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Holonomic equations are recursive equations which allow computing efficiently numbers of combinatoric objects.
Rémy showed that the holonomic equation associated with binary trees yields an efficient linear random generator
of binary trees. I extend this paradigm to Motzkin trees and Schröder trees and show that despite slight differences
my algorithm that generates random Schröder trees has linear expected complexity and my algorithm that generates
Motzkin trees is in O(n) expected complexity, only if we can implement a specific oracle with a O(1) complexity.
For Motzkin trees, I propose a solution which works well for realistic values (up to size ten millions) and yields an
efficient algorithm.
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1 Introduction
In this paper, I am interested in efficient algorithms for randomly generating several sorts of binary trees.
For this, I consider recurrences defining sequences of integer coefficients and, more precisely, I am in-
terested in specific recurrences Fn called “holonomic recurrence” where roughly speaking, “holonomic”
means that Fn+s is a combination, using polynomials in n, of the Fi’s, for n ≤ i ≤ n + s. More precisely,
(see Flajolet and Sedgewick’s book [15], Appendix B.4) the coefficients fulfill the following recurrence:

Ps(n)Fn+s + Ps−1(n)Fn+s−1 + ... + P0(n)Fn = 0

for some n ≥ n0, where the Pj(n) are polynomials in n. This kind of recurrence is called a P -recurrence.
For instance, for Catalan numbers:

Cn −
n−1

∑
k=0

CkCn−k−1 = 0

is the classical recurrence that is used in general to defined them, but it is not a P -recurrence, whereas

(n + 1)Cn − 2(2n − 1)Cn−1 = 0

is the P -recurrence, which will be considered later on. Notice that initial values should be added to this
P -recurrence. This will be considered in the paper for each specific case.
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⍟

T ○ ⋆

T

Fig. 1: Rémy’s right insertion of a leaf

In this paper, I consider three families of binary trees (planar binary trees or Catalan trees, Motzkin
trees aka unary-binary trees, Schröder trees) and their random generation. It turns out that holonomic
recurrences play a key role in the design of efficient random generation algorithms.

The three examples: binary trees, Motzkin trees, Schröder trees are interesting because they have dif-
ferent holonomic equations, one (Catalan numbers) has one term on the right, one (Motzkin numbers) has
a sum of two terms on the right and one (Schröder numbers) has a subtraction of two terms, on the right.
These yield different random generation algorithms, as this will be explained further in this paper.

This paper is associated with a library of programs written in Haskell and in Python, available on
GitHub. The reader who wants to read a better rendering of the programs of this paper is invited to get the
version on my web page or the version available on GitHub.

2 Random binary trees
Rémy’s algorithm [24] for generation of random binary trees is of linear complexity, i.e., O(n). It is based
on a constructive proof of the holonomic equation [25]:

(n + 1)Cn = 2(2n − 1)Cn−1

Here “constructive” means that an explicit bijection between objects counted by the both sides of the
equation is provided. In the case of binary trees, this holonomic equation is very peculiar since Cn times a
polynomial in n is equal to Cn−1 times a polynomial in n. We will see that this is not the case for Motzkin
numbers and Schröder numbers, but the paradigm can be extended. Rémy’s algorithm is described by
Knuth in [21] § 7.2.1.6 (pp. 18-19) and works on extended binary trees, or just binary trees in which we
distinguish internal nodes and external nodes or leaves. The idea of the algorithm is that a random binary
tree can be built by iteratively and randomly drawing an internal node or a leaf in a random binary tree
and inserting, between it and its parent a new internal node and a new leaf either on the left or on the right
(see Figure 1). An insertion is also possible at the root. In this case, the new inserted node becomes the
root. The root can be seen as the child of a hypothetical node

A binary tree of size n has n − 1 internal nodes and n leaves. We label binary trees with numbers
between 0 and 2n − 2 such that internal nodes are labeled with odd numbers and leaves are labeled with
even numbers. Inserting a node in a binary tree of size n requires drawing randomly a number between 0
and 4n − 3. This process can be optimized by representing a binary tree as a list (a vector in Haskell),
an idea sketched by Rémy and described by Knuth. In this vector, even values are for internal nodes and
odd values are for leaves. The root is located at index 0. The left child of an internal node with label
2k + 1 is located at index 2k + 1 and its right child is located at index 2k + 2. Here is a vector representing
a binary tree with 10 leaves and its drawing.

https://github.com/PierreLescanne/Motzkin
http://perso.ens-lyon.fr/pierre.lescanne/PUBLICATIONS/Hol_Lin_Gen.pdf
https://github.com/PierreLescanne/Motzkin
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indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
values 1 13 0 2 5 9 7 8 4 11 17 12 10 15 3 16 14 18 6

1

13 0

15 3

16 14 2 5

9 7

11 17 8 4

12 10 18 6

This tree was built by inserting the node 17 together with the leaf 18 in the following vector.

