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Abstract 13 

Identifying and protecting essential fish habitats like spawning grounds requires an accurate knowledge of 14 

fish spatio-temporal distribution. Data available through commercial declarations provide valuable 15 

information covering the whole year and consequently they could prove useful to identify spawning grounds. 16 

We developed an integrated framework to infer fish spatial distribution on a monthly time step by combining 17 

scientific and commercial data while explicitly considering the preferential sampling of fishermen towards 18 

areas of higher biomass. Over the spawning period, we applied a method to identify areas of persistent 19 

aggregation of biomass and interpret these as spawning areas. The model is applied to infer monthly maps 20 

of three species (sole, whiting, squids) in the Bay of Biscay on a 9-years period. Integrating several 21 

commercial fleets in inference provide a good coverage of the study area and improves model predictions. 22 

The preferential sampling parameters give insights into the temporal dynamics of the targeting behavior of 23 

the different fleets. Persistent aggregation areas reveal consistent with the available literature on spawning 24 

grounds, highlighting that our approach allows to identify potential areas of reproduction. 25 

Keywords: Species distribution model, Spatio-temporal model, Hierarchical model, VMS and logbook data, 26 

Fish reproduction areas, Template Model Builder (TMB)  27 
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1 INTRODUCTION 28 

Integrating fisheries into Marine Spatial Planning (MSP) to preserve ecosystem functions 29 

and ensure a sustainable exploitation requires an accurate knowledge of fish spatio-30 

temporal distribution and more specifically of fish essential habitats such as reproduction 31 

and nursery grounds (Janßen et al. 2018). However, such knowledge is still missing for 32 

many species due to a lack of data with sufficient spatial, temporal or demographic 33 

resolution (Delage and Le Pape 2016; Regimbart et al. 2018). 34 

The available data to map fish distribution and identify essential habitats mainly rely on 35 

either scientific survey data (fishery-independent data) or commercial data available 36 

through on-board observer programs (fishery-dependent data) (Pennino et al. 2016). Both 37 

data sources benefit of direct on-board recording of catches and are usually considered 38 

as high quality data. Furthermore, both data sources were proved to be complementary 39 

(Rufener et al. 2021). Scientific data benefit from a standardized sampling plan, a constant 40 

catchability and occur each year at the same period. Consequently, they provide 41 

standardized data on a large spatial extent for the most species and size classes (Hilborn 42 

and Walters 2013; Nielsen 2015). On the other hand, observer data potentially provide 43 

data over the full year for all caught species, even though they do not follow a standardized 44 

protocol as survey data. Both are characterized by a relatively low sampling intensity in 45 

space and time. Because of material limitations, surveys occur only once or twice a year 46 

and provide a limited number of sample each time (ICES 2005) and observer programs 47 

only cover a limited fraction of the entire fleet (e.g. only 1% of all sea trips are covered by 48 

the French observer programs - Cornou et al., 2021). The low sampling density of both 49 

data sources may lead to imprecise predictions (ICES, 2005; Alglave et al., 2022) and 50 
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constrains to consider only rough temporal resolution (e.g. semesters, quarters or 51 

seasons – see for instance Kai et al., 2017; Pinto et al., 2019; Rufener et al., 2021) to 52 

ensure a satisfying spatial coverage of the data at each time step. Nevertheless, the 53 

temporality of key biological events, such as the reproduction peak, may be much tighter 54 

than the temporal resolution of data (Biggs et al. 2021). Hence, those data alone are likely 55 

not to provide accurate inferences on essential fish habitats such as spawning grounds. 56 

Commercial catch declarations combined with their fishing locations available from VMS 57 

(Vessel Monitoring System) were proven to be an interesting alternative to obtain catch 58 

per unit effort (CPUE) data with fine spatial and temporal resolution (Pedersen et al. 2009; 59 

Bastardie et al. 2010; Gerritsen and Lordan 2010; Hintzen et al. 2012; Murray et al. 2013; 60 

Azevedo and Silva 2020). However, considering commercial fisheries data to infer fish 61 

spatial distribution remains highly challenging. Among other challenges, this implies 62 

accounting for fishermen sampling behavior. Fishermen typically tend to preferentially 63 

sample areas of higher biomass (a process referred to as preferential sampling, PS - 64 

Diggle et al. 2010) which can lead to biased spatial predictions if not accounted for in 65 

inference (Conn et al. 2017; Pennino et al. 2019; Alglave et al. 2022). 66 

In a recent paper, Alglave et al. (2022) developed an integrated modelling framework to 67 

infer spatial distribution of fish abundance by combining scientific survey and commercial 68 

CPUE data from different fishing fleets while accounting for PS in the distribution of fishing 69 

effort. They applied their framework to commercial data of a single month to match with 70 

the scientific survey, and did not consider any temporal dimension in their model. 71 

In this paper, we extend the modeling framework from Alglave et al. (2022) with a temporal 72 

dimension to estimate fish spatio-temporal distribution at a monthly time step. Our new 73 

model accounts for the variation over time (monthly time step) in the biomass field as well 74 
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as in the intensity of PS of the distinct fishing fleets. To illustrate the value of the method, 75 

we selected and applied the model to 3 demersal species in the Bay of Biscay (common 76 

sole, whiting and squids) characterized by contrasted configurations regarding the 77 

available knowledge of their spawning grounds. We used those applications to reinforce 78 

results obtained in Alglave et al. (2022) demonstrating how the integrated framework 79 

benefit from the huge amount of spatio-temporal CPUE data to produce accurate maps of 80 

spatio-temporal biomass. To illustrate the capacity of the framework to identify potential 81 

spawning grounds, we processed model outputs to identify areas of recurrent aggregation 82 

occurring during the reproduction season and confronted these to literature information. 83 

