Supplementary material

1 Filtering the mature fraction from the landings

The filtering of the mature fraction of the landings is described through the formula:

$$
\begin{aligned}
& \operatorname{Land}_{m}(C C)=\operatorname{Land}(C C) \cdot p_{m}(C C) \\
& p_{m}(C C)=\sum_{l} p_{l}(C C, l) * M O(l)
\end{aligned}
$$

where Land are the landings and Land_{m} the mature fraction of the landings.

By merging sales notes and logbooks, a comprehensive part of the landings can be expressed by commercial size categories $C C$ so as landings can be written as Land(CC) (SACROIS - Demanèche et al., 2013)). These commercial categories are regularly sampled to derive length structure of each commercial category. These data are often used in stock assessment routines to obtain catch-at-length data (ICES, 2017). The proportion of length class l within commercial category $C C$ is denoted $p_{l}(C C, l)$. To compute the mature proportion of the corresponding commercial category $p_{m}(C C)$, $p_{l}(C C, l)$ is combined with the proportion of mature individuals $M O(l)$ for a specific length class l available through maturity ogive. Once the mature proportions per commercial category are available, they can be crossed with landings Land (CC) to obtain the mature fraction of the landings $\operatorname{Land}_{m}(C C)$.

In the case studies, auction data are taken from ObsVentes data (Vigneau, 2009). The maturity ogive is assumed constant over the full period and the size distribution within each catch category is assumed to vary on a quarterly time step (sampling of demographic data is designed by quarters). Overall, the proportions of mature individuals within each commercial category fall between 75% to 100% for both sole and whiting (see SM, Figure

S1). When data are lacking for a specific quarter (because sampling is missing for certain quarters and commercial category), the missing data is replaced by the average of the mature proportion for the related catch category over the period.

Figure S1. Mature proportion of the catch per commercial size category on the whole time series (each point is the record of a quarter). Only the commercial categories where more than 10 individuals have been observed are plotted.

2 DISCRETIZATION GRID

Figure S2. Grid used to discretize commercial data, integrate the point process constant and compute the biomass predictions. Resolution: $0.05^{\circ} \mathrm{x} 0.05^{\circ}$.

3 Survey information and sampling Locations

Figure S3. Spatial distribution of the fishing hauls of the Orhago and the EVHOE surveys from 2010 to 2018.

Orhago is an annual beam trawl survey occuring in November and designed to assess sole stock status in the Bay of Biscay. Each year 50 stations are sampled within 4 strata all along the Bay of Biscay. Note that this survey is mainly coastal and does not sample offshore areas. EVHOE is an annual bottom trawl survey occurring in late October, November and early December. It is designed for demersal fishes in the Bay of Biscay and in the Celtic Sea. In the Bay of Biscay, 80 to 90 sampling hauls are recorded each year.

4 Zero-inflated observation model

The probability to obtain catch y_{i} conditionally on the location x_{i}, the time-step t_{i}, the biomass field value $S\left(x_{i}, t_{i}\right)$ and the fleet j is expressed as follow:

$$
\begin{gathered}
\mathrm{P}\left(Y_{i}=y_{i} \mid x_{i}, t_{i}, S\left(x_{i}, t_{i}\right), j\right)=\left\{\begin{array}{cc}
p_{i} & \text { if } y_{i}=0 \\
\left(1-p_{i}\right) \cdot \mathrm{L}\left(y_{i}, \frac{\mu_{j}\left(x_{i}, t_{i}\right)}{\left(1-p_{i}\right)}, \sigma_{j}^{2}\right) & \text { if } y_{i}>0
\end{array}\right. \\
p_{i}=\exp \left(-e^{\xi_{j}} \cdot \mu_{j}\left(x_{i}, t_{i}\right)\right)
\end{gathered}
$$

$\mu_{j}\left(x_{i}, t_{i}\right)=q_{j} . S\left(x_{i}, t_{i}\right)$ is the expected catch of fleet j at location x_{i} and time step t_{i}. It is the product of the latent field value $S\left(x_{i}, t_{i}\right)$ and of the relative catchability coefficient of fleet j denoted $q_{j} . \xi_{j}$ is a zero-inflation parameter controlling the proportion of zero in the data, σ_{j}^{2} is the observation variance when the catch is positive.

The probability to obtain catch y_{i} is modelled in 2 components:

- the probability to obtain a zero catch $\left(y_{i}=0\right)$. It is modelled as a Bernoulli variable with probability $p_{i}=\exp \left(-e^{\xi_{j}} \cdot \mu_{j}\left(x_{i}, t_{i}\right)\right) \cdot p_{i}$ is equivalent to the probability to obtain a 0 value with a Poisson distribution of intensity $e^{\xi_{j}} \cdot \mu_{j}\left(x_{i}, t_{i}\right)$. Then the probability to obtain a positive catch is given by $1-p_{i}$.
- the value of the positive catch is modelled through a lognormal distribution L with expected value $\frac{\mu_{j}\left(x_{i}, t_{i}\right)}{\left(1-p_{i}\right)}$ and observation error σ_{j}^{2}. The standardization by $\left(1-p_{i}\right)$ allows to keep the expectancy of the observation model to $\mu_{j}(x)$.

The catchabilities q_{j} are not identifiable per se and some additional constraints need to be set to estimate the relative catchability of each fleet (Alglave et al., (2022)). As is
common in variance analysis, one fleet catchability is set as reference level (e.g. $q_{r e f}=$ 1, here OTB_DEF was used as the reference fleet) and the other fleets' catchabilities are estimated relatively to the reference fleet through the equation:

$$
q_{j}=k_{j} . q_{r e f}
$$

5 The SPDE approach

Estimating Σ is performed through the SPDE approach, which proves efficient to estimate correlation among points when the size of the covariance matrix becomes large.