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
values 1 13 0 2 5 9 7 8 4 11 6 12 10 15 3 16 14

which codes the tree
1

13 0

15 3

16 14 2 5

9 7

11 6 8 4

12 10

This was done by drawing a node (internal node or leaf, here the node with label 6, right child of the node
with label 9) and a direction (here right) and by inserting above this node a new internal node (labeled 17)
and, below the new inserted internal node, a new leaf of the left (labeled 18). This double action (inserting
the internal node and attaching the leaf) is done by choosing a number in the interval [0..33] (in general,
in the interval [0..(4n − 3)]). Assume that in this case the random generator returns 21. 21 contains two
pieces of information : its parity (a boolean) and floor of its half. Half of 21 is 10, which tells that the new
node 17 must be inserted above the 11th node (in the vector) namely 6. Since 21 is odd, the rest of the
tree (here reduced to the leaf 6) is inserted on the right (otherwise it would be inserted on the left). A new
leaf 18 is inserted on the left (otherwise it would be inserted on the right).
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Consider the same tree and suppose that the random value is 8. Half of 8 is 4. Hence the new internal
node labeled by 17 is inserted above the node labeled by 5

1

13 0

15 3

16 14 2 5

9 7

11 6 8 4

12 10

and, since 8 is even, the rest of the tree is inserted on the left and a new leaf (labeled 18) is inserted on the
right.

1

13 0

15 3

16 14 2 17

5 18

9 7

11 6 8 4

12 10

The algorithm (Figure 2) works as follows. If n = 0, Rémy’s algorithm returns the vector starting at 0
and filled with anything, since the whole algorithm works on the same vector with the same size. In
general, say that, for n − 1, Rémy’s algorithm returns a vector v (vector is the concept used in Haskell
for arrays that can be changed in place). In our Haskell implementation the function yields an object of
type Gen (Vector Int) which returns vector and carries a hidden random number generator. One
accesses to the generator by get and stores the new generator by put. One draws a random integer x
between 0 and 4n − 3. Let k be half of x. In the vector v one replaces the kth position with 2n − 1 and
one appends two elements, namely the kth item of v followed by 2n if x is even and 2n followed by the
kth item of v if x is odd.

The algorithm builds a uniformly random decorated binary tree, i.e., a binary tree with its leaves num-
bered 0, 2,... 2n. We notice that the construction of a tree with such labels is unique, the labels of the
internal nodes are a consequence of the construction, hence are deduced from the labels of the leaves. If
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1 rbt :: Int −> Int −> Gen (Vector Int)
2 rbt seed 0 = do put (mkStdGen seed)
3 return( initialVector // [(0,0)])
4 rbt seed n =
5 do v <− rbt seed (n−1)
6 generator <− get
7 let (rand, newGenerator) = randomR (0::Double,1) generator
8 put newGenerator
9 let x = floor (rand * fromIntegral (4*n−3))

10 −− x is a random value between 0 and 4n−3 −−
11 k = x ‘div ‘ 2
12 case even x of
13 True −> return(v // [( k,2*n−1),(2*n−1,v!k ),(2*n,2*n )])
14 False −> return(v // [( k,2*n−1),(2*n−1,2*n),(2*n,v!k )])

Fig. 2: Haskell program for Rémy’s algorithm

we ignore the leaves, we get a uniform distribution for the undecorated binary trees (i.e., with no labels
on the leaves).

In the program, rands is a vector of random floating numbers between 0 and 1.

3 Motzkin trees
Motzkin trees are also called unary-binary trees. This paper proposes an algorithm for random generation
of Motzkin trees. The algorithm takes the same paradigm as this of Rémy’s linear algorithm for random
generation of binary trees [24]. Assume n is the size of the trees. My algorithm for random generation of
Motzkin trees is based on a bijective proof due to Dulucq and Penaud [13] of the inductive equality:

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

where the Mn’s are the Motzkin numbers. At some point of the algorithm, an “oracle” choices which
subprogram to call, based on Mn−1 and Mn−2. Since Mn−1 and Mn−2 are big numbers, this induces
potentially a not O(1) computation. A preprocessing allows a constant time computation for the oracle.

4 Motzkin numbers and Motzkin trees
The nth Motzkin number Mn is the number of different ways of drawing non-intersecting chords between
n points on a circle (not necessarily touching every point by a chord). Motzkin numbers count also well
parenthesized expressions with a constant c, called Motzkin words. They are words of length n in the
language generated by the grammar M .

M = ε ∣ cM ∣ (M)M
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Fig. 3: The 9 non-intersecting chords between 4 points on a circle

cccc cc() c(c)
c()c (cc) (c)c
()cc (()) ()()

Fig. 4: The 9 parenthesized words with constant c.

The bijection between sets of non intersecting chords and well parenthesized words with constant c is
as follows: first one numbers nodes on the circle counterclockwise, as follows:

A position at the beginning of a chord on the circle corresponds to an opening parenthesis. A position at
the end of a chord on the circle corresponds to a closing parenthesis. A position which is neither of those
corresponds to the constant c.

Motzkin numbers count also routes in the upper quadrant from (0,0) to (0,4) with move up, down and
straight.

The bijection is as follows: an opening parenthesis corresponds to an up, a closing parenthesis corre-
sponds to a down and the constant c corresponds to a straight.

Motzkin number Mn counts also the number in unary-binary planar trees with n edges, that are tree
structures with nodes of arity one or two and with n edges. Let us call this number n of edges the size of
the Motzkin tree. Notice that the number of nodes of a Motzkin tee of size n is n + 1, i.e., the size plus
one. Figure 6 gives the trees for n = 4. The bijection f from well parenthesized expressions with constant
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● ● ●

Fig. 5: The 9 routes in the upper right quadrant from (0,0) to (0,4) with move up, down and straight

c to Motzkin trees is as follows. Its inverse f−1 is also given.

f[ε] = ●

f[c w] =
●

f[w]

f[(w1) w2] =
●

f[w1] f[w2]

f−1[●] = ε

f−1
⎡⎢⎢⎢⎢⎣

●
t

⎤⎥⎥⎥⎥⎦
= c f−1[t]

f−1
⎡⎢⎢⎢⎢⎣

●
t1 t2

⎤⎥⎥⎥⎥⎦
= (f−1[t1]) f−1[t2]

Motzkin numbers fulfill the equation:

Mn+1 =Mn +
n−1

∑
i=0

MiMn−1−i

5 Dulucq-Penaud bijection proof
As I said, Motzkin numbers fulfill the holonomic equation [15]:

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2.