  84 



5 
 

2 MATERIAL AND METHODS 85 

In this section, we first present the different species, the datasets and how we process 86 

and combine them to produce CPUE data in space and time. Second, we extend the 87 

model proposed by Alglave et al. (2022) to introduce a temporal dimension on a discrete 88 

monthly time step. Then, we illustrate how integrating several fleets in the analysis 89 

improves models predictions, how the PS component modifies model predictions and can 90 

be interpreted. Last, we illustrate how we investigate spatio-temporal dynamics from 91 

model outputs and identify reproduction grounds based on the aggregation patterns of 92 

each 3 species. The models were fitted to data from 2010 to 2018 on a monthly time step 93 

(108 time steps).  94 

2.1 Case studies 95 

Sole is a data-rich case. Direct information about reproduction grounds is available 96 

through egg and larvae surveys (Arbault et al. 1986). Discard rates is also very low, which 97 

makes the landings data a good proxy of the catch (ICES 2019a). Whiting is a data-poor 98 

case study where only indirect information of reproduction period exists through spring 99 

trawl surveys (Houise and Forest 1993). Discard rates can be high (about 30 %) and thus 100 

landings data may provide a biased picture of the real catches (ICES 2019b). Squids 101 

represent a mixture of several species: Loligo Vulgaris (Lamarck, 1798), Loligo forbesii 102 

(Steenstrup, 1856) and Alloteuthis sp (Lamarck, 1798). They are declared under a 103 

common denomination in the catch (Loliginidae here referred as squids). Overall scientific 104 

survey suggest that the predominant species in the Bay of Biscay is Loligo Vulgaris (ICES, 105 

2020a, p.17). All 3 species are data-poor: no information exist regarding their reproduction 106 

grounds but some information of the reproduction period exist for Loligo Vulgaris (Moreno 107 

et al. 2002). 108 
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2.2 Data 109 

2.2.1 High spatial resolution catch per unit effort data for the mature component 110 
of the populations  111 

We pre-processed the VMS and catch declaration (logbook) data to obtain high spatial 112 

resolution CPUE data for the mature component of those three stocks, for three different 113 

fishing fleet, and for each month of the 2010-2018 time series. In the text, CPUE is used 114 

but no discard information is available at the scale of the fishing sequence. 115 

We selected data of three trawlers métiers OTB_DEF (bottom otter trawl targeting 116 

demersal species), OTB_CEP (bottom otter trawl targeting cephalopods) and OTT_DEF 117 

(multi-rig otter trawl targeting demersal species). Here the term fleets is used to refer to 118 

these groups. They refer to distinct component that have overall similar targeting 119 

behaviors and similar technical characteristics. These fleets were selected (1) so as to 120 

cover the full spatial domain (Figure 1) and (2) because fishing time of trawlers is a good 121 

proxy of effort which allows to compute reliable CPUE for biomass (Hovgêrd and Lassen 122 

2008).  123 

Because one of our primarily goal is to identify spawning grounds, we filtered only the 124 

mature fraction of the landings. This was done by crossing the landings data with length 125 

class and maturity data (see details in SM1). Note that this procedure was not possible 126 

for squids, as there are no data on maturity and size classes in this case. 127 

Landing data were then combined with VMS data to finally obtained high spatial resolution 128 

CPUE data discretized on a 0.05°x0.05° grid on a monthly time step (see the detailed 129 

procedure for this combination in Alglave et al. (2022) and SM2).  130 
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2.2.2 Scientific data 131 

We also integrated scientific data in the analysis. For hake and squids we used the survey 132 

data from the EVHOE survey. The Orhago survey was used for sole (ICES, 2020 - see 133 

SM, Figure S3). The data were extracted from the DATRAS database on the period 2010 134 

- 2018. Only the mature fraction of the survey catches were kept in the analysis to make 135 

it comparable with commercial data. Some details on the surveys are given in SM3. 136 

2.3 Spatio-temporal integrated model 137 

We build on the integrated hierarchical model proposed by Alglave et al. (2022) by 138 

incorporating a temporal component to model the evolution of the latent field of biomass 139 

across the monthly time steps (Figure 2). The PS of commercial data for the different 140 

fleets is modelled explicitly through inhomogeneous Poisson point processes for the 141 

fishing locations. 142 

2.3.1 Biomass field 143 

As a notable extension of Alglave et al. (2022), the biomass field (eq.1) is modelled as a 144 

spatio-temporal Gaussian Random Field (GRF) through a log link as: 145 

log(𝑆(𝑥, 𝑡)) = 𝛼𝑆(𝑡) + 𝛿(𝑥, 𝑡)  (1) 146 

where 𝑥 ∈ 𝐷 ⊂ 𝑅2 stands for the spatial locations and 𝑡 ∈ ⟦1, 𝑇⟧ the monthly time steps. 147 

