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Abstract. Stochastic geometries in Monte-Carlo simulations enable to simulate complex configurations
such as the repartition of possible radioactive dust in a glove box. This paper compares several dust models
that representmore or less explicitly the heterogeneous repartition of dust speckles in space. Indeed, assessing
the contribution of dust to the dose received by the hands of an operator is a key problem for glove boxes.
Results show that homogeneous models generally overestimate the dose, which is correct for
radioprotection studies, but that dust aggregates produce doses that are much smaller than those obtained
by homogenising dust. These heterogeneous models can also help estimating deposited dust quantities
from dose measurements inside the glove box, whereas an homogenous model would grossly underestimate
dust quantity.
1 Introduction

Glove boxes are used in research laboratories and in the
nuclear industry to isolate an operator from radioactive
material. Someoperations carriedout ingloveboxes can lead
to the formation of radioactive dust, which remains
suspended in the air before settling. If this dust is present
in large quantities, it can contribute significantly to the dose
received by the operator of the glove box. Besides, even if
present in small quantities, dust might accumulate repeat-
edly in the same place, e.g. in the lower corners of the glove
box or near the gloves, and also lead to significant doses. For
this reason, glove boxes are regularly cleaned out of dust.

Radiation protection calculations for glove boxes can
take into account the presence of dust. Because of the
capabilities of simulation codes, so-called homogeneous
models are generally used. A homogeneous dust model
replaces volumes of air in certain areas of interest
containing dust in the glove box with volumes of
radioactive material of extremely low density. This fictive
density is calculated from the quantity of air and
radioactive material included in the volume. The model
is homogeneous because this density is constant in the
volume to be analysed.

Recentadvances instochasticgeometry [1] inMonte-Carlo
simulationmodels suchasTRIPOLI-4®[2]make itpossible to
consider a stochastic modelling of dust accumulations, by
lice.bonin@cea.fr
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generating and setting in space for example a very large
number of spheres of variable radius representing the position
of the dust grains. Mixed strategies combining homogeneous
modelling and dust grains can also be considered.

This paper presents newmodels for dust simulation in a
glove box. The calculated doses are compared in different
configurations, in order to determine whether homoge-
neous models systematically lead to overestimating the
received doses, which would be a good property for
radiation protection calculations, and in which config-
urations a more refined modelling of the dust geometry is
useful.

2 State of the art

Radiation protection calculations are generally based on
the following principle: determination of particle sources
(intensity, spectrum), transport of these particles in
geometries representing the geometric configuration of
the environment, and finally dose calculation at several
points of interest.

The particle transport simulation models used for dose
calculations are based on the resolution of the Boltzmann
particle transport equation. Stochastic geometries have
been used in particle transport simulations with Monte
Carlo models over the last few decades [1–3]. These
methods have been used in several criticality applications,
such as pebble-bed reactors [4,5] or waste storage container
[6] for example. To our knowledge, they have not yet been
used for radiation protection applications.
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in any medium, provided the original work is properly cited.

https://orcid.org/0000-0001-9749-1261
https://orcid.org/
https://orcid.org/0000-0001-8969-1562
mailto:alice.bonin@cea.fr
https://www.edpsciences.org
https://doi.org/10.1051/epjn/2022001
https://www.epj-n.org
https://creativecommons.org/licenses/by/4.0


2 A. Bonin et al.: EPJ Nuclear Sci. Technol. 8, 6 (2022)
One of theMonte Carlo transport codes commonly used
is TRIPOLI-4® developed at CEA. A new tool, recently
developed at CEA, is dedicated to the generation of
stochastic geometries. A coupling of this generator with
TRIPOLI-4® makes possible to perform transport in
random geometries in the frame of the so-called quenched
disorder approach [7–9]. The scheme is the following: a
large number of random geometries is generated, then we
solve the Boltzmann equation for each geometrical
configuration and calculate some observables of interest
(such as flux, reactions rates, neutron multiplication factor
etc.) and finally we compute the ensemble-averaged
quantities for the target observables. This method allows
to compare the results obtained for criticality problems
between the stochastic geometries and a regular network of
fissile debris in water and to show that taking into account
the stochastic media has an impact on the neutron
multiplication factor [10]. Note that dust computations
do not require to estimate a mean behaviour as the dust
geometry is static, but unknown. Thus it is important to
assess how far the estimated doses vary with respect to the
geometry randomness.

A critical parameter in the study of particle transport in
a stochastic medium is the mean chord length Ln [11]
characterising each material noted n composing the
medium. It is defined by the average length of the path
that a particle can follow in a straight line through this
material n. Since the medium is random, the chord lengths
vary around this average value.

The comparison between the average chord length in
material n and the average free path of the particles in this
material shows whether the medium can be homogenised or
not:

–
 ifLnSt,n≪ 1, St,n being the total effective cross-section in
material n, this means that during a typical path (mean
free path) the particle will see a large number of chunks of
material n. If this assertion is true for each material n
composing the medium, the exact location of these
chunks does not matter, only their average number: this
is the “atomic mix limit” regime [12], in which the
stochastic medium can be modelled homogeneously (by
defining an homogenised material whose physical
properties, such as cross sections, are computed by
averaging the physical properties of each material).
–
 conversely, if there is at least one material n such that
LnSt,n≫ 1, the particle may during a typical displace-
ment (mean free path) encounter only one material. In
this case, the stochastic medium must be modelled more
finely, especially if the material chunks are spatially
unevenly distributed.