Together with the equalities M0 = 1 and M1 = 1, Motzkin numbers can be computed and form the
sequence A001006 in the online encyclopedia of integer sequences [19]. In this section, I present Dulucq
and Penaud’s proof of this equality [13]. This proof relies on the exhibition of a bijection between the
objects counted by the left-hand side and those counted by the right-hand side. The first idea is to consider
specific binary trees called slanting binary trees and divide those trees into 7 subclasses.

5.1 Slanting binary trees
Following Dulucq and Penaud, I represent Motzkin trees as specific binary trees in which leaves 2 are
added. In such binary trees, only the three first configurations below are allowed and the fourth and
rightmost one is not.

https://oeis.org/A001006
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Fig. 6: 9 Motzkin trees with 4 edges and their slanting trees
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The first configuration corresponds to a binary node, the second configuration corresponds to a unary
node and the third configuration corresponds to an end node in the classical presentation (for instance in
Figure 6). I call such trees slanting trees or binary slanting trees, from the french arbres binaires penchés.

Figure 6 shows the 9 Motzkin trees with 4 edges and their corresponding slanting trees. Let us label
each node of a slanting tree with a number between 1 and 2m+1, where m is the number of internal nodes
of the slanting tree. Let us call such a labeled tree a labeled slanting tree. Now consider labeled slanting
trees with one marked leaf. Let us call it a leaf-marked slanting tree. Below there is a labeled slanting
tree of size 4 and a leaf-marked labeled slanting tree, where the mark is on the leaf labeled 8.

3

5 4

7 1

6 8 0 2

3

5 4

7 1

6 8 0 2

This corresponds to the vector [3,0,2,5,4,7,1,6,8].
How nodes and leaves are labeled by numbers will be explained below and is essentially like binary

trees. Like binary trees, just notice that internal nodes have odd labels and leaves have even labels. From
now on, let us forget the labels, but let us mark one of the leaves. In such trees with a marked leaf, we can
distinguish 7 general patterns of subtrees containing the marked leaf (Figure 7 first column). The marked
leaf is denoted by a star in a square, namely ⋆ . In the first group of 4 slanting trees, there are the patterns
where the marked leaf is a right child and in the second group of 3 slanting trees, there are the patterns
where the marked leaf is a left child, hence, due to the constraints on slanting trees, the other child (a right
child) is a leaf as well.

Let us call node-marked a slanting tree in which one internal node is marked. Let us call marked tree,
a slanting tree in which either a leaf or an internal node is marked.

How many leaves in a Motzkin tree?
The slanting tree associated with a Motzkin tree of size n (number of its edges) has n+ 2 leaves. This can
be shown by induction.

Basic case: If the Motzkin tree is ●, its size is 0 and its associated slanting tree has 2 leaves.

Adding a unary node: Assume we add a unary node above a Motzkin tree t of size n, this yields a
Motzkin tree t′ of size n + 1 . The slanting tree associated with t′ has n + 2 leaves (the number of
the leave of the slanting tree u associated with t) plus a new one added, then all together n + 3.

t →
t

u → u

Adding a binary node: Assume we add a binary node above two Motzkin trees t1 and t2 of size n1 and



10 Pierre Lescanne

leaf-marked Choice and
slanting trees marked node-marked

slanting trees slanting trees
1.

⋆

▲ ▲

⋆

▲ ▲

2.

⋆ ▲ ▲

LR , ⋆

▲ ▲
3.

⋆

⋆

4.

▲ ▲ ⋆

⋆

▲ ▲

RR , ⋆

▲ ▲

5.

▲ ▲ ⋆

RL , ⋆

▲ ▲
6.

⋆ ▲ ▲

LL , ⋆

▲ ▲
7.

⋆

⋆

Fig. 7: The 7 patterns of leaf-marked slanting trees

n2, this yields a Motzkin tree t′ of size n1 + n2 + 2. The slanting trees associated with
t1 t2

have n1 + n2 + 4 leaves.

5.2 A taxonomy of slanting trees
Recall Rémy’s algorithm which consists in inserting, at a marked position (internal node or leaf), a leaf
in a marked tree (see Figure 1). After insertion, the formerly marked node becomes unmarked and the
inserted leaf becomes marked. Here, since we are interested in Motzkin trees, we insert a leaf on the
right, above the marked node in the marked slanting tree and like in Rémy’s algorithm, a leaf insertion on
a marked slanting tree is performed, but unlike Rémy’s algorithm the insertion is performed only on the
right and a leaf-marked slanting tree is produced. This corresponds to what is done to pattern1, pattern3
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and pattern4 in the middle column of Figure 7. The leaf is inserted at a marked position in the marked
tree of the middle column producing the leaf-marked tree of the left column. But as we will see for the
other patterns, there are other ways to increase a slanting tree when it does not correspond to one of these
three patterns.