The term 𝛼𝑆(𝑡) is a time varying intercept modelled as a fixed effect and 𝛿(𝑥, 𝑡) is a GRF 148 

spatio-temporal process which represents the spatio-temporal correlation structure of the 149 

biomass field. As commercial data may not always cover the full area, the temporal 150 

correlation component allows to interpolate between time-steps. Here, the spatio-temporal 151 

term has a classical stationary first-order autoregressive form (eq.2) following (Cameletti 152 

et al. 2013): 153 

𝛿(𝑥, 𝑡) = 𝜑 ∙ 𝛿(𝑥, 𝑡 − 1) + 𝜔(𝑥, 𝑡)    for 𝑡 = 2, . . . 𝑇   (2) 154 
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The autocorrelation coefficient 𝜑 is a scalar with 𝜑 ∈] − 1,1[, 𝜔(𝑥, 𝑡) represents the spatial 155 

innovation and is a 0 mean GRF (with no temporal correlation). 156 

Note that no covariate is included in the latent field to keep the model as simple as 157 

possible. If any, the covariates effects are captured through the spatio-temporal term 158 

𝛿(𝑥, 𝑡). Similarly, the intercept 𝛼𝑆(𝑡) was modelled through a simple fixed effect but more 159 

complex specifications including some seasonal, yearly and interaction effect could be 160 

adopted such as in Thorson et al. (2020). 161 

2.3.2 Sampling process for the commercial fishing points 162 

As the scientific survey sampling plan is designed independently from the biomass field, 163 

scientific sampling locations do not need to be modelled explicitly (Diggle et al. 2010). By 164 

contrasts, the dependence between the fishing locations and the biomass field has to be 165 

modelled to capture preferential sampling. We extended the model proposed by Alglave 166 

et al. (2022) to account for temporal variations in PS. Fishing locations are modelled as 167 

an inhomogeneous point process (𝑋𝑐𝑜𝑚𝑗 in the Figure 2) whose intensity 𝜆𝑗(𝑥, 𝑡) (eq.3) 168 

controls the expected number of fishing points within a given area:  169 

𝑙𝑜𝑔 (𝜆𝑗(𝑥, 𝑡)) = 𝛼𝑋𝑗(𝑡) + 𝑏𝑗(𝑡). 𝑙𝑜𝑔(𝑆(𝑥, 𝑡)) + 𝜂𝑗(𝑥, 𝑡)  (3) 170 

where: 171 

- the time varying intercept 𝛼𝑋𝑗(𝑡) quantifies the average fishing intensity on the 172 

whole area; as the biomass intercept 𝛼𝑆(𝑡), it is modelled as a fixed effect; 173 

- the time varying 𝑏𝑗(𝑡) quantifies the strength of PS; it is modelled as a fixed effect 174 

too. If 𝑏𝑗(𝑡) = 0, then PS is null. If 𝑏𝑗(𝑡) > 0, then PS occurs and the greater, the 175 

stronger PS;  176 
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- the pure spatial GRF 𝜂𝑗(𝑥, 𝑡) captures the remaining spatial variability in the fishing 177 

point pattern not captured by the PS term (for instance, dependence of the fishing 178 

locations towards management regulations, distribution of other targeted species, 179 

habits/tradition). 180 

2.3.3 Observation process 181 

All observations for both scientific and commercial data of any fleet 𝑗 are assumed all 182 

mutually independent conditionally on the latent field of biomass and the sampling 183 

locations. The observation model allows to distinguish several fleets with specific 184 

catchabilities. As data (both scientific and commercial) eventually present a high 185 

proportion of zero values, we model the observations through a Poisson-link zero-inflated 186 

model introduced by Thorson (2018) and already used in Alglave et al. (2022) (see 187 

detailed description of the observation model in SM4). 188 

2.3.4 Maximum likelihood estimation 189 

The estimation of the spatio-temporal model is achieved through maximum likelihood 190 

estimation. We used the SPDE approach Lindgren et al. (2011) and Template Model 191 

Builder (TMB - Kristensen et al., 2016) for a fast estimation of the spatial and spatio-192 

temporal random effects. Details on estimation are provided in SM 5, 6 and 7. 193 

2.4 Evaluating the Interest of integrating multiple fleets 194 

Integrating several fleets in inference allows to cover the whole area (Figure 1) and is 195 

expected to improve inferences. To illustrate the value of integrating the data from multiple 196 

fleets within a single integrated model, we compared the spatial predictions obtained by 197 

fitting the model to all available data with those obtained by integrating only one fleet. In 198 

addition, we investigated if integrating all the fleets in inference increased the correlation 199 
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between scientific data and model predictions. We also compared the coefficient of 200 

variation of the prediction between each model (for November 2018). 201 

2.5 Evaluating the value of modelling PS 202 

We first assessed the impact of PS on the distribution of biomass by comparing 203 

estimations obtained from integrated models (i.e. models fitted to all data sources) 204 

accounting for PS with those obtained when ignoring PS. We computed the log-likelihood 205 

related to each data source (commercial and scientific data) to assess if there is an 206 

improvement in model goodness-of-fit when accounting or not for PS. Note that fitting a 207 

model without PS is straightforward as it only requires to remove the sampling process 208 

component from the likelihood function. 209 

2.6 Interpreting the intensity of preferential sampling 210 

The estimates of PS parameters may bring valuable information on the dynamics of the 211 

fishery as they inform on the strength of the relationship between commercial sampling 212 

distribution and species distribution. We investigate the variability of the PS parameters 213 

(𝑏) by representing the variability of the different 𝑏 parameter estimates for the three case 214 

studies and the different fleets. Then, focusing on the sole case study, we highlight the 215 

insights brought by the model on the temporal evolution of PS and its seasonal variations. 216 