The homogenisation of a medium is in many radiation
protection problems a good compromise between the
accuracy of the results and the calculation time. However,
in some cases, it is necessary to model the stochastic
geometry in detail in order to estimate more accurately the
equivalent dose rate, for example, or other quantities of
interest.

The integral form of the transport equation is written
for the collision density c, that is the number of particles
arriving with speed E and colliding in r [13]:
c r;Eð Þ ¼ ST r;Eð Þ∫∞0 dR e
�∫

R

0
ST r�R0 ˆV̂;E

� �
dR0

�
"
S r�R ˆ̂V;E
� �

þ ∫dE0
SS r�R ˆ̂V;E0 ! E
� �
ST r�R ˆ̂V;E0
� �

c r�RV̂;E0
� �#

ð1Þ

where E: speed variable grouping the energy E and the
direction of the trajectory of the particle V̂, ST (r, E) : total
macroscopic cross-section (cm�1), SS (r, E

0!E): differen-
tial scattering cross section shifting the speed from E0 to E
(cm�1 MeV�1 st�1), R: distance (cm) between the position
of the particle before the collision r0 and its position at the
time of the collision r, the vectors r0 and r verify
r0 ¼ r�RV̂, S (r, E): particle source density (particles
cm�3 s�1 MeV�1 st�1), c (r, E): collision density of
particles entering a collision at r with velocity E
(particles cm�3 s�1 MeV�1 st�1), c (r, E)=ST (r, E) ’ (r,
E), ’ (r,E) dE: particle flux at position r and with velocity
between E and E+dE (particles cm�2 s�1).

In the above equation (1) t is the optical distance
corresponding to the geometric distance R between two
collisions located in r0 and r:

∫
R

0

ST r�R0V̂;E
� �

dR0 ¼ t r;R;Eð Þ: ð2Þ

When a heterogeneous medium is modelled with a
homogeneous material, the total macroscopic cross section
does not depend on the position of the particle in space but
only on its energy. Themacroscopic cross section of diffusion
also depends only on the energy of the particle. The average
distance between collisions is given by the mean free path:

l Eð Þ ¼ 1

ST Eð Þ : ð3Þ

This paper considers the problem of random dust in a
glove box, thus a very small quantity of material in a large
volume of air. If the material is homogenized, the
equivalent densities will be very low.

The probabilities of diffusion, that depend on SS, and
the probabilities of absorption, that depend on ST, do not
vary spatially and are quite small because of the low
density of the homogenized medium.

Besides, if a stochastic model is used for the medium,
the probabilities of diffusion and absorption depend not
only on the energy but also on the position and direction of
the particle. The collisions are distributed in a disparate
way and can be concentrated in certain locations, where
materials have a higher density.

3 Simulated configuration and dust modelling

3.1 Typical glove box and radioactive material

The simulated glove box is supposed to contain a conic jar
full of typical (U,Pu) oxide powder, a pellet basket and a
pressing table. This glove box is inspired from pelletizing



Fig. 1. Visualisation of sections of the glove box model obtained with TRIPOLI-4® viewer: (y,z) plane on the left, and (x,z) plane on
the right. The red cone represents the mixed oxide in the jar, the red rectangle in the centre the pressing table and the cross at the
bottom right the corner full of dust, just behind the Kyowa Glass (in green in the figure).
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workplace in a uranium oxide or mixed-oxide fuel
fabrication facility [14,15]. The jar is located above the
press table where pellets are made before being transferred
into the pellet basket.
3.1.1 Geometrical model

The glove box is made of a stainless steel envelope at its
backside and of Kyowa Glass shield at its frontside, where
an operator can stand.

The glove box in this model contains three main
radioactive sources:

–
 a conic jar made of stainless steel and surrounded by a
radiation shield, containing tens of kilograms of MOX
powder;
–
 a press table with tens of grams of MOX pellets upon it;

–
 a pellet basket, containing a few kilograms of pellets.

Another radioactive source is the dust from the oxide
mixture powder that may have spread into the glove box,
settled on the Kyowa Glass protection and accumulated in
certain areas of the glove box as well as in the lower corners
of the glove box (see Fig. 1). The modelling of this dust is
the subject of this paper.

The dust grains can be UO2, PuO2 or MOX grains. The
two important parameters for modelling oxide mixture
dust are the radii of the dust grains and their spatial
distribution. The diameter of UO2 and PuO2 grains in
several fuel fabrication facilities has been measured and is
reported in various publications [16–22]. The AMAD
(Activity Median Aerodynamic Diameter) is estimated
between 2 and 10 micrometers depending on the area of the
installation. In addition, the dust grains can agglomerate
and form aggregates [21], which can reach a size of more
than 100 micrometers [23].

In the dust model proposed here, the grain radius varies
between50 and 1000micrometers.Dust grains of radius lower
than 50micrometers are not considered in this paper because
this size of geometrical object is at the boundary of what the
simulation code can handle safely. Actually, the dust grains
simulated in this paper represent compact symmetrical
aggregates as observed in [23]. Besides, an explicit model
formoregeneralaggregates isproposedattheendof thepaper.

