

)
· 1k

3n =
n∑

k=0

(
n

k

)
· 2k

4n =
n∑

k=0

(
n

k

)
· 3k

. . .

mn =
n∑

k=0

(
n

k

)
· (m− 1)k

Obviously, it is simply a form of the Binomial theorem (m+ 1)n =
∑n

k=0

(
n
k

)
mk. Therefore,

we conclude this version of the Binomial theorem as

Theorem 1.1. (Binomial theorem.) The following identity involving polynomial mn holds

mn =
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)k−jmj (1.3)

where (m,n) are non-negative integers.

Proof. Recall the induction over m, let be a base case m = 2, hereby

2n =
n∑

k=0

(
n

k

)
(2− 1)k (1.4)

Reviewing an equation (1.4) we can see that

(2 + 1︸ ︷︷ ︸
m=3

)n =
n∑

k=0

(
n

k

)
· ((2− 1) + 1︸ ︷︷ ︸

m−1

)k (1.5)

Continue similarly it is straightforward that mn =
∑n

k=0

(
n
k

)
· (m−1)k. However, we are able

to expand the part (m− 1)k by means of Binomial theorem [AS72], that is

(m− 1)k =
k∑

j=0

(
k

j

)
(−1)k−jmj =

k∑
j=0

(
k

j

)
(−1)kmk−j
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So that now we are able to merge both results mn =
∑n

k=0

(
n
k

)
· (m − 1)k and (m − 1)k =∑k

j=0

(
k
j

)
(−1)k−jmj =

∑k
j=0

(
k
j

)
(−1)kmk−j to receive

mn =
n∑

k=0

(
n

k

)
· (m− 1)k =

n∑
k=0

(
n

k

) k∑
j=0

(
k

j

)
(−1)k−jmj

=
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)k−jmj

=
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)kmk−j

Theorem (1.1) may be verified using Mathematica command PolynomialIdentity[m, n]

at [Kol22]. This completes the proof. □

Moreover, by means of the binomial identity [[Gro16], Chapter 4](
n

k

)(
k

j

)
=

(
n

j

)(
n− j

k − j

)
The polynomial mn is identical to

mn =
n∑

k=0

k∑
j=0

(
n

j

)(
n− j

k − j

)
(−1)k−jmj =

n∑
k=0

k∑
j=0

(
n

j

)(
n− j

k − j

)
(−1)kmk−j

2. Conclusions

The following binomial identities are derived

mn =
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)k−jmj =

n∑
k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)kmk−j

mn =
n∑

k=0

k∑
j=0

(
n

j

)(
n− j

k − j

)
(−1)k−jmj =

n∑
k=0

k∑
j=0

(
n

j

)(
n− j

k − j

)
(−1)kmk−j

Moreover, above results are verified by means of specified Mathematica scripts available at

github.com/kolosovpetro/PolynomialIdentitiesInvolvingPascalsTriangleRows.

3. Verification of the results

Main results of this paper may be verified using Mathematica scripts from [Kol22] as

follows

https://github.com/kolosovpetro/PolynomialIdentitiesInvolvingPascalsTriangleRows/blob/develop/mathematica/PolynomialIdentitiesInvolvingPascalsTriangleRows.m
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• PolynomialIdentity[m, n] verifies

mn =
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)k−jmj

• PolynomialIdentity1[m, n] verifies

mn =
n∑

k=0

k∑
j=0

(
n

j

)(
n− j

k − j

)
(−1)k−jmj

• PolynomialIdentity2[m, n] verifies

mn =
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)kmk−j

• PolynomialIdentity3[m, n] verifies

mn =
n∑

k=0

k∑
j=0

(
n

j

)(
n− j

k − j

)
(−1)kmk−j
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