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Supplementary material 1 

1 FILTERING THE MATURE FRACTION FROM THE LANDINGS 2 

The filtering of the mature fraction of the landings is described through the formula:  3 

𝐿𝑎𝑛𝑑𝑚(𝐶𝐶) = 𝐿𝑎𝑛𝑑(𝐶𝐶). 𝑝𝑚(𝐶𝐶) 4 

𝑝𝑚(𝐶𝐶) = ∑ 𝑝𝑙(𝐶𝐶, 𝑙) ∗ 𝑀𝑂(𝑙)

𝑙

 5 

where 𝐿𝑎𝑛𝑑 are the landings and 𝐿𝑎𝑛𝑑𝑚 the mature fraction of the landings. 6 

By merging sales notes and logbooks, a comprehensive part of the landings can be 7 

expressed by commercial size categories 𝐶𝐶 so as landings can be written as 𝐿𝑎𝑛𝑑(𝐶𝐶) 8 

(SACROIS - Demanèche et al., 2013)). These commercial categories are regularly 9 

sampled to derive length structure of each commercial category. These data are often 10 

used in stock assessment routines to obtain catch-at-length data (ICES, 2017). The 11 

proportion of length class 𝑙 within commercial category 𝐶𝐶 is denoted 𝑝𝑙(𝐶𝐶, 𝑙). To 12 

compute the mature proportion of the corresponding commercial category 𝑝𝑚(𝐶𝐶), 13 

𝑝𝑙(𝐶𝐶, 𝑙) is combined with the proportion of mature individuals 𝑀𝑂(𝑙) for a specific length 14 

class 𝑙 available through maturity ogive. Once the mature proportions per commercial 15 

category are available, they can be crossed with landings 𝐿𝑎𝑛𝑑(𝐶𝐶) to obtain the mature 16 

fraction of the landings 𝐿𝑎𝑛𝑑𝑚(𝐶𝐶). 17 

In the case studies, auction data are taken from ObsVentes data (Vigneau, 2009). The 18 

maturity ogive is assumed constant over the full period and the size distribution within 19 

each catch category is assumed to vary on a quarterly time step (sampling of demographic 20 

data is designed by quarters). Overall, the proportions of mature individuals within each 21 

commercial category fall between 75% to 100% for both sole and whiting (see SM, Figure 22 



2 
 

S1). When data are lacking for a specific quarter (because sampling is missing for certain 23 

quarters and commercial category), the missing data is replaced by the average of the 24 

mature proportion for the related catch category over the period. 25 

 26 

Figure S1.   Mature proportion of the catch per commercial size category on the whole 27 
time series (each point is the record of a quarter). Only the commercial categories where 28 

more than 10 individuals have been observed are plotted. 29 

  30 
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2 DISCRETIZATION GRID 31 
 32 

 33 

Figure S2.   Grid used to discretize commercial data, integrate the point process 34 
constant and compute the biomass predictions. Resolution: 0.05°x0.05°. 35 

 36 

 37 

  38 
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3 SURVEY INFORMATION AND SAMPLING LOCATIONS 39 
 40 

 41 

Figure S3.   Spatial distribution of the fishing hauls of the Orhago and the EVHOE 42 
surveys from 2010 to 2018. 43 

 44 

Orhago is an annual beam trawl survey occuring in November and designed to assess 45 

sole stock status in the Bay of Biscay. Each year 50 stations are sampled within 4 strata 46 

all along the Bay of Biscay. Note that this survey is mainly coastal and does not sample 47 

offshore areas. EVHOE is an annual bottom trawl survey occurring in late October, 48 

November and early December. It is designed for demersal fishes in the Bay of Biscay 49 

and in the Celtic Sea. In the Bay of Biscay, 80 to 90 sampling hauls are recorded each 50 

year. 51 
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4 ZERO-INFLATED OBSERVATION MODEL 52 

The probability to obtain catch 𝑦𝑖 conditionally on the location 𝑥𝑖, the time-step 𝑡𝑖, the 53 

biomass field value 𝑆(𝑥𝑖, 𝑡𝑖) and the fleet 𝑗 is expressed as follow: 54 

P(𝑌𝑖 = 𝑦𝑖|𝑥𝑖, 𝑡𝑖 , 𝑆(𝑥𝑖, 𝑡𝑖), 𝑗) = {

𝑝𝑖  if 𝑦𝑖 = 0

(1 − 𝑝𝑖) ⋅ L (𝑦𝑖,
𝜇𝑗(𝑥𝑖, 𝑡𝑖)