3.1.2 Dust deposition sites

To choose the location of the dust grains, a few assumptions
are made: firstly, it is assumed that the scenario in which an
operator may intervene in the glove box is a maintenance
operation, and therefore all machines have been stopped long
enough for all the dust to have settled on the glove box
surfaces.Alldust is thereforeassumedtohavedepositedto the
walls and floor of the glove box and its arrangement does not
change over time. Thus, airborne dust is not taken into
account. The most likely points of accumulation are the
surface of the Kyowa Glass protection and the bottom of
the glove box. In addition, it is assumed that due to
the difficulty of routine cleaning, dust grains mainly
accumulate in the lower corners of the box. With the
homogeneous model, dust deposited on the Kyowa Glass is
simulated by a thin parallelepipedic layer on the Kyowa
Glass inside the glove box and dust accumulated in the
two lower corners of the glove box is simulated by two
5 cm cubes. In this paper we are interested in the two lower
corners next to the Kyowa Glass protection.

3.1.3 Composition

The fuel is the one used in [24], a typical Mixed Oxide
(MOX), whose composition (cf. Tab. 1) is comparable to
the typical ones used in Light Water Reactors.

3.1.4 Calculation of the equivalent dose rate

There are three main radiation sources coming from the
dust grains of oxide mixture: neutron rays emitted from
spontaneous fission and from (a,n) reactions, primary



Table 1. Heavy metal composition of a typical mixed
oxide.

Isotope name Mass (%)
235U 0.225
238U 89.7
238Pu 0.404
239Pu 5.05
240Pu 2.32
241Pu 1.21
242Pu 0.960
241Pu 0.152
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gamma-rays emitted from actinides and secondary gamma
rays emitted by the radioactive capture of neutrons in
matter.

The primary neutron and gamma sources, emitted
directly from the oxide mixture, are computed by the
DARWIN evolution code [25] for a cooling time of 2 years.
The nuclear data and the decay chains used in the
computation come from the JEFF-3.1 Nuclear Data
Library [26]. The total intensity of neutron source,
including neutrons from spontaneous fissions and neutrons
from reactions (a,n) on the oxygen atoms in the mixture, is
calculated by DARWIN code. The neutron spectrum
is distributed according to a Watt spectrum with
coefficients 1.0352 MeV�1 and 2.8420 MeV�1, taken from
the American evaluation ENDF/B-V [27] and that
corresponds to fissions due to thermal neutrons of Pu.
The gamma spectrum is calculated with DARWIN on an
energy grid with 220 groups.

The Ambient dose equivalent H*(10) is the operational
quantity used to monitor external exposure to penetrating
radiation in an area [28,29].Ambientdose equivalentH*(10)
(mSv/h) due to neutron and photon radiations emitted
by the (U,Pu)O2 mixture is computed by the TRIPOLI-4®

code. The dose due to neutrons and gamma coming from
(n,g) reactions takingplace in the various radiation shields is
also computed. Moreover, the dose due to gamma emitted
directly by the (U,Pu)O2mixture, is computed in 220 energy
groups.

The total dose due to neutrons and gamma rays
emitted by the oxide mixture constituting the deposited
dust grains is thus calculated first from a homogeneous
dust model � described in Section 3.2 – and then
from several new refined heterogeneous models using
randomly distributed spherical inclusions � described in
Sections 3.3, 3.4 and 3.5.

3.2 Homogeneous model

The simplest way to model a disordered medium is to
homogenize it. The goal is to have a configuration with the
same macroscopic properties as the real medium in
average, but with a much simpler geometry. The
radioactive material is diluted within a chosen volume
that is as close as possible to the volume actually occupied
by the radioactive material. Instead of considering a
disordered geometric arrangement of dense and compact
dust grains, radioactive dust will be simulated as a
homogeneous source, with a simple geometric shape and
with a lower density. The macroscopic cross-sectional
efficiencies of the homogenized medium are obtained by
averaging the cross-sectional efficiencies of each material
weighted by the respective volume ratio of each material.

With the homogeneous model, the geometric shape of
the source is fixed, only its mass varies, by changing the
density of the emission volumes to simulate different dust
densities.

The limit of themodel is the alterationof theproperties of
the medium at the microscopic scale. The mixture config-
urations in which it is reasonable to use homogenization of
the properties while maintaining unaltered transport
properties such as cross sections and sources, require a
mean free path greater than themaximalmean chord length
characterizing the medium (atomic mixing model). If this
assumption is not filled, the chord length distribution
associated with the model of stochastic geometries has to be
taken into account. For some particles, such as gamma
photons, the mean free path in metals can be very small. In
addition, dust grains have a very small mean diameter
[21,23], ranging from micrometers to hundreds of micro-
meters, dispersed in an air matrix.
3.3 Spherical inclusions created by random sequential
addition
3.3.1 Identical spherical inclusions

A very large number of identical spherical sources are
dispersed in an air matrix. The basic Monte Carlo method
for generating a stochastic distribution of non-overlapping
spheres is the random sequential addition method [30,31].
The spheres are created in the same control volume as the
one used for the simulation of the homogeneous model,
which will allow to compare the two models.

In the case of spherical inclusions with identical radii,
the number N of spheres to be generated is computed as
follows:

N ¼ j � V 3

4pR3

� �

where j is the inclusion occupancy rate or packing fraction,
i.e. the ratio between the volume occupied by the spheres
and the control volume V (see Sect. 2.2.4), in which the
inclusions are generated.

In the cubic control volume the spheres must not
intersect the walls of the box, the random sampling of the
first centre of the inclusion is calculated by generating,
according to a uniform distribution, three random numbers
in the range [–L/2+R ;L/2–R], where L denotes the size of
the box and R denotes the radius of the spheres.

