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POLYNOMIAL IDENTITIES INVOLVING PASCAL'S TRIANGLE ROWS

PETRO KOLOSOV

Abstract. In this short report we consider the famous binomial identity

2 n = n k=0 n k
Based on it, the following binomial identities are derived

m n = n k=0 k j=0 n k k j (-1) k-j m j , m n = n k=0 k j=0 n j n -j k -j (-1) k-j m j ,
where n k are binomial coefficients and (m, n) are non-negative integers.

Introduction

We start from the famous relation about row sums of the Pascal triangle, that is

2 n = n k=0 n k , (1.1) 
where n k = n! k!(n-k)! are binomial coefficients [START_REF] Ronald L Graham | Concrete mathematics: a foundation for computer science[END_REF]. Identity (1.1) is straightforward because the Pascal's triangle is n/k 0 1 2 3 4 5 6 7 8 0 1 1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 

Now we can notice that

3 n = n k=0 n k • 2 k (1.2)
Continue similarly we can generalize the equations (1.1), (1.2) as follows 

2 n = n k=0 n k • 1 k 3 n = n k=0 n k • 2 k 4 n = n k=0 n k • 3 k . . . m n = n k=0 n k • (m -1) k Obviously, it
m n = n k=0 k j=0 n k k j (-1) k-j m j (1.3)
where (m, n) are non-negative integers.

Proof. Recall the induction over m, let be a base case m = 2, hereby

2 n = n k=0 n k (2 -1) k (1.4)
Reviewing an equation (1.4) we can see that

(2 + 1 m=3 ) n = n k=0 n k • ((2 -1) + 1 m-1 ) k (1.5) Continue similarly it is straightforward that m n = n k=0 n k • (m -1) k .
However, we are able to expand the part (m -1) k by means of Binomial theorem [START_REF]Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF], that is

(m -1) k = k j=0 k j (-1) k-j m j = k j=0 k j (-1) k m k-j
So that now we are able to merge both results

m n = n k=0 n k • (m -1) k and (m -1) k = k j=0 k j (-1) k-j m j = k j=0 k j (-1) k m k-j to receive m n = n k=0 n k • (m -1) k = n k=0 n k k j=0 k j (-1) k-j m j = n k=0 k j=0 n k k j (-1) k-j m j = n k=0 k j=0 n k k j (-1) k m k-j
Theorem (1.1) may be verified using Mathematica command PolynomialIdentity[m, n] at [START_REF] Kolosov | Polynomial identities involving Pascal's triangle rows[END_REF]. This completes the proof. □ Moreover, by means of the binomial identity [[Gro16], Chapter 4]

n k k j = n j n -j k -j
The polynomial m n is identical to

m n = n k=0 k j=0 n j n -j k -j (-1) k-j m j = n k=0 k j=0 n j n -j k -j (-1) k m k-j

Conclusions

The following binomial identities are derived

m n = n k=0 k j=0 n k k j (-1) k-j m j = n k=0 k j=0 n k k j (-1) k m k-j m n = n k=0 k j=0 n j n -j k -j (-1) k-j m j = n k=0 k j=0 n j n -j k -j (-1) k m k-j
Moreover, above results are verified by means of specified Mathematica scripts available at github.com/kolosovpetro/PolynomialIdentitiesInvolvingPascalsTriangleRows.

Verification of the results

Main results of this paper may be verified using Mathematica scripts from [START_REF] Kolosov | Polynomial identities involving Pascal's triangle rows[END_REF] as follows 

  is simply a form of the Binomial theorem (m + 1) n = n k=0 n k m k . Therefore, we conclude this version of the Binomial theorem as Theorem 1.1. (Binomial theorem.) The following identity involving polynomial m n holds

  k -j (-1) k m k-j

Table 2 .

 2 Triangle generated by the function n k • 2 k . Can be reproduced using Mathematica function GeneratePascalLikeTriangle[2, 8] at [Kol22]. Sequence A013609 in OEIS [Slo64].

					1			
	6 1 6 15 20 15 6 1		
	7 1 7 21 35 35 21 7 1		
	8 1 8 28 56 70 56 21 8 1	
	Table 1. Pascal's triangle [CG96]. Each k-th term of n-th row is n k •1 k . Sequence
	A007318 in OEIS [Slo64].							
	Consider a generating function such as f 2 (n, k) = n k • 2 k . The function f 2 (n, k) generates
	the following Pascal-like triangle							
	n/k 0 1	2	3	4	5	6	7	8
	0 1							
	1 1 2							
	2 1 4	4						
	3 1 6 12	8					
	4 1 8 24 32	16				
	5 1 10 40 80	80	32			
	6 1 12 60 160 240 192	64		
	7 1 14 84 280 560 672 448 128	
	8 1 16 112 448 1120 1792 1792 1024 256