2.7 Investigating spatio-temporal dynamics and identifying reproduction 217 
grounds 218 

The spatio-temporal model provides some insight on the temporal dynamics of species 219 

distribution both at inter- and intra-annual levels. Based on the maps of abundance 220 

inferred at each time steps, we applied a method to identify recurrent aggregation areas.  221 
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2.7.1 Aggregation index 222 

We used the Getis and Ord index 𝐺𝑑 (𝑥, 𝑡) (Getis and Ord 1992; Ord and Getis 1995) to 223 

determine persistent aggregation areas (see for instance Milisenda et al., (2021)). The 224 

generalized version of the Getis and Ord index is given in Bivand and Wong (2018) and 225 

Ord and Getis (1995). Basically, 𝐺𝑑 (𝑥, 𝑡) is a normalized version of the ratio between the 226 

sum of the log-biomass (denoted 𝑠(𝑥, 𝑡)) within a fixed neighborhood 𝑑 and the sum of 227 

𝑠(𝑥, 𝑡) on the entire area (for a fixed time step) (Getis and Ord 1992). We computed these 228 

indices on 𝑠(𝑥, 𝑡) = log(𝑆(𝑥, 𝑡)) so that the 𝑠(𝑥, 𝑡) are Gaussian, which makes 𝐺𝑑 229 

Gaussian too. In the application, we used a neighborhood distance d=7.5 km which 230 

defines a small neighborhood of 8 cells (the direct neighbors of each cell grid) and allows 231 

to identify very localized aggregation areas. Positive values for the aggregation index 𝐺𝑑  232 

indicates that 𝑠(𝑥, 𝑡) fall within a local patch of high values while negative 𝐺𝑑  indicates 233 

that 𝑠(𝑥, 𝑡) fall within a local patch of low values. Near 0 values 𝐺𝑑 , indicates that 𝑠(𝑥, 𝑡) 234 

does not fall in some local aggregation patch.  As 𝐺𝑑  follows a standardized Gaussian 235 

distribution, the comparison between the value of the index and the quantiles of a standard 236 

Gaussian distribution can be used to evaluate whether or not the latent field of biomass 237 

fall within a statistically significant high or low aggregation patch. We used the quantile 238 

99% (2.58) as a threshold to ensure a high level of significance for patch detection (only 239 

local patch of positive values are considered) and applied the Bonferroni correction to 240 

account for the multiple statistical tests that are conducted. 241 

Then, we define the persistence indices 𝐼𝑃(𝑥, 𝑚) as the proportion for which a point 𝑥 falls 242 

significantly within an aggregation area for a specific month/season 𝑚 (can be either a 243 

month or several months) among several years. 𝐼𝑃 allows to define the persistent 244 
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aggregation areas during reproduction throughout the time series. They are used in the 245 

following to identify reproduction grounds. 246 

2.7.2 Confronting the results with the available literature  247 

We compare the information available from the literature (for sole and whiting) with the 248 

persistence indices on their reproduction periods. 249 

Arbault et al. (1986) investigated the reproduction of sole along the Bay of Biscay based 250 

on several egg surveys occurring in 1982. Five surveys were conducted between January 251 

and May. Egg density was sampled in different locations from Hendaye to Pointe du Raz 252 

(43°30N-48°N) and allowed to map the distribution of egg production on the full study 253 

domain. The pic of reproduction occurred in February; thus we compare the maps 254 

obtained from the February survey with the persistence index we obtained for February. 255 

For whiting, only two EVHOE trawl surveys occurred during spring (considered as the 256 

reproduction period of whiting) between 1987 and 1992 in the Bay of Biscay (Houise and 257 

Forest 1993). For each haul, the individuals were counted and aged. Individual up to two 258 

years were all considered mature. We compare the distribution of age-2 individuals 259 

obtained with these surveys (there were very few age 3-individuals) and the index of 260 

persistence from our model during spring (March to May). 261 

No available information exists regarding the reproduction grounds of squids in this area, 262 

however the study from Moreno et al. (2002) investigated the reproduction period for 263 

Loligo vulgaris in the Eastern Atlantic and highlighted that their reproduction falls in winter 264 

and spring with a pic from January to April. We compute the persistence index for this 265 

period to evidence if some spatial aggregation patterns emerge from the model outputs 266 

and could be considered as spawning grounds. 267 
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To assess whether the aggregation patterns within the reproduction period are stable over 268 

the time period, we iteratively computed the persistence index over a 5-year mobile time-269 

span while pushing forward one year each time.  270 
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3 RESULTS 271 

3.1 Assessing the contribution of each data sources to inference 272 

Results highlight how combining several commercial fleets in the framework brings a 273 

better picture of the spatial distribution on the whole domain. For instance, when 274 

comparing model prediction the month of the survey and survey outputs, integrating 275 

several fleets into the analysis improves correlation with scientific data (Figure 3). It also 276 

allows to reduce the standard deviation of the predictions on the full domain (Figure S8). 277 

When looking at the predictions within the spatial range of the fleets, single-fleet models 278 

logically provide similar spatial predictions compared with the integrated model (Figure 4; 279 

red dots). However, predictions realized outside the spatial range of the fleet largely depart 280 

from the ones realized through the integrated models (black dots, Figure 4), emphasizing 281 

that the other fleets bring additional information to inference in these areas. This is 282 

particularly evidenced with the OTB_CEP and OTT_DEF fleets that partially cover the 283 

study area compared with OTB_DEF that better cover the whole study area (Figure 1). 284 