The algorithm used in this study is an improvement of
the random sequential addition method: it consists in
creating within the control volume a spatial cartesian mesh
whose base cell has a dimension greater than or equal to the
diameter of the spheres [12]. The spatial mesh reduces the
computation time to test if spheres overlap: when a new
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sphere is introduced in the control volume, the mesh
enables to get the closest spheres that are the one contained
in adjacent cells.

With this type of random geometries, there are three
free parameters: the occupancy rate (packing fraction) j,
the material density in each sphere and the radius of the
spheres. Two strategies can be considered to cover different
cases:

–
 increase the packing fraction j, which modifies the
emissivity of the source depending directly on the mass of
the radioactive material and therefore on the number of
spheres, without modifying the properties of each sphere;
–

Fig. 2. Simulation of the corner of the glove box with spherical
inclusions.
simultaneously modify the radius of the spheres and j,
the material density of each sphere being constant, which
modifies the transport properties while keeping the
emissivity of the source constant.

3.3.2 Spherical inclusions with random radii

While spherical inclusions with identical radii are a simple
approach to modelling at the microscopic scale, spherical
inclusions with random radii allow a better simulation of
reality. For the purpose of illustration, an example of
geometry obtained with the method of spherical inclusions
with random radii is shown in Figure 2.

For the generation of a geometry with spherical
inclusions of random radii [12], the values of the radius
of the spheres must be randomly sampled from a given
probability law, before the inclusions are generated.
Specifically, two PDFs have been used for this purpose:
a uniform distribution and a log-normal distribution with
parameters m=2.4 mm and s=0.84. The spheres are
added progressively until a higher occupancy rate than the
one chosen is reached. At this point, the radius of the last
generated sphere is modified in order to obtain the exact
occupancy rate j. Then the spheres are ordered by
descending radii. The centre of a sphere is uniformly
sampled such as the sphere does not overlap the
boundaries. A list of the mesh cells that the sphere
intersects is determined. A check is performed to verify
whether the sphere overlaps any of the spheres already
contained in these mesh cells.

3.4 Spherical inclusions with “cannonball” distribution

An original algorithm for spherical inclusions is proposed
here. It consists in the construction of a stack of non-
overlapping spheres as dense as possible using the so-called
“cannonball” distribution. A box is thus filled by a face-
centred cubic lattice. Then, to give shape to the geometry,
a rejection test is applied, according to different types of
geometrical shapes (sphere octant, hyperbole, cubic). The
last step consists in applying a Russian roulette technique
on the non-rejected spheres, in order to obtain the total
mass or the desired number of spheres.

The FCC � face-centred cubic � lattice is formed
inside a cube l · l · l, using trigonometric formulas that link
the position of the centre of a sphere to the position of the
centre of its neighbouring spheres. In 1D, the distance
between two neighbouring spheres is equal to the
diameter of the spheres. In 2D, many rows are super-
imposed with a horizontal pitch of value 2r ⋅ cos (p/3),
while the vertical pitch between two successive rows is
equal to 2r ⋅ sin (p/6). Finally, the same mechanism is
applied for the third direction as for the second: each
plane is spaced from the other planes of 2r ⋅ cos (p/3) with
respect to the others, and each plane has a vertical and
horizontal pitch with respect to its neighbour. To avoid
overlapping of the spheres through the walls of the cube,
this procedure can be carried out by excluding all spheres
whose centre is at a distance from the wall less than its
radius.

Once the lattice of spheres has been generated, in order
to give the geometry the desired shape, a mathematical
expression of a geometric form is chosen to reject all the
spheres contained, or not contained, inside it, as mentioned
above.

The simplest rejection test is carried out using a sphere
of radius r= l centred in a corner of the cube. In this way, it
is possible to obtain a shape that is the whole cube minus
one eighth of a sphere.

The analytical expression that the centre of the spheres
must satisfy in order not to be excluded is therefore:

0 < xc < l;
0 < yc < l;
0 < zc < l;
l� xcð Þ2 þ l� ycð Þ2 þ l� zcð Þ2 > l2;

where (xc, yc, zc) are the coordinates of the centre of a
sphere.

The volume occupied by these spheres is l3 � p
6 l

3, giving
a sphere occupancy rate of about 0.7. Such an occupancy
rate of 0.7 is high and will lead to a number of spheres that
could (depending on the radius with respect to the size of
the control volume) possibly be too large for the dataset to
be processed by TRIPOLI-4® in a reasonable time.

A Russian roulette technique is applied to randomly
reject unnecessary spheres, keeping the shape of the
geometry. To apply the Russian roulette, a desired massm



Fig. 3. Representation of the geometry obtained from the intersection of the original cube with 3 hyberbolic cylinders for 5 g of
spherical inclusions with a radius of 0.025 cm.
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is chosen. In the case of spherical inclusions of mono-
dispersed radius, this leads directly to the number of
spheres. The number of spheres necessary to obtain this
mass is thus calculated:

N ¼ m

r � 4
3pr

3

 !
þ 1:

If this number is less than the number of spheres already
generated, we introduce the probability of rejection
PRussian, which can be calculated either as PRussian ¼ N

Ntot

or PRussian ¼ m
mtot

, where Ntot and mtot are respectively the
number of inclusions and the total mass of the spheres
before rejection. Then, a random variable z is uniformly
generated between 0 and 1 for each sphere, and all spheres
that do not satisfy z < PRussian are rejected and stored in a
second table.