6 The bijection
Beside the fact one works on slanting trees with constraints, what makes also the random generation of
Motzkin trees trickier than Rémy’s algorithm is the structure of the holonomic equation:

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

when compared to the equation:
(n + 1)Cn = 2(2n − 1)Cn−1

First, if we use a construction based on that equation, a Motzkin tree of size n can be built from a Motzkin
tree of size n − 1 or from a Motzkin tree of size n − 2. Thus there are at least two cases to consider.
Actually 7 cases as we will see, since the construction of a Motzkin tree of size n− 1 splits in 4 cases and
the construction of a Motzkin tree of size n − 2 splits in 3 cases. Notice that Mn counts both the number
of Motzkin trees of size n and the slanting trees with n + 2 leaves.

Interpreting the holonomic equation
We conclude that (n+2)Mn counts the number of leaf-marked slanting trees of size n, that (2n+1)Mn−1

counts the number of marked slanting trees of size n − 1 and that (n − 1)Mn−2 counts the number of
node-marked slanting trees of size n−2. Therefore looking at the equation, we see that we should be able
to build a leaf-marked slanting tree of size n from either a marked slanting tree of size n−1 or from a pair
made of an item which can take one of three values and of a node-marked slanting tree of size n − 2. Let
us see how Dulucq and Penaud propose to proceed.

A taxonomy of leaf-marked slanting trees
Leaf-marked slanting trees can be sorted according to the position of their mark. This is done in the first
column of Figure 7. This column has two parts.

The upper part
In the upper part, we have four patterns in which the marked leaf is a right child. Let us call them pattern1,
pattern2, pattern3 and pattern4 (Figure 7). Three of them pattern1, pattern3 and pattern4 are obtained by
Rémy’s right insertion of a leaf in a marked slanting tree. The other pattern2 is not. Indeed if the marked
leaf is removed, the tree that is obtained has a leaf on the left and a node on the right, which is forbidden.
This pattern will be obtained another way.

The lower part
In the lower part, there are three patterns which correspond to the case where the marked leaf is a left child,
hence the sibling of a leaf (Figure 9); pattern7 cannot be obtained by a right insertion of a leaf (Figure 7).
I annotate it with a . But Dulucq and Penaud noticed that pattern ⋆ among marked slanting trees is

not taken into consideration. Thus they propose to associate this pattern ⋆ with pattern7, as shown in
Figure 7.
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1

⋆

▲ ▲

⋆

▲ ▲

3

⋆

⋆

4

▲ ▲ ⋆

⋆

▲ ▲

7

⋆

⋆

Fig. 8: Contribution of marked slanting tree of size n − 1. for pattern7 marks a specific case explained in Section
The lower part

The bijection by cases

Case (2n + 1)Mn−1

The previously explained contribution to leaf-marked slanting trees of size n from marked slanting tree of
size n − 1 is summarized in Figure 8. All the patterns of marked slanting trees are taken into account.

Case 3(n − 1)Mn−2

Let us now look at the three remaining patterns: pattern2, pattern5 and pattern6; forming the lines of
Figure 9. Those three patterns have the same model, namely an internal node with two children: one child
is an internal node and the other child is an internal node whose children are two leaves, one of which is
marked, the other is not. Depending on the position of the marked leaf, we distinguish three cases.

• LL corresponds to the case where the marked node is on the left of the top node and on the left of
its parent node.

• LR corresponds to the case where the marked node is on the left of the top node and on the right of
its parent node.

• RL corresponds to the case where the marked node is on the right of the top node and on the left of
its parent node.

One notices that there is no case RR, because this would correspond to pattern4 considered in the
previous section. As a matter of fact, the three cases LL, LR and RL correspond to the multiplicative
factor 3 in the holonomic equation.
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2

⋆ ▲ ▲

LR
⋆

▲ ▲

5

▲ ▲ ⋆

RL
⋆

▲ ▲

6

⋆ ▲ ▲

LL
⋆

▲ ▲

Fig. 9: Contribution of node-marked slanting tree of size n − 2

Forgetting the marks on leaves
As Rémy noticed for binary trees, since we generate the leaf-marked slanting trees of size n uniformly,
we also get a uniform distribution of slanting trees of size n. Thus we can forget the marks, which we do
in the concrete algorithm.

7 A concrete algorithm for random generation of Motzkin trees
The Haskell program of Figure 10 presents the algorithm for random generation of Motzkin trees. In
what follows, I make no distinction between the algorithm and the program and I consider the Haskell
program as an executable specification. The main function is called rMt and returns an object of type Gen
(Vector Int) like rbt in Figure 2.

Assume that there is a function motzkin that returns the nth Motzkin number. Like for Rémy’s algo-
rithm, one represents a labeled slanting tree by a vector. In this vector, odd labels are for internal and even
labels are for leaves. Notice that the algorithm preserves two properties:

1. The vector codes a slanting tree.

2. The vector of a Motzkin tree of size n has a length 2n + 3.

In order to choose which case to consider, namely (2n+ 1)Mn−1 (case1) or 3(n− 1)Mn−2 (case2),
the algorithm rMt requires a random value between 0 and (n + 2)Mn which we call r. If r is less than or
equal to (2n+ 1)Mn−1, we are in case1, else we are in case2. Said otherwise, given a random value c
between 0 and 1 if c ≤ (2n+1)Mn−1

(n+2)Mn
we choose case1, if not we choose case2.