3.2 Interpreting estimates PS intensity 285 

Estimates of the PS intensity (𝑏 parameters) for the different species, the different fleets 286 

and the different time steps provide information on the targeting behavior which are 287 

consistent with expertise. Estimates of 𝑏 are positive for each species and each fleet 288 

(Figure 5, left column). For squids, PS is the strongest for OTB_CEP followed by 289 

OTB_DEF and OTT_DEF. This is consistent with the expert knowledge of the targeting 290 

behavior of these fleets: OTB_CEP target cephalopods and catch on average 15% of 291 

squids while OTB_DEF and OTT_DEF catch respectively 5% and 1% of squid). A similar 292 

pattern can be identified for whiting (𝑏𝑂𝑇𝐵_𝐶𝐸𝑃 > 𝑏𝑂𝑇𝐵_𝐷𝐸𝐹 > 𝑏𝑂𝑇𝑇_𝐷𝐸𝐹); this is consistent 293 

with species spatial distribution as whiting (like squids) are found in coastal areas where 294 
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the OTB_CEP fleet is operating. For sole, the strength of PS is on average higher for 295 

OTB_CEP and OTT_DEF than for OTB_DEF but with less contrast between the three 296 

commercial fleets. 297 

Interestingly, some of the 𝑏 parameters time series emphasize seasonal patterns (Figure 298 

6, top). For instance in the sole case study for the OTB_CEP fleet, the 𝑏 parameters are 299 

higher in summer and autumn emphasizing relatively stronger PS, while being lower in 300 

winter and early spring (but see section 3.4 below for a more detailed interpretation of this 301 

seasonality pattern). 302 

3.3 Evaluating the influence of PS on spatial distribution 303 

Because estimates of 𝑏 are positive, spatial density of fishing points is positively correlated 304 

with biomass density. Hence, considering PS revises downwards the biomass estimates 305 

in areas not sampled by the commercial fleets compared to estimates obtained while 306 

ignoring PS (Figure 5, right column, black points), but does not strongly affect predictions 307 

in locations within the range of the fleets (blue points). Considering PS only slightly 308 

improves the fit of the model to the data. For the Sole case study, some improvement of 309 

the likelihood occurred in both the commercial and the scientific likelihood values (Table 310 

1). For whiting and squids, there are no strong modifications in both scientific and 311 

commercial likelihoods. 312 

3.4 Investigating spatio-temporal dynamics of fish biomass 313 

Results provide biomass density maps on a monthly time step that allow for evaluating 314 

seasonal distribution patterns, and from which aggregation index were calculated. The 315 

temporal correlation parameter (𝜑) is estimated around 0.8 for all the species emphasizing 316 

strong temporal correlations in the biomass field values. The range parameters are 317 
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estimated to 55 km for sole and squids while being estimated to 67 km for whiting 318 

emphasizing wider spatial autocorrelation for this species. 319 

Concerning the Sole case study, model predictions highlight the relatively offshore 320 

distribution from November to April and its coastal distribution from June to October 321 

suggesting some migrations happen between these 2 periods (Figure 6, bottom). In 322 

particular, the migration in June/July conducts to a contraction of the sole distribution 323 

around the Vendée coast, the Gironde Estuary and the Landes coast (45.5°N-46°N) while 324 

the migration in November leads to an expansion of the species distribution towards the 325 

offshore areas all along the Bay of Biscay. Interestingly such seasonality coincides with 326 

the seasonality of PS intensity for the OTB_CEP (Figure 6, Top). Higher PS parameters 327 

corresponds to coastal distribution of sole while lower PS parameters corresponds to 328 

offshore distribution of sole. 329 

Similar maps can be computed for the other species and are presented in SM10. 330 

3.5 Aggregation index and reproduction grounds 331 

Regarding spawning grounds, both sole and squids emphasize strong aggregation 332 

patterns that match the available knowledge of their reproduction grounds. For sole, the 333 

aggregation areas globally match with the observed area of maximum egg concentration 334 

(Figure 7), although reproduction grounds are slightly eastern in the case of egg maps. 335 

This slight discrepancy could be interpreted as an effect of the larval drift as the maps 336 

provided by Arbault et al. (1986) are concentration of eggs and not reproduction grounds 337 

per se. Overall, these aggregation areas are stable over time (Figure 8). 338 

For whiting, similar patterns can be identified during the reproduction period (Figure 7); 339 

they match with previous studies investigating the spatial distribution of mature whitings 340 
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(Houise and Forest 1993). In particular, the Northern (3°W-47°N) and the Southern (2°W-341 

45.5°N) aggregation patches are almost systematically significantly considered as 342 

aggregation areas (aggregation index equals 1) while the other middle one (2.5°W-343 

46.5°N) is classified as an aggregation area that appears less frequently. An additional 344 

persistent aggregation area can be identified in the North of the Bay of Biscay (4.5°W-345 

48°N) suggesting that reproduction may also occur in this area which was not identified in 346 

the report of Houise and Forest (1993). Interestingly the Northern aggregation area (3°W-347 