Estimating Σ at every spatial locations can be computationally challenging when the dimension of Σ increases. A solution to overcome this computational burden was provided by Lindgren et al. (2011) through the SPDE approach. Instead of modelling the random effect as a GRF, the random effect ω is represented as a Markovian representation of the GRF (GMRF) on the nodes of a triangulated mesh (e.g. see Figure S5). of $\sim\left(0, Q^{-1}\right)$, with Q the precision matrix which benefits from the sparse property of GMRF. The link between the random effect values estimated at each mesh node and the observations on the continuous space (defined on $D \subset R^{2}$) is realized through linear interpolation. For extended details on the SPDE approach, GRF and the Matérn function, refer to Lindgren et al. (2011) and Cameletti et al. (2013).

To compute fine-scale spatial predictions of the biomass field, the latent field values obtained at the mesh nodes are interpolated on a discrete grid with much finer resolution (see SM2, Figure S2) as done in other packages such as VAST (Thorson, 2019).

Figure S5. Mesh used to estimate the spatio-temporal random effects $\epsilon(x, t)$ and $\eta(x, t)$.

6 Estimating the point process

The log-likelihood of the point process is expressed as $\log \left(\pi\left[X_{\text {com }}\right]\right)=\sum_{i=1}^{m} \log \lambda_{j}\left(x_{i}\right)-$ $\int_{D} \lambda_{j}(x) d x$ with m the number of observations. The term $\int_{D} \lambda_{j}(x) d x$ (also called the 'normalization constant') cannot be calculated explicitly and must be computed numerically (Renner et al., 2015). A common procedure consists in integrating $\lambda_{j}(x, t)$ over the study domain through a method referred as 'quadrature’; a set of 'quadrature points' are selected on the area and are used to approximate the log-likelihood through a weighted sum of the intensity λ_{j} at each quadrature points. Concretely, the log-likelihood is re-expressed as $\log \left(\pi\left[X_{\text {comj }}\right]\right) \approx \sum_{i=1}^{m} \log \lambda\left(x_{i}\right)-\sum_{k=1}^{n} w_{k} \cdot \lambda\left(x_{k}\right)$ with $\mathrm{w}=\left\{w_{1}, \ldots, w_{n}\right\}$ the quadrature weights and $x_{k}, k \in \llbracket 1, n \rrbracket$ the related quadrature points. For simplicity, we opted for a fine regular quadrature which makes all w_{k} equal (the quadrature points are the centroid of the cell grid of Figure S2). Note that more time-efficient methods exist (Jullum, 2020; Simpson et al., 2016), but will not be explored here as the one proposed by Renner et al. (2015) is a simple, stable and standard method for estimating the normalization constant.

7 Maximum likelihood estimation

As the random effects are in the logscale, the estimates of the biomass field and sampling intensity may be biased. We used the epsilon bias-correction to mitigate this bias (Thorson and Kristensen, 2016). Standard deviations were computed through the δ-method. However, both methods imply an increasing computation time as number of time steps and the number/size of random effects increases. For this reason, bias correction and δ method were performed only for the biomass field values we explicitly map in the results. Still, fitting the model on the full time series can be computationally intensive. This is particularly true when the number of time steps and the number of fleets increases. To overcome this issue, we considered each year as a block and fitted each year (12 time steps) separately before merging the outputs of each block to reconstruct the full time series. We used the Datarmor supercomputer (Ifremer, 115 Gb available for each node, sequential fitting) to fit each block.

8 BIOMASS PREDICTIONS AND RELATED COEFFICIENT OF VARIATION FOR November 2018

Figure S8. Sole case study. Biomass field spatial predictions (top) and related coefficient of variation (bottom) obtained for November 2018. Integrated model: model combining all data sources. OTB_CEP: model fitted to OTB_CEP fleet. OTB_DEF: model fitted to OTB_DEF fleet. OTT_DEF: model fitted to OTT_DEF fleet. Black dots: fishing pings of each fleet.

Integrating the data from all the fleets allows a better coverage of the whole area and provide more accurate predictions on the full study domain. Predictions based on singlefleet models have high standard errors outside the fleet's sampling area while, when all fleets are integrated, standard deviation is drastically reduced in these areas (Figure S8).

9 Spatial predictions with and without PS (November 2018)

Spatial predictions with (PS) and without preferential sampling (no_PS)

Sole - November 2018

Figure S9.1. Sole. Biomass predictions in November 2018 for an integrated model accounting for PS or not (no_PS).

Spatial predictions with (PS) and without preferential sampling (no_PS)

Figure S9.2. Whiting. Biomass predictions in November 2018 for an integrated model accounting for PS or not (no_PS).

Spatial predictions with (PS) and without preferential sampling (no_PS)

Squids - November 2018

Figure S9.3. Squids. Biomass predictions in November 2018 for an integrated model accounting for PS or not (no_PS).

10 Monthly average biomass predictions

Figure S10.1. Whiting. Monthly biomass distribution averaged on the full period. Only quantile values are represented.

Squids

- quant.0-25\% - quant.25-50\% - quant.50-75\% • quant.75-100\%

Figure S10.2. Squids. Monthly biomass distribution averaged on the full period. Only quantile values are represented.

11 Persistence index maps

Figure S11.1. Sole. Monthly persistence indices. Aggregation over 2010-2018.

Figure S11.2. Whiting. Monthly persistence indices. Aggregation over 2010-2018.

Figure S11.3. Squids. Monthly persistence indices. Aggregation over 2010-2018.