More abstractly, let us forget Motzkin numbers and consider an oracle which, given a random number r
between 0 and 1 and an n chooses between case1 and case2. If the oracle runs in constant time and
returns a boolean according to the distribution given by the above inequality then the algorithm has a
linear time complexity and returns a random Motzkin tree distributed according to the above inequality.
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1 rMt :: Int −> Int −> Gen (Vector Int)
2 rMt seed 0 = do put (mkStdGen seed)
3 return $ initialVector // [(0,1),(1,0),(2,2)]
4 rMt seed 1 = do put (mkStdGen seed)
5 return $ initialVector // [(0,1),(1,3),(2,0),(3,2),(4,4)]
6 rMt seed n =
7 do generator <− get
8 let (rand, newGenerator) = randomR (0::Double,1) generator
9 put newGenerator

10 case oracle n rand of
11 True −> case1 seed n
12 False −> case2 seed n
13

14 case1 seed n =
15 do generator <− get
16 let (rand, newGenerator) = randomR (0::Double,1) generator
17 k = floor (rand * (fromIntegral (2*n)))
18 v <− rMt seed (n−1)
19 put newGenerator
20 case odd k || odd (v!k) || odd (v !(k−1)) of
21 True −> return $ v // [( k,2*n+1),(2*n+1,v!k ),(2*n+2,2*n+2)]
22 False −> return $ v // [( k−1,2*n+1),(2*n+1,v!(k−1)),(2*n+2,2*n+2)]
23

24 case2 seed n =
25 do generator <− get
26 let (rand, newGenerator) = randomR (0::Double,1) generator
27 r = floor (rand * (fromIntegral (3*n−6)))
28 k = r ‘div ‘ 3
29 c = r ‘rem‘ 3
30 v <− rMt seed (n−2)
31 put newGenerator
32 case c < 2 of
33 True −> return $ v // [(2*k+1,2*n−1),(2*k+2,2*n+1),
34 (2*n−1,2*n),(2*n,2*n+2),
35 (2*n+1,v!(2*k+1)),(2*n+2,v!(2*k+2))]
36 False −> return $ v // [(2*k+1,2*n−1),(2*k+2,2*n+1),
37 (2*n−1,v!(2*k+1)),(2*n,v!(2*k+2)),
38 (2*n+1,2*n),(2*n+2,2*n+2)]

Fig. 10: Haskell program for random generation of Motzkin trees
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• case1: one draws at random a leaf or an internal node in a slanting tree of size n − 1. This means
choosing at random an index k in the vector v. We get pattern7 if three conditions are fulfilled.

1. The marked item, should be a right child. This means that k is even, since the left child of
a node of index 2p + 1 is 2p + 1 and the right child of this node is 2p + 2.

2. The marked item is a leaf. This means that v[k] is even, since leaves have even labels.
Notice that Haskell uses the notation v!k for our mathematical notation v[k].

3. The sibling item of the marked item is a leaf (a left child by the way). This means that
v[k − 1] is even.

In this case (k is even, v[k] is even and v[k − 1] is even) one inserts a node and a leaf as shown by
Figure 8, which corresponds in the code to:

v // [(k-1,2*n+1),(2*n+1,v!(k-1)),(2*n+2,2*n+2)]

In Haskell, the operator // updates vectors at once, it is called a bulk update. (2*n+1,v!(k-1))
means that the left child is a new node, at index 2 ∗ n + 1, which points to the former value of
v!(k-1). The right child is a new leaf.

The other cases (pattern1, pattern3, pattern4) correspond to cases when one of k, v[k] or v[k − 1]
is odd. The update is then

v // [(k,2*n+1),(2*n+1,v!k),(2*n+2,2*n+2)]

which corresponds to the first lines of Figure 8.

• case2: In this case we consider a random node-marked slanting trees of size n − 2 and a random
values among LR, RL, LL. For that we draw a number r between 0 and 3n − 6, from which r ÷ 3
gives a random number between 0 and n−2 (a random node) and r mode 3 yields a random number
among 0, 1 and 2. We notice that LR and LL correspond to the same transformation, while RL
corresponds to another transformation. In each case one adds four nodes, with labels 2n − 1, 2n,
2n + 1 and 2n + 2. Thus,

v // [(2*k+1,2*n-1),(2*k+2,2*n+1),(2*n-1,2*n),(2*n,2*n+2),
(2*n+1,v!(2*k+1)),(2*n+2,v!(2*k+2))]

is the transformation for LR and LL and

v // [(2*k+1,2*n-1),(2*k+2,2*n+1),(2*n-1,v!(2*k+1)),(2*n,v!(2*k+2)),
(2*n+1,2*n),(2*n+2,2*n+2)]

corresponds to RL. We let the reader check that the code of Figure 10 corresponds to the pictures
of Figure 9.
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1 oracleMotzkin :: Int −> Double −> Bool
2 oracleMotzkin n rand =
3 let r = floor (rand * fromIntegral (fromIntegral (n+2) * (motzkin n)))
4 in r <= (fromIntegral (2*n+1)) * (motzkin (n−1))

Fig. 11: The plain oracle

1 oracleRatioM :: Int −> Double −> Bool
2 oracleRatioM n rand = case n <= 100004 of
3 True −> ratioM!n <= rand
4 False −> 0.66666666667 <= rand

Fig. 12: The approximation oracle

8 Linearity and oracle
The linearity of the algorithm depends on an oracle which should decide an inequality in constant time.
In the implementation is the plain implementation of Figure 11, the complexity of the algorithm rMt is
not asymptotically linear, due to computations on big numbers.

However the inequality rand < (2n+1)Mn−1
(n+2)Mn

of the oracle can be approximated by a precomputed table
which I call ratioM (of actual size 10004 in my case), and which is used in the oracle in Figure 12. For
sizes larger that this bound, I take just the value 0.66666666667, which is a good approximation, since the
fraction goes down to the limit 2

3
. The actual implementation runs up to size 9×106 and never requires (in

the benchmarks) more than 10 digits of precision (see next section). But despite the asymptotic linearity
is not guaranteed, the algorithm is linear in practice.