Once the rejection loop is completed, there is a final
check on the number of remaining spheres: if this number is
greater than the desired number, the rejection process is
repeated by randomly rejecting the unwanted spheres with
the same system. If this number is less than the desired
number, the remaining centres are randomly selected from
the table of previously rejected spheres.

This algorithm, even if the stochastic nature of the
geometry is partially lost due to the creation of the FCC
array, gives the possibility to realistically arrange the dust,
and to have a much higher occupancy rate than with the
RSA (Random Sequential Addition) method.

The geometry closest to the actual dust geometry is
obtained by using a surface defined by three hyperbolic
cylinders, instead of the spherical surface previously
proposed for the first rejection test.
The analytic expression of the volume of dust is defined
as follows:

0 < xc < l;
0 < yc < l;
0 < zc < l;
0 < xcyc < 2;

0 < yczc < 1=2;
0 < xczc < 1=2:
The parameters of the three hyperbolic paraboloids are
chosen so that dust accumulates more horizontally due to
gravity. This geometry is shown in Figure 3.

3.5 Dust aggregates

In a glove box, dust grains often accumulate at the same
place to form aggregates.

Here two models of a dust aggregate are compared. The
first one consists in creating an analytical distribution of
spheres inside a larger sphere [32,33], itself randomly
placed in the cube using the RSA method. The analytical
distribution of spheres is a dense stack of twelve spheres.
The occupancy rate within the large sphere is at most 49%
with this type of arrangement of spheres (cf. Fig. 4).
However, it was necessary to add a small extra space
between the spheres because of the geometrical accuracy of
the Monte Carlo transport code TRIPOLI-4®, which leads
to an occupancy rate of 42%.

The second modelling consists in homogenizing in the
volume of the large sphere the twelve small spheres, as
mentioned above.

Using the TRIPOLI-4® code, it is thus possible
to simulate the two configurations: the large sphere



Fig. 4. Drawing of the dense 12 spheres hexagonal close packing
inside a bigger sphere (source: https://en.wikipedia.org/wiki/
Sphere_packing_in_a_sphere).
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containing the densest possible set of twelve small spheres,
and the same large sphere in which the small spheres have
been homogenized in volume, considering the appropriate
void fraction.

4 Simulation strategies

The main problem in Monte Carlo simulation of a
dispersed source, such as spherical MOX inclusions, is
the sampling of particle emission sites in sources. Since the
simulation of particle transport is performed by a random
Markov walk, the starting point of the walk is randomly
sampled within the source volume. More precisely, the
declaration of a source consists in giving the code the
coordinates of a mesh, parallelepiped in this study, and
information to indicate which volumes within this mesh
are emitters. In this way, the code randomly samples a
given number of points within the mesh, and if that point
falls within a fissile volume, another random sampling
begins to select the energy and direction of the particle.
Thus, the starting point of the random walk is chosen by a
rejection process.

In the case of the homogenized model studied here, the
homogenized source is of parallelepiped shape, so the
rejection efficiency, which is equal to the ratio between
the volume of the parallelepiped used as a control volume
and the volume of the source itself is equal to 1.

hrejection ¼ V source

V control
: ð4Þ

In contrast, with the spherical inclusion source model,
the fissile volumes are dispersed in the air matrix, and the
fraction of the volume occupied by the source may be less
than 1% of the total volume. In order to have a good source
convergence it is necessary to have a huge number of
random samplings to obtain a good accuracy, according to
the derivation of the Monte Carlo Central Limit Theorem:

P
jjn � mj

jjnj
� ksffiffiffiffiffi

N
p jjnj

" #
¼ ∫

k

�k

dt
1ffiffiffiffiffiffi
2p

p e
�t2

2 :

In this equation jjn�mj
jjnj

represents the relative error with

respect to the exact result m weighted on the sample

average jn and sffiffiffi
N

p jjnj
represents the PRSD (Percentage

Relative Standard Deviation), where s2 is the variance and
N the number of random samplings.

In addition, the probability of success of random
sampling is very low, so there can be huge fluctuations in
the average value of the sample. The solution is to improve
the efficiency of the rejection by taking a single cubic cell
around each emitting sphere instead of a single parallele-
piped encompassing all sources and coinciding with the
control volume used to generate the spherical inclusions.

In this case, the efficiency is significantly improved and
it becomes:

hrejection ¼ V source

V control
¼ 4pr3

3 � 8r3 ¼
p

6
:

Indeed, this efficiency is higher than that obtained by
using the same control volume for spherical inclusion
generation and source sampling, which is worth at most
jMAX,RSA=0.38.

The approach using a parallelepiped cell for each
emission volume of the source increases slightly the
simulation time and is only used when it is necessary.
For example, in the case of spherical inclusions built using a
FCC lattice, the occupancy rate is high and the control
volume is then used as the reject volume. In the case of
special source geometries such as hyperboles, the reject
volume is adapted as much as possible to the geometry by
using several parallelepipeds.