(1 − 𝑝𝑖)
, 𝜎𝑗

2)  if 𝑦𝑖 > 0
 55 

𝑝𝑖 = exp (−𝑒𝜉𝑗 ⋅ 𝜇𝑗(𝑥𝑖, 𝑡𝑖)) 56 

 57 

𝜇𝑗(𝑥𝑖, 𝑡𝑖) = 𝑞𝑗 . 𝑆(𝑥𝑖, 𝑡𝑖) is the expected catch of fleet 𝑗 at location 𝑥𝑖 and time step 𝑡𝑖. It is 58 

the product of the latent field value 𝑆(𝑥𝑖 , 𝑡𝑖) and of the relative catchability coefficient of 59 

fleet 𝑗 denoted 𝑞𝑗. 𝜉𝑗 is a zero-inflation parameter controlling the proportion of zero in the 60 

data, 𝜎𝑗
2 is the observation variance when the catch is positive. 61 

The probability to obtain catch 𝑦𝑖 is modelled in 2 components: 62 

 the probability to obtain a zero catch (𝑦𝑖 = 0). It is modelled as a Bernoulli variable 63 

with probability 𝑝𝑖 = exp (−𝑒𝜉𝑗 ⋅ 𝜇𝑗(𝑥𝑖, 𝑡𝑖)). 𝑝𝑖 is equivalent to the probability to obtain 64 

a 0 value with a Poisson distribution of intensity 𝑒𝜉𝑗 ⋅ 𝜇𝑗(𝑥𝑖 , 𝑡𝑖). Then the probability 65 

to obtain a positive catch is given by 1 − 𝑝𝑖. 66 

 the value of the positive catch is modelled through a lognormal distribution L with 67 

expected value 
𝜇𝑗(𝑥𝑖,𝑡𝑖)

(1−𝑝𝑖)
 and observation error 𝜎𝑗

2. The standardization by (1 − 𝑝𝑖) 68 

allows to keep the expectancy of the observation model to 𝜇𝑗(𝑥). 69 

The catchabilities 𝑞𝑗 are not identifiable per se and some additional constraints need to 70 

be set to estimate the relative catchability of each fleet (Alglave et al., (2022)). As is 71 
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common in variance analysis, one fleet catchability is set as reference level (e.g. 𝑞𝑟𝑒𝑓 =72 

1, here OTB_DEF was used as the reference fleet) and the other fleets’ catchabilities are 73 

estimated relatively to the reference fleet through the equation: 74 

𝑞𝑗 = 𝑘𝑗 . 𝑞𝑟𝑒𝑓 75 

  76 
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5 THE SPDE APPROACH 77 

Estimating 𝛴 is performed through the SPDE approach, which proves efficient to estimate 78 

correlation among points when the size of the covariance matrix becomes large. 79 

Estimating 𝛴 at every spatial locations can be computationally challenging when the 80 

dimension of 𝛴 increases. A solution to overcome this computational burden was provided 81 

by Lindgren et al. (2011) through the SPDE approach. Instead of modelling the random 82 

effect as a GRF, the random effect 𝜔 is represented as a Markovian representation of the 83 

GRF (GMRF) on the nodes of a triangulated mesh (e.g. see Figure S5). 𝜔~ ∼ (0, 𝑄−1), with 84 

𝑄 the precision matrix which benefits from the sparse property of GMRF. The link between 85 

the random effect values estimated at each mesh node and the observations on the 86 

continuous space (defined on 𝐷 ⊂ 𝑅2) is realized through linear interpolation. For 87 

extended details on the SPDE approach, GRF and the Matérn function, refer to Lindgren 88 

et al. (2011) and Cameletti et al. (2013). 89 

To compute fine-scale spatial predictions of the biomass field, the latent field values 90 

obtained at the mesh nodes are interpolated on a discrete grid with much finer resolution 91 

(see SM2, Figure S2) as done in other packages such as VAST (Thorson, 2019). 92 
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 93 

Figure S5.   Mesh used to estimate the spatio-temporal random effects 𝜖(𝑥, 𝑡) and 94 
𝜂(𝑥, 𝑡). 95 

  96 
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6 ESTIMATING THE POINT PROCESS 97 

The log-likelihood of the point process is expressed as log(𝜋[𝑋𝑐𝑜𝑚𝑗]) = ∑ log𝑚
𝑖=1 𝜆𝑗(𝑥𝑖) −98 