For a better efficiency, the program rMt can run without recursive calls. In this case, the stack of the
calls is first computed and the construction of the vector is performed by popping the stack. I wrote a
Python program, which generates random Motzkin trees of size 9 millions in less that 50 seconds on a
laptop. In all the benchmarks, I checked that the difference between the drawn rand and the fraction is
always larger than 10−10. Hence, digits that are not 6 are never checked, which shows that the oracle
called oracleRatioM corresponds to the oracle called oracleMotzkin in this size interval [0 .. 9 × 106]
and runs in constant time.

9 Schröder trees
In this section, I define Schröder trees and a proof by bijection of the holonomic equation for defining
numbers that count Schröder trees, aka Schröder numbers or Schröder-Hipparchus numbers. This proof
is the translation for Knuth’s definition of Schröder trees of this due to Foata and Zeilberger [17]. From
this proof I derive a quasi linear algorithm for random generation of Schröder trees.

9.1 Definition of Schröder trees
We take the definition of Knuth [21] § 7.2.1.6 (pp. 41): ”A Schröder tree is a binary tree in which every
nonnull right link is colored either white or black”. We represent black links with and white links
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Fig. 13: The 11 Schröder trees with 4 leaves.

with . But unlike Knuth, we follow Foata and Zeilberger [17] and we say that a Schröder tree has size

n if it has n leaves, hence n − 1 nodes. For instance, Schröder trees with 4 leaves are given in Figure 13.
Schröder trees are counted by numbers Sn, which form the sequence A001003 in the online encyclo-

pedia of integer sequences [19] and which fulfill the holonomic equations:

(n + 1)Sn+1 − 3(2n − 1)Sn + (n − 2)Sn−1 = 0

that we will use on the form

(n + 1)Sn+1 = 3(2n − 1)Sn − (n − 2)Sn−1

Notice that Foata and Zeilberger [17] use for the constructive proof:

3(2n − 1)Sn = (n + 1)Sn+1 + (n − 2)Sn−1 (1)

Schröder trees count also ordinary trees with n leaves and no node of degree one. One “shrinks” the white
edges, merging the nodes that they connects (see [21] Exercise 66). For trees with 4 leaves, the reader can
see the bijection in the lines of Figure 13 and in the odd lines of Figure 14. Trees in correspondence are on
the same row. Schröder numbers count also partitions of polygons [14]. The bijection between ordinary
trees with 4 leaves and no node of degree one and partitions of pentagons (polygons with 5 edges) is
illustrated by Figure 14. First one associates with each tree a parenthesized expression in α, β, γ and δ,
in this order. Then each parenthesized expression is associated with a unique partition of the pentagon.
For this purpose, a basic edge is chosen and other edges are named clockwise by letters α, β, γ, δ. If
one proceeds starting at edge α, each diagonal closes a polygon (with less edges) in which the other edges

https://oeis.org/A001003


18 Pierre Lescanne
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Fig. 14: 11 Trees having no node of degree one and 4 leaves, associated with11 partitions of pentagons
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⋆ ○
T

⋆ ○
T

○ ⋆

T

Fig. 15: Insertion of a leaf in Foata and Zeilberger bijection

⋆ ▲ ⋆

▲ ▲
▲ ⋆

a b c

Fig. 16: Three impossible left insertions of leaves

have been already named by an expression. Therefore one can associate a partition with each expression
as this is presented in Figure 14. One can process the same way for hexagons, heptagons etc.

Didier Arquès and Alain Giorgetti have shown that planar rooted hypergraphs with vertices only of the
outer face are also counted by Schröder numbers [3].

9.2 Foata and Zeilberger bijection
In identity (1):

• (2n−1)Sn counts marked Schröder trees of size n, where nodes and leaves can be marked, therefore
3(2n − 1)Sn, counts pairs made of one of three values and of a marked Schröder tree,

• (n + 1)Sn+1 counts leaf-marked Schröder trees of size n + 1,

• (n − 2)Sn−1 counts node-marked Schröder trees of size n − 1.

In order to prove identity (1), Foata and Zeilberger build a one-to-one function which associates, with a
pair of a number 0, 1 or 2 (coded by Foata and Zeilberger as L1, L2 and R1) and a marked Schröder tree
of size n, either a leaf-marked Schröder tree of size n + 1 or a node-marked Schröder tree of size n − 1.

Foata and Zeilberger bijection [17] that proves identity (1) is based on constructions similar to Rémy’s
insertion (Figure 1), with the difference that there are two left insertions, one that corresponds to a black
link and one that corresponds to a white link (Figure 15). Due to the constraints on white links in Schröder
trees, there are three patterns (Figure 16), with impossible insertion, when one tries to insert a left leaf to
become a left sibling of a leaf connected with a white link. Two patterns (a and c in Figure 16) can be
”recovered”. The third pattern (b in in Figure 16) is shrunk toward a Schröder tree of size n− 1. This will
correspond to a fail in the algorithm.

Similarly there are two unreachable cases by left or right insertion. They are patterns which are the
results of a right or left insertion on a leaf which are a right child by a white link.
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▲
⋆

▲
⋆

Fig. 17: Two unreachable

Let us call L1, L2 and R1 the three labels. Therefore Figure 18 gives the correspondence between pairs
of a label from {L1, L2,R2} and of a marked Schröder tree, with either a leaf-marked tree of size n + 1
or a node marked tree of size n − 1.