Regarding the simulation of the aggregates, the packing
fraction within each large sphere is quite high (about
42.4%), so using the same method as for stochastic
spherical inclusions, according to equation (3), it is possible
to have a rejection efficiency equal to

hrejection ¼ V source

V control
j
0

where j0 is the packing fraction inside the large sphere. So,
in the case of a dense packing of twelve spheres inside a
sphere, the rejection efficiency can be written as:

hrejection ¼ V source

V control
j
0 ¼ 4pr3

3 � 8r3 j
0
∼

p

12
:

These optimization techniques become very important
when the number of spheres becomes very large.

https://en.wikipedia.org/wiki/Sphere_packing_in_a_sphere
https://en.wikipedia.org/wiki/Sphere_packing_in_a_sphere


Fig. 5. Homogeneous model, Corner source with parametrical
variation of the density, results at 15 cm from the source.

Fig. 6. Homogeneous model, Corner source with parametrical
variation of the density, results right over the press.
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It is also possible to speed up the simulation by creating
a connectivity map specific to the geometry being studied.
To do this, a mesh is first created inside the volume
containing the stochastic inclusions, in order to divide this
volume into several volumes containing only a small
number of inclusions. The connectivity map itself is the list
of volumes present in the geometry coupled to their
neighbours. Such a map allows to speed up particle
tracking, especially for configurations with a large number
of spheres (typically, the impact of the connectivity map is
clearly visible for configurations with more than 105

spheres). This mesh is also useful to define more quickly the
interfaces between the different volumes present in the
glovebox and the numerous spherical inclusions.

5 Results

All the results are equivalent dose rates computed with the
ambient dose equivalentH*(10) as defined in Section 3.1, in
mSv/h. The objective is to estimate the contribution of the
dust inside the glove box to the extremity dose, for example
to the hands of an operator working in maintenance. The
dust is placed in the two lower cubic corners of 5 cm side,
juxtaposed to theKyowaGlass shield. The dose is calculated
at a point sufficiently close to the dust, 15 cm from a lower
corner (cf. Fig. 5), and also at a point right over the pressing
table, more than 1.30 meters above the dust (cf. Fig. 6).

5.1 Homogeneous model

The dust is homogenized by considering that it is “diluted” in
the air of each 5 cm cubic corner. The amount of dust
deposited in a corner ranges from0.1 to300gramsbyvarying
the fictitious density of homogenized dust diluted in the
corner from 0.0008 g/cm3 to 2.4 g/cm3. The transport
properties change a lot, because particle diffusion is
influenced by themacroscopic cross-sections of themedium,
which depend directly on the number of nuclei in the particle
path (quantity directly correlated to the density).
The calculations with TRIPOLI-4® for the neutron
dose are made using 20,000 batches of 3000 particles each
and at least 300,000 batches of 5000 particles for the
gamma dose. The standard deviation for
neutron calculations does not vary much from case to
case, while the standard deviation for gamma calcu-
lations varies a lot. Indeed for gammas the convergence
speed decreases with increasing density, because the
amount of gamma particles that can escape from the
source decreases as the density increases. As the standard
deviation are inferior to 0.24% for neutron calculations
and inferior to 0.57% for gamma calculations with the
homogeneous model, they are not represented in the
following figures.

A saturation effect is observed for the dose due to
gamma rays (cf. Figs. 5 and 6). The cause of this
saturation is the increase in the effective absorption cross
section of the source itself and thus the decrease in the
mean free path of the gamma rays, which makes difficult
or even impossible for these particles to escape from the
environment. Gamma rays are very well stopped by
metals, whereas neutrons have a much longer mean free
path.

The equivalent dose rate due to neutrons is consider-
ably lower than the equivalent dose rate due to gamma,
therefore in the following only the equivalent dose rate due
to gamma will be presented.

5.2 Spherical inclusions of same radius

The source consists of a set of small spheres placed
randomly thanks to the algorithm described previously
(Sect. 3.3) instead of a single, larger homogeneous volume.

5.2.1 Variation of the radii of the spherical dust grains

The dust deposited in a corner of the glove box is modelled
using spherical inclusions created using RSA techniques,
presented in Section 3.3. The use of the RSAmethod allows
us to act on the emission of small spherical sources without



Table 2. RSA spherical inclusion method, equivalent dose rate (EDR) calculated for different values of the radius of the
source spheres.

Sphere radius (cm) 0.10 0.075 0.050 0.033 0.017 0.0080 0.0050

EDR (mSv/h) 26.6 34.4 48.7 66.7 101.3 148.0 179.0
PRSD 0.51 0.56 0.96 0.54 0.52 0.56 0.67
Total number of spheres in both corners 72 171 578 2010 14699 141048 577732

Fig. 7. RSA spherical inclusion method, Gamma simulations
with different values of the sphere radii with a constant mass of 1g
for each corner and constant density of 6.6 g/cm3 (relative
standard deviation inferior to 1%, given in Tab. 2, are not
presented on the figure).
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modifying their inner density or mass. Only the radius
of the spherical sources varies from 1mm to 100 microns
(cf. Tab. 2).

The total mass of the sources is fixed at 1 g, which is
equivalent to a packing fraction set the value j=0.00121.
In this experiment, simulations with quite a small source
diameter are not trivial to perform. Indeed, to simulate one
gram of dust using spheres of diameter d=100 mm, the
number of source volumes in each corner is almost 300,000.
This naturally leads to a very long calculation time (more
than one hour on a state of the art workstation), even after
using the acceleration methods described in Section 4.