∫ 𝜆𝑗𝐷
(𝑥)𝑑𝑥 with 𝑚 the number of observations. The term ∫ 𝜆𝑗𝐷

(𝑥)𝑑𝑥 (also called the 99 

‘normalization constant’) cannot be calculated explicitly and must be computed 100 

numerically (Renner et al., 2015). A common procedure consists in integrating 𝜆𝑗(𝑥, 𝑡) 101 

over the study domain through a method referred as ‘quadrature’; a set of ‘quadrature 102 

points’ are selected on the area and are used to approximate the log-likelihood through a 103 

weighted sum of the intensity 𝜆𝑗 at each quadrature points. Concretely, the log-likelihood 104 

is re-expressed as log(𝜋[𝑋𝑐𝑜𝑚𝑗]) ≈ ∑ log𝑚
𝑖=1 𝜆(𝑥𝑖) − ∑ 𝑤𝑘

𝑛
𝑘=1 . 𝜆(𝑥𝑘) with w = {𝑤1, . . . , 𝑤𝑛} 105 

the quadrature weights and 𝑥𝑘, 𝑘 ∈ ⟦1, 𝑛⟧ the related quadrature points. For simplicity, we 106 

opted for a fine regular quadrature which makes all 𝑤𝑘 equal (the quadrature points are 107 

the centroid of the cell grid of Figure S2). Note that more time-efficient methods exist 108 

(Jullum, 2020; Simpson et al., 2016), but will not be explored here as the one proposed 109 

by Renner et al. (2015) is a simple, stable and standard method for estimating the 110 

normalization constant. 111 

  112 
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7 MAXIMUM LIKELIHOOD ESTIMATION  113 

As the random effects are in the logscale, the estimates of the biomass field and sampling 114 

intensity may be biased. We used the epsilon bias-correction to mitigate this bias (Thorson 115 

and Kristensen, 2016). Standard deviations were computed through the 𝛿-method. 116 

However, both methods imply an increasing computation time as number of time steps 117 

and the number/size of random effects increases. For this reason, bias correction and 𝛿-118 

method were performed only for the biomass field values we explicitly map in the results. 119 

Still, fitting the model on the full time series can be computationally intensive. This is 120 

particularly true when the number of time steps and the number of fleets increases. To 121 

overcome this issue, we considered each year as a block and fitted each year (12 time 122 

steps) separately before merging the outputs of each block to reconstruct the full time 123 

series. We used the Datarmor supercomputer (Ifremer, 115 Gb available for each node, 124 

sequential fitting) to fit each block.  125 
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8 BIOMASS PREDICTIONS AND RELATED COEFFICIENT OF VARIATION FOR 126 

NOVEMBER 2018  127 

 128 

Figure S8.   Sole case study. Biomass field spatial predictions (top) and related 129 
coefficient of variation (bottom) obtained for November 2018. Integrated model: model 130 

combining all data sources. OTB_CEP: model fitted to OTB_CEP fleet. OTB_DEF: 131 
model fitted to OTB_DEF fleet. OTT_DEF: model fitted to OTT_DEF fleet. Black dots: 132 

fishing pings of each fleet. 133 

 134 

Integrating the data from all the fleets allows a better coverage of the whole area and 135 

provide more accurate predictions on the full study domain. Predictions based on single-136 

fleet models have high standard errors outside the fleet’s sampling area while, when all 137 

fleets are integrated, standard deviation is drastically reduced in these areas (Figure S8). 138 

 139 

 140 

  141 
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9 SPATIAL PREDICTIONS WITH AND WITHOUT PS (NOVEMBER 2018) 142 

  143 

 144 

Figure S9.1.   Sole. Biomass predictions in November 2018 for an integrated model 145 
accounting for PS or not (no_PS). 146 
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 147 

Figure S9.2.   Whiting. Biomass predictions in November 2018 for an integrated model 148 
accounting for PS or not (no_PS). 149 
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 150 

Figure S9.3.   Squids. Biomass predictions in November 2018 for an integrated model 151 
accounting for PS or not (no_PS). 152 

 153 

  154 
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10 MONTHLY AVERAGE BIOMASS PREDICTIONS  155 

 156 

Figure S10.1. Whiting. Monthly biomass distribution averaged on the full period. Only 157 
quantile values are represented. 158 

 159 
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 160 

Figure S10.2. Squids. Monthly biomass distribution averaged on the full period. Only 161 
quantile values are represented. 162 
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11 PERSISTENCE INDEX MAPS 164 

 165 

Figure S11.1.   Sole. Monthly persistence indices. Aggregation over 2010-2018. 166 
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 168 

Figure S11.2.   Whiting. Monthly persistence indices. Aggregation over 2010-2018. 169 
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 170 

Figure S11.3.   Squids. Monthly persistence indices. Aggregation over 2010-2018. 171 

 172 