Cases L1 and R1. One inserts a leaf with a black link. This is exactly like Rémy’s insertion.

Case L2. This case deals with a left insertion with a white right link.

First line: The mark is on a node. The left insertion with a white right link is possible.

Second line: The mark is on a left leaf and the right link is black. The left insertion yields a
forbidden pattern (a right white link toward a leaf). But by twisting the tree and swapping the
colors of the right links, one reaches the first unreachable pattern of Figure 17.

Third line: The mark is on a left leaf and the right link is white. Then the left child is not a leaf.
The left insertion is forbidden as well. Therefore by removing the left leaf one gets a node
marked tree of size n − 1.

Fourth line: The mark is on a right leaf. The left insertion yields a forbidden pattern, but by
swapping the colors of the right link one gets the second unreachable pattern of Figure 17.

10 A concrete algorithm for random generation of Schröder trees
The program of Figure 19 presents the algorithm for random generation of Schröder trees. Like in previous
cases one uses a vector (an array) of size 2n+1. But in addition to the indices for the next nodes, one adds
a boolean. This boolean says that the right link that starts from the node corresponding to this index is
white. Hence each cell of the array contains a pair (k, b) where k is an index and b is a boolean. According
to the constraints induced on the Schröder trees, the pair corresponding to a boolean True has, as a first
component, an odd number, since this first component corresponds to a link to a node. Since the node is a
right child, it is located at an even index. If these constraints are not fulfilled, the second component must
be a False. Therefore in the program when she adds a pair (k, True) at a position m, she has to check
that k is odd and m is even. In another hand, if she writes (m, (k, True)) for such an operation, she has
to check that it is of the form (2p, (2q + 1, T rue)). This constraints is an invariant of the program. The
case when Foata and Zeilberger produce a Schröder tree of size n − 2 corresponds in my algorithm to a
“failure”, that is a “retry”: the subprogram body is called with a new random generator.

There are six cases. Assume one draws a number x between 0 and 6n − 4 and let us call k the number
x ÷ 3. The value x mod 3 discriminates among L1, L2 and R2: 0 for L1, 1 for L2 and 2 for R1. The
cases L1 and R1 are easy. Assume that at the kth index the array contains (h, b).

L1 corresponds in the code to
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⋆ ⍟
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⋆

⋆

▲ ▲

↘
⋆

▲ ▲

▲ ⋆

▲
⋆

↓↑
▲
⋆

R1

⍟

⍟ ⋆

Fig. 18: Foata and Zeilberger isomorphism in pictures
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1 type Gen = State StdGen
2

3 rst :: Int −> Int −> Gen (Vector (Int,Bool))
4 rst seed 0 = do put (mkStdGen seed)
5 return ( initV // [(0,(0, False ))])
6 rst seed n =
7 let g = rst seed (n−1)
8 body generator =
9 do v <− g

10 let (rand, newGenerator) = randomR (0::Double,1) generator
11 x = floor (rand * fromIntegral (6*n−4))
12 −− x is a random value between 0 and 6n − 4
13 k = x ‘div ‘ 3
14 put newGenerator
15 case x ‘mod‘ 3 of
16 0 {−L1−} −> return (v // [( k,(2*n−1,False )),
17 (2*n−1,(2*n,False )),
18 (2*n,v!k )]) −− L1
19 1 {−L2−} −> case odd(fst (v!k)) of
20 True {− not a leaf −}−> return (v// [( k,(2*n−1,False )),
21 (2*n−1,(2*n,False )),
22 (2*n,( fst (v!k ),True ))])
23 False −> case odd k of
24 True {− the leaf is on the left −} −> case snd (v ! (k+1)) of
25 False {− the other link is black−} −>
26 return (v //[( k,v !(k+1)),
27 (k+1,(2*n−1,True)),
28 (2*n−1,v!k ),(2*n,(2*n,False ))])
29 {−Failure−} True {− the other link is white −} −> body newGenerator
30 False {− the leaf is on the right −} −>
31 return (v //[( k,(2*n−1,True)),
32 (2*n−1,v!k),
33 (2*n,(2*n,False ))])
34 2 {−R1−} −> return (v // [( k,(2*n−1,False )),
35 (2*n−1,v!k),
36 (2*n,(2*n,False ))])
37 in do generator <− get
38 body generator

Fig. 19: Haskell program for random generation of Schröder trees.
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(v // [(k,(2*n-1,False)),(2*n-1,(2*n,False)),(2*n,v!k)]

The links are black hence the booleans are False.

L2 and h is odd. This means that the mark is on a node. This corresponds to the code:

v// [(k,(2*n-1,False)),(2*n-1,(2*n,False)),(2*n,(fst(v!k),True))]

Clearly, 2*n,(fst(v!k),True) fulfills the constraints (2p, (2q+1, T rue)) since fst(v!k),
which we called h, is odd.

L2 and h is even and k is odd and the second component of v!(k+1) is False: This means that the
mark is on a leaf (h is even) which is a left child (k is odd) and the link that goes to the sibling leaf
is black. This corresponds to the code:

v//[(k,v!(k+1)),(k+1,(2*n-1,True)),(2*n-1,v!k),(2*n,(2*n,False))]

The reader may check that the code corresponds to the picture of Figure 18, line 2. (k+1,(2*n-1,True))
fulfills the constraints (2p, (2q + 1, T rue)) since k + 1 is even and 2n − 1 is odd.

L2 and h is even and k is odd and the other link is white and the second component of v!(k+1) is
True: This corresponds to a failure, and the program loops with a new random generator.