47°N) is more pronounced at the end of the period (Figure 8). 348 

For squids, no literature information related to any reproduction ground exist, only the time 349 

period of the reproduction is known (the pic fall between January to April). On this time 350 

period, some persistent aggregation areas can be evidenced in coastal areas (Figure 7) 351 

along the Vendée coast (2.5°W-46.5°N), the Landes coasts (1.5°W-44°N to 45°N) and 352 

around Belle-Île-en-Mer (3°W-47.25°N). Interestingly the two Northern aggregation areas 353 

are more pronounced at the end of the time series compared to the beginning of the time 354 

series (Figure 8). 355 

Similar maps of persistent aggregation areas are available for each month and evidence 356 

some other aggregation areas outside of the reproduction period (SM11). For instance, 357 

for sole a persistent patch can be identified offshore the Gironde Estuary (1.5°W – 45.5°N) 358 

from August to December.  359 

  360 
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4 DISCUSSION 361 

Main findings 362 

In this paper, we develop a framework to infer fish spatio-temporal distribution on a 363 

monthly time step while combining scientific survey data and commercial catch 364 

declarations from several fleets. Commercial catch data constitute a valuable data source 365 

that complement scientific survey or onboard sampling programs by providing much 366 

higher spatio-temporal sampling density. Those complementary sources of data were 367 

integrated through a spatio-temporal hierarchical model taking into account spatio-368 

temporal variation within the biomass field and PS on a monthly time step. We fitted the 369 

model to VMS-logbooks data filtered and processed over the period 2010-2018 for 3 370 

demersal species (sole, squids and whiting) in the Bay of Biscay.  371 

We emphasize the benefit of integrating several spatially complementary fleets to infer 372 

fish distribution throughout the year. We demonstrate how the within year dynamic of the 373 

PS parameters can be interpreted in regards to the joint dynamics of species distribution 374 

and effort distribution and to the overall targeting behavior of the fleets (e.g. OTB_CEP for 375 

the squids case study). Even though PS parameters are not fishing intention per se 376 

(Bourdaud et al. 2019), these could advantageously complement information provided by 377 

landing profiles to estimate the targeting behavior of any group of vessels (either 378 

métier/fleet or any group that would seem appropriate). 379 

Interestingly, although interpretation of the PS parameters provide insight into the spatio-380 

temporal fleet dynamics, accounting for PS in the inferences does not significantly improve 381 

model fitting even when some fleets emphasize strong PS (e.g. squids, OTB_CEP). These 382 

results contrasts with Alglave et al. (2022), and could result from the integration of several 383 
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fleets in the analysis that allow a full coverage of the area. Indeed, in Alglave et al. (2022), 384 

the fleet emphasizing strong PS only covered a restricted (and coastal) part of the area. 385 

As introducing PS mainly affects inferences on poorly sampled areas, predictions in the 386 

offshore areas where mostly affected. Here, as the fleets are all estimated to have a 387 

positive PS and cover the whole area, PS only downscale the predictions in the few areas 388 

areas that remain unsampled. 389 

Filtering the mature fraction of the population in both the scientific and the commercial 390 

data allow us to infer the spatio-temporal distribution of the mature fraction of the biomass 391 

through the year on a monthly time step. We developed an index to infer aggregation 392 

areas of the mature fraction of the biomass that are persistent across years. When 393 

calculated on a temporal window predefined following the available information on the 394 

reproduction period for each species, the aggregation index allow us to identify the main 395 

recurrent spatial aggregation areas within the reproduction period. Results demonstrate 396 

that the recurrent aggregation areas identified from our method for Sole and Whiting were 397 

highly consistent with those already identified in the literature. Our results demonstrate 398 

how the aggregation index can provide new insights on the spawning grounds for species 399 

like squids for which no information on the spawning grounds is available on the literature. 400 

Areas of high aggregation persistent across years were identified during the expected 401 

period of reproduction and could be interpreted as spawning grounds. This opens 402 

perspectives for applying more systematically the approach for species where no 403 

information of reproduction grounds is available to fill the gaps in our knowledge with 404 

minimum cost (Delage and Le Pape 2016; Regimbart et al. 2018). 405 

 406 

 407 
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Combining our results with other data sources to refine inferences on spawning 408 

grounds 409 

Although the mature fraction of the biomass was filtered in the data, our maps do not 410 

directly inform whether individuals are actually reproducing or not. Persistent aggregation 411 

areas should be considered as potential spawning areas rather than actual spawning 412 

areas. To get information on actual reproduction zones and support our findings, other 413 

kind of data could complement our analysis. Typically, our maps could be of great help to 414 

design surveys recording eggs, larvae and spawning individuals that would provide direct 415 

information of species reproduction (Fox et al. 2008). Because developing such additional 416 

surveys would be highly expensive, our maps could provide valuable a priori information 417 

to optimize the survey design and potentially find a compromise between the cost, the 418 

spatial extent, the temporal coverage of the survey and the accuracy of the expected 419 

estimates/predictions. Similar ideas were already applied to the sole case study to 420 

investigate more precisely the space-time variation of sole reproduction. Arbault et al. 421 

(1986) work provided a priori information of reproduction grounds that allowed designing 422 

more localized surveys to study inter- and intra-annual variability of one specific sole 423 

spawning area (Petitgas 1997). Several statistical methods have been developed since 424 

and are suitable to optimize such adaptive sampling design; see for instance the recent 425 

work of Leach et al. (2021). 426 

Our results could also be combined with fishermen expert knowledge (Yochum et al. 2011) 427 

to complement our knowledge of fish reproduction (Delage and Le Pape 2016). For 428 

instance, Bezerra et al. (2021) and Silvano et al. (2006) proved the usefulness of fishers 429 

knowledge to determine the temporality of fish spawning and to identify some spawning 430 

grounds by crossing the information of aggregation areas provided by several fishermen. 431 
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These were proved complementary with scientific data as they can be available at low 432 

cost and provide local knowledge of fish ecology. 433 

Limits and perspectives for the approach 434 

Our framework has several limitations that are all material for future research avenues.  435 