A decrease in the radius of the emitting sphere leads to a
greater leakage of gamma particles from this sphere and a
consequent increase in the overall dose rate. In a convex
geometry containing spherical inclusions of radius r in a
matrix, the expression of the mean chord length in the
matrix is written [34]:

L0 ¼ 1

j
� 1

� �
4

3
r:

Since the radius of the spheres is directly proportional
to the average chord length of the geometry, decreasing the
radius of each emitting sphere, while keeping the density
and total mass of the source constant, means getting closer
to the atomic mix. The results with very small spheres
are close to those obtained using the homogeneous model
(cf. Fig. 7).

The curve of the equivalent dose rate versus the radius
of the source spheres is almost exponential. Indeed, the
attenuation of the radiation flux inside an absorbing
medium follows an exponential law. The average chord
length is defined as the average length of absorbent
material that a particle travelling in straight line
encounters during its path. It is intuitive that a decrease
in the radius of the spheres leads to a decrease in the
average thickness of the absorbing medium through which
the particle passes and simultaneously to an increase in the
leakage of particles out of the source spheres, therefore an
increase in the dose.

5.2.2 Variation of the total mass of dust grains

The radius of the spheres is set at R=0.05 cm, the density
at 6.6 g/cm3 and the total mass of dust varies from 1 g to
100 g, corresponding to a variation in the packing fraction
from 0.00121 to 0.121. The density of 6.6 g/cm3 is the one of
raw fuel pellets that have not been sintered yet, and thus is
lower than the usual density of around 10 g/cm3. As the
packing fraction increases, the dose curve approaches the
homogeneous model (cf. Fig. 8). From a dust quantity of
more than 100 g a saturation effect appears on the dose
curve.

These two figures lead to the conclusion that, on the one
hand, at constant occupancy rate, the larger the dust
radius, the farther the model differs from the homogeneous
model, and, on the other hand, at constant radius, the
smaller the amount of dust, the farther the model differs
from the homogeneous model.

As for the equivalent dose rate due to neutrons, the
stochastic geometry model with spherical inclusions
provides results very close to those obtained with the
homogeneousmodel (cf. Fig. 9). The difference between the
neutron equivalent dose rate of the dust simulated using
any stochastic geometry and the homogenized dust is less
than the standard deviation of the TRIPOLI-4® results.
Simulations are performed with 200 batches of 3000
particles each, for an accuracy of PRSD ∼2.5%. The
gammas have a mean free path comparable to the
characteristic dimensions of the simulated medium, but
the neutrons have a much longer mean free path and the
homogeneous model is sufficient.

As indicated above, the source is a set of very small
spheres instead of a single, larger homogeneous volume. As
this source geometry is obtained with a stochastic
algorithm (cf. Sect. 3.3). It is important to check how
the different spatial arrangements of the spheres influence



Fig. 8. Spherical inclusionmodel,Gammasimulationwithspheres
of constant radius of 0.05 cm, constant density of 6.6 g/cm3 and
variable packing fraction (PRSD are inferior to 1%).

Fig. 9. Spherical inclusion model, neutron simulation with
spheres with a fixed constant radius of 0.05 cm and a constant
density of 6.6 g/cm3 with variable packing fraction (PRSD are
inferior to 1%).
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the results. To investigate the effects of stochasticity on the
evaluation of equivalent dose rate, 100 geometries have
been simulated with different random seeds to analyse
qualitatively the distribution of dose rates. The number is
too small to estimate complex distributions. However,
histograms are provided, as well as empirical standard
deviation. The control volume in which the spherical
inclusions are generated is the cubic corner, in which
homogenisation is applied in the case of the homogeneous
model. The packing fraction j, the radius and the material
density of the spheres are constant.

The simulated mass in the test volume is equal to 1 g,
which corresponds to a fraction of j=0.00121 and 287
spheres with a radius of half a millimetre. The equivalent
dose rate (expressed in mSv/h) due to gammas are
presented in Figure 10.
Each simulation uses 1000 batches of 5000 particles, for
a precision of less than 1%. The equivalent dose rate varies
very little with respect to the geometry randomness. The
mean of the 100 realizations is of 47.7mSv/h and the
empirical standard deviation of 0.74mSv/h, which corre-
sponds to 1.5% of the response.

5.3 Inclusions with random radii

When it comes to inclusions with random radii, some
parameters that were constant with the packing fraction in
the simulations with identical inclusions becomes case-
dependent. It has been shown that the mean chord length
of the distribution through spheres with random radii is
inversely proportional to the second-order moment of the
radius [12,35], which in this particular case may change
according to the values of the radius of randomly sampled
spheres. For this reason, at a fixed packing fraction and
fixed mass, the results of the simulation vary more
according to sampling.

In this simulation, the values of the radius are
homogeneously sampled between 1mm and 10 micro-
meters, according to a uniform probability density
function. Identical inclusions have all a 1mm radius.
With spherical inclusions of random radii the dispersion
between the results of the 100 realizations is much greater
than that obtained with identical spherical inclusions
(cf. Figs. 10 and 11). The distribution is not symmetrical,
and has an empirical standard deviation of 5.5mSv/h for a
mean of 26mSv/h, which corresponds to more than 20% of
the response. The actual distribution of the response when
the geometry varies due to randomness could be
investigated with a much larger number of simulations.
However, the simulated dose can vary from 10 to 35mSv/h
depending on the spatial repartition of dust grains in the
control volume, which suggests that spatial dust reparti-
tion might have a significant effect on dose for
radioprotection. Moreover, the mean dose of 26mSv/h
can be obtained by simulating uniform spherical inclu-
sions with a radius of 1mm, which is the largest inclusion
size of this model.