L2 and h is even and k is even: This means that the mark is a leaf (h is even) which is a right child. This
corresponds to the code:

v//[(k,(2*n-1,True)),(2*n-1,v!k),(2*n,(2*n,False))]

(k,(2*n-1,True)) fulfills the constraints (2p, (2q + 1, T rue)) since k is even and 2n − 1 is
odd.

R2 corresponds in the code to

v // [(k,(2*n-1,False)),(2*n-1,v!k),(2*n,(2*n,False))

The links are black hence the booleans are False.

One may notice that in the array, only values at odd indices require to carry a boolean, and this boolean is
required only when the first value of the pair is odd. This suggests a better data structure which may save
little space, but I did not implement it.
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size time ratio

1000 0.012s 0.024
5000 0.031s 0.0288
10000 0.064s 0.025
50000 0.200s 0.0269
100000 0.290s 0.02707
500000 1.295s 0.027762

1000000 3.065s 0.027883
5000000 15.183s 0.0276378

10000000 30.738s 0.0275827

Fig. 20: Benchmarks for Schröder trees

10.1 Ratio of failures and average linear complexity
The loop in rst can be sketched by the following program P:

1 while True:
2 r = random.randint(0,2)
3 if r == 0:
4 break
5 elif r == 1:
6 continue
7 else :
8 break

despite in rst, the loop happens less often. In P, one breaks with probability 2
3

, in the first run of the loop,
with probability 2

32
in the second run of the loop, with probability 2

33
in the third run of the loop, etc.

Therefore if the cost of executing the statements of the loop is c, the total average cost of the loop is:

c
∞

∑
i=1

2

3i
= c.

10.2 Benchmarks
Benchmarks are done on a Python program, with a while loop, which mimics the Haskell program.
See Figure 20. A third column yields the ratio of number of fails over the size of the produced tree.
Computations are run on a laptop with 4 Gb of memory.

11 Related Works
On Motzkin trees
Our work was inspired by Jean-Luc Rémy’s algorithm [24]. Laurent Alonso [1] proposed an algorithm
for generating uniformly Motzkin trees. His method consists in generating the number k of binary nodes
with the correct probability law; he uses then standard techniques to generate a unary-binary tree with k
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binary nodes among n nodes. The number of trees with k binary nodes is over-approximated by values
that follow a binomial distribution: choosing k is therefore done using random generations for a binomial
law and rejections. Therefore his algorithm is linear on the average, with possible but extremely rare
long sequences of rejection. Dominique Gouyou-Beauchamps and Cyril Nicaud [18] propose a random
generation for color Motzkin trees which is linear on the average and Srečko Brlek et al. [9] propose an
extension of Alonso’s algorithm to generalized versions of Motzkin trees.

Axel Bacher, Olivier Bodini and Alice Jacquot [4, 20, 5] propose an algorithm with similar ideas.
Especially their Figure 2 shares similarity with our Figure 9. There “operations” G3, G4 and G5 are
connected with our cases RL, LR and LL respectively. #↗ corresponds to ⋆ and #↖ corresponds to

⋆ . Like Alonso’s, the algorithm they propose has a linear expected complexity, due to failures similar
to those of our Schröder tree generation algorithm. Let us also mention generic Boltzmann’s samplers
with exact-size which apply among others to Motzkin trees [7, 22] and generic algorithms [11, 23] with
linear expected complexity.

Denise and Zimmermann [10] discuss what can be done on floating-point arithmetic when generating
random structures. The authors focus on decomposable labeled structures [16] and address the problem
of choice (which I call oracle), with a specific section on Motzkin trees.

On Schröder trees
After studying the random generation of Motzkin trees and reading Foata and Zeilberger paper, I started
the implementation of a random generation of Schröder trees, which turns out to be of expected linear
complexity. Actually Laurent Alonso, René Schott and Jean-Luc Rémy [2] proposed another linear al-
gorithm for random generation of Schröder trees, on the same principle as Alonso’s algorithm for the
generation of Motzkin trees. Like this quasi-linear algorithm, it proceeds in two steps: first, it chooses
randomly the number k of leaves with an adequate probability and a rejection technique, second, it gen-
erates a random Schröder tree with k leaves. In comparison, my algorithm is direct. I deal only with
Schröder trees, not with Schröder trees with k leaves. I am very closed to Rémy’s algorithm and to my
algorithm for random generation of Motzkin trees.

12 Conclusion
Generating Motzkin trees and Schröder trees has many potential applications [12, 6, 2]. My algorithm for
generation of Motzkin trees has a simple code and is linear and my algorithm for Schröder trees is direct,
which means it deals only with Schröder trees. Among the possible extensions of my method which could
be explored, there is the generation of extended versions of Motzkin structures like Motzkin trees with
colored leaves [18] or Motzkin paths with k long straights [9]. k = 1 corresponds to Motzkin paths and
k = 2 to Schröder paths. On another hand, Bracucci et al. [6] study a family of sets of permutations:M1,
M2, ..., M∞, in which M1 is for Motzkin permutations (that are Motzkin trees up to a bijection) and
M∞ is for Catalan permutations (that are binary trees up to a bijection) an interpolation of our method
seems doable.

Deriving linear algorithms for the generation of random objects applies to other structures. Indeed the
production of a holonomic function can be mechanized by the software GFUN [26]. However, for my
purpose, this method has limitations, since the size of the equation can blow up as shown by Figure 3
of [8] for instance.
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[24] Jean-Luc Rémy. Un procédé itératif de dénombrement d’arbres binaires et son application à leur
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