First, our model remains relatively simple in regards to all the temporal processes that 436 

actually occur within a fishery. It is both a strength and a weakness: such way the model 437 

remains relatively generic, but one might want to extend it further to account for other 438 

temporal and spatio-temporal processes affecting fisheries dynamics. For instance, we 439 

opted for a non-seasonal representation of the model, however one could make it 440 

seasonal by decomposing the intercepts 𝛼𝑆(𝑡) and 𝛼𝑋𝑗(𝑡) as well as the random effects 441 

𝛿(𝑥, 𝑡) and 𝜂(𝑥, 𝑡) into seasonal and yearly terms in addition to some ‘season x year’ 442 

interaction terms as is performed in Thorson et al. (2020). In their work, such specification 443 

mainly allowed to provide information over the time-steps where data was lacking. In the 444 

configuration of our case studies, data is available for all time steps and have a relatively 445 

good coverage of the study domain. Consequently, such model specification should not 446 

modify the overall inference of the biomass field we obtain even though it provide a nice 447 

conceptual view of seasonality. Alternatively, our framework could integrate orthogonal 448 

spatio-temporal terms in the latent field to capture the main mode of variability of the 449 

biomass field (Thorson et al. 2020b). Such orthogonal terms would allow to capture the 450 

main spatial patterns that structure the latent field as well as their variation in time. These 451 

could prove very useful to identify the structuring processes that affect species distribution 452 

and could give a valuable insight in the space-time dynamics of the species. Another 453 

exciting research avenue would consist in integrating population dynamics in the latent 454 
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field of biomass (Cao et al. 2020). This would require to refine further the demographic 455 

resolution of the VMS-logbooks data (see for instance Azevedo and Silva 2020), but once 456 

done, it would give access to huge data for inferring the space-time dynamics of fish 457 

populations. Finally, our model considers fishermen preferentially sample areas where the 458 

biomass is higher (preferential sampling), but does not consider any other drivers and 459 

specifically the temporal and spatio-temporal relations that can affect fishers behavior. 460 

These can be highly complex and may depend on the distribution of the resource, 461 

tradition/habits, management regulations (Abbott et al., 2015; Girardin et al., 2017; Salas 462 

and Gaertner, 2004; Hintzen, 2021). These drivers are rarely studied in both space and 463 

time (although see Tidd et al., 2015). Our framework could allow to jointly model the 464 

dynamics of the species, the distribution of the effort, the link that relates species 465 

distribution and effort in space/time and all the other spatial and/or temporal drivers that 466 

affect the distribution of fishing effort. For instance, we could relate the fishing intensity to 467 

the biomass field from the previous time steps, or alternatively consider that the locational 468 

choice depend on the catches of the previous time steps. Adding such covariates and 469 

spatio-temporal dependencies in the sampling equation (eq.3) will probably not modify the 470 

overall pattern of biomass distribution, but it would allow to quantify the drivers of 471 

fishermen behavior and give valuable insight in the functioning of the fishery. 472 

Second, including discards would potentially improve our approach. Indeed, logbooks 473 

data are landings declarations data which means they inform on the landings and not on 474 

the true catch. Thus, by assuming the observations we derive from logbooks data are 475 

representative of the biomass, we make the hypothesis that the discard rate is constant 476 

in space and time and does not affect model predictions. This should not be a problem for 477 

sole and squids as the discards are low and TAC have not been really binding during the 478 
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studied period. However, the issue might be more stringent for whiting and/or other 479 

species with a high and non stationary level of discards. Integrating discards data in the 480 

analysis could help solving this issue. Stock et al. (2019) and Yan et al. (2022) used 481 

observer data to model bycatch in both space and time and Breivik et al. (2017) used 482 

bycatch data from onboard surveys to predict the temporal evolution of bycatch realized 483 

in the full commercial data. Similarly, we could integrate into the same analysis the 484 

logbooks and the observer data by assuming that the catch of observer data is a 485 

summation of both landings (which is also observed in the logbooks data) and discards 486 

(which is unobserved in the logbooks data). This way, the discards information available 487 

from observer data would be shared with the logbooks data and would allow correcting 488 

for the missing portion of catch declarations data while possibly accounting for possible 489 

space or time variation in the discard rate. 490 

Last, our analysis rely on the hypothesis that the spawning season is known a priori. 491 

Extending the approach to infer the spawning season based on the temporal dynamic of 492 

the aggregation patterns could improve our knowledge of species spatio-temporal 493 

distribution. In particular, identifying the main species phenomenological phases and their 494 

consistency (or shift) in time is crucial in the context of global change (Thorson et al. 495 

2020a).  496 

In our study, we computed the aggregation index on a period we assumed to be the 497 

reproduction period based on literature (Arbault et al. 1986; Houise and Forest 1993; 498 

Moreno et al. 2002). Hence, our results are sensitive to this a priori hypothesis, or our 499 

approach can even be inapplicable for species when no information is available in the 500 

literature. Several methods exist and could be adapted to extract the spatial patterns that 501 

shape model outputs, their related temporal variation and identify from these the main 502 
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phenological phases that characterize species distribution (e.g. reproduction, feeding - 503 

see for instance Empirical Orthogonal Functions or Principal Oscillation Patterns - Cressie 504 

and Wikle 2015; Wikle et al. 2019). 505 

Future use for Marine Spatial Planning 506 

Finally, our approach could reveal useful in the context of Marine Spatial Planning (MSP). 507 