5.4 Spherical inclusions with “cannonall” distribution

Different geometrical arrangements of dust in the cubic
corner, created with the algorithm described in the
Section 3.4, are simulated in order to model in a more
realistic way the dust accumulated on the edges of the
cube, like classical dust in a room. These geometrical
arrangements of the dust also allow for a non-uniform
packing fraction and variable average chord length
distribution in the cube. Two of these geometric shapes
are obtained by intersecting the cube either with an
eighth of a sphere (sphere octant) or with three
hyperbolic cylinders. All geometries are composed of
289 spheres of diameter 1mm and r=6.6 g/cm3, and
have a total mass of 1 g. The equivalent dose rates
(expressed in mSv/h) obtained are lower than those
obtained with the classical RSA method of adding
spherical inclusions (cf. Fig. 12).



Fig. 10. 100 realizations of spherical inclusions withR=0.05 cm, j=0.00121 and rMOX=6.6 g/cm3 (left: realizations ordered by dose
rate, with 2-sigma error bars in red and right: histogram).

Fig. 11. 100 realizations of spherical inclusions with random radii, at a fixed mass of 1 g (left: realizations ordered by dose rate, with
2-sigma error bars in red and right: histogram).
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5.5 Dust aggregates simulation

Dust also accumulates in the form of aggregates. In the
aggregate model, each aggregate is modelled by a dense
assembly of twelve small spheres contained within a larger
sphere. Several aggregates are randomly placed in a corner
as described in Section 3.5. The density of each small sphere
forming the aggregate is equal to the typical density of a
MOX fuel rMOX= 11.016 g/cm3.

In the homogenized spheres model, the radius of the
large spheres in which the 12 small spheres are homoge-
nized is the same as the radius of the large spheres
containing the aggregates of 12 small spheres. The density
of the homogeneous larger sphere is equal to the average
density of the 12 spheres homogenizedwith the air contained
in the sphere rMOX� j12-packing spheres= 4.67 g/cm3.
Simulations were performed with 1000 batches of 5000
particles to obtain a PRSD < 0.8%.

The equivalent dose rate obtained with this aggregate
model is compared to that obtained with the model of small
spheres homogenised in large spheres (cf. Fig. 13).
The equivalent dose rate obtained with the aggregate
model with 12 small spheres is lower than that obtained
with 12 homogenized spheres in a larger sphere. Indeed,
instead of one large, less dense emitting sphere, the twelve
smaller, denser emitting spheres increase the self-protec-
tion of the sources, and thus decrease the equivalent dose
rate.
6 Summary and conclusions

Tables 3 and 4 summarize the equivalent dose rate
obtained with spherical inclusion dust grain models. In
Table 3, the amount of dust is constant (1 g) and the radius
of the spherical inclusion increases. In Table 4, the radius of
inclusions is kept constant (0.05 cm) and the mass of dust,
or the occupancy rate of the dust grains in a corner,
increases.

The smaller the radius of the spheres modelling the dust
grains, the more the equivalent dose rate increases and the
closer the result is to the homogeneous model.



Fig. 12. Comparison between the dose rate obtained with
different geometrical configurations, at constant mass of 1 g and
density=6.6 g/cm3. The detection point is at 15 cm from the
centre of the original cubic corner.

Fig. 13. Comparison between Gamma equivalent dose rate
obtained with an inclusion of homogenized spheres and an
inclusion of dense packing of 12 spheres inside a sphere of the same
radius of the homogeneous one.

Table 3. Equivalent dose rate calculated for different values of the radius of the source spheres.

Packing fraction j = 0.00121 (mass of the dust 1g) and MOX density r=6.6 g/cm3

Radius of the spherical inclusions r (cm) 5E-3 1E-1
EDR (mSv/h) 238 27

Table 4. Equivalent dose rate calculated for different packing fractions.

Radius of the spherical inclusions r= 0.05 cm and mox density r=6.6 g/cm3

Packing fraction j 0.00121 0.121
Mass of the dust (g) 1 100
EDR (mSv/h)
Mono-dispersed spherical inclusions

49 791

EDR (mSv/h)
Homogeneous model

277 867

12 A. Bonin et al.: EPJ Nuclear Sci. Technol. 8, 6 (2022)
At constant radius, the lower the amount of dust, the
further the model deviates from the homogeneous model.

In Table 5 are summarised the equivalent dose rate
results obtained with the different stochastic dust models
for a mass of 1 gram of dust deposited in a corner of the
glove box.

Depending on the stochastic models used for the dust,
the result differs more or less from the homogeneous model.
The different strategies for explicit dust modelling give
similar results, while they differ from the homogeneous
model.

Homogeneous model can lead to grossly overestimate
the dose on the hand of a glove box operator if dust has
deposited in large aggregates in the corners of the box.
Conversely, if a dose measurement in the glove box is
used to deduce the amount a radioactive dust (as an inverse
problem), the quantity of material can be greatly under-
estimated.For the specific applicationof radioprotection ina
glove box that we considered in this paper, the two models
with aggregates (cannonball and homogenized aggregates)
are two extreme cases that bound the dose estimates: both of
them should be simulated. The array of models presented in
this paper gives tools to model different spatial configu-
rations of dust grains and should be used accordingly.
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