Janßen et al. (2018) highlighted that one of the main requirement for implementing MSP 508 

while accounting for fish ecology is the availability of fine scale information on species 509 

distribution and of their essential habitats. Here we propose a method which can provide 510 

such information for the fraction of the population available through catch declarations (i.e. 511 

mainly the adult fraction and in some cases part of the juvenile fraction). This knowledge 512 

is typically needed to design Marine Protected Areas (MPA – see for instance Lambert et 513 

al. (2017) or Loiselle et al. (2003)), Fishery Conservation Zones (Delage et Le Pape, 514 

2016 ; Regimbart et al., 2018), or alternatively identify areas that should be kept for fishing 515 

in a context were many other human activities are competing in space and time with 516 

fishing (Campbell et al. 2014; Bastardie et al. 2015). This would require to open the 517 

spectrum of the analysis to an economical dimension and possibly integrate our results 518 

into ecological–economic models in order to evaluate alternative management regulations 519 

and assess their tradeoffs in regards to all the sets of ecosystem services provided 520 

through activities such as fishing, aquaculture, energy, shipping, recreation and 521 

conservation (Nielsen et al. 2018). 522 

  523 
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TABLES 742 

 743 

Table 1. Ratio between the negative log-likelihood values (either commercial or 744 
scientific) from the IM accounting for PS and the IM ignoring PS. 745 

Species Negative log-likelihood ratio 

 Scientific data Commercial data 

Sole 0.97 0.92 

Squids 1.00 1.01 

Whiting 0.99 1.00 

Note. The ratio between negative log-likelihoods (−𝒍𝒐𝒈(𝒍𝒌𝒍)) is given as: 𝒓 =
−𝒍𝒐𝒈 (𝒍𝒌𝒍𝑷𝑺)

−𝒍𝒐𝒈 (𝒍𝒌𝒍𝒏𝒐𝑷𝑺)
.  746 

If 𝒓 < 𝟏, the model accounting for PS better fits the data than the model ignoring PS (no PS). 747 
  748 
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FIGURES CAPTION 749 

Figure 1.   Spatial distribution of each fleet on the whole period (2010-2018). Unit: fishing 750 
effort in fishing hour. 751 

 752 

Figure 2.   Diagram of the integrated spatio-temporal model. 753 

 754 

Figure 3.   Comparison between the observed scientific CPUE (y-axis) and the 755 
corresponding model predictions (x-axis) on the month of the survey, based on model 756 
integrating data from one commercial fleet only (either OTB_CEP, OTB_DEF, OTT_DEF) 757 
or from all commercial fleets (Integrated model). x-axis: model predictions. y-axis: 758 
scientific data observations (CPUE in kg/hour). Black line: linear regression ‘log(scientific 759 
observations) ~ log(model predictions)’. r: Spearman correlation coefficient. Scientific data 760 
are integrated to inference for all models. 761 

 762 

Figure 4.   Sole case study. Comparison between predictions from the integrated model 763 
(using all fishing fleets) and the model integrating only one commercial fleet for the 12 764 
months of year 2018. Left: OTB_CEP fleet, middle: OTB_DEF fleet, right: OTT_DEF fleet. 765 
x-axis: integrated model predictions. y-axis: single-fleet model predictions.  The prediction 766 
values are log-scaled. Red points: predictions within the sampling area of the related fleets 767 
(i.e. the cells sampled by the fleet). Black points: predictions outside the sampling area of 768 
the related fleets. Black line: 𝑥 = 𝑦 axis. Note that the intercept of the x-y line has been 769 
scaled to account for differences in the intercept values between models. Scientific data 770 
are integrated to inference for all models. 771 

 772 

Figure 5.   Estimates of PS parameters for each commercial fleet (left) and effect of PS 773 
on model outputs (right). Left: boxplot represent the variability of maximum likelihood 774 
estimates of parameters 𝑏 across the monthly time steps. Right: log-predictions of the 775 
integrated model accounting for PS (y-axis) versus log-predictions of the integrated model 776 
ignoring PS (x-axis) for the 12 months of year 2018. Blue points: predictions within the 777 
sampling area of the commercial fleets (i.e. the cells sampled by commercial fleets). Black 778 
point: predictions outside the sampling area of the commercial fleets. Black line: 𝑥 = 𝑦 779 
axis. 780 

 781 

Figure 6.  Sole case study. (Top) Temporal evolution of the 𝑏 parameters for the three 782 
commercial fleets fitted to the integrated model. Blue vertical lines: January. (Bottom) 783 
Monthly biomass distribution averaged on the full period. Only quantile values are 784 
represented. Model predictions come from the integrated model accounting for PS. 785 

 786 

Figure 7.   Left: index of persistence during the reproduction period of sole (February), 787 
whiting (March-May) and squids (January-April). Reproduction period defined from 788 
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ecological expertise. Index were computed from 2010 to 2018. Right: literature information 789 
on  reproduction grounds when available. For sole, the map represents egg concentration 790 
from an egg and larvae survey conducted in 1982 (Arbault et al., 1986). For whiting, the 791 
map represents records of age-2+ whiting (i.e. mature individuals), from two spring trawl 792 
surveys that occurred between 1987 and 1992 (Houise and Forest, 1993). Model 793 
predictions come from the integrated model accounting for PS. 794 

 795 

Figure 8.  Persistence indices within the reproduction period computed on a 5-year mobile 796 
time-span for each 3 species (5-year time span indicated on the top of each map). Model 797 
predictions come from the integrated model accounting for PS. 798 
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